
Published as a conference paper at ICLR 2025

NEURAL SPACETIMES
FOR DAG REPRESENTATION LEARNING

Haitz Sáez de Ocáriz Borde
University of Oxford

Anastasis Kratsios
McMaster University & Vector Institute

Marc T. Law
NVIDIA

Xiaowen Dong
University of Oxford

Michael Bronstein
University of Oxford & AITHYRA

ABSTRACT

We propose a class of trainable deep learning-based geometries called Neural
SpaceTimes (NSTs), which can universally represent nodes in weighted Directed
Acyclic Graphs (DAGs) as events in a spacetime manifold. While most works
in the literature focus on undirected graph representation learning or causality
embedding separately, our differentiable geometry can encode both graph edge
weights in its spatial dimensions and causality in the form of edge directionality
in its temporal dimensions. We use a product manifold that combines a quasi-
metric (for space) and a partial order (for time). NSTs are implemented as three
neural networks trained in an end-to-end manner: an embedding network, which
learns to optimize the location of nodes as events in the spacetime manifold, and
two other networks that optimize the space and time geometries in parallel, which
we call a neural (quasi-)metric and a neural partial order, respectively. The latter
two networks leverage recent ideas at the intersection of fractal geometry and deep
learning to shape the geometry of the representation space in a data-driven fash-
ion, unlike other works in the literature that use fixed spacetime manifolds such as
Minkowski space or De Sitter space to embed DAGs. Our main theoretical guar-
antee is a universal embedding theorem, showing that any k-point DAG can be
embedded into an NST with 1+O(log(k)) distortion while exactly preserving its
causal structure. The total number of parameters defining the NST is sub-cubic in
k and linear in the width of the DAG. If the DAG has a planar Hasse diagram, this
is improved to O(log(k) + 2) spatial and 2 temporal dimensions. We validate our
framework computationally with synthetic weighted DAGs and real-world net-
work embeddings; in both cases, the NSTs achieve lower embedding distortions
than their counterparts using fixed spacetime geometries.

1 INTRODUCTION

Graphs are a ubiquitous mathematical abstraction used in practically every branch of science from
the analysis of social networks (Robins et al., 2007) to economic stability (Hurd et al., 2016) and
genomics (Marbach et al., 2012). The breadth of social and physical phenomena encoded by large
graphs has motivated the machine learning community to seek efficient representations (or embed-
dings) of graphs in continuous spaces. Since the structure of graphs typically has properties differ-
ent from Euclidean geometry (e.g., trees exhibit exponential volume growth), a significant effort has
been made to identify non-Euclidean geometries which can faithfully capture the structure of general
graphs. Examples include hyperbolic embeddings of tree-like graphs (Ganea et al., 2018; Sonthalia
& Gilbert, 2020; Shimizu et al., 2021; Kratsios et al., 2023a;b), spherical and toroidal embeddings
of graphs with cycles (Schoenberg, 1942; Guella et al., 2016; Giovanni et al., 2022b), embeddings
of graphs with several of these characteristics into product Riemannian geometries (Borde et al.,
2023a;b; Giovanni et al., 2022a), combinations of constant curvature Riemannian manifolds (Lu
et al., 2023) and manifolds with locally controllable Ricci curvature (Giovanni et al., 2022b).

Email addresses: chri6704@ox.ac.uk, kratsioa@mcmaster.ca, marcl@nvidia.com,
xdong@robots.ox.ac.uk, michael.bronstein@cs.ox.ac.uk

1

Published as a conference paper at ICLR 2025

Space-Time Manifold

Time axis

DAG Feature Encoder

Figure 1: A Neural Spacetime (NST) is a learnable triplet S = (E ,D, T), where E : RN → RD+T

is a (feature) encoder network,D : RD+T ×RD+T → [0,∞) is a learnable quasi-metric on RD and
T : RD+T → RT is a learnable partial order on RT . Given an input Directed Acyclic Graph (DAG),
E optimizes the location of the nodes u, v, w as events in the spacetime manifold û, v̂, ŵ, while
concurrently D and T learn the geometry of space and time themselves. The objective is to find
a geometry that can faithfully represent, with minimal distortion, the metric geometry of the input
DAG in space as well as its causal connectivity in time.

The Directed Graph Embedding Problem. The description of many real-world systems requires
directed graphs, for example, gene regulatory networks (Marbach et al., 2012), flow networks (Deleu
et al., 2022), stochastic processes (Backhoff-Veraguas et al., 2020), or graph metanetworks (Lim
et al., 2024) to name a few. Directed graphs (or digraphs) play a significant role in causal reasoning,
where they are used to study the relationship between a cause and its effect in a complex system.
These problems make use of representation spaces with causal structures, modeling the directional
edges of a discrete graph as causal connections in a continuous representation space (Zheng et al.,
2018). However, most approaches in causal representation learning primarily focus on capturing
directional information while neglecting distance information. Recent works (Sim et al., 2021; Law
& Lucas, 2023) have suggested that Lorentzian spacetimes from general relativity are suitable repre-
sentation spaces for directed graphs, as these geometries possess an arrow of time that provides them
with causal structure (see Appendix A.5) while also being capable of encoding distance. Instead of
considering a single arrow of time, in this paper we propose to turn to richer causal structures with
multiple time dimensions, allowing us to model greater directional complexity.

Problem Formulation. Our goal is to learn a spacetime manifold representation where nodes in a
DAG can be embedded as events. This should be done while capturing edge directionality in the
form of causal structure (which includes modelling lack of connectivity as anti-chains), as well as
the edge weights in the original discrete structure: these are represented as temporal ordering and
spatial distance in the continuous embedding space.

The Neural Spacetime Model. We propose a trainable geometry with enough temporal and spatial
dimensions to encode a broad class of weighted DAGs. In particular, the Neural SpaceTime (NST)
model utilizes a MultiLayer Perceptron (MLP) encoder that maps graph node features to an inter-
mediate Euclidean latent space, which is then fragmented into space and time and processed in
parallel by a neural metric network (inspired by the neural snowflake model from Borde & Kratsios
(2023)) and a neural partial order. These embed nodes jointly as causally connected events in the
continuous representation while respecting the one-hop distance (given by the DAG weights) and
directionality of the original discrete graph structure, see Figure 1. The spatial component of our
model, which considers D spatial dimensions, leverages large-scale and asymptotic embedding ap-
proaches relevant in coarse and hyperbolic geometry (Nowak, 2005; Eskenazis et al., 2019), as well
as the small-scale embedding-based approach of Borde & Kratsios (2023) inspired by fractal-type
metric embeddings. These are often used to encode undirected graphs equipped with their (global)
geodesic undirected distance (Bourgain, 1986; Matoušek, 1999; Gupta, 2000; Krauthgamer et al.,
2004; Neiman, 2016; Elkin & Neiman, 2021; Andoni et al., 2018; Filtser, 2020; Kratsios et al.,
2023a; Abraham et al., 2022), which implies that their local distance information can also be em-
bedded (Abraham et al., 2007; Charikar et al., 2010). Note that the opposite is not true: optimizing
for the local geometry does not guarantee a faithful representation of the global geometry (Ostrovska
& Ostrovskii, 2019). On the other hand, the temporal component of our trainable geometry param-
eterizes an order structure ≲T on multiple T time dimensions. Thus, causality in our representation
space simply means that a point x ∈ RD+T precedes another y ∈ RD+T in the sense that x ≲T y
(which only considers order in time T , see Section 3). When T = 1, our geometry corresponds to
using a Cauchy time function of the globally hyperbolic Lorentzian spacetimes to define a partial
order (see Beem et al. (1996, Page 65) or Burtscher & Garcia-Heveling (2024)).

2

Published as a conference paper at ICLR 2025

Our contributions are: (1) We propose a tractable neural network architecture for spacetimes (with
multiple time dimensions), ensuring that only valid geometries are learnable; hence, the term neural
spacetimes (NSTs). Our approach decouples the representation into a product manifold, which mod-
els (quasi-)metrics and (partial) orders independently. (2) Our main theoretical result, Theorem 1,
provides a global embeddability guarantee showing that any (finite) poset can be embedded into a
neural spacetime with a sufficient number of temporal and spatial dimensions. The embeddings are
causal in time and asymptotically isometric in space. Furthermore, the neural spacetime model only
requiresO(k2) parameters to globally embed a weighted DAG with k nodes. Theorem 2 shows that
a broad class of posets can be embedded into a NST with at most two temporal dimensions. (3) We
experimentally validate our model on synthetic metric DAG datasets, as well as real-world directed
graphs that involve web hyperlink connections and gene expression networks, respectively.

2 PRELIMINARIES: DIRECTED GRAPHS, POSETS, AND QUASI-METRICS

We now introduce the relevant notions of causal and spatial structure required to formulate our main
results and our model. This section concludes by discussing the concept of spacetime embeddings,
which represent DAGs in a continuous space encoding both their causal and spatial structure.

2.1 CAUSAL STRUCTURE

Directed Graphs. Consider a weighted directed graph, GD = (ED, V,WD), where ED represents
a set of directed edges, V a set of vertices, andWD the strength of the connections, respectively. We
say that two vertices u, v ∈ V are causally connected, denoted by u ≼ v, if there exists a sequence
of directed edges, a path

(
(νn, νn+1)

)N−1

n=1
in V with ν1 = u and νN = v. Notice that causal

connectivity is a transitive relation; that is, if u ≼ v and v ≼ w, then u ≼ w, for each u, v, w ∈ V .
The neighborhood N (u) of a node u ∈ V is the set of nodes sharing an edge with u; i.e. N (u)

def.
=

{v ∈ V : (u, v) ∈ ED or (v, u) ∈ ED}. Every weighted directed graph GD = (ED, V,WD)
is naturally a graph upon forgetting edge directions, meaning that it induces a weighted undirected
graph G = (E, V,W) where E def.

= {{u, v} ∈ V : (u, v) ∈ ED or (v, u) ∈ ED} and where W is
the symmetrization of WD, W (u, v)

def.
= max{WD(u, v),WD(v, u)}.

Remark 1 (Feature Vectors and Nodes). In practice, e.g. in Graph Neural Network (GNN) (Scarselli
et al., 2009) use-cases, one equips the nodes in the graph G = (ED, V,WD) with a set of feature
vectors {xv}v∈V in RN . We thus henceforth identify the set of nodes V in any graph with a set of
feature vectors in RN , for some positive integer N , via the identification V ∈ v ↔ xv ∈ RN .

