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Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced
Prompting and Multi-Source Supervision

Anonymous Authors

ABSTRACT
Ancient artifacts are an important medium for cultural preserva-
tion and restoration. However, many physical copies of artifacts
are either damaged or lost, leaving a blank space in archaeological
and historical studies that calls for techniques to re-visualize these
artifacts. Despite the signi�cant advancements in open-domain
text-to-image synthesis, existing approaches fail to capture the im-
portant domain knowledge presented in the textual descriptions of
artifacts, resulting in errors in recreated images such as incorrect
shapes and patterns. In this paper, we propose a novel knowledge-
aware artifact image synthesis approach that brings lost historical
objects accurately into their visual forms. We use a pretrained dif-
fusion model as backbone and introduce three key techniques to
enhance the text-to-image generation framework: 1) we construct
prompts with explicit archaeological knowledge elicited from large
language models (LLMs); 2) we incorporate additional textual guid-
ance to correlated historical expertise in a contrastive manner;
3) we introduce further visual-semantic constraints on edge and
perceptual features that enable our model to learn more intricate
visual details of the artifacts. Compared to existing approaches, our
proposed model produces higher-quality artifact images that align
better with the implicit details and historical knowledge contained
within written documents, thus achieving signi�cant improvements
both across automatic metrics and in human evaluation. Our code
and data will be made publicly available.

CCS CONCEPTS
• Computing methodologies! Computer vision; • Applied
computing ! Archaeology.

KEYWORDS
Ancient Artifact Visualization, Text-to-Image Synthesis, Di�usion
Models, Multi-Source Supervision, Large Language Models

1 INTRODUCTION
Ancient artifacts are crucial for cultural preservation, as they rep-
resent tangible evidence of the past, o�ering insights into history.
In recent years, innovative artifact-related projects have emerged,
including the restoration of degraded character images [33], the
generation of captions for ancient artwork [32], and the decipher-
ing of oracle bone inscriptions [5]. These works have opened up

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
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© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Images of artifacts generated by a vanilla di�usion
model. The shape, color, pattern, and material-look di�er
greatly from the ground truth.

new avenues for researchers to study artifacts and gain insights
into the past. Despite these advancements, there are still many
areas to be explored in artifact-related tasks, one of which is to
recreate visual images of artifacts from text descriptions, as many
physical copies of artifacts are often damaged or lost, leaving only
textual records behind. This task could prove immensely invaluable
to historical studies and cultural preservation because it provides
historians with new visual angles to study the past and enables
people to connect with their cultural heritage.

One line of techniques that has shown potential to aid in the
recreation of visual images of ancient artifacts is text-to-image
synthesis. This task has been a popular area of research, espe-
cially in recent years with the introduction of di�usion models
[14, 22, 27, 36, 39, 49] that have demonstrated signi�cant capabil-
ities in generating photo-realistic images based on a given text
prompt in open-domain problems [10, 23, 26, 27, 30]. However, in
the specialized area of archaeological studies, where data is often
limited and domain knowledge is required, vanilla di�usion mod-
els struggle to produce promising results even with �netuning, as
shown in Figure 1. The generated images often display errors in
shape, patterns, and details that fail to match the implicit knowledge

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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in the textual information and the underlying historical context of
the target artifact.

We have identi�ed a key cause for this problem to be the lack of
knowledge supervision during the generating process, which can
be attributed to two main aspects. 1). Current text prompts may not
be infused with domain-speci�c knowledge from the archaeologi-
cal and historical �elds, leading to noisiness and the lack of well-
presented knowledge information in the text prompt. 2). The text
and visual modules in the vanilla di�usionmodels [14, 27, 35, 37, 38]
may be unable to capture domain-speci�c knowledge under the
standard training pipeline, resulting in the absence of detailed tex-
tual and visual signals of ancient artifacts in the generation process.

