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Abstract

We propose Plausible Token Amplification
(PTA)1 to improve the accuracy of Differentially
Private In-Context Learning (DP-ICL) using DP
synthetic demonstrations. While Tang et al. em-
pirically improved the accuracy of DP-ICL by
limiting vocabulary space during DP synthetic
demonstration generation, its theoretical basis re-
mains unexplored. By interpreting ICL as im-
plicit Bayesian inference on a concept underly-
ing demonstrations, we not only provide theoret-
ical evidence supporting Tang et al.’s empirical
method but also introduce PTA, a refined method
for modifying next-token probability distribution.
Through the modification, PTA highlights tokens
that distinctly represent the ground-truth concept
underlying the original demonstrations. As a re-
sult, generated DP synthetic demonstrations guide
the Large Language Model to successfully infer
the ground-truth concept, which improves the ac-
curacy of DP-ICL. Experimental evaluations on
both synthetic and real-world text-classification
datasets validated the effectiveness of PTA.

1. Introduction
Large Language Models (LLMs) exhibit an impressive ca-
pability known as In-Context Learning (ICL) (Brown et al.,
2020), where a few pairs of data and their labels (demon-
strations) and new data (query) are provided together as a
prompt. These demonstrations help LLM infer a concept—
namely, a latent rule that connects data to their labels—
which governs the token transitions in demonstrations. ICL

1NTT Social Informatics Laboratories 2NTT Communi-
cation Science Laboratories 3NTT Computer and Data Sci-
ence Laboratories. Correspondence to: Yusuke Yamasaki
<yusuke.yamasaki@ntt.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1The code will be available at https://github.com/
Yusuke-Yamasaki/pta

aligns the LLM’s prediction for the query with the inferred
concept accordingly, enabling accurate responses. Despite
ICL’s success across various tasks (Mathur et al., 2023;
Hegselmann et al., 2023), embedding sensitive information
in demonstrations, such as personal health records, risks
leaking sensitive information from responses (Wang et al.,
2023a; Duan et al., 2023). This necessitates privacy-aware
ICL methods that mitigate leakage risks while ensuring
responses are aligned with the concept underlying demon-
strations.

To mitigate leakage risks in ICL, Differential Privacy (DP)
(Dwork et al., 2006a), which offers privacy guarantees
against leakage risks, has been incorporated into ICL, often
referred to as DP-ICL (Tang et al., 2024; Wu et al., 2024;
Hong et al., 2024). Notably, (Tang et al., 2024) studied gen-
erating synthetic demonstrations by adding variance-tuned
noise to the next-token probability obtained from an LLM
prompted with the original demonstrations. The added noise
ensures that the generated synthetic demonstrations satisfy
DP, reducing the leakage risks of the originals by providing
these synthetic ones in the prompt. While increasing noise
variance lowers leakage risks, it also makes the synthetic
demonstrations deviate more from the originals, thereby
degrading task accuracy. To recover the degraded accuracy,
(Tang et al., 2024) empirically limited the vocabulary space
using public information during noise addition. While nu-
merical experiments showed its effectiveness in improving
accuracy, its theoretical basis remains unexplored.

For further credibility in DP-ICL, we begin with its theoret-
ical analysis based on the Bayesian analysis (see Section 3)
inspired by existing work on standard ICL (without employ-
ing DP) (Xie et al., 2022; Wang et al., 2023b), which inter-
prets ICL as implicit Bayesian inference on a ground-truth
concept underlying the original demonstrations. Extending
this framework to DP-ICL, we establish Theorem 2 explain-
ing how the added noise to ensure DP affects the LLM’s
ability to infer the ground-truth concept. Specifically, we
show that the LLM successfully infers the ground-truth con-
cept if the expected divergence, which depends on the next-
token probability distribution, surpasses a certain threshold.
This divergence measures how much the distribution under
the ground-truth concept differs from that under any other
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concept, while the threshold reflects the negative impact of
noise, primarily influenced by the noise variance and the vo-
cabulary size. Hence, the added noise hinders the accurate
inference of the ground-truth concept in DP-ICL, explaining
why DP-ICL often suffers from accuracy degradation.

To address this accuracy degradation, we derive two insights
from our theory: (i) Reducing the vocabulary size lowers the
noise-dependent threshold, providing theoretical support for
Tang et al.’s empirical method of limiting vocabulary space.
(ii) Increasing the divergence between concepts by employ-
ing another next-token probability distribution that enlarges
the gap between the ground-truth and any other concept.
The second insight highlights a promising approach for de-
signing the next-token probability distribution to increase
the divergence, while previous work only focused on (i).

Motivated by (ii), we propose Plausible Token Amplification
(PTA) to increase the divergence between the ground-truth
and any other concept by amplifying tokens that distinctly
represent the ground-truth concept (see Section 4). Formally,
PTA solves an optimization that maximizes this divergence
while remaining close to the original next-token probabil-
ity distribution, ensuring the contextual coherence of the
resulting synthetic demonstrations. As a result, PTA pre-
serves alignment with the ground-truth concept, effectively
recovering the degraded accuracy due to the added noise in
DP-ICL. Our key contributions are summarized as follows:

Bayesian analysis of DP-ICL (Section 3): We introduce
Bayesian analysis into DP-ICL and derive Theorem 2, re-
vealing two key insights: (i) Reducing the vocabulary size
mitigates the negative impact of noise on the ground-truth
concept inference, theoretically supporting Tang et al.’s em-
pirical method. (ii) Increasing the divergence between the
ground-truth and any other concept helps guide the LLM to-
ward accurate inference on the ground-truth concept. Since
Tang et al.’s method does not fully exploit this second in-
sight, our analysis implies that addressing this oversight can
improve the accuracy of DP-ICL.

PTA for accurate DP-ICL (Section 4): Motivated by our
Theorem 2, we propose PTA to increase the divergence
between the ground-truth and any other concept by high-
lighting the distinctive tokens in the ground-truth concept.
To achieve this, PTA compares next-token probability dis-
tribution conditioned on private demonstrations and public
information, ensuring no additional leakage risks beyond
Tang et al.’s method. Hence, PTA aligns generated DP syn-
thetic demonstrations with the ground-truth concept while
maintaining contextual coherence and improving the accu-
racy of DP-ICL.

Experimental validations (Section 5): We validated the
effectiveness of PTA through experiments on synthetic and
real-world text-classification tasks across various settings,

demonstrating improved accuracy DP-ICL benchmark tests.

2. Preliminaries
We first review existing DP-ICL methods in Section 2.1.
Section 2.2 presents a theoretical analysis of standard ICL
(without employing DP).

2.1. DP-ICL

(ε, δ)-Differential Privacy (DP) provides statistical privacy
guarantees for datasets used in queries (formal definition is
given in Appendix D). Here, ε (> 0) measures the max-
imum allowable bound in outputs between neighboring
datasets, while δ ∈ (0, 1) is the maximum failure proba-
bility of exceeding the bound ε. Smaller values of (ε, δ)
imply lower leakage risks of the used dataset. The Gaus-
sian mechanism, widely used to achieve (ε, δ)-DP, adds the
independent noise that follows the Gaussian distribution
N (0, σ2) to the output of the query. The Gaussian mech-
anism satisfies (ε, δ)-DP (Dwork & Roth, 2014) when σ2

is chosen appropriately on the basis of (ε, δ), and the ℓ2-
sensitivity — defined as the maximum change in the query
outputs between neighboring datasets measured by ∥ · ∥2.

Integrating mechanisms to ensure DP into standard ICL
(DP-ICL) can be used to mitigate leakage risks from query
responses. With smaller (ε, δ) values, the LLM’s responses
are less likely to leak any individual demonstrations pro-
vided in the prompt. To achieve this, generating DP syn-
thetic demonstrations (Tang et al., 2024) is a particularly
promising approach, when handling an unpredictable num-
ber of queries, as noise variance remains stable regardless
of the number of queries, due to DP’s post-processing im-
munity (Dwork et al., 2006b). For more on related methods,
see (Edemacu & Wu, 2025) and Appendix B.

Notably, (Tang et al., 2024) studied generating DP synthetic
demonstrations by adding noise to a next-token probability
distribution instead of model parameters, ensuring flexibility
across LLMs and datasets. Noise is added to the next-token
probability distribution generated by the LLM in parallel,
conditioned on a prompt that contains a task instruction
and a disjoint subset of the original private demonstrations
where each demonstration is formatted as a label-data pair.
To improve accuracy, the vocabulary space is limited before
noise addition, using public information such as the task
instruction. Specifically, two types of prompts are used:
Spub, which only includes the task instruction and the tokens
generated thus far, and S

(i)
priv, which additionally contains

the i-th disjoint subset obtained by partitioning the original
demonstrations Dpriv into M disjoint subsets. Spub helps in
limiting away irrelevant vocabularies, while Spriv provides
task-specific information. The token generation process
satisfying DP is outlined as follows:
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Emission Probability in ICL
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Figure 1: Illustration of HMM-based model for ICL intro-
duced in (Xie et al., 2022) and the proposed one for DP-ICL
introduced in this paper. The red arrows highlight the new
dependencies, showing how the generated tokens in DP-ICL
are influenced by noise added to ensure DP.

Vpub=argmax
V′⊂V

∑
v∈V′

p(oLLM=v|Spub), s.t. |Vpub|=k, (1)

pv←
1

M

M∑
i=1

p(oLLM=v|S(i)
priv), p̂v←pv

/
(
∑

v′∈Vpub

pv′), (2)

vsyn=argmax
v∈Vpub

{p̂v + ζv}, ζv ∼ N (0, 2σ2), (3)

where V is the LLM’s token vocabulary, oLLM is a random
variable such that p(oLLM = v) represents the next-token
probability of the LLM, and k ≤ |V| is the number of the
vocabulary selected. (1) limits the vocabulary space V to a
subset Vpub on the basis of public information Spub, filtering
out low-likelihood tokens. In (2), token probabilities con-
ditioned on private prompts S

(1)
priv, . . . , S

(M)
priv are averaged

and normalized within Vpub. Finally, (3) adds noise to these
probability distributions to ensure (ε, δ)-DP, then yielding
the synthetic token vsyn. The generated tokens are appended
to both prompts Spub and Spriv, recursively constructing a
DP synthetic demonstration. Empirical results showed that
limiting the vocabulary space improved the stability and the
accuracy of DP-ICL.

Tang et al.’s DP-ICL faces two main challenges. First, their
method of limiting the vocabulary space has only been em-
pirically evaluated, lacking theoretical evidence on its abil-
ity to improve the accuracy while satisfying DP. Secondly,
limiting vocabulary space to Vpub may lead to degrading
accuracy degrading particularly when p(oLLM|Spub) deviates
from p(oLLM|S(i)

priv), as Vpub may include the low-likelihood

tokens conditioned on S
(i)
priv and the generated demonstration

including them due to the added noise.

2.2. Bayesian analysis of ICL

Limited to standard ICL (without employing DP), its ac-
curacy has been theoretically investigated on the basis of

Bayesian analysis (Xie et al., 2022; Wang et al., 2023b;
Ling et al., 2024; Reizinger et al., 2024). From a Bayesian
perspective, ICL infers concepts underlying the demonstra-
tions provided in a prompt, guiding the LLM to generate
tokens aligned with the inferred concept. To clarify the
mechanism of this implicit Bayesian inference, we briefly
review the problem setting and key results from (Xie et al.,
2022), which offers fundamental theoretical insights into
the implicit Bayesian inference in ICL.

Problem setting in (Xie et al., 2022) Token generation in
LLMs is modeled using a Hidden Markov Model (HMM), as
depicted in Figure 1. Figure 1 schematically illustrates how
an HMM governs the token transitions where each token
is emitted on the basis of a corresponding hidden state. In
this model, each demonstration token oi,j is emitted from a
hidden state hi,j in accordance with the emission probability
p(oi,j |hi,j), which is independent of the shared concept
θ∗. In contrast, the transition probability p(hi,j |hi,j−1, θ

∗)
depends on θ∗ (e.g., linking a name to its nationality).

On the basis of this framework, (Xie et al., 2022) construct a
prompt by concatenating n independent demonstrations that
follow HMM where each is separated by a delimiter token
and then appending a query xquery. Formally, we represent
the prompt distribution as follows:

[Sn, xquery]=[O1, o
delim
1 , . . . , On, o

delim
n , xquery]∼pprompt,

where Sn denotes the concatenation of the n demonstra-
tions O1, . . . , On and odelim

i is a delimiter token. Each
demonstration is independently generated in accordance
with the shared concept θ∗, ensuring the transition probabil-
ity p(hi,j |hi,j−1, θ

∗) remains consistent across all demon-
strations while the j-th token of the i-th demonstration oi,j
is sampled from V on the basis of its emission probabil-
ity p(oi,j |hi,j). The formal prompt formulation using the
HMM, for a structured framework to analyze token depen-
dencies in ICL, is provided in Appendix C.

Interpretation of ICL as implicit Bayesian inference. To
analyze the next-token probability of an LLM conditioned
on the prompt Sn, xquery, we apply Bayes’s rule and trans-
form it as follows:

p(y|Sn, xquery)=

∫
θ

p(y|Sn, xquery, θ)p(θ|Sn, xquery)dθ

∝
∫
θ

p(y|Sn, xquery, θ)
p(Sn, xquery|θ)
p(Sn, xquery|θ∗)

p(θ)dθ.

If the posterior p(θ|Sn, xquery) concentrates on the ground-
truth concept θ∗ underlying the demonstrations, the LLM
will generate tokens that align closely with θ∗. To evaluate
how closely p(θ|Sn, xquery) concentrates on θ∗, the follow-
ing quantity is introduced:

rn(θ) =
1

n
log

p(Sn, xquery|θ)
p(Sn, xquery|θ∗)

, (4)
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where rn(θ) represents the average log-likelihood ratio of
the prompt, comparing the likelihood conditioned on any
other concept θ ∈ Θ and the ground-truth concept θ∗, letting
Θ be a set of concepts. By using rn(θ), the likelihood
ratio p(Sn, xquery|θ)/p(Sn, xquery|θ∗) can be expressed as
exp (n · rn(θ)). If rn(θ) converges to a negative constant
for θ ̸= θ∗, then exp (n · rn(θ))→ 0 as n increases, while
exp (n · rn(θ)) = 1 when θ = θ∗. This convergence of
rn(θ) indicates that the posterior probability p(θ|Sn, xquery)
will increasingly favor the ground-truth concept θ∗ over
any other concept, as more demonstrations are provided in
the prompt. In (Xie et al., 2022), a the condition for the
convergence of rn(θ) is theoretically analyzed under certain
assumptions on HMM used in the prompt formulation. Due
to space limitations, we provide a formal description of
Assumptions 1-4 used in (Xie et al., 2022) in Appendix C.

Under these assumptions, (Xie et al., 2022) provide a key
condition ensuring that the posterior distribution concen-
trates on θ∗ as the number of demonstrations grows, i.e.
limn→∞ exp (n · rn(θ)) = 0. Below, we restate their The-
orem 1 in a transformed form for consistent expression in
this paper; the full original statement and the derivation of
transformation appear in Appendix C.

Theorem 1 (Distinguishability of the prompt concept (Xie
et al., 2022)). Suppose Assumptions 1,2,3, and 4 in Ap-
pendix C hold. Then, we have limn→∞ exp (n · rn(θ)) = 0,
if θ∗ is the ground-truth concept of the prompt and satisfies
the following condition for any other concept θ ∈ Θ:

EO∼pprompt

[
log

p(O|θ∗)
p(O|θ)

]
> Cdelim, (5)

where pprompt and p represent the prompt distribution and
pre-training distribution, respectively. The expectation is
taken over O ∼ pprompt. Cdelim is a bounded positive value
that depends on θ and θ∗.

Left-Hand Side (LHS) in (5) measures how much the distri-
bution under θ∗ deviates from that under any other concept
θ, while Cdelim accounts for the extra complexity introduced
by delimiter tokens in the prompt. According to Theorem 1,
if this divergence exceeds Cdelim, the LLM accurately infers
the ground-truth concept θ∗, enabling Bayes-optimal predic-
tions for queries (Xie et al., 2022). Consequently, designing
demonstrations that yield a substantial divergence between
p(O|θ∗) and p(O|θ) surpassing Cdelim is an effective way
to improve the accuracy of ICL.

In the next section, we extend this theoretical foundation to
investigate DP-ICL, incorporating modifications to account
for the noise added to ensure DP.

3. Bayesian analysis of DP-ICL
In this section, we theoretically explore DP-ICL (Tang et al.,
2024) on the basis of implicit Bayesian inference. Follow-
ing the methodology in (Xie et al., 2022) outlined in Section
2.2, our analysis focuses on how adding noise negatively
impacts the LLM’s ability to infer the ground-truth concept
θ∗ underlying the demonstrations. First, we introduce (i)
the modeling of the DP synthetic prompt distribution, par-
ticularly the noise addition mechanism in (3), while setting
aside factors like vocabulary space limitation (1) and nor-
malization (2). This simplification allows us more clearly
analyze how adding noise impacts implicit Bayesian infer-
ence on concepts. We then proceed to assess (ii) the effects
of vocabulary space limitation and normalization.