C

A

E

B

D

Figure 2: The red arrows illustrate the
Hasse diagram (DAG) with directed edge
set {(A,B), (B,C), (B,D), (D,E)}.
Its corresponding poset is depicted using
green arrows on the same vertex set
{A,B,C,D,E}. Our partial order is
not a total order as there is no red or
green arrow between C and E. Red
arrows encode key DAG structure and
green arrows encode all their possible
compositions.

Posets. A broad class of logical relations can be encoded as
directed graphs. We consider the class of partially ordered
sets (posets): the pair or tuple (V,≲). In particular, a key
characteristic of a poset is that for any two elements u and
v in the set the following properties are satisfied: reflexivity,
∀u ∈ V, u ≼ u; antisymmetry, u ≼ v ∧ v ≼ u =⇒ u = v;
and transitivity, ∀u, v, w ∈ V, u ≼ v ∧ v ≼ w =⇒ u ≼ w.
Every poset induces a DAG structure on the vertex set V .

Example 1 (From DAGs to Posets). Given the DAG GD =
(ED, V,WD), then we define the relation ≼ on vertices
u, v ∈ V such that u ≼ v if either u = v or there exists
a directed path from u to v in the graph. This relation estab-
lishes (V,≲) as a poset.

The antisymmetry condition is not satisfied by all digraphs,
but only by certain types of digraphs such as DAGs, since
it is incompatible with directed cycles of length greater than
1 (loops other than self-loops). Conversely, posets induce
directed graphs. This identification is encoded through the
Hasse diagram of a poset, see Example 2, which is a natural
way to forget all composite relations in the poset by identify-
ing the key basic skeleton relations encoding all its structure.

3

Published as a conference paper at ICLR 2025

The poset can then be recovered from its Hasse diagram by adding all compositions of edges and
self-loops, see Figure 2.
Example 2 (From Posets to DAGS: Hasse Diagrams). The Hasse diagram of a poset (V,≲) is a
directed graph GD = (ED, V) with V def.

= ED and ∀u, v ∈ V , (u, v) ∈ ED iff 1) xu ≤ xv , 2) u ̸= v
and 3) there is no w ∈ V \ {u, v} with xu ≤ xw ≤ xv (so xu ≤ xv is a “minimal relation”).

Our theoretical results in Section 3.1 focus on embedding guarantees for posets induced by DAGs,
which are of interest in causal inference (Textor et al., 2016; Oates et al., 2016), causal optimal trans-
port on DAGs (Eckstein & Cheridito, 2023), which is particularly important in sequential decisions
making (Acciaio et al., 2020; Backhoff-Veraguas et al., 2020; Xu et al., 2020; Eckstein & Pammer,
2024; Kršek & Pammer, 2024; Gunasingam & Wong, 2024) and in robust finance (Bartl et al., 2021;
Acciaio et al., 2024)), in applied category theory (Fong & Spivak, 2019) since any thin category is a
poset (Chandler, 2019), and in biology applications such as gene expressions (Marbach et al., 2012).

2.2 SPATIAL STRUCTURE

Quasi-Metric Spaces. Although Riemannian manifolds have been employed to formalize non-
Euclidean distances between points, their additional structural characteristics, such as smoothness
and infinitesimal angles, present considerable constraints. This complexity often makes it challeng-
ing to express the distance function for arbitrary Riemannian manifolds in closed-form. On the other
hand, quasi-metric spaces isolate the pertinent properties of Riemannian distance functions without
requiring any of their additional structures for graph embedding. A quasi-metric space is defined as
a set X equipped with a distance function d : X ×X → [0,∞) satisfying the following conditions
for every xu, xv, xw ∈ X: i) d(xu, xv) = 0 if and only if xu = xv , ii) d(xu, xv) = d(xv, xu), iii)
d(xu, xv) ≤ C

(
d(xu, xw) + d(xw, xv)

)
, for some constant C ≥ 1. Property (iii) is called the C-

relaxed triangle inequality. WhenC = 1, (X, d) is termed a metric space, and theC-relaxed triangle
inequality becomes the standard triangle inequality. Quasi-metrics arise naturally when considering
local embeddings since the triangle inequality is only required to hold locally, allowing for small
neighborhoods of distinct points in a point metric space to be embedded independently from one
another. Furthermore, these geometries share many of the important properties of metric spaces,
e.g. the Arzela-Ascoli theorem holds (Xia, 2009). Moreover, if property (i) is removed, such that
several points may be indistinguishable by their distance information, then we say that d is a pseudo-
quasi-metric (Kim, 1968; Kũnzi, 1992). This naturally occurs when additional time dimensions are
used to encode causality, but distance is ignored.
Example 3. Every weighted graph G = (E, V,W) induces a metric space (V, dG); e.g. using the
shortest path (graph geodesic) distance dG, defined for each u, v ∈ V by

dG(u, v)
def.
= inf

{
N−1∑
n=1

W (νn, νn+1) : ∃ (ν1 = u, ν2), . . . , (νN−1, νN = v) ∈ E

}
. (1)

One could define the inf of the empty set to be maxv,u∈V W (u, v) + 1 (instead of ∞, which is
unsuitable for learning and embedding). However, following the spacetime representation literature,
we are only interested in learning the distance between causally connected nodes (Section 3.2). We
emphasize that only simple weighted digraphs are considered here, meaning that we do not allow for
self-loops, and each ordered pair of nodes has at most one edge between them. As later discussed in
Section 3.1 and Section 3.2, NSTs can model causal connectivity in one direction (but no undirected
edges), as well as lack of causal connectivity between events (anti-chains).

2.3 SPACETIME EMBEDDINGS

We will work in a class of objects with the causal structure of DAGs/posets and the distance structure
of weighted undirected graphs. We formalize this class of causal metric spaces as follows.
Definition 1 (Causal (Quasi-)Metric Space). A triple (X , d,≲) such that (X , d) is a (quasi-)metric
space and (X ,≲) is a poset, is called a causal (quasi-)metric space.

Having defined a meaningful class of causal metric spaces, we now formalize what it means to
approximately create a copy of a causal metric space into another. The goal is to begin with a com-
plicated discrete structure, such as a DAG, and embed it into a well-behaved continuous structure.
Definition 2 (Spacetime Embedding). Let (X , d,≲x) and (Y, ρ,≲y) be causal (quasi-)metric
spaces. A map f : X → Y is a spacetime embedding if there are constants D ≥ 1 and c > 0

4

Published as a conference paper at ICLR 2025

such that for each x1, x2 ∈ X
(i) Causal Embedding: x1 ≲x x2 ⇔ f(x1) ≲y f(x2)
(ii)Metric Embedding: c ρ(f(x1), f(x2)) ≤ d(x1, x2) ≤ D cρ(f(x1), f(x2)).
The constant D is called the distortion, and c is the scale of the spacetime embedding. A spacetime
embedding f : X → Y for which D = c = 1 is called isocausal.
Remark 2 (Optimal Distortion). Note that D = 1 is the minimal possible distortion1. This is
because D < 1 is impossible and D = 1 yields an equality between the rescaled target metric c ρ
and the original metric d; i.e. cρ(f(x1), f(x2)) = d(x1, x2) for all x1, x2 ∈ X .

Our spacetime embeddings are illustrated in Figure 3. We encode causality using the notion of an
order embedding from order theory (Davey & Priestley, 2002), also used in general relativity (Kro-
nheimer & Penrose, 1967; Sorkin, 1991; Reid, 2003; Henson, 2009; Benincasa & Dowker, 2010),
jointly with the notion of a metric embedding core to theoretical computation science (Gupta &
Hambrusch, 1992; Gupta, 1999; Gupta et al., 2004) and representation learning (Sonthalia & Gilbert,
2020).

B

D

C

A

E

(a) Spatial Embedding: the objective is to repli-
cate the distance between nodes, counted in a min-
imal number of hops, with the Euclidean distance
on R2. In the neural spacetime, however, the dis-
tance will be non-Euclidean.

B

D

CA

E

(b) Temporal Embedding: the goal of the causal
embedding is to match the directions in the em-
bedded graph (direction of red arrows) to the or-
der in R2 with the product order (direction of gray
arrows).

Figure 3: Spacetime Embeddings (Definition 2): We illustrate a spacetime embedding of the directed
graph in Figure 2 into R4 = R2 × R2 with 2-space dimensions and 2 time dimensions. Notice that
the spatial component of the spacetime embedding is not a causal embedding and vice versa.

3 NEURAL SPACETIMES

Let N ∈ N+ be the dimensionality of the feature vectors xu, xv ∈ RN associated with nodes
u, v ∈ V , where V represents the set of nodes of the DAG GD = (ED, V,WD). Fix a space
dimension D ∈ N+ and a time dimension T ∈ N+. A neural spacetime (NST) is a learnable triplet
S = (E ,D, T), where E : RN → RD+T is an encoder network, e.g. an MLP,D : RD+T×RD+T →
[0,∞) is a learnable quasi-metric on RD and T : RD+T → RT is a learnable partial order on RT .
We implement D and T as two neural networks that process the spatial and temporal dimensions of
encoded feature vectors x̂u, x̂v

def.
= E(xu), E(xv) ∈ RD+T in parallel.

The encoder network, E : RN → RD+T , maps the original node feature vectors of the input graph
to the dimensions of space and time used by the NST representation. We employ this mapping
as an intermediate Euclidean space upon which to learn the quasi-metric and partial order. The
model learns to allocate relevant information to each dimension through gradient descent, rather than
attempting to manually specify which of the original node feature dimensions should correspond to
space and time.

To defineD, which will be implemented using a variation of the original neural snowflake (see equa-
tion 10 from Appendix A.3). The original neural snowflake, and our upgrade thereof, employs two
neural networks: the first represents the metric space as vectorial data in RD, and the second perturbs
the Euclidean distance thereon. Together, any finite metric space may be perfectly (isometrically)
embedded in this manner, whereas only one of the networks alone is not enough; e.g. expander
graphs cannot be isometrically embedded into any low-dimensional Euclidean space (Kratsios et al.,
2023a, Proposition 13).

1The symbol D is also used in other parts of the text to denote the spatial dimensionality of the NST. We
stick to D here since it is standard in the metric embedding literature, but the two should not be confused.