To address these challenges, we propose our knowledge-aware
artifact image synthesis approach with a pretrained Chinese Stable
Di�usion model [27, 51] as our backbone. Our method can generate
visualizations of lost artifacts that well align with the underlying
domain knowledge presented in their textual records. Speci�cally:

1). To address the issue of noisiness and lack of well-presented
knowledge information in the text prompt, we propose to use Large
Language Models (LLMs) to enhance our text prompts in two ways:
for one, we use LLMs to extract the core andmeaningful information
in the given text prompt and reorganize them in a more structured
way to explicitly present the current knowledge information; for
another, we use LLMs as an external knowledge base to retrieve
relevant archaeological knowledge information and augment them
in the restructured text prompt.

2). To address the lack of both textual and visual knowledge
supervision in the generation process, we introduce additional
supervision in both modalities. Firstly, we introduce a contrastive
training paradigm that enables the text encoder to make the textual
representation of the artifact more in line with their archaeological
knowledge. Secondly, we apply stricter visual constraints using
edge loss [31] and perceptual loss [15] to make the �nal visual
output align with the visual domain knowledge of ancient artifacts.

Both quantitative experiments and a user study involving human
experts demonstrate that our knowledge-aware artifact image syn-
thesis approach signi�cantly outperforms existing text-to-image
models and greatly improves the generation quality of historical
artifacts.

Overall, our main contributions can be summarized as follows:

• To our best knowledge, we are the �rst to explore the text-
to-image synthesis task in archaeology as an attempt to
visually recreate lost historical artifacts, thus aiding ar-
chaeologists in gaining deeper insights into our past cultural
treasury.

• Wepropose to use LLMs as both an information extractor and
external knowledge base to elicit archaeological knowl-
edge that explicitly aids better prompt construction in the
specialized domain requiring high historical precision.

• We introduce additional multimodal supervisions to en-
able our model to learn textual representations and visual
features that better align with archaeological knowledge and
historical context, thus improving the current �netuning
paradigm of di�usion models.

Figure 2: Raw artifact descriptions fail to depict the arti-
fact with su�cient archaeological information, such as their
artifact-“type” which determines important aspects of their
visual appearance. As shown in this �gure, the artifact on
the left side is classi�ed as a “Round Ding” rather than a
“Square Ding”, which strictly con�nes its shape to a round
body having only three legs as opposed to four legs.

2 BACKGROUND
2.1 Problem Statement
As mentioned in Section 1, for many artifacts, text documents are
the only available source of information. Hence our task is to recre-
ate a visual image � 08 given artifact text information )8 . The synthe-
sized image � 08 needs not only to align with the textual meanings
conveyed in )8 but also to be in line with the implicit historical
knowledge about the artifact. Only then will the generated image
be historically correct and thus valuable to archaeological stud-
ies. Correspondingly, the training dataset ⇡ comes in the form of
pairs as ⇡ = {()8 , �8 )}=8 , where )8 2 ) is the available text infor-
mation and �8 2 � is the corresponding artifacts image. The raw
text information available for an artifact - as often cataloged in
museums - contains roughly four parts: the name or title of the
artifact; the time period of origin; a raw description of the artifact
(often presented in a messy way); the physical size of the artifact.
Formulated from accessible resources of such kind, the task of our
work is then to generate accurate artifact images based on these
textual descriptions of historical objects.

2.2 Di�usion Preliminaries
To solve the task de�ned in the above section 2.1, we propose to
build our model upon the text-conditioned Stable Di�usion pipeline
[27]. Before diving deeper into our approach, we present a detailed
mathematical introduction of di�usion models and Stable Di�usion
in Appendix F 1. Here, we only brie�y summarize the standard
training objective of a Stable Di�usion (SD) model as follows:

!(⇡ (\ ) := EC,E(G0 ),n | |n � n\ (IC , C,F) | |2 (1)

1As per the submission guidelines, all technical Appendices mentioned in the main
text are submitted separately as supplementary material.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced Prompting and Multi-Source Supervision ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

where n is the applied random noise. IC 2 Z is the representation
of a noised image in the latent space at time step C and F is the
encoded text representation. n\ aims to denoise the latent space. G0
is the real image at timestep 0 and E is the latent space encoder.