(i) Modeling DP synthetic prompt distribution. To ana-
lyze the negative impact of noise addition, we extend the
HMM-based model presented in Appendix C to model the
DP synthetic prompt distribution. We incorporate noise
addition into the model:

õi,j ∼ p(õi,j |hi,j) := p(oi,j |hi,j) + ζi,j , (6)

where ζi,j ∼ N (0, σ2I|V|) represents |V|-dimensional inde-
pendently and identically distributed (IID) Gaussian noise.
Our HMM formulations involve the modification solely on
the emission probability compared to those in (Xie et al.,
2022), as shown in Figure 1. Note that adding IID Gaussian
noise to each token’s emission probability is consistent with
the standard method for adding Gaussian noise to the next-
token probability for generating DP synthetic demonstration
as discussed in Section 2.1. While the noise perturbs the
output probability of token sequences to ensure DP, the
hidden states transition will remain aligned with the ground-
truth concept θ∗ underlying the original demonstrations, as
shown in Figure 1.

Next, we examine how closely the concept inferred from the
DP synthetic prompt aligns with the ground-truth concept
θ∗. To do this, we define the quantity, analogous to (4):

r̃n(θ) :=
1

n
log

p(S̃n, xquery|θ)
p(S̃n, xquery|θ∗)

, (7)

where S̃n represents the DP synthetic prompt comprising n
DP synthetic demonstrations. This measure assesses how
the noise addition affects the inference of the ground-truth
concept compared to any other concepts. Intuitively, a larger
noise variance σ2 can hinder the accurate inference of the
ground-truth concept θ∗ because the noise may increase the
likelihood conditioned on any other concepts θ ̸= θ∗ in
the numerator of (7) while decreasing the likelihood con-
ditioned on the ground-truth concept θ∗. To assess (7),
assumptions used in (Xie et al., 2022) are applicable. As-
sociated with r̃n(θ), we derive the following lemma, as a
DP-ICL counterpart to Lemma 8 in (Xie et al., 2022):
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Lemma 1. Suppose Assumptions 1,2,3, and 4 hold. Then,
we then have

r̃n(θ) ≤ −
1

n

n∑
i=1

log
p(Õi|θ∗)
p(Õi|θ)

+ Cdelim +O(n−1), (8)

where Cdelim is a bounded positive value that depends on θ
and θ∗.

The proof is provided in Appendix C, utilizing the factoriza-
tion of the complex prompt S̃n into the individual demon-
strations Õi on the basis of our HMM-based prompt for-
mulation presented in (14a)-(14d) and (6) in Appendix C.
Following the proof strategy in Theorem 1, we aim to clarify
the condition ensuring that r̃n(θ) converges to a negative
constant as n increases, signifying accurate inference of the
ground-truth concept θ∗.

To derive the condition for the convergence of r̃n(θ), we
focus on the first term in (8), which represents the average
log-likelihood ratio of DP synthetic demonstrations. By
reformulating this term to isolate two additional terms: (i)
noise error and (ii) estimation error in DP-ICL, while pre-
serving as many terms appearing in Theorem 1 as possible,
the following theorem is derived.

Theorem 2 (Distinguishabiliy of the prompt concept on
DP-ICL). Suppose Assumptions 1,2,3, and 4 in Appendix C
hold. Then, we have limn→∞ exp (n · r̃n(θ)) = 0 with (1−
γ)(1− γ′), γ, γ′ ∈ (0, 1) probability, if θ∗ is the underlying
concept of the prompt and satisfies the following condition
for any other competing concept θ ∈ Θ:

EO∼pprompt

[
log

p(O|θ∗)
p(O|θ)

]
> Cdelim + Ĉ +O(n−1)

+O
(
T 2G(σ) log |V|

)︸ ︷︷ ︸
Noise error

+O

(
T

√
1

n
log

2

min (γ, γ′)

)
︸ ︷︷ ︸

Estimation error

, (9)

where T is the length of each demonstration, G(σ) ∈ [0, 1]
is a continuous function of noise variance σ2 such that
limσ→0 G(σ) = 0, and depends on the LLM’s next-token
probability distribution. Cdelim and Ĉ are bounded positive
values that depend on θ and θ∗.

The detailed proof and formal statement is provided in Ap-
pendix C, and here we offer an interpretation of Theorem 2.
We consider that Theorem 2 is a natural extension of The-
orem 1, since the threshold in the Right-Hand Side (RHS)
introduces additional noise and estimation errors in the ac-
curate inference of the ground-truth concept while LHS
represents the divergence between p(O|θ∗) and p(O|θ) the
same as in Theorem 1. Both Theorems 1 and 2 almost con-
verge in the noise-free setting except for Ĉ, as the noise
and the estimation errors vanish when σ → 0 and n→∞,
respectively. To mitigate the impact of these terms, we can

adjust the vocabulary size |V|. Reducing the vocabulary size
helps minimize the noise error, since the noise-dependent
term G(σ), which quantifies the deviation between p̃prompt
and pprompt when σ > 0, is primarily influenced by |V|.
This helps LLM accurately infer the ground-truth concept,
leading to a more accurate DP-ICL. This insight partially
supports the empirical success of limiting the vocabulary
space using publicly available information used in (Tang
et al., 2024), suggesting that Tang et al.’s empirical method
is broadly correct. However, the derived condition still over-
looks the combined effects of vocabulary space limitation
(1) and normalization (2) on the divergence term in LHS.
Therefore, Theorem 2 needs to be further refined to bet-
ter align with the baseline DP-ICL practice in (Tang et al.,
2024).

(ii) Effects of vocabulary space limitation and normaliza-
tion. To analyze the effects of vocabulary space limitation
(1) and normalization (2), we reformulate the expectation of
the log-likelihood ratio of demonstrations, which quantifies
the divergence between the ground-truth and any other con-
cept, as represented in the LHS of Theorem 2. Consider a
scenario where irrelevant tokens are wrongly included and
emphasized through (1)–(3). Then, generated tokens would
be less aligned with the ground-truth concept. This mis-
alignment significantly decreases the divergence between
the ground-truth and any other concept, thus hindering the
accurate inference of the ground-truth concept. To illustrate
this, we reformulate the LHS of Theorem 2 as follows:

EO

[
log

p(O|θ∗)
p(O|θ)

]
=
∑
v∈VT

pprompt(O=v)︸ ︷︷ ︸
Token probability

sampled from
all vocabulary space

log
p(O=v|θ∗)
p(O=v|θ)︸ ︷︷ ︸

Token likelihood ratio

.

Since vocabulary space limitation can be reflected by alter-
ing V to its subset Vpub determined using publicly available
information, the probability distribution computed over the
limited vocabulary space is given by p̂prompt, and the LHS
of Theorem 2 can be expressed by∑

v∈VT
pub

p̂prompt(O=v)︸ ︷︷ ︸
Normalized token probability

sampled from limited vocabulary space

log
p(O=v|θ∗)
p(O=v|θ) . (10)

From (10), we observe that the obtained probability distribu-
tion does not prioritize maximizing the LHS of Theorem 2
for a given vocabulary set Vpub, as it ignores the likelihood
ratio term in (10). We consider Tang et al.’s method subop-
timally modifying the next-token probability distribution,
leading to a decreased LHS value of Theorem 2 and failing
to fully capitalize on the reduction of the noise error benefits
of limiting vocabulary space.

In the following section, we propose a method to modify
next-token probability aiming to maximize the LHS of The-
orem 2.
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4. Proposed method
We propose Plausible Token Amplification (PTA) to maxi-
mize the divergence between the generated demonstrations
under the ground-truth concept and any other concept, as
formalized in (10), by modifying next-token probability dis-
tribution. PTA aligns generated demonstrations with the
ground-truth concept while maintaining their natural flow.
Section 4.1 outlines the problem motivating PTA, and Sec-
tion 4.2 details its derivation as the solution.

4.1. Problem formulation

Based on insights from Section 3, our objective is to enable
an LLM to accurately infer the ground-truth concept from
the generated demonstrations. To achieve this, we want to
modify the next-token probability so that it maximizes the
divergence between p(O|θ∗) and p(O|θ) computed over the
limited vocabulary space. However, if we focus solely on
maximizing this divergence, the modified next-token prob-
ability may ignore natural token transitions. This leads to
abrupt changes in token transitions that degrade the like-
lihood of the overall generated sequence and hinders the
LLM’s ability to accurately infer the ground-truth concept.

To address this, we introduce a regularization that keeps
the modified distribution close to a baseline probability,
which reflects the natural flow of tokens already generated.
Specifically, for the j-th token, we formulate the following
optimization problem to find a probability distribution p̂ :=
(p̂v)v∈Vpub over the limited vocabulary space Vpub:

max
p̂

∑
v∈Vpub

p̂v log
p(oLLM=v|θ∗)
p(oLLM=v|θ) −

1

α
DKL (p̂∥pbase) , (11)

where DKL is the Kullback-Leibler (KL) divergence mea-
sures how much p̂v deviates from the baseline probability
pbase(o

LLM) := p(oLLM|Õ1:j−1). The hyperparameter α con-
trols how strongly we penalize divergence from this baseline
probability pbase. By incorporating the KL term, we ensure
that p̂v remain close to pbase, preserving the natural transi-
tion of tokens. Consequently, the resulting solution from
(11) highlights tokens that distinctly represent the task while
preserving the natural flow of demonstration.

4.2. Plausible Token Amplification (PTA)

The objective function (11) requires evaluating the diver-
gence between p(O|θ∗) and p(O|θ). Since computing this
divergence depends on both the ground-truth concept θ∗

and any other concept θ that are not observable, (11) is in-
tractable to solve directly. Instead, a practical alternative
would be estimating the target divergence comparing like-
lihood conditioned on the concepts θ∗ and θ by prompting
the LLM with demonstrations that are closely aligned with
these concepts, as using such demonstrations will condi-

Algorithm 1 PTA for DP synthetic demonstrations

Input: instruction,Dpriv, ỹ, T , M , N , k, p,σ, α.
Subroutine: Algorithm 2, Algorithm 3

1: Initialize: Set Õ ← [].
2: for j = 1 to T do
3: Spub, S

(1)
priv, . . . , S

(M)
priv

← GenPrompt(Dpriv,M,N, ỹ, Õ)
4: for i = 1 to M do
5: p

(i)
v ← p(oLLM = v|Õ)

(
p(oLLM=v|S(i)

priv )

p(oLLM=v|Spub)

)α
6: p

(i)
v ← p

(i)
v /

∑
v′∈V p

(i)
v′

7: end for
8: p̂v ← 1

M

∑M
i=1{p

(i)
v +N (0, 2σ2)}

9: Vpub ← VocabSpaceLimit (V, k, p, p(oLLM|Spub))

10: vsyn = argmax
v∈Vpub

max{p̂v, 0}∑
v′∈Vpub

max{p̂v′ , 0}
11: Õ ← Õ + [vsyn]
12: end for
13: return Õ

tion LLM on the concept underlying them as a result of an
implicit Bayesian inference of ICL (Xie et al., 2022).

However, using demonstrations for any other concepts in-
curs additional privacy costs. For example, in a document
classification task, accurately estimating the log-likelihood
ratio requires evaluating combinations of concepts (θ∗, θ).
If demonstrations for any other concepts θ ̸= θ∗ involve
private information, additional noise must be introduced to
ensure DP, potentially degrading the accuracy of DP-ICL.

To address this, we propose PTA for solving (11) with-
out incurring additional privacy costs. PTA uses public
prompts—composed of task instructions and tokens already
generated, excluding private demonstrations—as substitutes
for prompts representing any other concepts. Leveraging
DP’s post-processing immunity, public prompts incur no ad-
ditional privacy costs when combined with generated tokens.
This method enables the likelihood ratio to be estimated by
comparing next-token probability distribution conditioned
on private and public prompts:

log
p(oLLM=v|θ∗)
p(oLLM=v|θ) ≈ log

p(oLLM=v|S(i)
priv)

p(oLLM=v|Spub)
. (12)

Since the likelihood ratio on the LHS of (12) are intractable
to compute, the estimation on the RHS of (12) relies on
the tractable next-token probability distribution conditioned
on an observable private prompt S(i)

priv for the ground-truth
concept and comparing them to an observable public prompt.
This estimation effectively highlights the distinctive tokens
without incurring additional privacy costs. The rationale and
implication of having this estimation are further discussed
in Appendix E.
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By leveraging the estimated likelihood, PTA modifies the
next-token probability distribution as follows:

p(i)v ∝ pbase(o
LLM=v)︸ ︷︷ ︸

base probability

(
p(oLLM=v|S(i)

priv)

p(oLLM=v|Spub)

)α

︸ ︷︷ ︸
private to public ratio

. (13)

The derivation of this modification, which solves (11), is
deferred to Appendix E. The public-to-private ratio ampli-
fies tokens distinctive to the ground-truth concept, while the
baseline probability pbase(o

LLM = v) ensures coherence by
reflecting the natural flow of tokens already generated. This
prevents excessive likelihood shifts and avoids disrupting
fluency when tokens are more likely under the public prompt
than the private prompt. Further, the pre-tuned Gaussian
noise is added to the modified probability to ensure DP.

The algorithm implementation of PTA is detailed in Algo-
rithm 1. Subroutines used in Algorithm 1 are presented
in Algorithms 2 and 3 in Appendix E. During each token
generation step, the public prompt Spub and multiple private
prompts Spriv are generated in Line 3. The next-token proba-
bility distributions are then modified using PTA, as detailed
in Line 4–7, to highlight tokens that distinctly represent the
task. To ensure DP, the Gaussian mechanism is applied to
the modified probability distribution, as described in Line 8.
Finally, fixed and adaptive thresholds dynamically limit the
vocabulary space, as implemented in Line 9, to filter out
low-likelihood tokens and stabilize performance. This iter-
ative process continues until the generated demonstrations
reach the maximum sequence length T .

The DP guarantee associated with Algorithm 1 is identi-
cal to that described by (Tang et al., 2024) when the noise
variance σ2 is equivalent, indicating that the empirical pri-
vacy leakage is mitigated similarly to Tang et al.’s method.
Although details are presented in Appendix D, this equiv-
alence arises because both algorithms apply the Gaussian
mechanism to next-token probabilities, which are projected
onto probability simplex (i.e. these ℓ2-sensitivity is

√
2).

PTA defined in (13), unique to this work, leverages public
prompts, avoiding an increase in ℓ2-sensitivity or the need
for additional noise. Moreover, the other algorithmic com-
ponents are identical, enabling the privacy guarantee to be
computed using the same numerical approach as outlined
by (Gopi et al., 2021) and adopted by (Tang et al., 2024).

5. Experiments
5.1. Experimental setups

Datasets. We evaluated the proposed PTA against the
method by (Tang et al., 2024) using one synthetic classifica-
tion task, GINC, introduced by (Xie et al., 2022), and three
real-world text-classification tasks: AGNews (4-way news
classification) (Zhang et al., 2015), DBPedia (multi-class

classification of Wikipedia articles) (Zhang et al., 2015), and
TREC (6-way question classification) (Voorhees & Tice,
2000). Specifically, GINC is designed to align with the
prompt setting in Section 2.2, enabling precise evaluation
of the likelihood of generated DP synthetic demonstrations
conditioned on specific concepts. This supports evaluating
the theoretical condition in Lemma 1, which underpin the
theoretical foundation of the proposed PTA. Further details
about the datasets are available in Appendix F.2.

Models and DP synthetic demonstration generation. To
generate DP synthetic demonstrations, we used three vari-
ants of the pre-trained GPT-2 model (Radford et al., 2018)
with (MA1) 4-layer, (MA2) 12-layer, and (MA3) 16-layer.
For the other text-classification tasks, we utilized three mod-
els: (MB1) Llama2-7B-GPTQ, (MB2) Llama2-7B (Touvron
et al., 2023), and (MB3) Mistral-7B (Jiang et al., 2023)).

Using these models, we generated four DP synthetic demon-
strations per task without replacement from the set of possi-
ble labels in the task. The next-token probabilities required
for generating these demonstrations were obtained using a
text-generation-inference platform2. For the GINC dataset,
next-token probabilities were computed over a vocabulary
size of |V| = 150, following (Xie et al., 2022), whereas for
other text-classification tasks, |V| = 32, 000 was used. To
ensure a fair comparison, we adopted the same prompt for-
mat as (Tang et al., 2024). Further details on the pre-training
of the GPT-2 model for GINC and the prompt format are
provided in Appendices F.3 and F.9.

DP parameters. To evaluate robustness across differ-
ent DP settings, we set ε = {1, 2, 4, 8,∞} with a fixed
δ = 1/ |Dpriv|. The Gaussian noise variance σ2 was de-
termined by using a numerical method (Gopi et al., 2021),
implemented with the authors’ code3, as detailed in Ap-
pendix D. For ε =∞, to show the accuracy of ICL without
using DP, the original private demonstrations were randomly
sampled from the private dataset.

Comparing methods. We summarize the compared meth-
ods and their key features in Table 1. Our primary focus is
on comparing the baseline method (B1) (Tang et al., 2024)
with our proposed (P1) PTA. Additionally, we conducted an
ablation study to examine the impact of individual features.
(PA2) and (BA2) were designed to assess the impact of the
adaptive threshold for limiting the vocabulary space, which
balances token diversity and plausibility. Further, (PA3) was
introduced to evaluate the role of the regularization term
in (11), which aims to enhance natural token flow.We also

2(Tang et al., 2024) used OpenAI’s API to obtain next-token
probabilities; however, the current API limits predictions to the
top 20 tokens. To address this limitation, we used text-generation-
inference, which allows access to full token spaces.