5

Published as a conference paper at ICLR 2025

We consider the following activation function, σs,l. The activation σs,l depends on two trainable pa-
rameters s, l > 0. In the spirit of the fractalesque structure of neural snowflakes, s controls whether
small-scale distances should be expanded or contracted relative to the distance on RD. Similarly, l
controls the large-scale distances of points and dictates whether those should be expanded or con-
tracted. See Appendix C.1 for an extended discussion.

Definition 3 (Neural (Quasi-)Metric Activation). For any s, l > 0, we define the neural (quasi-)
metric activation to be the map σs,l : R→ R given for each x ∈ R by

σs,l(x)
def.
=

{
sgn(x) |x|s if |x| < 1

sgn(x) |x|l if |x| ≥ 1
(2)

where the sign function sgn returns 1 for x ≥ 0 and −1 for x < 0.

If s = l then σs,l(x) = sgn(x) |x|s and one recovers the key component of the snowflake activation
function of Borde & Kratsios (2023) used in the majority of the proofs of its metric embedding
guarantees. Note that s and l are not required to be coupled in any way.

A neural (quasi-)metric is a map D : RD+T × RD+T → [0,∞) with iterative representation:

D(x̂u, x̂v)
def.
= WJσsJ ,lJ • (uJ−1); uj

def.
= Wjσsj ,lj • (uj−1) for j = 1, . . . , J − 1,

u0
def.
= |σs0,l0 • (x̂u)1:D − σs0,l0 • (x̂v)1:D|,

(3)

for each x̂u, x̂v ∈ RD+T , where the depth parameter J ∈ N+, where the s0, l0, . . . , sJ , lJ > 0, and
• denotes component-wise composition (i.e. the function is applied element-wise, which is standard
in Deep Learning), weight matrices Wj ∈ I+D (an invertible positive matrix, see Appendix A.2) for
j < J and WJ ∈ (0,∞)1×d all of which have positive entries, and where the absolute value | · | is
also applied component-wise. Note that (·)1:D extracts the first D dimensions of the input vector.

Moreover, we seek an ordering ≲ on RD+T so that u ≼ v in the poset if and only if their respective
embeddings x̂u and x̂v are ordered in the feature space via ≲. Our class of trainable orders are
parameterized with the following type of neural networks, which we call neural partial orders.
Consider a map T : RD+T → RT admitting the iterative representation

T (x̂u)
def.
= zJ̃ , ∀j ∈ {1, . . . , J̃}, zj

def.
= Vjσs̃j ,s̃j ◦LR•(zj−1)+bj , z0

def.
= (x̂u)D+1:D+T , (4)

where LR stands for LeakyReLU and ◦ for function composition, with the depth parameter J̃ ∈
N+, weight matrices Vj ∈ I+T , and bias terms b1, . . . , bJ̃ ∈ RT . Also, note that T (x̂u) ∈ RT ,
whereas when applying the subscript T (x̂u)t ∈ R, the operation returns the entry of the coordinate
embedding at dimension t. At each layer of T we use the (single trainable parameter, s = l in
equation 2) activation s̃, . . . , s̃J̃ > 0. Moreover, we would like to highlight that D takes both
x̂u, x̂v ∈ RD+T as input to compute distances, whereas T processes inputs independently. Hence,
given any such T we define the partial order ≲T on RD+T given, for each x̂u, x̂v ∈ RD+T , by

x̂u ≲T x̂v ⇐⇒ T (x̂u)t ≤ T (x̂v)t,∀t = D + 1, . . . , D + T. (5)

The next proposition shows that ≲T always defines a partial order on the time dimensions of RD+T ,
for any T . This is formalized by noting that, for any D ∈ N+, the quotient space RD+T / ∼ under
the equivalence relation x ∼ x̃⇔ x1:D = x̃1:D is isomorphic (as a vector space) to RT . Thus, there
is no loss in generality in assuming that D = 0.

Proposition 1 (Neural Spacetimes Always Implement Partial Orders). If T ∈ N+, D = 0, and
T : RD+T → RT admits a representation as equation 4, then ≲T is a partial order on RD+T .
See page 21 for proof.

Just as the neural snowflakes of Borde & Kratsios (2023), neural (quasi-)metrics implements a quasi-
metric on the spatial dimension RD in RD+T (ignoring the time dimensions used only to encode
causality). A key difference between the two is that our formulation allows for the weighting or
discovery of the importance of each spatial dimension, as well as the rescaling of each spatial di-
mension individually. Thus, our model in equation 3 enables greater flexibility as it departs further
from the somewhat Euclidean structure of Borde & Kratsios (2023), which is based on warping a
precomputed Euclidean distance.

6

Published as a conference paper at ICLR 2025

Remark 3 (Comparing Neural Snowflakes to Neural (Quasi-)metrics in NSTs.). Neural (quasi-
)metrics generalize the non-Euclidean metrics studied in Gozlan (2010, Proposition 1.2) and imple-
mented as part of the neural snowflake model in Borde & Kratsios (2023).

This can be of interest in learning theory since it was shown in Gozlan (2010) that these types of
distances exhibit favourable concentration of measure properties when measured in 1-Wasserstein
distance from optimal transport. The connection to learning occurs due to the technique of Amit
et al. (2022); Hou et al. (2023); Benitez et al. (2023); Kratsios et al. (2024) whereby one may obtain
uniform generalization bounds for Hölder learners through concentration of measure results.
Proposition 2 (A Neural (Quasi-)Metric is a quasi-metric on the spatial dimensions). Any D with
representation in equation 3 is a quasi-metric on RD. If each Wj is orthogonal 2 and 0 < sj , lj ≤ 1
then D is a metric on RD. Furthermore, if T ∈ N+, then D is a pseudo-quasi-metric on RD+T .
See page 21 for proof.

3.1 EMBEDDING GUARANTEES

We now present our main theoretical result which is the (global) embedding guarantees for NSTs.
Definition 4 (Width). Let (P,≲) be a poset. A S ⊆ P is called an anti-chain if for each u, v ∈ S
neither u ≼ v nor v ≼ u. The width of (P,≲) is the maximal cardinality of any anti-chain in P .

Note that to model anti-chains with our framework, more than one time dimension is needed. This
allows our model to represent lack of causal connectivity between nodes that do not share a directed
path between them in the graph. The result below uses the notion of doubling constant and metric
space dimension from fractal geometry, see Appendix A.1.
Theorem 1 (Universal Spacetime Embeddings). Fix W,N ∈ N+, K > 0, and let (P, d,≲) be a
finite causal metric space with doubling constant K, width W , and P def.

= {xv}v∈V ⊆ RN . There
exists a D ∈ O(log(K)), an MLP E : RN → RD+W , T : RD+W → RW with representa-
tion equation 4, and D : RD+W × RD+W → [0,∞) with representation equation 3 such that for
each xu, xv ∈ P
(i) Order Embedding: xu ≼ xv if and only if E(xu) ≲T E(xv),
(ii) Metric Embedding: d(xu, xv) ≤ D

(
E(xu), E(xv)

)
≤ O

(
log(K)5

)
d(xu, xv).

Moreover, setting D = k, (ii) can be improved to an isocausal embedding, i.e. d(xu, xv) =
D
(
E(xu), E(xv)

)
. In either case, the number of non-zero parameters determining the neural space-

time triplet S = (E ,D, T) is Õ
(
D +W + k5/2D4N

)
. See page 25 for proof.

Theorem 1 guarantees that one never needs more than W time dimensions3 and #P space dimen-
sions to have a (perfect) isocausal spacetime embedding. However, note that W + O(log(#P))
spacetime dimensions are guaranteed to provide an embedding with a very small distortion, which
is likely good enough for most practical problems. Theorem 1 is extremal, in the sense that it holds
for all causal metric spaces. One may, therefore, ask: How much can the result be improved for
causal metric spaces with favourable properties?

In analogy with the Minkowski spacetime representations in Law & Lucas (2023), which can ac-
commodate directed line graphs, we now investigate when few (at most two) time dimensions are
enough to guarantee a causal embedding for a poset. Using Baker et al. (1970), we first characterized
posets which admit a spacetime embedding with two time dimensions via their Hasse diagrams.
Proposition 3 (When two time dimensions are not enough). If the Hasse diagram of a poset (P,≲)
is not a planar graph, then there is no spacetime embedding E : P → RD+W , D : RD+W ×
RD+W → [0,∞), T : RD+W → RW with W = 1, 2. See page 26 for proof.

We now improve both the temporal and spatial guarantees of the spacetime embedding in Theo-
rem 1 for the posets characterized by the preceding proposition. To leverage the planar structure of
the Hasse diagrams of these posets and thus enhance the spatial component of our spacetime em-
beddings, we instead equip any such poset (P,≲) with the metric dH, defined as the graph geodesic
distance on the undirected Hasse diagram of (P,≲).

2Since any Wj must have only non-negative entries, then if Wj is additionally orthogonal, it must be a
permutation matrix.

3W here is used for time dimensions and not edge weigths.

7

Published as a conference paper at ICLR 2025

Theorem 2 (Low-Distortion Spacetime Embeddings in Time Dimensions). Fix k,N ∈ N+, and
let (P,≲, dH) is k-point poset whose Hasse diagram for (P,≲) is planar, P ⊂ RN . There is a
ReLU MLP E : RN → RO(log(k))+2, D : RO(log(k))+2 × RO(log(k))+2 → [0,∞) with representa-
tion equation 3, and T : RO(log(k))+2 → R2 as in equation 4 satisfying: for each xu, xv ∈ P
(i) Causality: xu ≼ xv if and only if E(xu) ≲T E(xv),
(ii) Low-Distortion: dH(xu, xv) ≤ D

(
E(xu), E(xv)

)
≤ O(log(k)2) dH(xu, xv).

The number of parameters in S isO
(
k5/2D4N log(N) log

(
k2 diam(P, dH)

))
. Proof on page 26.

Our training procedure (Section 3.2) focuses on embedding the local structure of directed graphs
and is supported by our theoretical guarantees that NSTs are expressive enough to encode the global
structure of weighted DAGs. By focusing on local embeddings, our neural spacetime model can be
trained to embed very large directed graphs, since local distance information is readily available, but
global distance information is generally expensive to compute. Interestingly,
Remark 4 (Local vs. Global NST.). The global and local embeddability of directional information
is equivalent in our case due to the transitivity properties of DAGs and our representation spaces.

For completeness, we compare neural spacetimes to hyperbolic representation in Appendix A.6.
3.2 COMPUTATIONAL IMPLEMENTATION

In this section, we provide a discussion on how to bridge the theoretical embedding guarantees
presented earlier into a computationally tractable model that can be optimized via gradient descent.
Further details are provided in Appendix C.