3 OUR METHOD
Our proposed approach for knowledge-aware artifact image synthe-
sis is built upon a pretrained Stable Di�usion model, which retains
its powerful generative capability of common domains and is fur-
ther �netuned to align with the speci�c characteristics of ancient
artifacts. The generic Stable Di�usion model, even with �netuning,
however, struggles to generate visually and historically accurate
artifact images and shows multifaceted errors, as is demonstrated
in Figure 1.

To address these issues, we propose speci�c modi�cations at
three steps in the Stable Di�usion system:

1). Given source text information )8 of an artifact, we pass it
into an LLM (in our case, GPT-3.5-TURBO) with carefully de-
signed querying message and in-context examples to obtain
a clean and augmented prompt input of our di�usion model
) 0
8 . (Section 3.1).

2). During training, when) 0
8 is passed into the text encoder, we

apply an additional contrastive learning module on the text
encoder to align the description of an artifact with its name,
which is essentially an expert summary of its description.
(Section 3.2).

3). After the added noise is predicted in the training phase, we
reconstruct the model-predicted image � 08 and apply addi-
tional visual-semantic supervision with edge loss [31] and
perceptual loss [15] to steer the generation of our model
closer towards the ground-truth appearance of artifacts. (Sec-
tion 3.3).

The overall framework for our approach is illustrated in Figure 3
and explained in detail in the following subsections.

3.1 Prompt-Construction Enhanced by LLM
We have noticed that the raw description of an artifact accessible
in museum resources (as mentioned in Section 2.1) is far from ideal
for prompting a text-to-image model. It is often incomplete and
�lled with noisy messages and fails to su�ciently depict a historical
object. Other than the messiness problem, these o�-the-shelf de-
scriptions may well lack speci�c information about an artifact that
is essential to its visual form, such as its fundamental classi�cation
(or: artifact-“type”). An example 2 of this is given in Figure 2. As per
archaeological terminology, the fact that the artifact on the left side
is classi�ed as a “Round Ding” rather than a “Square Ding” con-
�nes its shape to a round body having only three legs as opposed
to four legs. However, key implicit archaeological information of
this kind is often missing in the raw description of the artifact, pro-
hibiting a text-to-image model from su�ciently understanding the
association between the visual appearance and the textual prompt.

To alleviate the problems of noisiness and knowledge de�ciency
in the original text information, we propose to utilize an LLM as

2To maintain a consistent language usage throughout the paper, we translate all
Chinese text (e.g., the textual descriptions of artifacts) into English via ChatGPT.

both an information extractor to retrieve the most useful informa-
tion, and as an external knowledge base to complete any missing
important attributes of the artifact.

Based on archaeological expertise, we have compiled a list of
key attributes that are vital for e�ectively describing artifacts and
de�ning their physical forms, see Table 1. Examples of these at-
tributes are given in Table 5 in Appendix A. While the “name”,
“time period” and “size” of an artifact are usually available in mu-
seum resources, the speci�c “material”, “shape” and “pa�ern”
need to be extracted or derived from the raw description of the
object. Further, as explained above, the classi�ed “type” of an arti-
fact determines certain fundamental aspects of its looks, which are
speci�ed by the generic de�nition of this artifact-type (i.e., “type
de�nition”). It requires a general knowledge of archaeology to be
able to categorize an ancient object into a certain artifact-type and
to de�ne the basic appearance of this type.

Table 1: Expert attributes of artifacts that are vital to their
visual appearance according to archaeological expertise. See
Table 5 in Appendix A for examples of these attributes.

Expert Attribute De�nition

Name name or title of an artifact
Material the material an artifact is made of
Time Period time period of origin
Type classi�ed type of an artifact
Type De�nition general de�nition of artifact type
Shape shape and structure of an artifact
Pattern patterns/motifs on an artifact
Size physical dimensions of an artifact

An LLM is well-suited for ful�lling these two tasks with its ability
to obtain a certain extent of world knowledge from the massive pre-
training corpus [20] and to learn to perform specialized downstream
tasks using the in-context learning paradigm [3]. Speci�cally, we
use GPT-3.5-TURBO as our knowledge-base LLM, and the prompt
for querying GPT-3.5 is designed with a similar format following
self-instruct [45]. Our prompt template consists of three parts: 1).
A task statement that describes to GPT-3.5 the task to be done; 2).
Two in-context examples of high quality sampled from our labeled
pool of 54 artifacts written by archaeology experts; 3). The target
artifacts whose “material”, “shape”, “pattern”, “type” and “type de�ni-
tion” are left blank and need to be answered by GPT-3.5. The former
3 attributes can be retrieved from the given “description” and the lat-
ter 2 artifact-type related features need to be ful�lled via the world
knowledge of GPT-3.5 and its in-context learning from the given
human-labeled examples. An example of our prompt for querying
artifact information is illustrated in Figure 7 in Appendix B.