3https://github.com/microsoft/prv_
accountant
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Table 1: Comparison of methods and key features. Ampli-
fication represents whether the estimates of log-likelihood
ratio in (12) are used, Base prob. represents whether base
probability in (13) is applied, and Top-p represents Line 2
in Algorithm 2.

Method Amplification Base Prob. Top-p

(R0) 4-shot ICL using Dpriv
(B1) Baseline
(BA2) Baseline w. Top-p ✓
(P1) PTA ✓ ✓
(PA2) PTA w. Top-p ✓ ✓ ✓
(PA3) PTA w.o. Base Prob. ✓ ✓

Table 2: 4-shot DP-ICL accuracy across four datasets using
the best-performing model: (MA3) for GINC and (MB3)
for the other datasets, averaged over five different seeds.
The highest accuracy is bolded, and the second-highest is
underlined. Full results are available in Table 8.

ε Method GINC AGNews DBPedia TREC

(P1) 93.99±1.35 87.88±1.11 82.06±3.61 84.80±1.66

(PA2) 90.06±1.63 87.00±1.16 84.72±3.54 84.72±2.50

(PA3) 90.14±0.95 83.24±2.94 86.56±1.75 84.34±1.28

(B1) 90.80±2.79 83.74±1.90 85.72±1.44 83.56±5.09

1

(BA2) 89.34±0.98 84.86±2.83 86.10±1.83 81.00±2.57

(P1) 96.61±1.40 86.48±1.67 84.78±1.55 84.24±2.33

(PA2) 91.15±1.24 84.24±2.20 84.12±3.47 83.52±1.02

(PA3) 90.79±1.16 84.92±1.75 85.56±2.34 84.54±1.93

(B1) 94.63±0.55 83.62±3.08 84.40±2.39 82.64±2.79

8

(BA2) 90.61±1.23 82.96±2.32 84.86±1.38 81.96±1.59

∞ (R0) 99.02±0.28 87.82±1.22 87.38±1.30 82.24±1.70

include (R0) as a non-private reference that used the original
private demonstrations. To ensure fair comparisons across
all configurations, a comprehensive hyperparameter search
was conducted, as detailed in Appendix F.5.

5.2. Main results

Accuracy comparison. Table 2 presents the accuracy of
DP-ICL for selected configurations and privacy parameters
ε = {1, 8,∞} and the best-performing models (MA3) and
(MB3). The full results, including additional configura-
tions and privacy parameters, are provided in Appendix F.5.
Particularly, (P1) consistently achieves superior accuracy
to baselines (B1, BA2), except in the DBPedia at ε = 1,
thereby validating its effectiveness across diverse privacy
parameters and datasets. However, on DBPedia at ε = 1,
(PA3) performs best. Since (PA3) amplifies the distinctive
tokens but ignores the KL regularization term of (11) used in
(P1), this result suggests that the KL term may act as a con-
straint that limits useful adaptation to the target distribution
in certain settings. Nevertheless, by effectively amplifying
the distinctive tokens in the task before adding noise, (P1)
and its variant ensure that the highest-probability tokens are

Table 3: Proportion of generated DP synthetic demon-
strations for GINC, using model (MA3), where the log-
likelihood ratio exceeds the derived threshold, appearing in
the RHS of Lemma 1.

ε (P1) (PA2) (PA3) (B1) (BA2)

1 49.33 40.89 38.22 44.89 42.22
8 53.33 41.33 42.67 52.44 44.45
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Figure 2: Next-token probabilities comparing (Top Left)
(B1) w.o. noise addition, (Top Right) (P1) w.o. noise addi-
tion, (Bottom Left) (B1), and (Bottom Right) (P1).

sampled correctly, even under larger noise variance (e.g.,
AGNews with ε = 1).

Distinguishability of generated demonstrations on GINC.
To demonstrate the positive effect of PTA on accurate con-
cept inference, we empirically evaluate the log-likelihood
ratio log (p(Õ|θ∗)/p(Õ|θ)) appearing in Lemma 1 using
GINC. The unique controlled setup of GINC enables us
to numerically compute the likelihood ratio, as shown in
Appendix F.4. According to the theoretical results estab-
lished in Lemma 1 and Theorem 2, a larger value of the log-
likelihood ratio indicates a more accurate inference of the
ground-truth concept. To empirically validate this, we cal-
culate the probability that Pr [RHS of (8) is negative]. This
measure quantifies how much the proportion of the gen-
erated DP synthetic demonstration helps in the successful
inference on the ground-truth concept, since if RHS of (8)
is negative, then the LLM accurately infers the ground-truth
concept. As shown in Table 3, (P1) consistently achieves
better values than the baselines. This result validates that
PTA enlarges the divergence between p(Õ|θ∗) and p(Õ|θ),
enhancing LLM’s ability to infer the ground-truth concept.
The alignment of these empirical findings with the theoreti-
cal results strongly supports PTA’s effectiveness.

Demystifying example of the effect of PTA. We present
a specific example of a next-token probability distribution
to illustrate how PTA effectively amplifies the distinctive
tokens conditioned on private demonstrations, as shown in
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Figure 2. The top row in Figure 2 shows next-token proba-
bility distribution computed by using (2) and (13), while the
bottom row shows the probability distribution after noise
addition. Focusing on the tokens "Prince" and "foreign",
(P1) correctly preserves the top-1 token "Prince" even after
noise is added, maintaining task relevance. In contrast, (B1)
fails to retain the top-1 token, instead selecting a token "for-
eign" with a lower likelihood due to noise. This example
highlights PTA’s robustness in retaining critical tokens un-
der high noise, ensuring task accuracy. Other examples can
be found in Appendix F.8

6. Conclusion
We proposed PTA, a novel method for generating DP
synthetic demonstrations, which highlights tokens that
distinctly represent ground-truth concepts underlying the
original demonstrations. By interpreting ICL as implicit
Bayesian inference, we not only theoretically demonstrate
that limiting vocabulary space, empirically incorporated in
(Tang et al., 2024), mitigates the negative impact of noise on
concept inference but also introduced a refined method for
modifying next-token probabilities for accurate inference
on the ground-truth concept. We integrate PTA with vocabu-
lary space limitation to ensure that DP synthetic demonstra-
tions remain aligned with ground-truth concepts. Numerical
experiments demonstrated the effectiveness of PTA, show-
ing accuracy improvements, particularly in high-privacy
regimes (e.g., ε = 1).

Impact statement
This paper addresses the challenge of privacy-preserving
machine learning, particularly for LLM applications. To
safeguard individual data used as input to an LLM, we pro-
pose Plausible Token Amplification (PTA) for generating
synthetic demonstrations that satisfy DP guarantees. By
leveraging DP, our approach lowers the risk of an individual
being inferred from an LLM’s output, thereby offering rigor-
ous privacy guarantees and fostering safer data collaboration.
As with other DP-based methods, unintended leakage can
arise without careful design of the accumulation of privacy
parameters and pre-processing steps (e.g. de-duplication
of data). These potential risks are consistent with issues
commonly encountered in broader DP applications. Never-
theless, our work demonstrates that incorporating DP into
LLM workflows can promote both privacy protection and
fair, efficient data usage.
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A. Limitations and future work
We briefly discuss the limitations and future directions of this study.

First, the introduced HMM-based prompt formulation may not fully capture the auto-regressive nature of generating DP
synthetic demonstrations, where generated tokens recursively serve as input for next-token generation. The introduced
HMMs overlook the effect of noise addition on transitions to the next hidden states. Addressing this could provide a more
realistic representation of the DP synthetic prompt generation process.

Second, our framework could support efforts to adaptively noise variance reduction by estimating the maximum changes in
the next-token probability of LLM for individual demonstrations, as proposed in (Gao et al., 2025), which complements our
likelihood ratio-driven improvements in PTA. Integrating the proposed PTA with such extensions could further enhance its
effectiveness by highlighting task-specific information and tailored noise variance, marking a fruitful direction for future
work.

Third, Theorem 2 may suggest a reformulation in which the vocabulary space is limited to directly maximizing the
divergence between private and public next-token probability distributions, rather than being fixed in advance based on
public information as in our current compositional design. Specifically, selecting the vocabulary to maximize this divergence
could further enhance alignment with the ground-truth concept while mitigating the noise error term in Theorem 2. However,
this approach introduces challenges, such as the need for more complex DP mechanisms to account for vocabulary selection
based on private information. We leave this as an extension of our current PTA.
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B. Related works
In this section, we will outline the methods that are related to this research and discuss their positioning in relation to it.
To improve the accuracy of DP-ICL, the proposed PTA uses DP synthetic demonstrations. In generating DP synthetic
demonstrations, the next-token probability is modified to improve the likelihood of the generated tokens. The following
discussion is organized around three key perspectives: (i) DP-ICL methods, (ii) DP synthetic text generation techniques
using LLMs, and (iii) methods for modifying the next-token probability distribution in LLMs.

(i) DP-ICL methods.

(Duan et al., 2023) first highlighted the leakage risks of demonstrations provided in prompts for ICL. This motivates a series
of works on applying DP-ICL. Many DP-ICL methods have been widely explored to mitigate such leakage risks (Tang et al.,
2024; Wu et al., 2024; Gao et al., 2025).

A key approach in DP-ICL is generating DP synthetic demonstrations as alternatives for original ones in prompts. (Tang
et al., 2024) first introduced this approach by adding noise to a next-token probability distribution conditioned on the
original demonstrations. Their method also limits the vocabulary space to stabilize the accuracy, and its effectiveness
has been empirically confirmed. The generated DP synthetic demonstrations are then used in prompts, leveraging DP’s
post-processing immunity for privacy preservation in query response.

While our proposed PTA indeed follows this work, it fundamentally differs in two key ways. i) Instead of relying solely on
empirical validation, we provide theoretical support for the effectiveness of limiting vocabulary space by interpreting ICL as
implicit Bayesian inference on the shared concept among demonstrations. ii) PTA goes beyond Tang et al.’s vocabulary space
limitation by explicitly aligning the generated DP synthetic demonstrations with the ground-truth concept. Specifically, PTA
highlights tokens that distinctly represent the task, ensuring that the LLM infers the ground-truth concept more accurately —
a crucial aspect yet not considered in (Tang et al., 2024).

Concurrently with our work on generating DP synthetic demonstrations, (Gao et al., 2025) proposed the first data-adaptive
DP-ICL. Their method adaptively reduces the noise variance σ2 on the basis of the dynamic estimation of the sensitivity of
the next-token probability distribution. This approach complements our PTA framework: while they focus on mitigating the
negative noise impact by reducing its variance, PTA emphasizes tokens that distinctly represent the ICL task to enhance the
likelihood of generated demonstrations on the ground-truth concept. Integrating their adaptive method with our PTA could
potentially further improve the accuracy of DP-ICL, representing a promising direction for future research.

In contrast to synthetic demonstration approaches, (Wu et al., 2024) introduced a DP-ICL framework that applies the
Gaussian mechanism directly to aggregated next-token probability distribution for classification. For generation tasks, it
uses embedding-based and keyword-based aggregation. Although effective for various tasks, this approach leads to an
increase in the noise variance σ2 as the number of queries grows, subsequently degrading its accuracy. Due to this, we have
opted not to adopt this method. In contrast, our PTA utilizes DP synthetic demonstrations in the prompt, which avoids the
addition of noise to every query response. This strategy allows us to have an unlimited number of queries.

Another line of research in DP-ICL does not rely on the Gaussian mechanism. For example, (Hong et al., 2024) (DP-OPT)
and (Amin et al., 2024) adopt the Exponential Mechanism (McSherry & Talwar, 2007), leveraging random sampling instead
of adding noise to the next-token probability distribution. In DP-OPT, a Limited-Domain Mechanism (Durfee & Rogers,
2019) selects tokens from the next-token probability distribution while mitigating the curse of dimensionality caused by
large vocabularies. Similarly, (Amin et al., 2024) employ the Exponential Mechanism for next-token selection by exploiting
the equivalence between softmax sampling in log space and the Exponential Mechanism, further improving efficiency via
the Sparse Vector Technique (Dwork et al., 2009).

In contrast to these sampling-based approaches that select tokens through uncertain sampling, our PTA will explicitly
highlight tokens that distinctly represent the ICL task. This ensures that generated DP synthetic demonstrations assist an
LLM in accurately inferring the ground-truth concept. Nevertheless, both sampling-based methods and noise-based methods
can be analyzed within an extended Bayesian framework for ICL, offering a fair comparison of how different DP-ICL
techniques improve accuracy under privacy constraints.

(ii) DP synthetic text generation.

Our work is part of the broader category of DP synthetic text generation, which aims to generate text satisfying the target
DP guarantee while maintaining practical utility. Traditionally, this has involved using DP-Stochastic Gradient Descent
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(DP-SGD) (Abadi et al., 2016), which incorporates DP mechanisms into the training of generative model parameters
using private data. The resulting model then produces DP synthetic text (Yue et al., 2023; Mattern et al., 2022; Flemings
& Annavaram, 2024). However, the training of LLMs using DP-SGD has become impractical due to the significant
computational resources required and the unavailability of model parameters in closed-source settings.

To address these issues, (Xie et al., 2024) introduced an API-based method that leverages LLM inference APIs to generate
candidate synthetic texts through random sampling, which are then refined by using a selection mechanism. The selection
mechanism involves private data, as it compares synthetic samples with private data to retain those that best represent the
original text distribution. Since this step poses a risk of privacy leakage, noise is added to the selection mechanism, ensuring
DP.

Compared to these existing DP synthetic text generation approaches, our PTA offers a tailored approach to improve the
accuracy of DP-ICL. PTA, especially aligns the generated DP synthetic demonstrations with the ground-truth concept,
thereby improving ICL accuracy from a Bayesian perspective. Furthermore, PTA can be seamlessly integrated into LLM
inference processes, even in closed-source or resource-limited scenarios assumed in (Xie et al., 2024), as it does not require
direct access to LLM parameters.

(iii) Modification of the next-token probability of LLMs. PTA leverages next-token modification to highlight tokens
that enable an LLM to accurately infer the ground-truth concept. Beyond DP applications, next-token modification is
widely used for various purposes, such as enhancing diversity and coherence in open-ended text generation (Li et al., 2023),
improving factual consistency (Shi et al., 2024), and preventing toxic or harmful outputs (Xu et al., 2024).

Unlike these approaches, our PTA uniquely applies next-token modification to optimize DP synthetic demonstrations,
ensuring they are both privacy-preserving and highly informative for LLM inference.
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C. Missing proof of Bayesian analysis of DP-ICL
In this section, we provide the details missing from Section 3. First, we provide the HMM-based prompt formulation
(Appendix C.1) and assumptions (Appendix C.2) used in (Xie et al., 2022) and this paper. Then, we provide the simple
transformation of (5) in Appendix C.4. In Appendix C.3, we list the useful mathematical tools used in the subsequent proof.
Finally, we provide the detailed proof of Lemma 1 and Theorem 2 in Appendices C.5–C.8.

C.1. Prompt formulation

To formalize the HMM-based prompt formulation described in Section 2.2, we let Θ be a set of concepts, where each
concept θ ∈ Θ defines the transition probability matrix of an HMM. The prompt is formulated as follows:

[Sn, xquery]=[O1, o
delim
1 , . . . , On, o

delim
n , xquery]∼pprompt, (14a)

Oi = [oi,1,..., oi,T ], oi,j ∼ p(oi,j |hi,j), (14b)
hi,j ∼ p(hi,j |hi,j−1, θ

∗),∀j > 1, hi,1 ∼ pprompt, (14c)

odelim
i ∼ p(odelim

i |hdelim
i , θ∗), (14d)

where n denotes the number of demonstrations in the prompt and T is the length of each demonstration. In (14a), the
i-th demonstration and delimiter token like "\n" are denoted by Oi and odelim

i , respectively, and xquery represents a query
for ICL. According to the Markov property, each token oi,j is sampled based on its emission probability p(oi,j |hi,j) in
(14b). As depicted in (14c), the transition between hidden states follows the HMM defined by the concept θ∗ underlying the
demonstrations, and the initial hidden state of each demonstration follows pprompt. To concatenate these demonstrations into
a prompt, a delimiter token is typically inserted after each demonstration, acting as a boundary between them. The transition
to this token is also governed by the HMM, as shown in (14d).

To distinguish the different domains that probability distributions consider, we use the following notation as needed for
clarity: pprompt|V for the token emission probability distribution and pprompt|VT for the demonstration distribution.

As shown in (6), we introduce the perturbed prompt distribution to model the noise addition instead of using (14b) to model
the DP synthetic demonstration. To ensure it remains a valid probability distribution, we have formally implemented the
following formulation of the DP synthetic prompt distribution.

[S̃n, xquery]=[Õ1, o
delim
1 , . . . , Õn, o

delim
n , xquery]∼ p̃prompt = Eζ [p̂prompt] , (15a)

p̂prompt(oi,j = v|hi,j) =
max{0, pprompt(oi,j = v|hi,j) + ζv}∑
v∈V max{0, pprompt(oi,j = v|hi,j) + ζv}

, ζ = (ζv)v∈V ∼ N (0, σ2I|V|). (15b)

Consequently, our HMM-based formulation for the DP synthetic demonstrations follows (14c), (14d), (15a) and (15b).

C.2. Assumptions

Following (Xie et al., 2022), we detail the assumption regarding transition probabilities and emission probabilities of HMMs
used in the prompt formulation. Under these assumptions, we quantify the mismatch between the prompt distribution and
demonstrations in the prompt.