Representing graph edge directionality as a partial order in the embedding manifold. Given
a weighted directed graph GD = (ED, V,WD), let xu, xv ∈ RN be the feature vectors associated
with the nodes u, v ∈ V , which we want to embed as events in our spacetime: S takes as input
these features and maps them to an embedding in the manifold. The edge set ED induces a binary
non-symmetric adjacency matrix A. In our case, GD is not any digraph but a DAG, hence if Auv =
1 ⇒ Avu = 0. Both entries can only be equal when they are 0, Auv = Avu = 0. In the latter case,
the nodes may either be causally disconnected, or causally connected but not neighbors. If the input
graph does not satisfy these properties our spacetime embedding parametrized by the NST will not
be able to faithfully embed the input graph in terms of its edge directionality.

Representing graph edge weights as distances in the embedding manifold. Likewise, WD in-
duces a distance matrix D with entries Duv being the causal distance between events u, v. Al-
though theoretically this could be computed as the shortest path graph geodesic distance for two
causality connected and distant u and v (similar to equation 1 but for weighted directed graphs,
see Appendix D.1), in practice we only optimize for the one-hop neighborhood. In particular, if
u = v ⇒ Duv = 0, if u ≼ v ∧ v ∈ N (u) ∧ u ̸= v ⇒ Duv > 0. The distance Duv is ig-
nored otherwise, that is, we do not model the distance between nodes in the original graph that are
causally connected but outside the one-hop neighborhood of each other nor do we model the dis-
tance between events that are not causality connected (anti-chains). This is in line with the literature
on graph construction via Lorentzian pre-length spaces (Law & Lucas, 2023). In the case of NSTs,
it is achieved using the connectivity Auv as a mask in the loss function.

Local geometry optimization and global geometry implications. Note that although we optimize
for the one-hop neighborhood of each node only, transivity of the causal connectivity of nodes
across hops will be satisfied by definition of the partial order (Remark 4). Additionally, although
the partial order between anti-chains is not directly optimized, as the number of time dimensions
increases, it is increasingly probable that ≲T will not be satisfied for nodes not causally connected,
as desired. Conversely, there is no guarantee that when directly evaluating the distance between
causally connected nodes using D we will obtain the graph geodesic distance between nodes. In
summary, if xu, xv, xw ∈ RN are feature vectors for nodes u, v, w ∈ V , and x̂u, x̂v, x̂w ∈ RD+T

are their E encodings in the intermediate Euclidean space used by the NST, if (x̂u ≲T x̂v) ∧
(x̂v ≲T x̂w)⇒ x̂u ≲T x̂w. On the other hand, in general D(x̂u, x̂v) +D(x̂v, x̂w) = Duv +Dvw,
and provided that this particular path corresponds to the graph geodesic Duv + Dvw = dG(u,w),
but D(x̂u, x̂v) + D(x̂v, x̂w) ̸= D(x̂u, x̂w). The latter inequality is acceptable and not required to
faithfully encode the graph edge weights.

Training and Loss Function. Let us use the matrix X ∈ RM×N to denote the collection of feature
vectors for M = |V| nodes associated with the DAG, GD. The NST minimizes the following loss:

8

Published as a conference paper at ICLR 2025

Table 1: DAG embedding results. Embedding dimension D = T = 2, 4, 10.
Metric Embedding Dim Distortion (average ± std) Max Distortion Directionality

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 1.09 ± 0.24 3.18 1.0

N
euralSpacetim

e
4 1.02 ± 0.06 1.51 1.0

10 1.00 ± 0.03 1.24 1.0

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 1.16 ± 0.45 6.21 1.0
4 1.02 ± 0.07 1.75 1.0

10 1.00 ± 0.04 1.47 1.0

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 1.51 ± 1.18 13.55 1.0
4 1.11 ± 0.41 8.92 1.0

10 1.01 ± 0.05 1.31 1.0

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 2.86 ± 5.22 72.66 0.99

M
inkow

ski

4 1.70 ± 2.77 71.09 0.99
10 1.21 ± 1.33 35.58 0.99

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 6.77 ± 133.68 1669.83 0.99
4 1.70 ± 5.21 77.03 0.99

10 1.19 ± 1.09 25.18 0.99

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 11.37 ± 114.98 1876.54 0.98
4 2.49 ± 8.72 198.04 0.98

10 1.18 ± 2.49 82.67 0.99

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 ∞± ∞ 0.99

D
e

Sitter

4 -4.33 ± 816.47 10235.71 0.99
10 288.17 ± 9794.97 324027.5 0.99

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 9.40 ± 2226.84 63968.21 0.99
4 174.69 ± 3637.32 115851.88 0.99

10 -10.66 ± 739.71 8997.62 0.99

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 -183.71 ± 9600.71 39648.66 0.94
4 83.04 ± 4313.82 97524.21 0.94

10 418.26 ± 6599.80 150543.73 0.94

LGD
(X,A,D)

def.
=

uM∑
u=u1

vM∑
v=v1

Luv (S(xu, xv), (Auv, Duv)) , (6)

where xu extracts the row feature vector for u from matrix X. The goal is to learn appropriate
embeddings so that nodes connected by directed edges are represented as causally connected events
in the time dimensions of the manifold, and respect the distanceDuv induced by the graph weights in
the space dimensions. To do so, we can further divide the loss function into a (causal) distance loss,
LD
uv , and a causality loss, LC

uv . We remind the reader of the definition x̂u, x̂v
def.
= E(xu), E(xv) ∈

RD+T . Hence the loss can be partitioned into:

Luv
def.
= LD

uv (D(x̂u, x̂v), (Auv, Duv)) + LC
uv (T (x̂u), T (x̂v), Auv) . (7)

We dissect the two loss terms. The distance loss for a pair of nodes is the mean squared error (MSE)
loss between the predicted and ground truth distance, with masking given by the adjacency matrix:

LD
uv

def.
= AuvMSE (D(x̂u, x̂v), Duv) . (8)

On the other hand, the causality loss (with respect to the one-hop neighborhood) is

LC
uv

def.
= AuvL∗

C

(T∑
t=1

SteepSigmoid(T (x̂u)t − T (x̂v)t)
)
, (9)

where L∗
C is a function that takes as input the expression above and SteepSigmoid(x) = 1

1+e−10x

(we omit some details here for simplicity, see Appendix C.3 for details). The loss for two causally
connected events u ≼ v in the first neighborhood of each other (Auv = 1) is minimized when
x̂u ≲T x̂v is satisfied (equation 5). If the time coordinates of x̂v associated with the event v are all
greater than those of x̂u for u, then all SteepSigmoid activation functions will return ≈ 0.

4 EXPERIMENTAL RESULTS

Synthetic Weighted DAG Embedding. We generate DAGs (see Appendix D.2) embedded in the
2D plane with associated local distances between nodes given by several metrics. We measure the
embedding capabilities of NSTs compared to closed-form spacetimes such as the Minkowski and De
Sitter spaces in Law & Lucas (2023). Although we do not optimize the geometries in the case of the
baselines, we do use a neural network encoder to map points to events in the manifolds. We quantify
both the average and maximum metric distortion (the ratio between true and predicted distances)
following Kratsios et al. (2023b), as well as the accuracy of the time embedding. As can be seen

9

Published as a conference paper at ICLR 2025

Table 2: Embedding results for real-world web page hyperlink and gene regulatory networks.
Neural Spacetime Minkowski De Sitter

Dataset E
m

be
d.

D
im

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

Cornell
2 1.00 ± 0.07 1.31 0.93 1.07 ± 0.70 9.43 0.94 -55.83 ± 890.45 3950.88 0.92
4 1.00 ± 0.04 1.08 0.94 1.00 ± 0.00 1.01 0.94 -20.60 ± 249.49 403.46 0.94
10 1.00 ± 0.04 1.08 0.94 1.00 ± 0.00 1.00 0.94 0.80 ± 126.26 1543.07 0.93

Texas
2 1.01 ± 0.10 2.27 0.89 1.12 ± 1.73 31.27 0.90 -0.29 ± 84.42 818.10 0.90
4 1.00 ± 0.01 1.05 0.90 1.00 ± 0.00 1.00 0.90 42.03 ± 795.51 13939.25 0.90
10 1.00 ± 0.00 1.00 0.90 1.01 ± 0.01 1.05 0.90 2.60 ± 70.33 1107.60 0.90

Wisconsin
2 1.00 ± 0.10 1.67 0.89 5.07 ± 65.99 1410.03 0.90 2.06 ± 63.46 1291.31 0.89
4 1.00 ± 0.04 1.16 0.89 1.00 ± 0.04 1.19 0.90 -0.78 ± 27.91 114.24 0.90
10 1.00 ± 0.04 1.20 0.89 1.13 ± 0.69 16.28 0.90 0.04 ± 215.94 2862.19 0.89

In silico
2 1.06 ± 0.47 18.54 1.00 105.42 ± 4671.85 209248.72 0.94 -63.59 ± 1866.69 56626.97 0.92
4 1.00 ± 0.09 1.73 1.00 0.25 ± 54.57 1315.76 0.95 -468.81 ± 33021.14 65289.22 0.92
10 1.00 ± 0.05 1.32 1.00 1.00 ± 0.05 3.69 0.99 -129.13 ± 9623.30 261531.59 0.93

E. coli
2 1.02 ± 0.45 15.37 1.00 -4.25 ± 149.61 438.34 0.97 34.65 ± 2637.50 119047.23 0.91
4 1.00 ± 0.06 2.62 1.00 1.00 ± 0.01 1.08 0.98 -2.00 ± 3294.81 130509.59 0.91
10 1.00 ± 0.05 1.17 1.00 1.00 ± 0.01 1.01 0.99 -8.26 ± 94.57 652.96 0.91

S. cerevisiae
2 1.05 ± 0.34 10.18 1.00 -2.38 ± 173.57 151.43 0.91 55.36 ± 3960.09 160278.39 0.90
4 1.00 ± 0.07 1.63 1.00 1.04 ± 2.25 63.17 0.98 -28.60 ± 1175.67 63086.54 0.90
10 1.00 ± 0.05 1.57 1.00 1.01 ± 0.02 1.39 0.99 -121.17 ± 7550.16 84724.25 0.91

in Table 1, we are always able to embed edge directionality (0 for no edges embedded correctly,
1 for all edges embedded correctly). In terms of metric distortion, as the embedding dimension
increases, both average and maximum distortion decrease. NSTs are particularly good at retraining
low distortions in low-dimensional embedding spaces. See Table 9 for more results.