By leveraging the power of LLM as both an information extractor
and external knowledge provider, we are able to collect all the key
attributes of a given artifact, which are then rearranged into the
prompt to our di�usion model with a [(⇢%] (implemented as a Chi-
nese comma in our work) splitting each key feature, as shown by the
example in Table 5 in Appendix A. Such input prompt thus contains
enriched text information that provides well-de�ned archaeology-
knowledge guidance. It assists the text-to-image di�usion model in
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Figure 3: Our proposed knowledge-aware approach is illustrated in a). It features a Chinese Stable Di�usion model as backbone
and our proposed three key techniques labeled as follows: b) illustrates the way of performing textual contrastive learning,
which is discussed in Section 3.2; c) is edge loss, and d) is perceptual loss, both of which are part of the additional visual-semantic
supervision, as discussed in Section 3.3.

synthesizing a more realistic result that better corresponds to the
ground-truth artifacts.

3.2 Alignment with Domain-Expertise via
Contrastive Learning

Another issue we identify is that the text encoder might not en-
code the text into a representation that re�ects the underlying
archaeological knowledge and thus needs further �netuning. We
observe that the “names” of ancient artifacts are often accurate
and concise summarizations of the artifact’s key attributes, while
the “descriptions” provide an extended version of the artifact’s fea-
tures. Given that both the names and descriptions are provided by
domain experts - as written in museum sources, they re�ect a high
level of expertise in the �eld. Thus, we believe that closely align-
ing the names and descriptions is essential to re�ect this domain
knowledge.

To achieve this goal, we propose the use of contrastive learning
that aims to minimize the distance between positive pairs consisting
of matching ( [34B2A8?C8>=]8 , [=0<4]8 ) pairs extracted from) 0

8 , and
to maximize the distance between negative pairs with mismatching
descriptions and names.

However, we have also observed that artifacts with similar at-
tributes (i.e., similar “description” contents) and historical origins
often share similar names, making it unintuitive to �netune the
text encoder to di�erentiate between these similar pairs. We be-
lieve that such pairs should be close to each other in the semantic
space. Therefore, we readjust our sampling strategy for negative
pairs. From the perspective of historical studies, “time period” is
one of the most determining factors in the style and appearance
of an artifact, where di�erent artifacts from di�erent eras can be
vastly di�erent. Therefore, aiming to separate hard negatives rather

than slightly di�erent ones, we sample our negative samples from
artifact names in di�erent eras.

In our approach, we use InfoNCE [42] to penalize the mis-
alignment in the representation encoded by the text encoder. The
formula for text contrastive learning can be written as:

!text := �E- log
⇢-% (G8 )Õ

G 9 2- ⇢-% (G 9 )
(2)

where G8 = E([34B2A8?C8>=]8 ) · E([=0<4]8 ) denotes the similarity
between a pair positive sample in the text encoder’s embedding
space. And - is the set of # similarities between sampled pairs
from the entire dataset, containing one positive sample G8 and
# � 1 negative samples G 9 2 - where 8 < 9 and %4A8>3$5 ()8 ) <
%4A8>3$ 5 ()9 ).

3.3 Restoring Visual Details via Additional
Visual-Semantic Supervision

Artifact images generated by the vanilla Stable Di�usion model suf-
fer from blurry edges and false color and patterns under the current
setting (see Figure 1), implying that stricter visual constraints need
to be enforced to address these issues. Therefore, we propose to
use edge loss [31] and perceptual loss [15] that apply additional
visual-semantic supervision on images generated by our Stable
Di�usion model.