Assumption 1 (Delimiter hidden states). Let the delimiter hidden states D be a subset ofH. For any hdelim ∈ D and θ ∈ Θ,
p(odelim|hdelim, θ∗) = 1 and for any h ̸∈ D, p(odelim|h, θ∗) = 0.

Assumption 2 (Bound on delimiter transitions). For any delimiter state hdelim ∈ D and any hidden state h ∈ H, the
probability of transitioning to a delimiter hidden state under θ is upper bounded p(hdelim|h, θ) < c2 for any θ ∈ Θ \ {θ∗},
and is lower bounded p(hdelim|h, θ∗) > c1 > 0 for θ∗. Additionally, the start hidden state distribution for delimiter hidden
states is bounded as p(hdelim|θ) ∈ [c3, c4].

Assumption 3 (Well-specification). The prompt concept θ∗ is in the concept set Θ.

Assumption 4 (Regularity). The pretraining distribution p satisfies: 1) Lower bound on transition probability for the prompt
concept θ∗: for any pair of hidden states h, h′ ∈ H, p(h|h′, θ∗) > c5 > 0. 2) Start hidden state is lower bounded: for any
h ∈ H, p(h|θ∗) ≥ c8 > 0. 3) All tokens can be emitted: for every symbol o, there is some hidden state h ∈ H such that
p(o|h, θ∗) > c6 > 0. 4) The prior p(θ) has support over the entire concept family Θ and is bounded above everywhere.
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C.3. Technical definitions and lemmas

In this section, we list the mathematical tools to provide the proof in this paper.

Definition 1 (Total Variation(TV) distance). Given two distributions p, q over a finite domain X , total variation(TV) distance
is defined as follows:

dTV (p, q) :=
1

2

∑
x∈X
|p(x)− q(x)| .

Lemma 2 (Moments of rectified Gaussian distribution (Beauchamp, 2018)). Suppose X follows N (µ, σ2). Then, random
variable X̂ = max{0, X} is said to follow the rectified Gaussian distribution. Its first and second order moments are given
by:

E
[
X̂
]
= µ

(
1− Φ(−µ

σ
)
)
+ σϕ(−µ

σ
),

E
[
X̂2
]
= (µ2 + σ2)

(
1− Φ(−µ

σ
)
)
+ µσϕ(−µ

σ
).

Lemma 3 (Csiszar inequality (Wilde, 2011)). Given two distributions p, q over a finite domainX , then we have the following

|H(p)−H(q)| ≤ dTV (p, q) log |X |+ h(dTV (p, q)),

where H(·) denotes the Shannon Entropy, dTV (·, ·) denotes the TV distance and h(·) represents the binary entropy function.

Lemma 4 (Bretagnolle–Huber bound (Bretagnolle & Huber, 1979)). Given two distributions p, q over a finite domain X ,
then we have:

dTV (p, q) ≤
√

1− exp (−DKL (p∥q)).
Lemma 5 (Reverse Pinsker’s inequality (Sason & Verdú, 2016)). Given two distributions p, q over a finite domain X , then
we have:

DKL (p∥q) ≤
log 2

minx∈X q(x)
dTV (p, q)

2
.

Lemma 6 (Hoeffding’s inequality (Hoeffding, 1994)). Let Z1, . . . , Zn be independent bounded random variables with
Zi ∈ [a, b] for all i, where −∞ < a ≤ b <∞. Then, we have:

P

{
1

n

n∑
i=1

(Zi − EZi
[Zi]) ≥ t

}
≤ exp

(
− 2nt2

(b− a)2

)
,

P

{
1

n

n∑
i=1

(Zi − EZi [Zi]) ≤ −t
}
≤ exp

(
− 2nt2

(b− a)2

)
,

for all t ≥ 0.
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C.4. Preliminary results and transformation of (5)

Here, we begin by recalling the original statement from (Xie et al., 2022).

Theorem 3. Suppose Assumptions 1,2,3, and 4 hold. Then, we have limn→∞ exp (n · rn(θ)) = 0, if θ∗ is the ground-truth
concept of the prompt and satisfies the following condition for any other concept θ ∈ Θ:

T∑
j=1

E [DKL(pprompt(Oj |O1:j−1)∥p(Oj |O1:j−1, θ))] > Cstart + Cdelim,

where pprompt and p represent the prompt distribution and pre-training distribution, respectively. The expectation is taken
over O ∼ pprompt. Cdelim is a positive constant.

By using a straightforward transformation, we derive Theorem 3 from (5). To do so, we first transform the LHS of (5) as
follows:

EO∼pprompt

[
log

p(O|θ∗)
p(O|θ)

]
= DKL (pprompt(O)∥p(O|θ))−DKL (pprompt(O)∥p(O|θ∗)) .

On the basis of the HMMs formulation, we can decompose the second KL-term into:

DKL (pprompt(O)∥p(O|θ∗)) =
∑
v∈V

pprompt(O = v) log

∑
H∈HT pprompt(h1)p(h2, . . . , hT |θ∗)

∏T
j=1 p(oj = vj |hj)∑

H∈HT p(h1|θ∗)p(h2, . . . , hT |θ∗)
∏T

j=1 p(oj = vj |hj)

≤
∑
v∈V

pprompt(O = v) log
1

c8
= log

1

c8
. (16)

The inequality holds because applying Assumption 4 gives the following:

∀h ∈ H, pprompt(h)

p(h|θ∗) ≤
1

c8
.

Next, we rewrite the first KL term.

DKL (pprompt(O)∥p(O|θ)) =
∑
v∈VT

pprompt(O = v) log

T∏
j=1

pprompt(Oj |O1:j−1)

p(Oj |O1:j−1, θ)

=
∑
v∈VT

T∑
j=1

pprompt(O = v) log
pprompt(Oj |O1:j−1)

p(Oj |O1:j−1, θ)

=

T∑
j=1

∑
v∈VT

pprompt(O = v) log
pprompt(Oj |O1:j−1)

p(Oj |O1:j−1, θ)

=

T∑
j=1

E [DKL(pprompt(Oj |O1:j−1)∥p(Oj |O1:j−1, θ))] .

By using the transformed KL-term and (16) into (5), then we obtain another condition for the convergence of r(θ) as shown
in Theorem 3.
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C.5. Proof of Lemma 1

The following lemma and its proof are nearly identical to Lemma 8 in (Xie et al., 2022) but we present it for a self-contained
purpose.
Lemma. Suppose Assumptions 1,2,3, and 4 hold. Then, we have

r̃n(θ) ≤ −
1

n

n∑
i=1

log
p(Õi|θ∗)
p(Õi|θ)

+ Cdelim +O(n−1).

Proof. First we transform p(S̃n, xquery|θ),∀θ ∈ Θ as follows:

p(S̃n, xquery|θ) = p(xquery|S̃n, θ)p(S̃n|θ) = p(S̃n|θ)

 ∑
hstart

query∈H
p(xquery|hstart

query, θ)p(h
start
query|S̃n, θ)

 ,

where for the last equation we used the fact that xquery and S̃n are conditionally independent given hstart
query.

Let Õex
i = [odelim

i−1 , Õi] be the i − 1-th delimiter token followed by the i-th observation sequence. For i = 1 we define
Õex

1 = Õ1. Accordingly, we can decompose p(S̃n|θ) as follows:

p(S̃n|θ) =p(odelim
n , Õex

1:n|θ)

=p(odelim
n |Õex

1:n, θ)

n∏
i=1

p(Õex
i |Õex

1:i−1, θ)

=
∑

hdelim
n ∈D

p(odelim
n |hdelim

n , θ)p(hdelim
n |Õex

1:n, θ)

n∏
i=1

∑
hdelim
i−1∈D

p(Õex
i |hdelim

i−1 , θ)p(hdelim
i−1 |Õex

1:i−1, θ)

=

n∏
i=1

∑
hdelim
i−1∈D

p(Õex
i |hdelim

i−1 , θ)p(hdelim
i−1 |Õex

1:i−1, θ),

where for the third line we used the fact that odelim
n and Õex

1:n are conditionally independent given hdelim
n . Similarly, Õex

1:i and
Õex

1:i−1 are conditionally independent given hdelim
i−1 for i = 1, . . . , n. We used total probability and ∀i, p(odelim

i |hdelim
i ) = 1

(Assumption 1) in the last line.

For θ ̸= θ∗, we have the following upper bound:∑
hdelim
i−1∈D

p(Õi|hdelim
i−1 , θ)p(hdelim

i−1 |Õex
1:i−1, θ)

≤c2
∑

hdelim
i−1∈D

p(Õi|hdelim
i−1 , θ)

=c2
∑

hdelim
i−1∈D

∑
hstart
i ∈H

p(Õi|hstart
i , θ)p(hstart

i |hdelim
i−1 , θ)

=c2
∑

hdelim
i−1∈D

∑
hstart
i ∈H

p(Õi|hstart
i , θ)p(hstart

i |θ)
p(hstart

i |hdelim
i−1 , θ)

p(hstart
i |θ)

=c2
∑

hdelim
i−1∈D

∑
hstart
i ∈H

p(Õi|hstart
i , θ)p(hstart

i |θ)
p(hstart

i , hdelim
i−1 , θ)

p(hdelim
i−1 , θ)

p(θ)

p(hstart
i , θ)

=c2
∑

hstart
i ∈H

p(Õi|hstart
i , θ)p(hstart

i |θ)
∑

hdelim
i−1∈D

p(hdelim
i−1 |hdelim

i , θ)

p(hdelim
i−1 |θ)

≤c2
∑

hstart
i ∈H

p(Õi|hstart
i , θ)p(hstart

i |θ)
∑

hdelim
i−1∈D

p(hdelim
i−1 |hdelim

i , θ)

c3
=

c2
c3

p(Õi|θ).
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In the first inequality, we used p(hdelim
i−1 |Oex

1:i−1θ) < c2 (Assumption 2). We also used p(hdelim|θ) ∈ [c3, c4] (Assumption 2)
in the second inequality. Subsequently, we marginalized out hdelim

i−1 , hstart
i in the last equality.

Symmetrically, we have the following lower bound for θ = θ∗:∑
hdelim
i−1∈D

p(Oi|hdelim
i−1 , θ∗)p(hdelim

i−1 |Oex
1:i−1, θ

∗) ≥ c1
∑

hdelim
i−1∈D

p(Oi|hdelim
i−1 , θ∗) ≥ c1

c4
p(Oi|θ∗).

To derive the upper bound of r̃n(θ), we rewrite it as follows:

r̃n(θ) =
1

n
log

p(S̃n, xquery|θ)
p(S̃n, xquery|θ∗)

=
1

n

log ∑
hstart

query∈H p(xquery|hstart
query, θ)p(h

start
query|S̃n, θ)∑

hstart
query∈H p(xquery|hstart

query, θ
∗)p(hstart

query|S̃n, θ∗)
+

n∑
i=1

log

∑
hdelim
i−1∈D p(Õex

i |hdelim
i−1 , θ)p(hdelim

i−1 |Õex
1:i−1, θ)∑

hdelim
i−1∈D p(Õex

i |hdelim
i−1 , θ∗)p(hdelim

i−1 |Õex
1:i−1, θ

∗)

 .

Since we have already bounded the second term, we now focus on the first term. The denominator of this term involves:∑
hstart

query

p(xquery|hstart
query, θ

∗)p(hstart
query|S̃n, θ

∗).

To ensure the entire expression is bounded, it suffices to lower bound each conditional likelihood term p(xquery|hstart
query, θ

∗).
This is guaranteed by the following result (adapted from Proposition 2 in (Xie et al., 2022)):

Proposition 1 ((Xie et al., 2022)). The probability of an example is lower bounded for θ∗: there is some c7 > 0 such that
p(Oi|hstart

i , hj,l, θ
∗) > c7 for all i and future hidden states hj,l, for any l and j > i.

This ensures that p(xquery|hstart
query, θ

∗) is uniformly lower bounded, and therefore the full denominator in the first log term is
also bounded below by a constant depending on c7. Applying this result along with earlier bounds, we obtain:

r̃n(θ) ≤
1

n

[
− log c7 + 2n log

c2
c1

+ n log
c4
c3

+

n∑
i=1

log
p(Õi|θ)
p(Õi|θ∗)

]
= −

n∑
i=1

log
p(Õi|θ∗)
p(Õi|θ)

+ Cdelim +
1

n
log

1

c7
,

where we set Cdelim = 2 log c2
c1

+ log c4
c3

.This completes the proof.
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C.6. Proof of Theorem 2

Here, we restate Theorem 2 and provide the proof strategy in this section.

Theorem. Suppose Assumptions 1,2,3, and 4 hold. Then, we have limn→∞ exp (n · r̃n(θ)) = 0 with (1−γ)(1−γ′), γ, γ′ ∈
(0, 1) probability, if θ∗ is the underlying concept of the prompt and satisfies the following condition for any other competing
concept θ ∈ Θ:

EO

[
log

p(O|θ∗)
p(O|θ)

]
>

(
2T

log 2
log |V|+D1 +D2

)
TG(σ) +

(
eD1 log 2

)
T 2G(σ)2 + 2h(TG(σ))

+

T∑
j=1

cj(θ
∗)

√
1

2n
log

2

γ
+

T∑
j=1

cj(θ)

√
1

2n
log

2

γ′ + Cdelim + 2Cstart,

where Cstart := log 1
c8

, D1 := minv∈V:pprompt(O=v)>0 |log pprompt(O = v)|, D2 = minv∈V:p(O=v|θ)>0 |log p(O = v|θ)|,
h(·) is a binary entropy function and cj(θ

∗) =
∣∣minvj∈{v∈V|p(õij=v|θ∗)>0} log p(õij = vj |õ1:j−1, θ

∗)
∣∣ and cj(θ) =∣∣minvj∈{v∈V|p(õij=v|θ)>0} log p(õij = vj |õ1:j−1, θ)

∣∣.
Proof. To derive the condition of the RHS of (8) being negative, we focus on the first term of RHS of(8). The proof strategy
involves reformulating this term to isolate the two additional terms (i) noise error and (ii) estimation error. Specifically, we
reformulate the term as follows:

− 1

n

n∑
i=1

log
p(Õi|θ∗)
p(Õi|θ)

=− 1

n

n∑
i=1

log
p(Õi|θ∗)
p(Õi|θ)

− EO

[
log

p(O|θ∗)
p(O|θ)

]
− EÕ

[
log

p(Õ|θ∗)
p(Õ|θ)

]
+ EO

[
log

p(O|θ∗)
p(O|θ)

]
+ EÕ

[
log

p(Õ|θ∗)
p(Õ|θ)

]

=− EO

[
log

p(O|θ∗)
p(O|θ)

]
+
(
EO [log p(O|θ∗)]− EÕ

[
log p(Õ|θ∗)

])
+
(
EÕ

[
log p(Õ|θ)

]
− EO [log p(O|θ)]

)
+

(
− 1

n

n∑
i=1

log p(Õi|θ∗) + EÕ

[
log p(Õ|θ∗)

])
+

(
1

n

n∑
i=1

log p(Õi|θ)− EÕ

[
log p(Õ|θ)

])

≤− EO

[
log

p(O|θ∗)
p(O|θ)

]
+
∣∣∣EO [log p(O|θ∗)]− EÕ

[
log p(Õ|θ∗)

]∣∣∣+ ∣∣∣EÕ

[
log p(Õ|θ)

]
− EO [log p(O|θ)]

∣∣∣︸ ︷︷ ︸
(i) Noise error

+

∣∣∣∣∣− 1

n

n∑
i=1

log p(Õi|θ∗) + EÕ

[
log p(Õ|θ∗)

]
+

1

n

n∑
i=1

log p(Õi|θ)− EÕ

[
log p(Õ|θ)

]∣∣∣∣∣︸ ︷︷ ︸
(ii)Estimation error

.

Here, (i) noise error quantifies the effect of noise addition to the prompt distribution by measuring the divergence between
noisy prompt distribution and ground-truth prompt distribution. Meanwhile, (ii) estimation error arises from estimating the
expectation of log-likelihood of the noisy demonstrations under θ∗, θ with a finite sample mean of those.

To derive a bound for (i), we proceed as follows. First, we express the error in terms of the total variation (TV) distance
between the noisy and original prompt distributions (see Lemma 7). Next, we decompose the TV distance between the
demonstration distributions over the VT into the TV distances of individual token distributions over V (see Lemma 8).
Finally, we explicitly isolate the noise-dependent term to quantify the effect of noise on the TV distance between the
token emission probability distributions, as defined in (14c) and (6) (see Lemma 9). Specifically, combining Lemma 8 and
Lemma 9 gives:

dTV

(
p̃prompt|VT , pprompt|VT

)
≤

∑
h1,...,hT

p̃prompt(h1, . . . , hT )

T∑
j=1

G(σ) = TG(σ),

where G(σ) ∈ [0, 1] is continuous function of σ, satisfying limσ→0 G(σ) = 0. The behavior of G(σ) naturally depends
on the next-token probability distribution of the involved LLM, as it captures how noise perturbs the model’s next-token
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probabilities (see (18)). Nonetheless, we emphasize that its derivation follows from a tight and general analysis that does not
assume any specific form of this distribution, ensuring broad applicability across LLM architectures and tasks of the derived
bound.