Real-World Network Embedding. We test our approach on real-world networks. In Table 2, we
present results for the Cornell, Texas, and Wisconsin (WebKB) datasets (Rozemberczki et al., 2021),
which are based on webpages represented as nodes and directed hyperlinks between them. All the
nodes have bag-of-word features that we use as input of the neural spacetime encoder. The neural
partial order encodes the hyperlink directionality between websites, and the neural (quasi-)metric
learns the connectivity strength as the cosine similarity between connected webpage features. We
achieve very low distortions, showcasing the embedding capabilities of our network. Note that, from
a metric learning perspective, real-world datasets are generally less challenging than the metrics
presented in Table 1, which we chose to be particularly unconventional on purpose. In terms of the
time embedding, we manage to mostly encode directionality; however, these datasets are not pure
DAGs since they contain some directed cycles, so it is not possible to embed them perfectly. We also
work with real-world gene regulatory network datasets (Marbach et al., 2012) in line with spacetime
representation learning literature (Law & Lucas, 2023; Sim et al., 2021). We achieve good spatial
and causal embeddings for the In silico, Escherichia coli, and Saccharomyces cerevisiae datasets,
see Table 2. Experimental details and hyperparameters for all setups can be found in Appendix D.
Additionally, we present tree (spatial only) embedding experiments comparing neural snowflakes to
neural (quasi-)metrics in NSTs, as well as hyperbolic neural networks (HNNs), in Appendix D.1.
5 CONCLUSION
We have introduced the concept of neural spacetimes, a computational framework utilizing neural
networks to construct spacetime geometries with multiple time dimensions for DAG representa-
tion learning. We decouple our representation into a product manifold of space, equipped with a
quasi-metric, and time, which captures causality via a partial order. We propose techniques to build,
optimize, and stabilize artificial neural networks with fractalesque activation functions, ensuring the
learnability of valid geometries. Our main theoretical contributions include a global embeddability
guarantee for posets into neural spacetimes, with embeddings being causal in time and asymptot-
ically isometric in space. We demonstrate the efficacy of our approach through experiments on
synthetic metric DAG embedding datasets and real-world directed graphs, showcasing its superior-
ity over existing spacetime representation learning methods with fixed closed-form geometries.

Limitations. Our guarantees are restricted to embeddings for DAGs rather than arbitrary digraphs.
We also find that, from an optimization perspective, it is easier to optimize the geometry locally
rather than globally. This limitation is computational; as the number of nodes in the DAG grows, it
becomes increasingly challenging to compute the ground truth shortest-path geodesic distance and
the global causal structure between nodes, which are used as ground truth for training. However,
all our theoretical guarantees apply both globally and locally. Additionally, the local transitivity of
causal connectivity will implicitly hold globally, even when performing local optimization only.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

We believe that the potential societal consequences are minimal and do not require specific high-
lighting at this time. We commit to ongoing awareness of the broader implications of our work
and will remain vigilant in assessing any future societal impacts that may emerge as our theoretical
framework is applied in practical settings.

ACKNOWLEDGMENTS

The authors thank James Lucas and the anonymous reviewers for helpful feedback on early versions
of this manuscript. M. Bronstein acknowledges this research is partially supported by the EPSRC
Turing AI World-Leading Research Fellowship No. EP/X040062/1 and the EPSRC AI Hub on
Mathematical Foundations of Intelligence: An “Erlangen Programme” for AI No. EP/Y028872/1.
X. Dong acknowledges support from the Oxford-Man Institute of Quantitative Finance and the EP-
SRC (EP/T023333/1). A. Kratsios acknowledges financial support from an NSERC Discovery Grant
No. RGPIN-2023-04482 and No. DGECR-2023-00230.

REFERENCES

Ittai Abraham, Yair Bartal, and Ofer Neiman. Local embeddings of metric spaces. In Proceedings
of the thirty-ninth annual ACM Symposium on Theory of Computing, pp. 631–640, 2007.

Ittai Abraham, Arnold Filtser, Anupam Gupta, and Ofer Neiman. Metric embedding via shortest
path decompositions. SIAM Journal on Computing, 51(2):290–314, 2022.

Beatrice Acciaio, Julio Backhoff-Veraguas, and Anastasiia Zalashko. Causal optimal transport and
its links to enlargement of filtrations and continuous-time stochastic optimization. Stochastic
Processes and their Applications, 130(5):2918–2953, 2020.

Beatrice Acciaio, Anastasis Kratsios, and Gudmund Pammer. Designing universal causal deep learn-
ing models: The geometric (hyper) transformer. Mathematical Finance, 34(2):671–735, 2024.

Ron Amit, Baruch Epstein, Shay Moran, and Ron Meir. Integral probability metrics pac-bayes
bounds. Advances in Neural Information Processing Systems, 35:3123–3136, 2022.

Alexandr Andoni, Assaf Naor, and Ofer Neiman. Snowflake universality of wasserstein spaces. Ann.
Sci. Éc. Norm. Supér.(4), 51(3):657–700, 2018.

Julio Backhoff-Veraguas, Daniel Bartl, Mathias Beiglböck, and Manu Eder. All adapted topologies
are equal. Probability Theory and Related Fields, 178:1125–1172, 2020.

Kirby A. Baker, Peter C. Fishburn, and Fred S. Roberts. A new characterization of partial orders of
dimension two. Ann. New York Acad. Sci., 175:23–24, 1970. ISSN 0077-8923,1749-6632.

Daniel Bartl, Mathias Beiglböck, and Gudmund Pammer. The wasserstein space of stochastic pro-
cesses. arXiv preprint arXiv:2104.14245, 2021.

John K Beem, Paul E Ehrlich, and Kevin L Easley. Global lorentzian geometry. Routledge, 1996.

Dionigi MT Benincasa and Fay Dowker. Scalar curvature of a causal set. Physical review letters,
104(18):181301, 2010.

J Benitez, Takashi Furuya, Florian Faucher, Anastasis Kratsios, Xavier Tricoche, and Maarten V
de Hoop. Out-of-distributional risk bounds for neural operators with applications to the helmholtz
equation. arXiv preprint arXiv:2301.11509, 2023.

Haitz Sáez de Ocáriz Borde and Anastasis Kratsios. Neural snowflakes: Universal latent graph
inference via trainable latent geometries. In The Twelfth International Conference on Learning
Representations, 2023.

11

Published as a conference paper at ICLR 2025

Haitz Sáez de Ocáriz Borde, Alvaro Arroyo, Ismael Morales López, Ingmar Posner, and Xi-
aowen Dong. Neural latent geometry search: Product manifold inference via gromov-hausdorff-
informed bayesian optimization. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023a. URL https://openreview.net/forum?id=Gij638d76O.

Haitz Sáez de Ocáriz Borde, Anees Kazi, Federico Barbero, and Pietro Lio. Latent graph inference
using product manifolds. In The Eleventh International Conference on Learning Representations,
2023b. URL https://openreview.net/forum?id=JLR_B7n_Wqr.

J. Bourgain. The metrical interpretation of superreflexivity in Banach spaces. Israel J. Math., 56(2):
222–230, 1986. ISSN 0021-2172. doi: 10.1007/BF02766125. URL https://doi.org/10.
1007/BF02766125.

Annegret Burtscher and Leonardo Garcia-Heveling. Time functions on lorentzian length spaces. In
Annales Henri Poincaré, pp. 1–40. Springer, 2024.

Alex Chandler. On Thin Posets and Categorification. ProQuest LLC, Ann Arbor, MI, 2019. ISBN
978-1392-60821-0. Thesis (Ph.D.)–North Carolina State University.

Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Local global tradeoffs in metric
embeddings. SIAM Journal on Computing, 39(6):2487–2512, 2010.

B. A. Davey and H. A. Priestley. Introduction to lattices and order. Cambridge University Press,
New York, second edition, 2002. ISBN 0-521-78451-4. doi: 10.1017/CBO9780511809088. URL
https://doi.org/10.1017/CBO9780511809088.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Neural Information Processing Systems, 2016.
URL https://api.semanticscholar.org/CorpusID:3016223.

Tristan Deleu, António Góis, Chris Chinenye Emezue, Mansi Rankawat, Simon Lacoste-Julien,
Stefan Bauer, and Yoshua Bengio. Bayesian structure learning with generative flow net-
works. In The 38th Conference on Uncertainty in Artificial Intelligence, 2022. URL https:
//openreview.net/forum?id=HElfed8j9g9.

R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. of Math. (2), 51:161–
166, 1950. ISSN 0003-486X. doi: 10.2307/1969503. URL https://doi.org/10.2307/
1969503.

Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, Cambridge, 2009. ISBN 978-0-521-
88427-3. doi: 10.1017/CBO9780511581274. URL https://doi-org.libaccess.lib.
mcmaster.ca/10.1017/CBO9780511581274.

Anna Dyubina and Iosif Polterovich. Explicit constructions of universal R-trees and asymptotic
geometry of hyperbolic spaces. Bull. London Math. Soc., 33(6):727–734, 2001. ISSN 0024-
6093,1469-2120. doi: 10.1112/S002460930100844X. URL https://doi.org/10.1112/
S002460930100844X.

Stephan Eckstein and Patrick Cheridito. Optimal transport and wasserstein distances for causal
models. arXiv preprint arXiv:2303.14085, 2023.

Stephan Eckstein and Gudmund Pammer. Computational methods for adapted optimal transport.
The Annals of Applied Probability, 34(1A):675–713, 2024.

Michael Elkin and Ofer Neiman. Near isometric terminal embeddings for doubling metrics. Algo-
rithmica, 83(11):3319–3337, 2021.

Alexandros Eskenazis, Manor Mendel, and Assaf Naor. Nonpositive curvature is not coarsely uni-
versal. Inventiones mathematicae, 217:833–886, 2019.

Stefan Felsner, Vijay Raghavan, and Jeremy Spinrad. Recognition algorithms for orders of small
width and graphs of small Dilworth number. Order, 20(4):351–364, 2003. ISSN 0167-8094,1572-
9273. doi: 10.1023/B:ORDE.0000034609.99940.fb. URL https://doi.org/10.1023/
B:ORDE.0000034609.99940.fb.