Edge Loss. Building upon the insights from [31], we penalize the
di�erences in contours between two images by aiming to minimize
the !2 distance between their edge maps, as shown in part c) of
Figure 3. Since the vanilla Stable Di�usion model often produces
images that su�er from the problem of incorrect and blurry shape
compared to the ground-truth artifact, it is necessary to penalize
such errors as de�ned here in the edge loss:
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!edge := | |⇢⇡⌧⇢ (�8 ) � ⇢⇡⌧⇢ (� 08 ) | |2 (3)
where ⇢⇡⌧⇢ (·) is an edge extracting function. In our approach, we
use the Canny Edge Detector [4] as our edge extractor to extract
edge maps (see examples in Figure 4), then compare the di�erence
between two contours in !2 distance.

Figure 4: Canny edge maps of artifacts

Perceptual Loss. Similar to [15], we also penalize the problem
of mismatching high-level details between the generated image and
the real one. As we have also observed on the images generated
by the vanilla Stable Di�usion model, the high-level details (such
as colors and patterns) are often misaligned with the original ones.
Therefore, we incorporate perceptual loss into our training process
to tackle such an issue, as perceptual loss works by mapping the
images into a semantic space using a pretrained network, and then
minimizing the di�erence between the high-level features of the
generated image and the original image. The formula for perceptual
loss is de�ned as:

!perceptual := | |q (�8 ) � q (� 08 ) | |2 (4)
where q denotes a pretrained image encoder to extract the high-
level features of an image. This is applied to impose stricter supervi-
sion on color, texture, and other high-level features. In our method,
we use a CLIP-ViT-L/14 [25] image encoder to act as our pretrained
image encoder for perceptual loss.

3.4 Objective Functions
Combining all the extra multi-source multi-modal supervisions
above, the overall training objective of our system is:

! :=!(⇡ + _1 !text (G8 ,- )
+ _2 !edge (�8 , � 08 ) + _3!perceptual (�8 , � 08 )

(5)

where _1, _2 and _3 are hyperparameters controlling the weight
of each supervision loss; G8 is the similarity between a positive
sample pair yielded from) 0

8 and - is a set of similarities of sampled
negative pairs; �8 and � 08 are the ground-truth and the restored image
from our model’s prediction.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. Due to the sparsity of paired text-image data in the
ancient artifact domain, we build our own text-to-image dataset by
collecting artifact information from National Palace Museum Open
Data Platform [41]. After careful cleansing of available entries, we
are left with 16,092 unique artifact samples with their descriptions
and ground-truth images. We split the data by 80%/10%/10% for
training, validation, and testing. 3

ImplementationDetails. For our backbonemodel, we use a pre-
trained Chinese Stable Di�usion Taiyi-Stable-Di�usion-1B-Chinese-
v0.1 [51] (dubbed Taiyi-SD) which was trained on 20M �ltered Chi-
nese image-text pairs. Taiyi-SD inherits the same VAE and U-Net
from stable-di�usion-v1-4 [28] and trains a Chinese text encoder
from Taiyi-CLIP-RoBERTa-102M-ViT-L-Chinese [52] to align Chi-
nese prompts with the images. Further training details are left in
Appendix C.

Evaluation Metrics. To comprehensively evaluate our method
for text-to-image synthesis quantitatively, we employ three com-
monly used metrics that measure image generation quality: CLIP
Visual Similarity, Structural Similarity Index (SSIM) [46] and
Learned Perceptual Image Patch Similarity (LPIPS) [53]. Each
of them highlights di�erent aspects of the generated image. To-
gether, they provide a thorough judgment of a synthesized artifact
image in terms of its overall resemblance to the ground truth, the
accuracy of its shape and pattern, and its perceptual a�nity to the
target image. We leave an extensive explanation of these metrics in
Appendix D.

4.2 Main Results and Discussion
In Table 2, we compare the quantitative results of our approach
with the baselines on our test set. The �rst column denotes the
models we experimented with.