By substituting the obtained bound on the total variation into Lemma 7, then we have the following bound:

(i) Noise error ≤
(

2T

log 2
log |V|+D1 +D2

)
TG(σ) +

(
eD1 log 2

)
T 2G(σ)2 + 2h(TG(σ)) + 2Cstart,

Taking the limit as σ → 0 results in the derived bound converging to 2Cstart, which addresses the mismatch between the
start distribution of the hidden state and is a negligible term in practice.

To bound (ii), we apply a concentration inequality for random variables, which leads to a high-probability bound (see
Lemma 10). Specifically, we have at least (1− γ)(1− γ′) probability:

(ii) Estimation error ≤
T∑

j=1

cj(θ
∗)

√
1

2n
log

2

γ
+

T∑
j=1

cj(θ)

√
1

2n
log

2

γ′ .

Combining these bounds and Lemma 1 yield Theorem 2.
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C.7. Lemmas to bound the noise error

In this section, we provide the proof to derive the bounds on the noise error.

Lemma 7 (Noise error). Suppose Assumption 4 holds. Given the HMM-based prompt formulations (14c), (14d), (15a)
and (15b), we have the following:∣∣∣EO [log p(O|θ∗)]− EÕ

[
log p(Õ|θ∗)

]∣∣∣+ ∣∣∣EÕ

[
log p(Õ|θ)

]
− EO [log p(O|θ)]

∣∣∣
≤
(

2T

log 2
log |V|+D1 +D2

)
dTV (p̃prompt|VT , pprompt|VT ) +

(
eD1 log 2

)
dTV

(
p̃prompt|VT , pprompt|VT

)2
+ 2h(dTV

(
p̃prompt|VT , pprompt|VT

)
) + 2Cstart,

where Cstart := log 1
c8

, D1 := minv∈V:pprompt(O=v)>0 |log pprompt(O = v)|, D2 = minv∈V:p(O=v|θ)>0 |log p(O = v|θ)| and
h(·) is a binary entropy function.

Proof. We transform the first term in the LHS of Lemma 7 as follows:∣∣∣EÕ∼p̃prompt

[
log p(Õ|θ∗)

]
− EO∼pprompt [log p(O|θ∗)]

∣∣∣
≤
∣∣∣EÕ∼p̃prompt

[
log p̃prompt(Õ)

]
− EO∼pprompt [log pprompt(O)]

∣∣∣︸ ︷︷ ︸
:=T1

+
∣∣DKL

(
(pprompt|VT ∥p(O|θ∗))

)
−DKL

(
(p̃prompt|VT ∥p(O|θ∗))

)∣∣︸ ︷︷ ︸
:=T2

.

Applying Lemma 3 to T1 gives:

T1 ≤
T log |V|
log 2

dTV

(
p̃prompt|VT , pprompt|VT

)
+ h(dTV

(
p̃prompt|VT , pprompt|VT

)
).

Next, we have the bound on T2 as follows:

T2 ≤
∣∣DKL

(
pprompt|VT ∥p(O|θ∗)

)∣∣+ ∣∣DKL

(
p̃prompt|VT ∥p(O|θ∗)

)∣∣ ≤ 2 log
1

c8
.

This holds because pprompt and p(·|θ∗) only differs the start distribution of h1 and similarly pprompt and p(·|θ∗) also only
differs the start distribution of h1. See its derivation as shown in (16).

Similarly by isolating out the difference between entropy of two distributions, we rearrange the second term in the LHS of
Lemma 7 as follows:∣∣∣EÕ

[
log p(Õ|θ)

]
− EO [log p(O|θ)]

∣∣∣ ≤ T1 +
∣∣DKL

(
(pprompt|VT ∥∥p(·|θ))

)∣∣−DKL

(
(p̃prompt|VT ∥p(·|θ)

)︸ ︷︷ ︸
:=T3

.

Now, we bound T3:

T3 =

∣∣∣∣∣ ∑
v∈VT

(
pprompt(O = v) log

pprompt(O = v)

p(O = v|θ) − p̃prompt(Õ = v) log
p̃prompt(Õ = v)

p(Õ = v|θ)

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
v∈VT

(pprompt(O = v)− p̃prompt(O = v)) log
pprompt(O = v)

p(O = v|θ) − p̃prompt(Õ = v) log
p̃prompt(Õ = v)

pprompt(Õ = v|θ)

∣∣∣∣∣
≤
∑
v∈VT

∣∣∣∣(pprompt(O = v)− p̃prompt(O = v)) log
pprompt(O = v)

p(O = v|θ)

∣∣∣∣+ ∣∣DKL

(
p̃prompt|VT ∥pprompt|VT

)∣∣ .
Note that fixing v yields p(O = v|θ) = p(Õ = v|θ). The inequality follows from the triangle inequality.

To bound the log-ratio term, we have:∣∣∣∣log pprompt(O = v)

p(O = v|θ)

∣∣∣∣ ≤ max{ min
v∈V:pprompt(O=v)>0

|log pprompt(O = v)| , min
v∈V:p(O=v|θ)>0

|log p(O = v|θ)|} ≤ D1 +D2,
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where we define D1 := minv∈V:pprompt(O=v)>0 |log pprompt(O = v)| and D2 = minv∈V:p(O=v|θ)>0 |log p(O = v|θ)|. This
gives the following bound:∑
v∈VT

∣∣∣∣(pprompt(O = v)− p̃prompt(O = v)) log
pprompt(O = v)

p(O = v|θ)

∣∣∣∣ ≤(D1 +D2)
∑
v∈VT

|(pprompt(O = v)− p̃prompt(O = v))|

=(D1 +D2)dTV

(
p̃prompt|VT , pprompt|VT

)
.

To bound the KL term, applying Lemma 5 gives:∣∣DKL

(
p̃prompt|VT ∥pprompt|VT

)∣∣ = DKL

(
p̃prompt|VT ∥pprompt|VT

)
≤ log 2

e−D1
dTV

(
p̃prompt|VT , pprompt|VT

)2
,

where e−D1 = minv∈V:pprompt(O=v)>0 pprompt(O = v).

By combining the bounds on T1, T2 and T3, we complete the proof.
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Lemma 8. Given the HMM-based prompt formulations (14c), (14d), (15a) and (15b), we have the following:

dTV (p̃prompt|VT , pprompt|VT ) ≤
∑

h1,...,hT

p̃prompt(h1, . . . , hT )

T∑
j=1

dTV (p̃prompt(oj |hj), p̃prompt(oj |hj)) .

Proof. On the basis of the HMM-based prompt formulation given by (14c), (14d), (15a) and (15b), we rewrite as follows:

dTV(p̃prompt|VT , pprompt|VT ) =
∑
v∈VT

|p̃prompt(O = v)− pprompt(O = v)|

=
∑
v∈VT

∣∣∣∣∣∣
∑

h1,...,hT

p̃prompt(h1, . . . , hT )

T∏
j=1

(p̃prompt(oj = vj |hj)− pprompt(oj = vj |hj))

∣∣∣∣∣∣ .
Using the triangle inequality, we bound the absolute difference:

∑
v∈VT

∑
h1,...,hT

p̃prompt(h1, . . . , hT )

∣∣∣∣∣∣
T∏

j=1

(p̃prompt(oj = vj |hj)− pprompt(oj = vj |hj))

∣∣∣∣∣∣
≤
∑
v∈VT

∑
h1,...,hT

p̃prompt(h1, . . . , hT )

T∑
j=1

|p̃prompt(oj = vj |hj)− pprompt(oj = vj |hj)| .

Here, we applied the general triangle inequality for product differences:∣∣∣∣∣∣
T∏

j=1

aj −
T∏

j=1

bj

∣∣∣∣∣∣ ≤
T∑

j=1

|aj − bj |

t−1∏
j=1

aj

 t+1∏
j=T

bj

 ,

where aj = p̃prompt(oj = vj |hj) and bj = pprompt(oj = vj |hj), noting that both probabilities lie in [0, 1].

Rearranging the summation order, we obtain:

dTV(p̃prompt|VT , pprompt|VT ) =
∑

h1,...,hT

p̃prompt(h1, . . . , hT )

T∑
j=1

∑
vj∈V

|p̃prompt(oj = vj |hj)− pprompt(oj = vj |hj)|

=
∑

h1,...,hT

p̃prompt(h1, . . . , hT )

T∑
j=1

dTV (p̃prompt(oj |hj), pprompt(oj |hj)) .

This establishes the desired bound.

Lemma 9. Given the HMM-based prompt formulations (14c), (14d), (15a) and (15b), we have the following:

dTV (p̃prompt(oj = vj |hj)), pprompt(oj = vj |hj)) ≤ G(σ),

where G(σ) ∈ [0, 1] is continuous function of σ and limσ→0 G(σ) = 0.

Proof. To establish bound, we begin by applying Lemma 4:

dTV

(
p̃prompt|V , pprompt|V

)
= dTV

(
pprompt|V , p̃prompt|V

)
≤
√
1− exp

(
−DKL

(
pprompt|V∥p̃prompt|V

))
.

Next, we express the KL-term using definition the noise addition as shown in (15a) and (15b). Rewriting the KL-term gives:

DKL

(
pprompt|V∥Eζ

[
p̂prompt|V

])
=
∑
v∈V

(
pv log pv − pv logEζ

[
pv + Zv

1 +
∑

u∈V Zu

])
, (17)
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where we introduce pv = pprompt(o = v|h) and Zv = max{0, pv + ζv} − pv, ζ = (ζv)v∈V ∼ N (0, σ2I|V|) for notational
simplicity.

Now, we aim to bound the expectation term of the RHS of (17). By using the Jensen inequality, which holds due to the
convexity of f(x) = − log x, then we have:

− logEζ

[
pv + Zv

1 +
∑

u∈V Zu

]
≤ Eζ

[
− log

pv + Zv

1 +
∑

u∈V Zu

]
≤ logEζ

[(
1 +

∑
u∈V

Zu

)]
− Eζ [log (pv + Zv)]︸ ︷︷ ︸

:=F (σ,pv)

.

By defining F (σ, pv), we obtain an explicit dependency on σ of the bound. Since Zv + pv = max{0, pv + ζv} follows the
rectified Gaussian distribution, thus applying Lemma 2 yields:

Eζ

[(
1 +

∑
u∈V

Zu

)]
= log

(
1 +

∑
u∈V
−puΦ(−

pu
σ
) + σϕ

(
−pu

σ

))
.

Thus, we obtain the following upper bound:

dTV

(
p̃prompt|V , pprompt|V

)
≤

√√√√1− exp

(
−
(∑

v∈V
pv log pv + pvF (σ, pv)

))
︸ ︷︷ ︸

:=G(σ)

. (18)

To validate this bound, we analyze the asymptotic behavior of F (σ, pv) as σ → 0, rather than deriving its closed formula.
Specifically, we evaluate:

lim
σ→0

F (σ, pv) = 0− lim
σ→0

Eζ [log (pv + Zv)] =−
∫ ∞

−∞
logmax(0, ζv + pv) lim

σ→0

1√
2πσ

exp

(
− ζ2v
σ2

)
dζv

=−
∫ ∞

∞
logmax (0, ζv)δ(ζv − pv)dζv = log pv,

where δ(·) represents the Dirac delta function. This result implies:

lim
σ→0

dTV

(
p̃prompt|V , pprompt|V

)
= 0.

This asymptotic behavior is consistent with the definition of p̃prompt and p̃prompt, confirming that p̃prompt converges to pprompt
when σ → 0 (i.e. noise-free setting) from its definition.

Consequently, we have established a bound in the form:

dTV

(
p̃prompt|V , pprompt|V

)
≤ G(σ),

where G(σ) is a continuous function that satisfies:

G(σ) ∈ [0, 1], lim
σ→0

G(σ) = 0.

This completes the proof.
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C.8. Lemmas to bound the estimation error

Lemma 10 (Estimation Error with Finite Demonstrations). Given the HMM-based prompt formulation in (14c), (14d), (15a)
and (15b). Then, we have the following at least (1− γ)(1− γ′) probability for any θ ∈ Θ:∣∣∣∣∣EÕ

[
log p(Õ|θ)

]
− 1

n

n∑
i=1

log p(Õi|θ) +
1

n

n∑
i=1

log p(Õi|θ)− EÕ

[
log p(Õ|θ)

]∣∣∣∣∣
≤

T∑
j=1

cj(θ
∗)

√
1

2n
log

2

γ
+

T∑
j=1

cj(θ)

√
1

2n
log

2

γ′ ,

where

cj(θ
∗) =

∣∣∣∣ min
vj∈{v∈V|p(õij=v|θ∗)>0}

log p(õij = vj |õ1:j−1, θ
∗)

∣∣∣∣ ,
cj(θ) =

∣∣∣∣ min
vj∈{v∈V|p(õij=v|θ)>0}

log p(õij = vj |õ1:j−1, θ)

∣∣∣∣ .
Proof. First, we aim to bound the following:∣∣∣∣∣− 1

n

n∑
i=1

log p(Õi|θ∗) + EÕ

[
log p(Õ|θ∗)

]∣∣∣∣∣ .
Since Õ1, . . . , Õn are independent, thus applying the Lemma 6 gives the following bound:

Pr

[∣∣∣∣∣− 1

n

n∑
i=1

log p(Õi|θ∗) + EÕ

[
log p(Õ|θ∗)

]∣∣∣∣∣ ≥ t

]
≤ 2exp

(
− 2nt2

(b− a)2

)
,

where b, a is upper and lower bound of log p(Õi|θ∗). Specifically, to derive these bound we consider the following:

|b− a| ≤
∣∣∣∣∣ min
v∈{v∈VT |p(Õi=v|θ∗)>0}

log p(Õi = v|θ∗)
∣∣∣∣∣ =
∣∣∣∣∣∣ min
v∈{v∈VT |p(Õi=v|θ∗)>0}

T∑
j=1

log p(õij = vj |õ1:j−1, θ
∗)

∣∣∣∣∣∣
≤

T∑
j=1

∣∣∣∣ min
vj∈{v∈V|p(õij=v|θ∗)>0}

log p(õij = vj |õ1:j−1, θ
∗)

∣∣∣∣︸ ︷︷ ︸
:=cj(θ∗)

.

By rearranging for probability bound 1− γ:∣∣∣∣∣− 1

n

n∑
i=1

log p(Õi|θ∗) + EÕ

[
log p(Õ|θ∗)

]∣∣∣∣∣ ≤
T∑

j=1

cj(θ
∗)

√
1

2n
log

2

γ
.

Similarly, we have the following bound for θ ∈ Θ at least 1− γ′ probability:∣∣∣∣∣− 1

n

n∑
i=1

log p(Õi|θ) + EÕ

[
log p(Õ|θ)

]∣∣∣∣∣ ≤
T∑

j=1

cj(θ)

√
1

2n
log

2

γ′ .

where cj(θ) =
∣∣minvj∈{v∈V|p(õij=v|θ)>0} log p(õij = vj |õ1:j−1, θ)

∣∣. This completes the proof.
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D. Privacy analysis
This section presents the privacy analysis ensuring the proposed Algorithm 1 satisfies (ε, δ)-DP. In Appendix D.1, we
introduce key notions and relevant theorems from the literature that form the basis of our analysis. Appendix D.2 provides a
detailed proof that Algorithm 1 satisfies (ε, δ)-DP. Finally, we describe the numerical calculation of noise variance σ2 to
ensure (ε, δ)-DP in Appendix D.3, based on the method proposed in (Gopi et al., 2021).

D.1. Preliminaries

Basics of differential privacy and its composition Differential Privacy (DP), introduced by (Dwork et al., 2006a), provides
rigorous privacy guarantees for datasets used in statistical queries. Formally, DP is defined as follows:

Definition 2 ((ε, δ)-Differential Privacy (DP) (Dwork et al., 2006a)). A randomized mechanismM is (ε, δ)-differentially
private if for any two neighboring datasets D,D′ ∈ D that differ by at most one element, and for any subset of outputs
S ⊆ Range(M), the following holds:

Pr [M(D) ∈ S] ≤ eϵPr [M(D′) ∈ S] + δ. (19)

As described in Section 2.1, ϵ > 0 bounds the distinguishbility of outputs between neighboring datasets and δ ∈ (0, 1)
represents the allowable maximum failure probability of exceeding this bound ε. Smaller values of ε, δ indicate lower
likelihood of privacy leakage. To achieve (ε, δ)-DP, a Gaussian mechanism is widely used. The Gaussian mechanism is
formally defined as follows:

Definition 3 (Gaussian Mechanism). Let f : X → Rd. The Gaussian mechanism is defined as follows:

M(D) = f(D) +N (0, σ2Id),

where Id is the identity matrix.

The privacy guarantees of the Gaussian mechanism depend on the noise variance σ. To determine the noise variance, the
sensitivity of f must be considered, which quantifies how much the outputs of f can change between neighboring datasets.
For the Gaussian mechanism, the sensitivity is measured by using the ℓ2-norm, also known as ℓ2-sensitivity, defined as
follows:

∆ = max
D,D′

∥f(D)− f(D′)∥2.

By using ℓ2-sensitivity, the noise variance σ2 is calibrated to ensure (ε, δ)-DP. This relationship is formalized as follows:

Theorem 4 (Noise variance of Gaussian Mechanism (Dwork & Roth, 2014)). Let f : X → Rd andM be the Gaussian
mechanism adding noise to the output of f . Further, let ∆ be ℓ2-sensitivity of f . For any ε ∈ (0, 1), δ ∈ (0, 1), the Gaussian
mechanism with σ = ∆

√
2 log 1.25/δ/ε is (ε, δ)-DP.