12

https://openreview.net/forum?id=Gij638d76O
https://openreview.net/forum?id=JLR_B7n_Wqr
https://doi.org/10.1007/BF02766125
https://doi.org/10.1007/BF02766125
https://doi.org/10.1017/CBO9780511809088
https://api.semanticscholar.org/CorpusID:3016223
https://openreview.net/forum?id=HElfed8j9g9
https://openreview.net/forum?id=HElfed8j9g9
https://doi.org/10.2307/1969503
https://doi.org/10.2307/1969503
https://doi-org.libaccess.lib.mcmaster.ca/10.1017/CBO9780511581274
https://doi-org.libaccess.lib.mcmaster.ca/10.1017/CBO9780511581274
https://doi.org/10.1112/S002460930100844X
https://doi.org/10.1112/S002460930100844X
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb
https://doi.org/10.1023/B:ORDE.0000034609.99940.fb

Published as a conference paper at ICLR 2025

Arnold Filtser. A face cover perspective to ℓ1 embeddings of planar graphs. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1945–1954. SIAM, 2020.

Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, jun 1962. ISSN
0001-0782. doi: 10.1145/367766.368168. URL https://doi.org/10.1145/367766.
368168.

Brendan Fong and David I. Spivak. An invitation to applied category theory. Cambridge Uni-
versity Press, Cambridge, 2019. ISBN 978-1-108-71182-1; 978-1-108-48229-5. doi: 10.1017/
9781108668804. URL https://doi.org/10.1017/9781108668804. Seven sketches
in compositionality.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks, 2018.

Robert Geroch. Domain of dependence. Journal of Mathematical Physics, 11(2):437–449, 1970.

S Gershgorin. Uber die abgrenzung der eigenwerte einer matrix. lzv. Akad. Nauk. USSR. Otd.
Fiz-Mat. Nauk, 7:749–754, 1931.

Francesco Di Giovanni, Giulia Luise, and Michael Bronstein. Heterogeneous manifolds for
curvature-aware graph embedding, 2022a.

Francesco Di Giovanni, Giulia Luise, and Michael M. Bronstein. Heterogeneous manifolds for
curvature-aware graph embedding. In ICLR 2022 Workshop on Geometrical and Topological
Representation Learning, 2022b.

Lee-Ad Gottlieb and Robert Krauthgamer. Proximity algorithms for nearly doubling spaces. SIAM
Journal on Discrete Mathematics, 27(4):1759–1769, 2013.

Nathael Gozlan. Poincaré inequalities and dimension free concentration of measure. Ann. Inst.
Henri Poincaré Probab. Stat., 46(3):708–739, 2010. ISSN 0246-0203,1778-7017.

J. C. Guella, V. A. Menegatto, and A. P. Peron. An extension of a theorem of Schoenberg to products
of spheres. Banach J. Math. Anal., 10(4):671–685, 2016.

Madhu Gunasingam and Ting-Kam Leonard Wong. Adapted optimal transport between gaussian
processes in discrete time. arXiv preprint arXiv:2404.06625, 2024.

A. Gupta. Embedding tree metrics into low-dimensional Euclidean spaces. Discrete Comput. Geom.,
24(1):105–116, 2000.

Ajay K Gupta and Susanne E Hambrusch. Load balanced tree embeddings. Parallel computing, 18
(6):595–614, 1992.

Anupam Gupta. Embedding tree metrics into low dimensional euclidean spaces. In Proceedings of
the thirty-first annual ACM symposium on Theory of computing, pp. 694–700, 1999.

Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and l1-embeddings
of graphs. Combinatorica, 24(2):233–269, 2004.

Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics, and their
applications. In Proceedings of the twenty-first annual symposium on Computational geometry,
pp. 150–158, 2005.

Joe Henson. The causal set approach to quantum gravity. Approaches to quantum gravity: Toward
a new understanding of space, time and matter, pp. 393–413, 2009.

Songyan Hou, Parnian Kassraie, Anastasis Kratsios, Andreas Krause, and Jonas Rothfuss. Instance-
dependent generalization bounds via optimal transport. Journal of Machine Learning Research,
24:1–50, 2023.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs, 2021. URL
https://arxiv.org/abs/2005.00687.

13

https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1017/9781108668804
https://arxiv.org/abs/2005.00687

Published as a conference paper at ICLR 2025

Thomas R Hurd et al. Contagion!: Systemic Risk in Financial Networks, volume 42. Springer, 2016.

Yong-Woon Kim. Pseudo quasi metric spaces. Proceedings of the Japan Academy, 44(10):1009–
1012, 1968.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Anastasis Kratsios, Valentin Debarnot, and Ivan Dokmanić. Small transformers compute universal
metric embeddings. J. Mach. Learn. Res., 24:Paper No. [170], 48, 2023a. ISSN 1532-4435,1533-
7928.

Anastasis Kratsios, Ruiyang Hong, and Haitz Sáez de Ocáriz Borde. Capacity bounds for hyperbolic
neural network representations of latent tree structures. arXiv preprint arXiv:2308.09250, 2023b.

Anastasis Kratsios, A Martina Neuman, and Gudmund Pammer. Tighter generalization bounds on
digital computers via discrete optimal transport. arXiv preprint arXiv:2402.05576, 2024.

R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: a new embedding method
for finite metrics. Geom. Funct. Anal., 15(4):839–858, 2005.

Robert Krauthgamer, James R Lee, Manor Mendel, and Assaf Naor. Measured descent: A new em-
bedding method for finite metrics. In 45th Annual IEEE Symposium on Foundations of Computer
Science, pp. 434–443. IEEE, 2004.

Erwin H Kronheimer and Roger Penrose. On the structure of causal spaces. In Mathematical Pro-
ceedings of the Cambridge Philosophical Society, volume 63-2, pp. 481–501. Cambridge Univer-
sity Press, 1967.

Daniel Kršek and Gudmund Pammer. General duality and dual attainment for adapted transport.
arXiv preprint arXiv:2401.11958, 2024.

H Kũnzi. Complete quasi-pseudo-metric spaces. Acta Mathematica Hungarica, 59(1-2):121–146,
1992.

Marc T Law. Ultrahyperbolic neural networks. Advances in Neural Information Processing Systems,
2021.

Marc T. Law and James Lucas. Spacetime representation learning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=qV_M_rhYajc.

Marc T Law and Jos Stam. Ultrahyperbolic representation learning. Advances in Neural Information
Processing Systems, 2020.

Enrico Le Donne, Tapio Rajala, and Erik Walsberg. Isometric embeddings of snowflakes into
finite-dimensional Banach spaces. Proc. Amer. Math. Soc., 146(2):685–693, 2018. ISSN 0002-
9939,1088-6826. doi: 10.1090/proc/13778. URL https://doi.org/10.1090/proc/
13778.

Derek Lim, Haggai Maron, Marc T. Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
for processing diverse neural architectures. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ijK5hyxs0n.

Yuan Lu, Haitz Sáez de Ocáriz Borde, and Pietro Lio. AMES: A differentiable embedding space
selection framework for latent graph inference. In NeurIPS 2023 Workshop on Symmetry and Ge-
ometry in Neural Representations, 2023. URL https://openreview.net/forum?id=
tIrGgIn8jr.

Hiroshi Maehara. Euclidean embeddings of finite metric spaces. Discrete Mathematics, 313(23):
2848–2856, 2013.

14

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=qV_M_rhYajc
https://openreview.net/forum?id=qV_M_rhYajc
https://doi.org/10.1090/proc/13778
https://doi.org/10.1090/proc/13778
https://openreview.net/forum?id=ijK5hyxs0n
https://openreview.net/forum?id=tIrGgIn8jr
https://openreview.net/forum?id=tIrGgIn8jr

Published as a conference paper at ICLR 2025

Daniel Marbach, James Costello, Robert Küffner, Nicole Vega, Robert Prill, Diogo Camacho, Kyle
Allison, Andrej Aderhold, Richard Bonneau, Yukun Chen, James Collins, Francesca Cordero,
Martin Crane, Frank Dondelinger, Mathias Drton, Roberto Esposito, Rina Foygel, Alberto de la
Fuente, Jan Gertheiss, and Ralf Zimmer. Wisdom of crowds for robust gene network inference.
Nature Methods, 9:796–804, 07 2012. doi: 10.1038/nmeth.2016.

Jiřı́ Matoušek. On embedding trees into uniformly convex Banach spaces. Israel J. Math., 114:221–
237, 1999. ISSN 0021-2172,1565-8511. doi: 10.1007/BF02785579. URL https://doi.
org/10.1007/BF02785579.

Assaf Naor and Ofer Neiman. Assouad’s theorem with dimension independent of the snowflaking.
Rev. Mat. Iberoam., 28(4):1123–1142, 2012. ISSN 0213-2230,2235-0616. doi: 10.4171/RMI/
706. URL https://doi.org/10.4171/RMI/706.

Ofer Neiman. Low dimensional embeddings of doubling metrics. Theory of Computing Systems,
58:133–152, 2016.

Piotr W. Nowak. Coarse embeddings of metric spaces into Banach spaces. Proc. Amer. Math. Soc.,
133(9):2589–2596, 2005. ISSN 0002-9939,1088-6826.

Chris J Oates, Jim Q Smith, and Sach Mukherjee. Estimating causal structure using conditional dag
models. Journal of Machine Learning Research, 17(54):1–23, 2016.

Sofiya Ostrovska and Mikhail I Ostrovskii. On embeddings of locally finite metric spaces into lp.
Journal of Mathematical Analysis and Applications, 474(1):666–673, 2019.

Satish Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics.
In Proceedings of the Fifteenth Annual Symposium on Computational Geometry (Miami Beach,
FL, 1999), pp. 300–306. ACM, New York, 1999. doi: 10.1145/304893.304983. URL https:
//doi.org/10.1145/304893.304983.

David D Reid. Manifold dimension of a causal set: Tests in conformally flat spacetimes. Physical
Review D, 67(2):024034, 2003.

Garry Robins, Tom Snijders, Peng Wang, Mark Handcock, and Philippa Pattison. Recent devel-
opments in exponential random graph (p*) models for social networks. Social networks, 29(2):
192–215, 2007.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Networks, 9(2), 2021.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
symposium on graph drawing, pp. 355–366. Springer, 2011.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

I. J. Schoenberg. Positive definite functions on spheres. Duke Math. J., 9:96–108, 1942.

Stephen Semmes. On the nonexistence of bilipschitz parameterizations and geometric problems
about a−∞-weights. Revista Matematica Iberoamericana, 12(2):337–410, 1996.