For the baselines, we use Taiyi-SD via two versions:
• Taiyi-SD-�netuned-description: the �netuned Taiyi-SD
with the raw description (directly available from museum
archives) as input prompt;

• Taiyi-SD-�netuned-attributes: the �netuned Taiyi-SD us-
ing LLM-enhanced prompt (a sequence of artifact attributes)
as designed in Section 3.1.

For our approach, we apply the LLM-enhanced prompt by default
and also explore three di�erent versions of extra supervisions in
addition to training the Taiyi-SD backbone:
3To facilitate further research, we will make the dataset as well as our ChatGPT-
enhanced prompts publicly available.
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Table 2: Quantitative comparison of our models against the �netuned Taiyi-SD baselines over CLIP Visual Similarity (CLIP-VS),
SSIM and LPIPS.

Models Prompt _1 _2 _3 CLIP-VS " SSIM " LPIPS #
Taiyi-SD-�netuned-description raw description - - - 0.772 0.536 0.608
Taiyi-SD-�netuned-attributes LLM enhanced attribute - - - 0.792 0.554 0.598
OURS-attributes +text LLM enhanced attributes 0.5 - - 0.801 0.580 0.552
OURS-attributes +edge+perceptual LLM enhanced attributes - 0.3 0.1 0.815 0.636 0.497
OURS-attributes +text+edge+perceptual LLM enhanced attributes 0.3 0.3 0.1 0.831 0.594 0.536

Table 3: Quantitative comparison between zero-shot Taiyi-SDmodels using di�erent textual prompts over CLIP Visual Similarity
(CLIP-VS), SSIM and LPIPS.

Prompt CLIP-VS " SSIM " LPIPS #
Raw description 0.748 0.383 0.748
LLM enhanced attributes-sequence 0.765 0.413 0.730

Table 4: Human evaluation of the quality of artifact images generated by the �netuned baseline and our model. The images are
rated from 5 di�erent aspects (see Section 4.4) on a scale of 0 to 5 by 20 archaeology experts from top institutions.

Models Material " Shape " Pattern/Color " Size/Ratio " Dynasty " total avg. "
Taiyi-SD-�netuned 2.66 1.50 1.44 1.79 2.12 1.90
OURS 3.94 3.38 3.25 3.30 3.20 3.41

• OURS-attributes +text: �netuning with additional text con-
trastive loss (see Section 3.2) to align the text representation
of our model with domain expertise;

• OURS-attributes +edge+perceptual: �netuning with edge
loss and perceptual loss (see Section 3.3) as additional super-
vision to enforce more visual-semantic constraints on the
image generation process;

• OURS-attributes +text+edge+perceptual: �netuning with
both text contrastive loss and the edge and perceptual loss
as multi-source supervision.

Overall, our proposed artifact image synthesis approach sig-
ni�cantly outperforms the �netuned Taiyi-SD-baselines across all
metrics. The improvement on SSIM indicates that images gener-
ated by our model better preserve the shapes and boundaries of
the original artifacts. An increase in CLIP Visual Similarity also
indicates that our approach produces images that are more closely
aligned to the ground truths.

Additional visual-semantic constraints in the form of edge loss
and perceptual loss contribute greatly to boosting the SSIM and
LPIPS scores. This can be attributed to the fact that edge loss and
perceptual loss put a stricter condition on both structural details
like edge and contour (captured by SSIM) and perceptual-level
image features like color and texture (captured by LPIPS). These
visual details are exactly much desired in our case of artifact image
synthesis, as the shape, pattern, and texture of artifacts are of vital
importance for determining their historical position and status.

By further incorporating the text contrastive loss into the overall
training objective, we observe a slight increase in CLIP Visual
Similarity, yet a decrease in SSIM and LPIPS scores. We believe

there are two reasons behind this phenomenon. For one, by aligning
the text knowledge (descriptions with names) (see Section 3.2), the
textual guidance for generating the image is better represented and
closer to the general visual content of the artifact, thus leading to
a higher CLIP Visual Similarity. For another, the relative weight
of edge and perceptual loss is reduced with the additional text
contrastive loss, which might compromise the strict supervision on
structural coherence and perceptual similarity and limit the model’s
performance on SSIM and LPIPS.