Thus, the Gaussian mechanism ensures privacy by using the tuned noise variance. When the Gaussian mechanism is applied
to randomly sampled subsets of a dataset, the privacy guarantees improve due to sub-sampling amplification. Sub-sampling
amplification formalizes the observation that accessing only a subset of the datasets reduces the risk of privacy leakage:

Theorem 5 (Sub-sampling amplification (Balle et al., 2018)). IfM is (ε, δ)-DP, then the sub-sampled mechanism with
sampling rate q obeys (ε′, δ′)-DP with privacy parameters:

ε′ = log (1 + q(eε − 1)), δ′ = qδ.

While the Gaussian mechanism or the sub-sampled Gaussian mechanism ensures privacy for a single iteration, repeated
or sequential applications to the same dataset increase the risk of privacy leakage as small leaks accumulate. To quantify
the overall DP guarantees across multiple iterations, the privacy parameters ε, δ of each step must be combined through
composition. Naive composition (Dwork & Lei, 2009), which adds ε and δ linearly, provides a valid but overly conservative
estimate of cumulative privacy guarantees. This overestimation leads to unnecessarily high noise variance, degrading
the accuracy of DP mechanisms. These limitations have motivated advanced methods, including advanced composition
theorems (Dwork et al., 2010), Renyi DP (Mironov, 2017), and other refined analyses (Dong et al., 2022), to achieve tighter
bounds on cumulative privacy guarantees.
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Among these approaches, we focus on numerical composition (Gopi et al., 2021), which leverages privacy curves and
Privacy Loss Random Variables (PRVs) for precise and efficient analysis. Numerical composition is particularly effective
in adaptive settings, where the output of one mechanism influences the input to subsequent mechanisms. For example, in
generating DP synthetic token sequences (Tang et al., 2024), the Gaussian mechanism is applied iteratively, with each token
generation relying on previously generated tokens. Numerical composition provides a robust framework for analyzing such
scenarios while minimizing overestimation.

Privacy curve and numerical composition using PRVs A privacy curve provides a functional representation of a DP
mechanism’s guarantees by relating the distinguishability parameter ε to the failure probability δ. Formally, the privacy
curve is defined as follows:
Definition 4 (Privacy curve (Gopi et al., 2021)). Given two random variables X,Y supported on some set Ω, define
δ(X∥Y ) : R→ [0, 1] as:

δ(X∥Y )(ε) = sup
S⊂Ω

Pr [Y ∈ S]− eεPr [X ∈ S] .

For a DP mechanismM, the privacy curve ensures thatM is (ε, δ)-DP iff δ(M(D)∥M(D′))(ε) ≤ δ for all neighboring
datasets D,D′. By composing the privacy curves corresponding to individual DP mechanisms, we can determine their
cumulative privacy guarantees when multiple DP mechanisms are applied iteratively or adaptively. The composition of
privacy curves is formally defined as follows:
Definition 5 (Composition of privacy curves (Dong et al., 2022; Gopi et al., 2021)). Let δ1 ≡ δ(X1∥Y1) and δ2 ≡ δ(X2∥Y2)
be any two privacy curves. The composition of the privacy curves, denoted by δ1 ⊗ δ2, is defined as

δ1 ⊗ δ2 ≡ δ((X1, X2)∥(Y1, Y2)),

where X1, X2 are independently sampled and Y1, Y2 are independently sampled.

This composition operation combines the privacy guarantees of individual mechanisms into a single privacy curve that
describes the cumulative guarantees of the sequence of DP mechanisms.
Theorem 6 (Composition theorem (Dong et al., 2022; Gopi et al., 2021)). LetM1,M2, . . . ,Mk be DP algorithms with
privacy curves given by δ1, δ2, . . . , δk respectively. The privacy curve of the adaptive compositionMk ◦Mk−1 ◦ · · · ◦M1

is given by δ1 ⊗ δ2 ⊗ · · · ⊗ δk.

This result demonstrates that privacy curves provide a unified framework for analyzing cumulative privacy guarantees,
ensuring the accurate overall privacy parameters ε, δ for adaptive compositions without unnecessary overestimation or
underestimation of cumulative privacy guarantees.

To efficiently compute privacy curves and their compositions, RPVs were introduced in (Gopi et al., 2021). PRVs re-
parametrize privacy curves by representing them as pairs of random variables (X,Y ), enabling efficient evaluation and
composition. The precise definition of PRVs and their formal derivation are deferred to prior work (Gopi et al., 2021). Here,
we highlight key properties of PRVs:

Uniqueness: For any DP mechanism’s privacy curve, there exists a unique pair of PRVs (X,Y ) such that δ ≡ δ(X∥Y )
(Theorem 3.2 in (Gopi et al., 2021)).

Explicit formula: The privacy curve can be directly computed using the PRVs (X,Y ) as δ(ε) = Pr [Y > ε]−eεPr [X > ε]
(Theorem 3.3 in (Gopi et al., 2021)).

Composition: The composition of privacy curves δ1 ≡ δ(X1∥Y1), δ2 ≡ δ(X2∥Y2) corresponds to summing their PRVs
δ = δ1 ⊗ δ2 ≡ δ(X1 +X2∥Y1 + Y2) (Theorem 3.5 in (Gopi et al., 2021)).

By leveraging these properties, the numerical composition process proceeds as follows: (1) determine the PRVs (Xi, Yi) for
each DP mechanism, (2) compute the PDF of the sum of the PRVs for all mechanisms in the composition by convolving
the individual PDFs, and (3) evaluate the resulting privacy curve using the explicit formula. This convolution operation
transforms the computation of cumulative privacy guarantees into a scalable and precise process, making PRVs a practical
and powerful tool for analyzing iterative and adaptive DP mechanisms.

D.2. Privacy proof

Here, we provide the proof of the following theorem.
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Theorem 7. Algorithm 1 is (ε̂total, δ̂total)-DP.

Specifically, we aim to show that the entire procedure satisfies (ϵ̂total, δ̂total)-DP, where these cumulative privacy parameters
are obtained by composing per-iteration guarantees. The definition and calculation of these parameters are provided in the
following proof.

Proof. The PTA procedure in Algorithm 1 operates iteratively at most T , processing the private dataset Dpriv to generate DP
synthetic demonstrations of length T . Each iteration generates a token that depends on the previously generated tokens,
forming part of the DP synthetic demonstration. Consequently, the cumulative privacy guarantees of Algorithm 1 must
be analyzed by using adaptive composition across T iterations, on the basis of Theorem 6. This proof demonstrates that
Algorithm 1 satisfies (ε̂total, δ̂total)-DP by composing the privacy guarantees of the sub-sampled Gaussian mechanism through
numerical composition.

First, we identify the Lines in Algorithm 1 involving private datasets Dpriv at j-th iteration. Algorithm 1 processes private
dataset Dpriv in the following steps:

• Line 3: The subroutine GenPrompt(Dpriv,M,N, ỹ, Õ) generates private prompts S(1)
priv, . . . , S

(M)
priv by sampling subsets

of Dpriv. This step introduces sub-sampling amplification of the subsequent mechanism, as shown in Theorem 5.

• Line 4–8: Private prompts S
(i)
priv are used to compute the next-token probabilities p(oLLM = v|S(i)

priv), which are then
modified by PTA in Line 5 and 6. Finally, the modified next-token probabilities are aggregated across M subsets. This
modification and aggregation involves Dpriv and requires a DP mechanism to ensure privacy.

To ensure that the above lines satisfy (ε̂j , δ̂j)-DP, Algorithm 1 introduces the sub-sampled Gaussian mechanisms whose
privacy curve δj accounts for

• Line 3: Sub-sampling amplification with sampling rate q = MN
|Dpriv| as shown in Theorem 5.

• Line 4–8: The Gaussian mechanism adds the noise to the next-token probabilities modified by PTA. As shown in Line 5
and 6, PTA modifies the next-token probabilities, as follows:

p(i)v ← pbase(o
LLM = v)

(
p(oLLM = v|S(i)

priv)

p(oLLM = v|Spub)

)α

,

p(i)v ←
p
(i)
v∑

v′∈V p
(i)
v′

.

ℓ2-sensitivity of the above steps is at most
√
2, since as the token probabilities are necessarily projected onto the probability

simplex. In Line 8, the obtained next-token probabilities p(i)v are aggregated across M subsets followed by the addition of
the Gaussian noise:

p̂v ←
1

M

M∑
i=1

p(i)v +N (0, 2σ2).

By combining Theorem 4 and 5, these steps satisfy (ε̂j , δ̂j)-DP with the tuned noise variance σ2. Therefore, there
exist unique PRVs (Xj , Yj) such that the privacy curve of the sub-sampled Gaussian mechanisms is δj ≡ δ(Xj , Yj).
Furthermore, due to the post-processing immunity of DP(Dwork et al., 2006b), subsequent operation on p̂v in Line 9–11
never increases the risk of leakage of Dpriv. The overall j-th iteration satisfies (ε̂j , δ̂j)-DP.

In the following discussion, we assume that the noise variance σ2 has been appropriately determined to satisfy the per-
iteration privacy guarantees δj(ε̂j) ≤ δ̂j given sampling rate q. The specific calculation of noise variance σ2 is deferred to
Appendix D.3, where it is determined through numerical composition(Gopi et al., 2021).

Since the sub-sampled Gaussian mechanism operates for T iterations, the cumulative privacy guarantees are analyzed
through adaptive composition. By using the composition theorem for privacy curves as shown in Theorem 6, the overall
privacy guarantees are composed as:

δtotal = δ1 ⊗ δ2 ⊗ · · · ⊗ δT ,
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where δj ≡ δ(Xj∥Yj) represents the privacy curve of the sub-sampled Gaussian mechanism at the j-th iteration. This
operation combines the privacy curves of individual iterations into a single curve representing the cumulative privacy
guarantees.

As discussed in Appendix D.1, the cumulative privacy guarantees are efficiently computed by summing PRVs across all
iterations. The composed privacy curve is given by:

δtotal ≡ δ (Xtotal∥Ytotal) , (Xtotal, Ytotal) = (

T∑
j=1

Xj ,

T∑
j=1

Yj).

Once the cumulative privacy curve δtotal is determined given noise variance σ2, fixing one of the privacy parameters ε̂total or
δ̂total allows the other to be computed using the explicit relationship between the privacy curve and its PRVs.

In summary, at the end of T iterations, the final output Õ is guaranteed to satisfy (ϵ̂total, δ̂total)-DP. The use of numerical
composition ensures precise cumulative privacy guarantees, avoiding unnecessary overestimation or underestimation.

D.3. Numerical calculation of σ2

In Appendix D.2, we proved that Algorithm 1 satisfies (ε̂total, δ̂total)-DP. The noise variance σ2 plays a crucial role in
determining the specific values of (ε̂total, δ̂total). Conversely, σ2 can be calibrated to satisfy the pre-defined (ε̂total, δ̂total). In
this section, we describe the numerical calculation of σ2, following the method proposed in (Gopi et al., 2021).

First, we present the privacy curve of the Gaussian mechanism. (Balle & Wang, 2018) show that the privacy curve of the
Gaussian mechanism is given by:

δ(N (∆, σ2)∥N (0, σ2))(ε).

To relate the noise variance of the Gaussian mechanism to its privacy curve, we derive the PRVs corresponding to the
Gaussian mechanism, the same as (Gopi et al., 2021):

Proposition 1 (PRVs of the Gaussian mechanism). The PRVs (X,Y ) for δ(N (∆, σ2)∥N (0, σ2)) are given by:

X = N
(
− ∆2

2σ2
,
∆2

σ2

)
, Y = N

(
∆2

2σ2
,
∆2

σ2

)
. (20)

The proof is nearly identical to Proposition B.1 in (Gopi et al., 2021).

Proof. Let P = N (∆, σ2) and Q = N (0, σ2). By Theorem 3.2 in (Gopi et al., 2021), the PRV Y is defined as:

Y = log

(
Q(t)

P (t)

)
where t ∼ Q = N (0, σ2).

Substituting the Gaussian distributions for P and Q, we have:

Y = log

(
exp

(
−t2/2σ2

)
exp (−(t−∆)2/2σ2)

)
=

(t−∆)2

2σ2
− t2

2σ2
=

∆2

2σ2
− ∆

σ2
t ∼ N

(
∆2

2σ2
,
∆2

σ2

)
.

A similar calculation shows that X = N
(
− ∆2

2σ2 ,
∆2

σ2

)
.

By combining Proposition 1 and Proposition B.3 in (Gopi et al., 2021), we have the following:

Theorem 8 (PRVs of the Sub-sampled Gaussian Mechanism (Gopi et al., 2021)). Let (X,Y ) be the PRVs for the privacy
curve of the Gaussian mechanism δ(N (∆, σ2)∥N (0, σ2)), and let q be the sub-sampling probability. Then the PRVs
(Xq, Yq) for the privacy curve of the sub-sampled Gaussian mechanism are:

Xq = log (1 + q(eX − 1)), (21)

Yq =

{
log (1 + q(eY − 1)), w.p. q,
log (1 + q(eX − 1)), w.p. 1− q.

(22)
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We are ready to describe the steps to calculate noise variance σ2.

Steps for numerical calculation of σ2:

1. Initialize and fix σ2: Start with an initial guess for the noise variance σ2 within a feasible range (e.g., σ ∈ [0.3, 3.0]).
Fix σ2 and proceed to evaluate the privacy curve on the basis of this value.

2. Compute PRVs for the sub-sampled Gaussian Mechanism: For the given σ2 and sub-sampling rate q, compute the
PRVs (X(j)

q , Y
(j)
q ) for the j-th iteration, as defined in Theorem 8.

3. Compose PRVs across T iterations: Sum the PRVs across all iterations to compose the corresponding privacy curve:

X̂total =

T∑
j=1

X(j)
q , Ŷtotal =

T∑
j=1

Y (j)
q .

4. Evaluate the privacy curve: Use the PRVs (X̂total, Ŷtotal) to compute the privacy curve representing the cumulative
privacy guarantees:

δtotal(ϵ) = Pr
[
Ŷtotal > ϵ

]
− eϵPr

[
X̂total > ϵ

]
.

5. Check and adjust σ2: Compare the evaluated privacy curve δT (ϵ̂) against the pre-defined privacy parameter δ̂:

• If δtotal(ϵ̂) ≤ δ̂, the current σ2 satisfies the privacy guarantees.
• If δtotal(ϵ̂) > δ̂, increase σ2 and repeat steps 2–5.

This iterative adjustment ensures that σ2 is as small as possible while satisfying the pre-defined privacy parameters
(ε̂, δ̂).

6. Finalize σ2: Once a σ2 is found that satisfies the privacy parameters (ϵ̂, δ̂), terminate the search.

Practical implementation: The iterative process of adjusting σ2 can be efficiently implemented using binary search. Start
with a range for σ (e.g., [0.3, 3.0]) and refine the range until δtotal(ϵ̂) closely matches δ̂. Numerical evaluation involves
discretizing and truncating the continuous PDFs of X̂total and Ŷtotal, ensuring precise calculations with controllable errors
ϵerror and δerror, as detailed in (Gopi et al., 2021).

Table 4 summarizes the used specific values of noise variance σ2 for each experimental configuration detailed in Appendix F.
The noise variance σ2 is determined within [0.3, 3.0] by using a binary search with an interval of 0.01. Note that the total
number of compositions is computed as the product of nshot, representing the number of the generated demonstrations
associated with the same label y, and T , the length of each generated demonstration.

Table 4: The noise variance σ2 for the experimental configuration detailed in Appendix F.

Dataset miny Dy
priv M N T nshot per label y δerror εerror δ

√
σ2 for ε = 1, 2, 4, 8

GINC 1600 5 4 10 4

10−10 0.01
1

miny|Dy
priv|

[0.70, 0.59, 0.47, 0.37]
AGNEWS 30, 000 10 2 100 1 [0.51, 0.46, 0.39, 0.31]
DBPedia 40, 000 40 2 100 1 [0.63, 0.54, 0.45, 0.36]

TREC 835 80 1 15 1 [1.33, 0.94, 0.69, 0.51]
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E. Supplementary details of PTA
In this section, we provide the derivation of the proposed PTA from the KL-constrained problem defined in (11). Since
this derivation relies on an estimated likelihood ratio based on observable prompts, we also explain the rationale behind
this estimation and its implications, grounded in the Bayesian interpretation of ICL Finally, we describe the algorithmic
implementation used in Algorithm 1 to generate DP synthetic demonstrations.