Ryohei Shimizu, YUSUKE Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In In-
ternational Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=Ec85b0tUwbA.

Aaron Sim, Maciej Wiatrak, Angus Brayne, Páidı́ Creed, and Saee Paliwal. Directed graph embed-
dings in pseudo-riemannian manifolds. In International Conference on Machine Learning, 2021.
URL https://api.semanticscholar.org/CorpusID:235446829.

Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
Advances in Neural Information Processing Systems, 33:845–856, 2020.

15

https://doi.org/10.1007/BF02785579
https://doi.org/10.1007/BF02785579
https://doi.org/10.4171/RMI/706
https://doi.org/10.1145/304893.304983
https://doi.org/10.1145/304893.304983
https://openreview.net/forum?id=Ec85b0tUwbA
https://openreview.net/forum?id=Ec85b0tUwbA
https://api.semanticscholar.org/CorpusID:235446829

Published as a conference paper at ICLR 2025

Rafael D Sorkin. Spacetime and causal sets. Relativity and gravitation: Classical and quantum, pp.
150–173, 1991.

Johannes Textor, Benito Van der Zander, Mark S Gilthorpe, Maciej Liśkiewicz, and George TH Elli-
son. Robust causal inference using directed acyclic graphs: the r package ‘dagitty’. International
journal of epidemiology, 45(6):1887–1894, 2016.

Jeremy T Tyson and Jang-Mei Wu. Characterizations of snowflake metric spaces. Annales Fennici
Mathematici, 30(2):313–336, 2005.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Qinglan Xia. The geodesic problem in quasimetric spaces. J. Geom. Anal., 19(2):452–479,
2009. ISSN 1050-6926. doi: 10.1007/s12220-008-9065-4. URL https://doi-org.
libaccess.lib.mcmaster.ca/10.1007/s12220-008-9065-4.

Tianlin Xu, Li Kevin Wenliang, Michael Munn, and Beatrice Acciaio. Cot-gan: Generating sequen-
tial data via causal optimal transport. Advances in neural information processing systems, 33:
8798–8809, 2020.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. DAGs with NO TEARS: Con-
tinuous Optimization for Structure Learning. In Advances in Neural Information Processing Sys-
tems, 2018.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 11168–11176, 2021.

16

https://openreview.net/forum?id=rJXMpikCZ
https://doi-org.libaccess.lib.mcmaster.ca/10.1007/s12220-008-9065-4
https://doi-org.libaccess.lib.mcmaster.ca/10.1007/s12220-008-9065-4

Published as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND

In this section, we discuss relevant background on the dimension of a metric space and invertible
matrices, which are used as part of our proofs in Appendix B. We also review the original neural
snowflake model, pseudo-Riemannian manifolds, Lorentzian manifolds, and spacetimes in physics.
Additionally, we provide an extended discussion on past literature in spacetime representation learn-
ing in the context of machine learning, and compare neural spacetimes to hyperbolic spaces.

A.1 DIMENSION AND SIZE OF A METRIC SPACES

The doubling constant in fractal geometry quantifies the complexity of a metric space by indicating
how many smaller balls are needed to cover a larger ball. It is related to the Assouad dimension and
other fractal dimensions. A small doubling constant suggests a low fractal dimension, while a large
constant indicates a higher fractal dimension. This constant helps analyze self-similarity in fractals
by providing a scale-invariant description of the space.

Our quantitative results use the following fractal notion of dimension/size of a metric space.

Definition 5 (Doubling Constant). The doubling constant K ≥ 1 of a metric space (X, d) is the
smallest integer k ≥ 1 for which the following holds: for every center x ∈ X and each radius r > 0,
every (open) ball B(x, r)

def.
= {u ∈ X : d(x, u) < r} can be covered by at most k (open) balls of

radius r/2; i.e., there exist x1, . . . , xk ∈ X such that B(x, r) ⊆
⋃k

i=1B(xi, r/2).

By this definition, K is the smallest possible value of k that satisfies the covering condition for all
x ∈ X and all r > 0. Note that every finite metric space, such as every weighted graph with the
shortest path/geodesic distance, has a finite doubling constant. For example, if X is finite and has at
least two points, then K ≥ 2.

The size of a metric space can also be quantified by its diameter and its separation. These respec-
tively quantify the maximal and minimal distances between points therein.

Definition 6 (Diameter). Let (X, d) be a metric space. The diameter of (X, d) is defined to be
diam(X, d)

def.
= supx,x̃∈X d(x, x̃).

Definition 7 (Separation). Let (X, d) be a metric space. If X has at-least two points, then its
separation is defined to be sep(X, d)

def.
= infx,x̃∈X, x ̸=x̃ d(x, x̃), otherwise sep(X, d)

def.
= 1.

A.2 INVERTIBLE POSITIVE MATRICES

We employ square matrices that are both invertible and have positive entries for constructing our
neural quasi-metric. These matrices guarantee that our snowflake produces trainable quasi-metrics,
allowing the implemented distance function to distinguish between points (i.e., identify when two
vectors are equal).

Definition 8 (Invertible Positive Matrices I+D). Let D ∈ N+. A D ×D matrix W is invertible and
positive if it can be represented as

W = λ ID + |W̃|,

where λ > 0, W̃ is an arbitrary D×D matrix, and | · | denotes entrywise absolute value applied to
the matrix W̃. The set of all such D ×D invertible positive matrices W is denoted by I+D .

In Appendix B, we demonstrate that all matrices in I+D are invertible and preserve [0,∞)D under
matrix multiplication.

A.3 NEURAL SNOWFLAKES

Neural spacetimes build on the neural snowflake model for weighted undirected graph embedding.
Here, we describe the original construction in Borde & Kratsios (2023).

Neural Snowflakes. Neural snowflakes leverage quasi-metric spaces and implement a learnable
adaptive geometry ∥x̂u − x̂v∥f

def.
= f(∥x̂u − x̂v∥), where x̂u, x̂v ∈ RD. In particular, it is a map

17

Published as a conference paper at ICLR 2025

f : [0,∞)→ [0,∞), with iterative representation

f(t) = u
1+|p|
J

uj = Bj ψaj ,bj (Ajuj−1)Cj for j = 1, . . . , J

u0 = u

(10)

where for j = 1, . . . , J , Aj is a d̃j × dj−1 matrix, Bj is a dj × d̃j-matrix, and Cj is a 3 × 1
matrix all of which have non-negative weights and at least one non-zero weight. Furthermore, for
j = 1, . . . , J , 0 < aj ≤ 1, 0 ≤ bj ≤ 1, d1, . . . , dJ ∈ N+, and d0 = 1 = dJ . Also, p ∈ R. Note that
p controls the relaxation of the triangle inequality (C = 2p) and that for p ̸= 0, the neural snowflake
is a quasi-metric. The input to the neural snowflake, denoted as u, represents the Euclidean distance
between x̂u and x̂v . This value serves as an intermediate representation within the neural snowflake,
which is subsequently warped. In principle, u need not be the Euclidean distance. In the original
neural snowflake implementation, ψa,b : R → [0,∞) is a tensorized trainable activation function
which sends any vector u ∈ RK , for some K ∈ N+, to the K × 3 matrix ψa,b(u) whose kth row is

ψa,b(u)k
def.
=
(
1− e−|uk|, |uk|a, log(1 + |uk|)b

)
, (11)

with 0 < a and 0 ≤ b ≤ 1 being trainable. Such a construction provides universal graph embed-
ding guarantees for weighted undirected graphs (Borde & Kratsios, 2023). In this work, we will
generalize this learnable adaptive geometry formulation to directed graphs borrowing ideas from
spacetimes and pseudo-Riemannian manifolds.

A.4 PSEUDO-RIEMANNIAN MANIFOLDS AND LORENTZIAN SPACETIMES

Next, we discuss pseudo-Riemannian manifolds and spacetimes, from which we draw inspiration
for our neural spacetime construction (Section 3). Our framework generalizes neural snowflakes
and their weighted undirected graph embedding properties to also incorporate causal connectivity
and graph directionality. In other words, they implement an isocausal trainable embedding.

Pseudo-Riemannian manifolds are a generalization of Riemannian manifolds where the metric
tensor g is not constrained to be positive definite. A d-dimensional pseudo-Riemannian manifold is a
smooth manifold M equipped with a pseudo-Riemannian metric g. Formally, a pseudo-Riemannian
metric tensor is a smooth, symmetric, non-degenerate bilinear form (called a scalar product) defined
on the tangent bundle TM (disjoint union of all tangent spaces). The metric tensor at each point
p ∈M is denoted by gp. The metric assigns to each tangent space TpM a signature (±,±, . . . ,±).
In particular, the tangent space TpM admits an orthonormal basis {e1, e2, . . . , ed} that satisfies
∀i ∈ {1, . . . , d}, gp(ei, ei) = ±1. If gp(ei, ei) = 1 for all i, then M is a Riemannian manifold, its
metric tensor is positive definite, and its metric signature is (+,+, . . . ,+).

Lorentzian manifolds are a subset of pseudo-Riemannian manifolds with a specific metric signa-
ture, typically denoted as (−,+,+, . . . ,+) or (+,−,−, . . . ,−). In our case, we define distances
between causally connected events to be positive, and hence adopt the second sign convention. With
this convention, a nonzero tangent vector v of a Lorentzian manifold is called causal if it satisfies
gp(v,v) ≥ 0, and it is called chronological if gp(v,v) > 0.

Spacetimes. The definition of a spacetime in general relativity varies depending on the author.
Spacetimes are a subset of Lorentzian manifolds often defined so that they are equipped with a
causal structure (Law & Lucas, 2023). Some spacetimes are called globally hyperbolic (Geroch,
1970). Global hyperbolicity ensures that the spacetime possesses a well-defined causal structure,
meaning there are no closed timelike curves (CTCs) and every inextendible causal curve intersects
every Cauchy surface (a spacelike hypersurface that slices through the entire manifold exactly once).
This property allows for the deterministic evolution of physical fields and particles forward in time.
In mathematical terms, if there exists a smooth vector field V on M such that gp(V(p),V(p)) > 0
for all p ∈ M , then the Lorentzian manifold is called a spacetime and it contains a causal struc-
ture. 4-dimensional spacetimes with signature (−,+,+,+) or (+,−,−,−) are used to model the
physical world in general relativity. Spacetimes can exhibit various geometries, from flat Minkowski
spacetime (used in special relativity) to curved spacetimes that account for gravitational effects pre-
dicted by Einstein’s field equations. In summary, a spacetime often refers to a Lorentzian manifold
that additionally satisfies certain physical and causal conditions. We refer the reader to Beem et al.
(1996) for details.