As is also evidently shown by just comparing the baselines �ne-
tuned with di�erent prompt formats in Table 2, using LLM to en-
hance the prompt construction as a sequence of important artifact
attributes e�ectively improves the performance of the �netuned
baseline model across all three metrics. More about the e�ects of
our LLM-enhanced prompting method will be discussed in the
following subsection 4.3.

4.3 Ablation Studies
To investigate the contribution of components proposed in our
approach and for further studies, we conduct extensive ablation
studies on two key designs of our model.

E�ectiveness of LLM-enhanced prompts. As is shown in Ta-
ble 2, the �netuned model bene�ts from LLM-enhanced prompting,
achieving better scores on all three quantitative metrics. To further
illustrate the e�ectiveness of our proposed prompting method, we
explore the zero-shot setting, where the baseline Taiyi-SD is di-
rectly prompted to generate artifact images without any training
on our artifact dataset. We use either the raw description from the
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Figure 5: Comparison between the �netuned Taiyi-SD baseline model and OUR approach trained with additional edge loss and
perceptual loss against the ground truth. Clearly, objects generated by OURmodel display more accurate shapes, colors, and
patterns when compared to the ground truth, whereas these delicate visual details are easily neglected by the baseline.

museum archives or the sequence of artifact attributes enhanced by
LLM as prompt. The results, as shown in Table 3, again demonstrate
the superiority of LLM-enhanced prompting, which excels across all
metrics. This can be credited to the organized information format
in the attribute sequence and the additional knowledge provided
by LLM (see Section 3.1).

E�ectiveness of Edge Loss and Perceptual Loss. In Figure 5,
we compare the artifact images generated from our model that
uses edge loss and perceptual loss against the �netuned Taiyi-SD
baseline that does not involve these visual semantic constraints.
Evidently, the shapes, colors, and patterns of the artifacts are more
accurate and close to the ground truth if the model is additionally
supervised by edge and perceptual loss. On the other hand, the
vanilla �netuning paradigm may easily lead to output objects either
lacking proper shapes and forms or manifesting incorrect motifs
and patterns. For example, in the second column of Figure 5, the

“tall-footed” aspect of the target bowl is clearly neglected without
edge and perceptual constraints. Also, the intricate cracking lines
on the “begonia-blossom shaped vase” shown in the third column
are better simulated with our model.

4.4 User Study
In addition to quantitative evaluation, we conducted a user study
involving archaeology experts to evaluate the generated images.
This study is designed to assess various aspects of the generated
artifacts, as outlined in our prompt design (see Section 3.1):

• Material:How accurately does the generated artifact resem-
ble the actual manufacturing material?

• Shape: How closely does the generated artifact match the
described shape?

• Pa�ern/Color:How faithful is the representation of patterns
and colors on the generated artifact?
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• Size/Ratio:How accurately does the generated artifact main-
tain the ratio of height and width?

• Dynasty (Time Period): How well does the generated arti-
fact re�ect the characteristics of its era?

Each aspect is rated on a scale of 0 to 5, with higher ratings
indicating better quality. We randomly select 30 samples from the
test set and provide the model-generated images to 20 graduate
students of archaeology major from top institutions for assessment.
The average ratings of images generated by our proposed method
(OURS) are compared with those generated by the baseline Chinese
SD model also �netuned on our data. The results are presented in
Table 4.

Clearly, according to human experts, the artifact images gen-
erated by our method are much better in quality across all �ve
important rating aspects, especially in terms of shape, pattern, and
color. These results of our user study resonate with the �ndings
from the automatic evaluation metrics and further highlight the
superior performance of our model in generating artifact images
that accurately align with history.

To o�er a richer qualitative demonstration of our model’s
capabilities, we present a diverse collection of artifact images gener-
ated by our model, showcasing its remarkable �delity across a broad
spectrum of historical artifacts. Refer to Figure 6 in Appendix E 4

for a comprehensive visual display.