E.1. Derivation of PTA

Here, we provide the derivation of the PTA, which modifies the next-token probabilities, as shown in (13). To derive the
modified next-token probabilities in PTA, we aim to find the valid probability vector p̂ := (p̂v)v∈Vpub that maximizes the
objective in (11), using the likelihood ratio estimate in (12):

max
p̂

∑
v∈Vpub

p̂v log
p(oLLM = v|S(i)

priv)

p(oLLM = v|Spub)
− 1

α
DKL (p̂∥pbase(o

LLM)) , s.t.
∑

v∈Vpub

p̂v = 1, p̂v ≥ 0 ∀v ∈ Vpub. (23)

We transform the objective as follows:

argmax
p̂v

∑
v∈Vpub

p̂v log
p(oLLM = v|S(i)

priv)

p(oLLM = v|Spub)
− 1

α
DKL (p̂∥pbase(o

LLM))

= argmax
p̂v

∑
v∈Vpub

p̂v

(
log

p(oLLM = v|S(i)
priv)

p(oLLM = v|Spub)
− 1

α
log

p̂v
pbase(oLLM = v)

)

=argmin
p̂v

∑
v∈Vpub

p̂v

(
log

p̂v
pbase(oLLM = v)

− α log
p(oLLM = v|S(i)

priv)

p(oLLM = v|Spub)

)

=argmin
p̂v

∑
v∈Vpub

p̂v

log
p̂v

1
Z pbase(oLLM = v)exp

(
α log

p(oLLM=v|S(i)
priv )

p(oLLM=v|Spub)

) − logZ


=argmin

p̂v

DKL (p̂∥p̂∗) . (24)

For the second and fourth equalities, DKL (·∥·) is evaluated over the limited vocabulary space Vpub. Furthermore, in the
third equality, we introduce the following definitions:

Z =
∑

v∈Vpub

pbase(o
LLM = v)exp

(
α log

p(oLLM = v|S(i)
priv)

p(oLLM = v|Spub)

)
, p̂∗v =

1

Z
pbase(o

LLM = v)exp

(
α log

p(oLLM = v|S(i)
priv)

p(oLLM = v|Spub)

)
.

These definitions ensure that p̂∗ := (p̂∗v)v∈Vpub is a valid probability vector satisfying,
∑

v∈Vpub
p̂∗v = 1, p̂∗v ≥ 0. On the basis

of Gibbs’ inequality, the transformed objective in (24) is minimized precisely when ∀v ∈ Vpub, p̂v = p̂∗v . This completes
the derivation of PTA, showing that the modified distribution is given by:

p̂v ∝ pbase(o
LLM = v)

(
p(oLLM = v|S(i)

priv)

p(oLLM = v|Spub)

)α

.

E.2. Rationale and implications of the likelihood estimation in (12)

To solve the objective (11), PTA relies on the likelihood ratio estimation given in (12). For the clarity, we restate the
estimation here:

log
p(oLLM=v|θ∗)
p(oLLM=v|θ) ≈ log

p(oLLM=v|S(i)
priv)

p(oLLM=v|Spub)
.
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Algorithm 2 VocabSpaceLimit

Input: V, k ≤ |V| , p ∈ [0, 1], p(oLLM = v|Spub)

1: V ′ = argmax
V′⊆V

∑
v∈V′

p(oLLM = v|Spub), s.t. |V ′| = k

2: V ′′ = argmin
V′′⊆V

|V ′′|, s.t.
∑
v∈V′′

p(oLLM = v|Spub) ≥ p

3: Vpub = V ′ ∩ V ′′

4: return Vpub

As we discussed in Section 4.2, the LHS of (12) is intractable to compute because θ∗ and θ are latent concepts — neither
explicitly parameterized nor observable in practice — making it impossible to directly evaluate the likelihoods conditioned
on θ and θ∗. To address this, we estimate the objective using tractable next-token probability distributions conditioned on
observable prompts.

This estimation is grounded in the Bayesian interpretation of ICL (Xie et al., 2022), which views prompting an LLM
with demonstrations as inducing a posterior distribution concentrated around the ground-truth concept underlying those
demonstrations. In this view, conditioning the LLM on an observable prompt S approximates inference over a latent concept
p(θ|S). When the prompt consists of demonstrations aligned with a ground-truth concept θ∗, the resulting next-token
probability distribution asymptotically converges to p(oLLM = v|θ∗). Accordingly, the private prompt S(i)

priv serves as a
surrogate for conditioning on θ∗, while the instruction-only public prompt Spub serves as a generic reference, approximating
conditioning on any other concept θ.

To clarify how the estimation works, we decompose the LHS of (12) as follows:

log
p(oLLM = v|θ∗)
p(oLLM = v|θ) = log

p(oLLM = v|θ∗)
p(oLLM = v|Spub)

+ log
p(oLLM = v|Spub)

p(oLLM = v|θ) . (25)

This decomposition reveals that the estimation in (12) corresponds to substituting the intractable first term on the RHS of

(25) with tractable log likelihood ratio log
p(oLLM=v|S(i)

priv )

p(oLLM=v|Spub)
, motivated by the Bayesian interpretation of ICL discussed above,

while omitting the second term. The omitted second term in (25) becomes negligible compared to the first when the sets of
high-probability tokens are well-separated across concepts, since in such cases tokens distinctive to the ground-truth concept
θ∗ are unlikely under both the public prompt and other concepts.

To encourage this separation, we design Spub to include only general task instructions and no concept-specific information.
This neutral design helps promote divergence in token likelihoods across concepts relative to the likelihood conditioned on
Spub, thereby supporting the plausibility of omitting the second term in (25).

E.3. Algorithmic implementation

Algorithm 2 outlines how we limit the vocabulary space to a plausible subset by applying both a static threshold k (on the
maximum number of tokens) and a dynamic threshold p (on the cumulative probability of selected tokens). This dynamic
adjustment adaptively decreases the negative noise impacts primarily influenced by the vocabulary size in (9).

In Algorithm 3, we detail how to generate prompts from randomly sampled demonstrations. This procedure is identical to
that of (Tang et al., 2024), and the prompt construction functions PB(·) for each dataset appear in Appendix F.9.
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Algorithm 3 GenPrompt

Input: instruction, Dpriv, M , N , ỹ, Õ
1: D′

priv ← randomly draw MN samples from Dpriv with label ỹ
2: Spub ← PB(instruction, ỹ, Õ)) where PB(·) defined in Table 13
3: for i = 1 to M do
4: D(i)

priv ← D′
priv[(i− 1)N : iN ]

5: S
(i)
priv ← PB(instruction,D(i)

priv, ỹ, Õ))
6: end for
7: return: Spub, S

(1)
priv, . . . , S

(M)
priv
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F. Additional Experiments
We first describe the computing resources used for GINC and text-classification tasks in Appendix F.1, followed by a
detailed account of each dataset (AGNews, DBPedia, TREC, and GINC) in Appendix F.2. Appendix F.3 focuses on GINC,
explaining its synthetic generation process via factorial HMMs, the corresponding GPT-2 pre-training procedures, and how
they align with earlier work.

Next, we outline the implementation details in Appendix F.4, including the calibration techniques from (Zhao et al., 2021)
for stabilizing DP-ICL, as well as methods for computing the log-likelihood of generated demonstrations in GINC. Then,
we report the accuracy and distinguishability comparison across various configurations and privacy parameters, omitted
in the main paper, resepectively in Appendices F.5 and F.6. Finally, we offer examples of DP synthetic demonstrations,
illustrating how our method amplifies the distinctive tokens while preserving coherence.

F.1. Computing resources

For GINC, we used a server that has 2 GPUs (NVIDIA GeForce RTX 3080) with 2 CPUs (Intel Xeon Gold 5218R, 2.1
GHz). For text-classification tasks, we used a server with 8 GPUs (NVIDIA A6000) and 2CPUs (Intel Xeon Gold 6346,
3.10 GHz) for text-classification datasets.

F.2. Datasets

This section describes the datasets used in our experiments.

• AGNews: The AGNews dataset (Zhang et al., 2015) involves topic classification with labels categorized into four classes:
World, Sports, Business, and Technology. It includes 30,000 training samples and 1,900 test samples per class. We
utilized all 30,000 training samples and 1,000 test samples.

• DBPedia: The DBPedia ontology classification dataset (Zhang et al., 2015) involves topic classification with labels
categorized into 14 classes: Company, School, Artist, Athlete, Politician, Transportation, Building, Nature, Village,
Animal, Plant, Album, Film, and Book. The dataset includes 40,000 training samples and 5,000 test samples per class.

• TREC: The TREC (Voorhees & Tice, 2000) question classification dataset involves classifying questions into six labels:
Number, Location, Person, Description, Entity, and Abbreviation. It comprises 5,500 training samples and 500 test
samples, distributed non-uniformly across the labels.

• GINC: The GINC dataset (Xie et al., 2022) is a synthetic text-classification dataset generated from a uniform mixture
of five factorial HMMs. Each HMM represents a latent concept, an underlying pattern that governs token transitions
in sequences. Using the original pre-training documents from (Xie et al., 2022), we further created 1,600 training and
400 test samples per concept for evaluating accuracy of ICL, ensuring no duplication.4 Unlike the datasets described
above, which have fixed label sets, GINC uses dynamic labels. Each label corresponds to the most likely last token of
each data, determined by the GINC distribution for its corresponding latent concept. Details on the GINC distribution
hyperparameters are provided in Appendix F.3.

F.3. Details on setup for GINC

HMMs setup. The GINC dataset, introduced in (Xie et al., 2022), is designed to study ICL in a controlled setup. It is
generated from a uniform mixture of five factorial HMMs, each representing a distinct latent concept θi ∈ Θ(i = 1, . . . , 5).
Each HMM emits a token v from vocabulary V , which is constructed by enumerating combinations of letters (e.g., "a" to
"z," "aa" to "az") with backslash designed as the delimiter token.

To model how real documents are generated using the meaningless vocabulary, each HMM comprises two independent
Markov chains: one representing transitions between entities et ∈ {1, . . . , |E|} (e.g., Einstein, Gandhi, etc.), and the other
capturing transitions between properties st ∈ {1, . . . , |S|} (e.g., nationality, occupation etc.). The emission probabilities
p(ot|ht) depend on the combination of entities and properties, i.e., p(ot|ht) = p(ot|et, st). These two chains are crucial
because real documents often involve interdependent patterns: entities (e.g., Einstein) are associated with properties (e.g.,
scientist). Modeling these two aspects independently allows the HMM to reflect how documents are structured in the real

4To guarantee the privacy parameters of (ε, δ)-DP, unintended exact duplication in training data can underestimate leakage risk,
violating the assumed (ε, δ)-DP. De-duplication is therefore essential.
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Table 5: Empirical evaluation of Cdelim + 1
n log 1

c7
appearing in RHS of Lemma 1 when n = 4.

θ∗ θ1 θ2 θ3 θ4 θ5

Cdelim 42.75 49.94 46.00 41.53 39.52

Table 6: Pre-training train validation loss and the accuracy of ICL on GINC with |V| = 150 for GPT-2 models varying in
size.

Model train loss validation loss Accuracy of ICL

(MA1) GPT-2 (4-layer) 1.264 1.283 92.80
(MA2) GPT-2 (12-layer) 1.263 1.279 98.40
(MA3) GPT-2 (16-layer) 1.267 1.283 99.70

world. These HMMs are then used to generate pre-training documents, training samples, and test samples for ICL, using the
scripts provided in their code5.

Importantly, the defined HMMs satisfy Assumption 1–4, which are essential for deriving the conditions under which ICL
can accurately infer the true latent concept, as established in Lemma 1 and Theorem 2. These assumptions enable the
numerical calculation of the specific value Cdelim + 1

n log 1
c7

, a key parameter in Lemma 1 and Theorem 2. The calculated
values are presented in Table 5.

Pre-training of GPT-2 models. We pre-train GPT-2 models by using the generated pre-training documents, following the
settings detailed in Appendix F.2 of (Xie et al., 2022). Using pre-trained models, we evaluate the accuracy of ICL. The
validation loss and accuracy of ICL for the models are summarized in Table 6. The results are mostly consistent with those
reported in Figures 6 of (Xie et al., 2022), validating our pre-training setup of GINC.

F.4. Implementation Details

In this section, we provide the detailed implementation used in the evaluation of the conducted experiments.

Calibration of ICL Following (Zhao et al., 2021), we implement calibration to stabilize the accuracy of DP-ICL when
evaluating DP synthetic demonstrations in classification tasks. To estimate the model’s bias toward each answer, we use
a content-free test input (e.g., “N/A”) alongside the training prompt and analyze the resulting predictions. Calibration
parameters are then fitted to ensure uniform predictions across answers for the content-free input. The calibration is
performed by using the following two methods:

(Diagonal) p̂ = Softmax(Wp+ b), W = diag(pcf
−1), (26)

(Identity) p̂ = Softmax(p− pcf), (27)

where p is a probability vector representing the model’s predicted probabilities for each label in the classification task,
normalized to sum to one. Its dimension corresponds to the number of possible labels in the task. This vector is obtained
by conditioning an LLM on the prompt with demonstrations. Similarly, pcf is the probability vector obtained from the
content-free test input, also normalized to sum to one. By scaling W or subtracting pcf the content-free probabilities, the
model’s bias toward each answer can be corrected, improving calibration for classification tasks.

For text-classification datasets, we use "N/A," an empty string (""), or "[MASK]" as the content-free input. For GINC, we
use token sequences of the same length as the demonstrations, where each token is sampled independently and uniformly
at random from the vocabulary. This approach serves as a content-free input because GINC’s vocabulary lacks a suitable
representation like "N/A" or "[MASK]."

Evaluation of log-likelihood for GINC. To validate PTA’s effectiveness, we examine the condition established in Lemma 1.
The controlled setup of GINC allows the precise numerical computation of the log-likelihood of generated DP synthetic
demonstrations, leveraging the parameters of the HMM.

5https://github.com/p-lambda/incontext-learning
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Given the generated sequences (o1, . . . , oT ),the joint probability p(o1, . . . , oT , hT ) can be computed recursively using the
forward message passing algorithm (Rabiner, 1989):

p(o1, . . . , oT , hT ) = p(oT |hT )
∑
hT−1

p(o1, . . . , oT−1, hT−1)p(hT |hT−1). (28)

Starting from p(o1, h1), where ht = (st, et) the total likelihood of the sequence is obtained by summing over all possible
hidden states at the final time step:

p(o1, . . . , oT ) =
∑
hT

p(o1, . . . , oT , hT ).

The initialization step incorporates the start distribution p(h1), which is set as a uniform distribution over all possible
combinations of entity et and property st.

F.5. Accuracy Comparison

Hyperparameters. We select optimal hyperparameter settings by averaging accuracy across ε ∈ {1, 2, 4, 8}. For all
methods, we explore k ∈ {10, 100} and p ∈ {0.7, 0.8, 0.9} (for (PA2) and (BA2)). We search α ∈ {1.0, 1.5, 2.0} for (P1),
(PA2), and (PA3) on the text-classification tasks, and extend this range to {1.0, 1.5, 2.0, 5.0} for GINC. Notably, k = 10
consistently outperforms k = 100. All other chosen hyperparameters are summarized in Table 7.

Effects of varying model. When comparing different model configurations, we observe that (PA2) outperforms (P1)
when the non-private baseline (R0) reports lower accuracy, particularly when using (MA1) and (MB1). One possible
explanation is that, without top-p truncation when limiting the vocabulary space, (P1) may unintentionally amplify very
low-probability tokens through PTA. For text-classification tasks, the quantized model (MB1) exhibits a higher standard
deviation of accuracy, as it exhibits the worst accuracy of (R0).

Ablation on the proposed PTA. Complementing (P1), the PTA variant with Top-p (PA2), outperforms (B1, BA2) across
text-classification tasks, and often surpasses (P1), particularly in DBPedia (ε = 1). However, (PA2) exhibits significantly
worse accuracy in GINC than (P1), indicating that top-p truncation may involve trade-offs under certain conditions. (PA2)
prevents LLM from retaining low-probability tokens, which are somehow critical with small vocabularies (e.g., |V| = 150).
Despite these drawbacks, both (P1) and (PA2) outperform the non-private baseline (R0) in TREC (ε = 1). This observation
is consistent with (Tang et al., 2024), suggesting that private generation mechanisms can potentially improve generalization
in small-scale datasets.

Moreover, (P1) consistently outperforms (PA3), which considers the optimization defined in (11) without KL-constraint,
when using (MA3) and (MB3), which yield the highest non-private (R0) performance, while (PA3) performs better with
(MA1) and (MB2). This indicates that, if the original model produces more coherent text, introducing KL regularization (as
in (P1)) effectively preserves the natural flow of the generated demonstrations. Conversely, when the LLM performs worse
without noise addition, ignoring regularization (as in (PA3)) can lead to notable accuracy gains for DP-ICL (AGNews with
(MB1) and ε = 1 and TREC AGNews with (MB2) and ε = 1).

To further understand the behavior of (P1) and (PA3) under varying privacy paramter, we examine how accuracy changes as
the privacy parameter ε decreases. We plot accuracy across different ε = {1, 2, 4, 8,∞} values for models (MA1), (MA2)
and (MA3) in Figure 3. Figure 3 illustrates a clear trend: accuracy decreases as privacy strengthens. We highlight (MA1) as
it exhibits a distinct pattern across methods, unlike (MA2) and (MA3), where (P1) consistently outperforms (B1). In contrast,
for (MA1), (P1) performs the worst, while (PA3) is comparable to (B1). This difference may arise from (MA1)’s limited
zero-shot accuracy, which makes the regularization in (P1) – penalizing deviation from the base next-token distribution
shown in (11) — less effective in improving accuracy. In this setting, the regularization keeps the next-token probability
distribution close the model’s original output, which performs poorly, thus leading to degraded accuracy. By omitting this
constraint, (PA3) allows more flexibility and achieves better performance.

Accuracy comparison when ε =∞. Using σ = 0 or synthetic demonstration generation does not satisfy DP (i.e. ε =∞),
but it allows us to verify whether the resulting demonstrations increase the divergence between the ground-truth concept and
any alternative. The bottom row of Table 8 shows the accuracy with σ = 0. (P1) outperforms (R0) except for GINC and
DBPedia and this indicates the effectiveness of PTA, in increasing the divergence between concepts.
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Table 7: The distinctive hyperparameters p and α are selected to suit the specific combination of datasets, models, and
methods. The table reports the values used for the results presented in Tables 2 and 8.

(a) The selected amplification strength α introduced in PTA.

Methods
GINC AGNews DBPedia TREC

(MA1) (MA2) (MA3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3)

(P1) 5.0 2.0 5.0 2.0 2.0 1.5 2.0 1.0 1.0 2.0 1.5 2.0

(PA2) 5.0 5.0 2.0 2.0 2.0 1.0 1.0 1.5 1.5 1.5 1.0 1.0

(PA3) 2.0 1.5 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(b) The selected adaptive threshold p for limiting vocabulary space.

Methods
GINC AGNews DBPedia TREC

(MA1) (MA2) (MA3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3)

(PA2) 0.9 0.9 0.9 0.9 0.9 0.8 0.7 0.9 0.7 0.8 0.8 0.9

(PA3) 0.9 0.9 0.9 0.9 0.7 0.8 0.8 0.7 0.8 0.8 0.7 0.9

(BA2) 0.9 0.9 0.9 0.9 0.7 0.9 0.7 0.7 0.8 0.7 0.8 0.9

Table 8: 4-shot DP-ICL accuracy across four datasets and three models, averaged over five different seeds. The highest
accuracy is bolded, and the second-highest is underlined.

ε Methods
GINC AGNews DBPedia TREC

(MA1) (MA2) (MA3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3) (MB1) (MB2) (MB3)

(P1) 81.13±1.00 93.65±1.84 93.99±1.35 77.54±5.62 82.22±4.2287.88±1.11 78.74±4.41 80.54±1.06 82.06±3.61 70.20±7.52 75.04±3.81 84.80±1.66

(PA2) 85.90±1.0294.12±0.91 90.06±1.63 77.28±6.06 79.84±4.32 87.00±1.16 78.88±3.37 81.12±0.84 84.72±3.54 75.32±2.21 75.24±2.21 84.72±2.50

(PA3) 85.40±1.39 92.58±1.92 90.14±0.95 78.18±3.38 81.16±3.40 83.24±2.94 79.50±1.38 79.60±3.25 86.56±1.75 74.48±4.93 77.48±2.38 84.34±1.28

(B1) 81.53±1.90 92.91±1.53 90.80±2.79 76.86±6.82 78.76±5.29 83.74±1.90 79.22±2.25 79.80±2.02 85.72±1.44 73.00±5.15 77.32±2.05 83.56±5.09

1

(BA2) 83.46±2.08 92.09±2.49 89.34±0.98 78.50±4.46 68.89±5.59 84.86±2.83 79.72±1.54 79.62±2.23 86.10±1.83 76.92±2.08 77.12±1.72 81.00±2.57

(P1) 82.26±0.68 95.36±0.7495.17±0.8281.82±3.0085.52±2.7287.24±1.37 80.06±2.69 81.30±0.85 84.50±1.99 70.80±4.89 74.88±2.47 84.76±1.42

(PA2) 85.34±1.21 93.98±1.68 90.88±1.90 79.78±6.19 78.74±2.52 85.06±2.30 78.82±3.90 80.16±2.73 84.52±2.90 77.44±1.93 78.00±2.49 83.92±3.62

(PA3) 86.09±1.02 93.43±1.72 90.41±1.48 80.50±2.76 79.96±4.36 81.48±5.29 80.32±2.46 80.60±2.21 86.00±1.14 71.52±2.11 77.76±1.52 82.86±1.95

(B1) 83.30±1.47 93.91±1.31 91.41±1.66 77.02±5.73 76.60±4.65 83.28±2.67 79.90±1.41 80.60±1.25 84.28±1.99 73.20±7.92 75.52±2.58 83.04±2.52

2

(BA2) 84.55±2.07 93.19±2.30 90.73±0.83 72.74±6.55 66.77±4.05 81.58±4.50 78.70±3.18 80.12±1.90 84.74±1.62 73.84±2.70 78.72±3.15 83.20±1.57

(P1) 81.41±0.58 96.20±0.2796.76±0.9180.80±5.8082.16±7.3987.68±1.28 78.64±2.17 80.08±0.70 86.06±1.97 71.20±4.34 73.16±4.20 83.88±1.27

(PA2) 85.72±0.91 95.07±0.78 91.76±1.84 78.06±7.44 78.78±4.73 86.10±1.78 79.28±2.05 80.04±2.81 84.94±3.62 75.96±3.01 77.12±2.61 84.40±0.97

(PA3) 86.75±0.62 94.56±0.96 91.64±1.60 76.40±1.79 79.88±5.20 81.04±9.03 80.44±1.8880.34±1.86 84.04±2.94 74.52±3.10 77.62±3.35 83.10±1.87

(B1) 85.93±1.77 95.16±1.32 93.27±1.39 78.74±2.49 77.64±3.29 86.10±1.81 79.96±2.75 80.16±2.11 85.04±2.69 74.28±4.61 76.72±1.89 82.48±3.42

4

(BA2) 85.81±0.60 93.31±2.29 90.07±0.78 77.32±3.73 68.30±3.67 82.14±3.65 79.52±2.58 79.02±2.00 84.84±3.40 76.72±2.2177.64±3.09 82.16±2.37

(P1) 82.38±0.77 95.62±0.67 96.61±1.40 78.50±6.29 85.32±1.9186.48±1.67 80.06±1.55 79.80±0.38 84.78±1.55 70.16±2.18 75.04±1.56 84.24±2.33

(PA2) 86.37±1.10 95.33±1.36 91.15±1.24 78.04±3.86 79.74±5.12 84.24±2.20 80.40±2.61 79.92±3.58 84.12±3.47 75.80±2.91 78.20±1.79 83.52±1.02

(PA3) 86.46±0.99 95.18±1.00 90.79±1.16 81.58±2.99 78.56±4.87 84.92±1.75 80.44±1.7880.04±1.57 84.60±2.73 72.28±2.84 78.02±1.69 84.54±1.93

(B1) 87.94±0.8595.84±0.81 94.63±0.55 79.50±5.21 80.09±2.79 83.62±3.08 77.82±2.02 78.90±1.54 84.40±2.39 72.48±4.17 75.96±2.69 82.64±2.79

8

(BA2) 86.46±0.78 94.64±1.56 90.61±1.23 79.78±3.92 67.17±2.01 82.96±2.32 79.18±2.90 79.12±2.59 84.86±1.3876.16±2.71 75.12±3.13 81.96±1.59

(P1) 81.03±1.28 96.11±0.40 96.57±0.83 84.14±1.58 86.12±3.8788.28±0.84 79.42±1.33 80.68±0.63 82.78±4.00 73.16±3.04 73.52±4.72 83.56±2.35

(PA2) 86.67±1.22 96.18±0.78 92.46±1.32 78.24±4.51 80.08±5.87 83.86±3.23 78.76±1.76 80.58±0.60 84.46±3.10 75.88±2.37 77.72±1.42 86.04±1.01

(PA3) 86.67±0.77 95.81±0.83 91.21±1.09 81.98±2.24 79.98±2.73 85.82±2.03 78.88±2.17 80.02±2.65 85.68±1.39 77.08±1.0277.84±2.11 82.88±2.24

(B1) 88.43±0.68 97.51±0.14 96.80±1.36 83.24±2.98 84.48±3.17 86.80±1.02 75.98±2.52 79.46±1.22 84.98±2.01 74.40±3.12 77.64±0.83 84.48±1.32

(BA2) 87.62±1.11 96.63±1.02 92.34±1.33 84.46±1.76 80.96±2.53 82.08±2.22 77.32±3.68 80.00±2.19 85.48±1.82 74.28±3.47 77.44±1.79 83.76±1.51

∞

(R0) 93.52±0.29 97.13±0.15 99.02±0.28 82.06±1.05 83.82±1.76 87.82±1.22 80.58±2.6981.60±1.5587.38±1.30 71.28±3.19 73.28±2.33 82.24±1.70

39



PTA for Improving Accuracy of DP-ICL Based on Implicit Bayesian Inference

Table 9: Proportion of generated DP synthetic demonstrations for GINC, using three models, where the log-likelihood ratio
exceeds the derived threshold, appearing in the RHS of Lemma 1.

ε Methods (MA1) (MA2) (MA3)

(P1) 16.89 48.89 49.33

(PA2) 26.22 47.55 40.89

(PA3) 29.34 42.22 38.22

(B1) 20.00 44.89 44.89

1

(BA2) 28.89 42.22 42.22

(P1) 20.89 50.22 49.33

(PA2) 25.78 44.44 44.00

(PA3) 29.33 44.00 41.33

(B1) 24.89 49.78 48.44

2

(BA2) 28.89 43.56 46.22

(P1) 24.45 58.67 56.89

(PA2) 28.89 50.67 44.44

(PA3) 33.33 48.89 38.66

(B1) 23.11 50.67 51.11

4

(BA2) 28.89 46.22 42.22

(P1) 20.89 53.34 53.33

(PA2) 31.56 51.11 41.33

(PA3) 28.89 48.00 42.67

(B1) 28.00 55.11 52.44

8

(BA2) 30.67 48.45 44.45

(P1) 23.55 52.45 49.33

(PA2) 32.44 55.11 44.89

(PA3) 32.44 52.00 40.89

(B1) 33.78 55.56 52.00

∞

(BA2) 35.55 57.33 46.22

F.6. Distinguishability Comparison

Effects of varying model. Similar to the accuracy across various models, (P1) clearly enlarges the divergence between
p(Õ|θ) and p(Õ|θ∗) when using the models (MA2) and (MA3), which yield the higher non-private (R0) performance, while
(PA2) and (PA3) shows better performance when using (MA1).

F.7. Comparison with existing work on DP-ICL

We additionally conducted empirical comparison with DP-OPT (Hong et al., 2024) using the same Vicuna-7B-v1.5 model
(Zheng et al., 2023) and TREC dataset setup as used in their study. The comparison results are summarized in Table 10. To
ensure fair comparison, we report both our replicated results and the original results for DP-OPT from Table 3 of their paper,
formatted as (replicated / original). This is because our replication was limited understanding of DP-OPT’s hyperparameters.
We followed their appendix settings for ε = 8 and extended them to ε = 1 using ε0 from Table 5 of their paper. Additionally,
differences in prompt format remain. Therefore, this comparison may not fully reflect the method’s optimal performance.

To further support the numerical results, we highlight a key behavioral differences between DP-OPT and our approach at
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Figure 3: Effect of ε on accuracy for DP-ICL methods and model variants

Table 10: Accuracy comparison with DP-OPT (Hong et al., 2024) on the TREC dataset using the Vicuna-7B-v1.5 model,
averaged over five seeds. The highest accuracy is shown in bold, and the second-highest is underlined. For DP-OPT, we
report original results from Table 3 of (Hong et al., 2024) and our replicated results, presented in the format (replicated /
original).

ε Methods Vicuna-7B

(P1) 77.84±2.83

(B1) 75.60±2.051

DP-OPT (Hong et al., 2024) 47.8±0.0 / N.A.

(P1) 76.28±2.92

(B1) 73.84±5.448

DP-OPT (Hong et al., 2024) 60.76±1.27 / 65.3±4.3

ε = 1. As discussed in Section 5.2 of their paper, DP-OPT tends to output only the instruction without demonstrations as
the private prompt satisfying (ε, δ)-DP guarantee with ε = 1. In such cases, the method method asymptotically converges to
zero-shot prompting, limiting the practical utility of private demonstrations. In contrast, our method generates in-context
demonstrations that, while potentially noisy, remain informative beyond the instruction even with ε = 1. This may allow our
approach to consistently outperform zero-shot prompting, especially in high-privacy regimes where DP-OPT yields only
marginal gains.

F.8. Example of DP synthetic demonstrations

We provide examples of generated DP synthetic demonstrations in Table 11, highlighting how PTA influences token selection
compared to other methods. Blue-highlighted tokens indicate cases where only PTA successfully selects the top-1 token
after adding noise, while red-highlighted tokens represent cases where only PTA fails to do so.
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Table 11: The DP synthetic demonstrations generated by PTA in the selected configurations.

ε Dataset Label Model DP synthetic demonstrations

1 AGNews World (MB1)

BREMER is back in court today to defend his role as the former governor of the bankrupt state of Alaska.
The governor of the state of Alaska, Frank Murkowski, who appointed Bremer governor of the state after the
bankruptcy, is expected to testify in support of Bremer, as is the current governor Tony Knowles. Bremer’ss
former boss is also expected to defend. The trial was moved from federal court to a state court in

(MB2)
Syrian President Assad to Visit Iran in First Tory of 2009: Diplomat (AFP) Syrian President Bashar al-Assaad
will visit Iran for the first time in 25 years later this month, in another sign of improving ties that have warmed
since the two sides forged closer diplomatic links after the war in Lebanon. " 12.35

(MB3)

Britain’s Prince Charles, in his role as patron of the Prince’s Youth Business Trust, has been in South Africa
where he met young entrepreneurs. He met them at the University of Limpopo. He was impressed by the
students’ business ideas and their enthusiasm. The trust is working with the Department of Trade and Industry to
promote entrepreneurship in South and southern Africa. It is also working with the African Development Bank
to help young South Africans become self-employed

DBPedia Album (MB1) The 64th Announcement is the second single released and fourth track from the album The Twilight Tapes, by
the band The Twilight Sad.

(MB2) The 64th Annual Grammy Awards were held on February 8, 2012, at the Staples Center in Los Angeles. The
nomineesi were announced on October 3."

(MB3)

The album was recorded and mixed at the legendary Rockfield Studios in Wales, UK. The band recorded
the album with producer Romesh Dodangoda (Motorhead, Bomb20, Funeral for a Friend, and Bullet for my
Valentine). The album was mastered by Jason Mitchell (Young Guns, Bullet for my Valentine, Black Stone
Cherry, and The Devil Wears Prada). The album was released on October 14th, 2

TREC Person (MB1) I have an interview on the phone tomorrow!"

(MB2) I have an interview on Tuesday. I’m going to

(MB3) Who was the first US president to fly in Air Force One ? Answer

F.9. Example of Prompts

In this section, we present the example of prompts during ICL and generating DP synthetic demonstrations in the text-
classification datasets. For fair comparison, we used the same prompt format during ICL following (Tang et al., 2024), as
shown in Table 12. In Table 13, we present the prompt construction functions used in Algorithm 3.

As for GINC, it’s challenging to construct the instruction sentence due to its synthetic nature. When generating the DP
synthetic demonstrations, we first insert a public demonstration and then append the private demonstrations. Each is
formatted as a label-data pair.
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Table 12: The prompts used during ICL for text-classification tasks, taken from Table 7 of Tang et al. (2024).

Task Prompt Labels

AGNews

Classify the news articles into the categories of World, Sports, Business,
and Technology.

Article: USATODAY.com - Retail sales bounced back a bit in
July, and new claims for jobless benefits fell last week, the government
said Thursday, indicating the economy is improving from a midsummer
slump.
Answer: Business

Article: New hard-drive based devices feature color screens,
support for WMP 10.
Answer:

World, Sports, Business, Technol-
ogy

DBPedia

Classify the documents based on whether they are about a Company,
School, Artist, Athlete, Politician, Transportation, Building, Nature,
Village, Animal, Plant, Album, Film, or Book.

Article: Geoffrey D. Falksen (born July 31 1982) is an Ameri-
can steampunk writer.
Answer: Artist

Article: The Perrin River is a 1.3-mile-long (2.1 km) tidal river
in the U.S. state of Virginia. It is a small inlet on the north shore of the
York River near that river’s mouth at Chesapeake Bay.
Answer:

Company, School, Artist, Athlete,
Politician, Transportation, Building,
Nature, Village, Animal, Plant, Al-
bum, Film, Book

TREC

Classify the questions based on whether their answer type is a Number,
Location, Person, Description, Entity, or Abbreviation.

Question: How did serfdom develop in and then leave Russia?
Answer Type: Description

Question: When was Ozzy Osbourne born?
Answer Type:

Number, Location, Person, Descrip-
tion, Entity, Abbreviation
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Table 13: Prompt construction function PB(·) used in Algorithm 3 for text-classification tasks, taken from Table 5 of Tang
et al. (2024).

Task Prompt construction function PB(instruction,D, y) Labels

AGNews

Given a label of news type, generate the chosen type of news accordingly.

News Type: World
Text: Australia boosts anti-terror measures at small airports SYDNEY:
The Australian government announced a major security upgrade for
nearly ...

News Type: World
Text:

World, Sports, Business, Technol-
ogy

DBPedia

Given a label of document type, generate the chosen type of document
accordingly.

Document Type: Company
Text: Cherry Lane Music was founded in 1960 by Milton Okun in the
apartment above the Cherry Lane Theater in Greenwich Village of New
York City...

Document Type: Company
Text:

Company, School, Artist, Athlete,
Politician, Transportation, Building,
Nature, Village, Animal, Plant, Al-
bum, Film, Book

TREC

Given a label of answer type, generate a question based on the given
answer type accordingly.

Answer Type: Number
Text: How many people in the world speak French?

Answer Type: Number
Text:

Number, Location, Person, Descrip-
tion, Entity, Abbreviation
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