5 RELATEDWORK
Multimodal AI for Cultural Preservation. In the domain of

fostering the preservation of art and culture, multimodal learning
technologies have had an increasing presence in recent years. Re-
volving around ancient artworks (especially paintings with rich cul-
tural backgrounds), datasets have been released that associate art-
works with textual descriptions or question-answer pairs [1, 8, 40],
which in turn inspires algorithmic explorations for the visual ques-
tion answering (VQA) task on these artworks [2, 54]. In terms of
historical artifacts, most recent works focus on restoring ancient
character images. These include degraded images of characters
printed in old documents [33, 34] as well as inscriptions on oracle
bones [5]. [32] also adapts image captioning techniques to generate
descriptions of ancient artifacts sourced from museums.

With a similar objective to aid cultural preservation, our work -
as pointed out in Section 1 - represents the �rst novel approach to
exploring text-to-image reconstruction of physically lost ancient
artifacts that only exist in textual documentation. Our proposed
system now enables archaeologists to easily obtain a highly ac-
curate visual simulation of any artifact of interest mentioned in
historical texts, thus opening up new possibilities for research into
our cultural heritage and detailed artifact analyses.

Text-to-Image Synthesis. Text-to-image synthesis tasks have
long been a vital task at the intersection between computer vision
and natural language processing, of which models are given a plain
text description to generate the corresponding image. One major
architecture in this area is GAN [9], whose variations [16, 48, 50]
have resulted in the state-of-art performance of text-to-image syn-
thesis tasks. Recently, di�usion models [14, 27, 35, 37, 38] also have

4All Appendices are submitted as supplementary material.

demonstrated their ability to achieve new state-of-the-art results
[6]. Di�usion models make use of two Markov chains: forward
and reverse. The forward chain gradually adds noise to the data
with Gaussian prior. The reverse chain aims to denoise the data
gradually. The transition probability at each timestep is learned by
a deep neural network, which in the case of text-to-image synthesis
is usually a U-Net [29] model.

Large Language Models. Language models are a family of prob-
abilistic models that predict the probability of the next word, given
a sequence of previous words within a context. The introduction of
GPT-3 [3], which contains 175B parameters, has led to the emer-
gence of Large LanguageModels (LLMs), referring to language mod-
els with a large number of parameters. These LLMs have demon-
strated never-seen-before abilities, expanding the frontiers of what
is possible with language models. One emerging ability of LLMs
is in-context learning [3], where LLMs are able to perform down-
stream tasks after being prompted with just a few examples without
further parameter updates. Thus, by providing carefully designed
examples, we can make use of LLMs as an information extractor
given a noisy and unstructured text. LLMs have also shown their
ability to acquire world knowledge from the massive training cor-
pus [21, 24, 44]. An e�cient way to extract the implicit knowledge
from LLMs is to ask questions with proper prompt engineering as
LLMs are highly sensitive to the prompt input [20].

6 CONCLUSION
In this paper, we present a novel approach to tackle the challenge of
artifact image synthesis. Our method features three key techniques:
1) Leveraging an LLM to infuse textual prompts with archaeolog-
ical knowledge, 2) Aligning textual representations with domain
expertise via contrasting learning, and 3) Employing stricter visual-
semantic constraints (edge and perceptual) to generate images with
higher �delity to visual details of historical artifacts. Quantitative
experiments and the human evaluation from our user study with
archaeology experts con�rm the superior performance of our ap-
proach compared to existing models, signi�cantly advancing the
quality of generated artifact images.

Beyond technological contributions, our work introduces a more
profound societal impact. As the �rst attempt to restore lost arti-
facts from the remaining textual descriptions, our work empowers
archaeologists and historians with a tool to resurrect lost artifacts
visually, o�ering new perspectives on cultural heritage and en-
riching our understanding of history. We also hope that this work
will open new avenues for further exploration, fostering deeper
insights into our past and cultural legacy with the help of technical
advances.

7 ETHICS STATEMENT
In this project, we only used training data sourced from National
Palace Museum [41]. This ensures that the data we worked with has
already been scrutinized by authorities and is open to the public.
However, we recognize possible inaccuracies in our model’s gener-
ation despite our extensive e�orts to improve its �delity. Therefore,
anyone using our model and system should be warned of possible
mistakes in the generated artifact images and we strongly advise
all users to verify important content.
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