18

Published as a conference paper at ICLR 2025

Relation to Neural Spacetimes. Neural Spacetimes are an adaptive geometry aiming to learn,
in a differentiable manner, a suitable embedding in which nodes in a DAG can be represented as
causally connected events. Although Neural Spacetimes (Section 3) draw inspiration from the con-
cepts above—separating space and time into different dimensions and capturing causal connectivity
between events—strictly speaking, Neural Spacetimes utilize higher time dimensions (T > 1) than
classical spacetimes used to model the physical world. Moreover, they also incorporate a quasi-
metric to model distance in the space dimensions, which relaxes the smoothness and other require-
ments inherent to pseudo-Riemannian metrics.

A.5 RELATED WORK ON SPACETIME REPRESENTATION LEARNING

Related work in the machine learning literature that considers pseudo-Riemannian manifolds with
multiple time dimensions includes ultrahyperbolic representations (Law & Stam, 2020; Law, 2021).
Ultrahyperbolic geometry is a generalization of the hyperbolic and elliptic geometries to pseudo-
Riemannian manifolds. However, the works in Law & Stam (2020); Law (2021) mostly focus on
the optimization of such representations, they only consider undirected graphs and do not consider
partial ordering.

Spacetime representation learning (Law & Lucas, 2023) considers Lorentzian spacetimes (i.e. with
one time dimension) to represent directed graphs. Following the formalism in Appendix A.4 with
a metric signature (+,−, . . . ,−), and noting −−−→xuxv , the logarithmic map of xv at xu, they consider
that there exists an edge from u to v iff gxu(

−−−→xuxv, t) > 0 and 0 < gxu(
−−−→xuxv,

−−−→xuxv) < ε where
t is an arbitrary tangent vector that defines the future direction and ε > 0 is a hyperparameter that
defines the maximal length of the geodesic from xu to xv to draw a directed edge. The hyperpa-
rameter ε allows them to avoid connecting u to all the descendants of v. Their work is limited to
the optimization of embeddings (i.e. not neural networks). We draw inspiration from Law & Lucas
(2023) but consider multiple time dimensions in a framework that is easy to optimize for neural
networks. Our local geometry optimization framework also allows us to ignore the hyperparameter
ε, which is necessary when there is only one time dimension. In our case causality is controlled by
the multi-dimensional neural partial order ≲T instead.

Also, note that all the previous works discussed above require selecting an appropriate manifold to
model the embedding space a priori. Our work, on the other hand, not only optimizes the location
of points in space but also the manifold itself. In other words, our framework models a trainable
geometry.

A.6 HYPERBOLIC SPACES AS COMPARED TO NEURAL SPACETIME EMBEDDINGS

Hyperbolic geometry has been shown to be relevant for describing undirected graphs without cycles,
which are called trees. Indeed, in Sarkar (2011), it was shown that these trees can be algorithmically
embedded into hyperbolic space with low distortion. Additionally, Ganea et al. (2018) constructed a
class of hyperbolic neural networks (HNNs) which can exploit trees represented in these spaces, and
Kratsios et al. (2023b) demonstrated that finite trees can indeed be embedded with arbitrarily low
distortion. However, in Borde et al. (2023a), it was shown that an isometric embedding is not possi-
ble, except at ”infinity” in the hyperbolic boundary of such a space Dyubina & Polterovich (2001)
(which lies outside the manifold itself). The issue arises because hyperbolic space is a Riemannian
manifold, and thus, it is incompatible with the branches in the tree itself.

This is not the case for the fractal geometry implemented by the neural spacetime and neural
snowflake of Borde & Kratsios (2023). Indeed, in (Maehara, 2013, Theorem 3.6), it was shown
that any finite tree can be isometrically embedded in Euclidean space Rd, for d large enough, but
with the ”snowflaked” Euclidean distance between any two points x, y ∈ Rd given by ∥x − y∥α
where α = 1/2. Since neural spacetime and neural snowflake can implement such fractal geome-
tries, they are better suited to the geometry of trees.

In this paper, we propose a framework to represent DAGs that do not contain directed cycles. How-
ever, the underlying undirected graph of a DAG can contain cycles. This is for example the case for
the DAG containing four nodes {νi}4i=1 that satisfy only the following partial orders: ν1 ≼ ν2 ≼ ν4
and ν1 ≼ ν3 ≼ ν4, without causality relation between ν2 and ν3. The underlying undirected graph
is an undirected cycle ν1, ν2, ν4, ν3, ν1, which is not appropriate for hyperbolic geometry.

19

Published as a conference paper at ICLR 2025

B PROOFS

B.1 PROPERTIES OF NEURAL SPACETIMES

Proof of Proposition 1. Fix T ∈ N+ and set D = 0. Let T : RD+T → RT be a mapping with
representation equation 4. We define the relation

x ≲T y if and only if T (x)t ≤ T (y)t for each t = 1, . . . , T.

We now show that ≲T is a partial order on RD+T by verifying the three required properties.

Reflexivity: For any x ∈ RD+T , we have T (x)t ≤ T (x)t for every t = 1, . . . , T . Thus, x ≲T x.

Antisymmetry: Suppose x, y ∈ RD+T satisfy

x ≲T y and y ≲T x.

Then, for every t = 1, . . . , T ,

T (x)t ≤ T (y)t and T (y)t ≤ T (x)t,

which implies that T (x)t = T (y)t for all t. Since each matrix Vj ∈ I+T is injective (as noted
in equation 12), and both the leaky ReLU function and the affine shifts are injective, the composition
T is injective. Therefore, T (x) = T (y) implies that x = y.

Transitivity: Let x, y, z ∈ RD+T be such that

x ≲T y and y ≲T z.

Then, for every t = 1, . . . , T , we have

T (x)t ≤ T (y)t and T (y)t ≤ T (z)t.
By the transitivity of the standard order on R, it follows that T (x)t ≤ T (z)t for all t. Hence,
x ≲T z.

Since ≲T is reflexive, antisymmetric, and transitive, it is a partial order on RD+T .

Proof of Proposition 2.
Comment: The main challenge in this proof is showing that D separates points in RD; that is, for
any x, y ∈ RD we have D(x, y) = 0 if and only if x = y. Note that in the main text D takes as
input the spatial coordinates of the Euclidean embeddings x̂u, x̂v ∈ RD+T instead, but we avoid
this notation here for simplicity.

Symmetry of D:
The map D is symmetric since(

|σs0,l0(x)− σs0,l0(y)|
)d
i=1

=
(
|σs0,l0(y)− σs0,l0(x)|

)d
i=1

;

meaning that the map u 7→ u0 is symmetric. Consequentially, D is symmetric.

Non-Negativity of D:
Since each of the matrices W1, . . . ,WJ have non-negative entries then they map [0,∞)D to itself.
To see this note that for any d,D ∈ N+ if u ∈ [0,∞)D, W ∈ Rd×D, and (W)i,k ≥ 0 for each
i = 1 . . . , D and k = 1, . . . , d then: for i = 1, . . . , D we have that

(Wu)i =

D∑
j=1

Wi,juj ≥ 0.

Thus, D(x, y) ≥ 0 for each x, y ∈ RD.

Case I : D Separates Points if T = 0:
Suppose that T = 0; otherwise we will show that D does not separate points.

It is sufficient to show the result for J = 1, with the general case following directly by recursion.
Consider the map D : RD+T × RD+T → [0,∞) with iterative representation given in equation 3;
i.e. for each x, y ∈ RD+T ∼= RD

D(x, y) def.
= WJσsJ+1,lJ+1

(uJ),

20

Published as a conference paper at ICLR 2025

uj
def.
= Wjσsj ,lj • (uj−1) for j = 1, . . . , J − 1,

u0
def.
= |σs0,l0(x)− σs0,l0(y)|,

where, we recall equation 2, which states that for each s, l > 0 and x ∈ R (the activation function is
applied pointwise)

σs,l(x)
def.
=

{
sgn(x) |x|s if |x| < 1

sgn(x) |x|l if |x| ≥ 1
.

Since W1 = λID + |W̃| and some matrix W̃ ∈ RD×D; then, the entries of W are non-negative and
for i, j = 1, . . . , D we have that

(W1)i,i = λ+

D∑
j=1

|W̃i,j | >
D∑

j=1

|W̃i,j | ≥
D∑

j=1; j ̸=i

|W̃i,j |
def.
= Ri, (12)

where, we emphasize that the strictness of the first inequality is due to the positivity of λ. Thus, the
Gershgorin circle theorem, see Gershgorin (1931), implies that the eigenvalues of W1 belong to the
set Λ1 ⊆ C defined by

Λ1
def.
=

D⋃
i=1

B2

(
(W1)i,i, Ri

)
where, for u ∈ C and r ≥ 0 we define B2

(
u, r
) def.
= {z ∈ C : ∥u− z∥ ≤ r}. Since the computation

in equation 12 showed thatRi < (W1)i,i for each i = 1, . . . , D then 0 ̸∈ Λ1. Thus, W1 is invertible.

Consequentially, RD ∋ u 7→W1u ∈ RD is injective.

For any specification of s, l > 0 the (componentwise) map σs,l• : RD ∋ u → (σs,l(ui))
D
i=1 ∈ RD

is injective as it is componentwise monotone increasing. In the notation of equation 3: Since u0 = 0
if and only if x = y then the map

RD × RD ∋ (x, y) 7→W1 7→ u1 ∈ RD

is equal to the zero vector if and only if x = y. Since W2 ∈ [0,∞)d then D(x, y) ≥ 0; thus,
D(x, y) = 0 if and only if x = y. We have just shown that D is point-separating (i.e. D(x, y) = 0
if and only if x = y) and in the process have seen that D is positive (i.e. D(x, y) ≥ 0). That is, D
separates points in RD.

Case II: Pseudo-Metric for Positive Time Dimensions if T > 0:
If instead T ∈ N+, then let 0T denote the zero vector in RT , and x, y ∈ RD with x ̸= y. Then,
D
(
(0T , x), (0T , y)

)
= 0. Thus, D does not separate points whenever T > 0. Note that from a

computational perspective, we account for this using masking during training, see Section 3.2 and
Appendix C.

Relaxed Triangle Inequality:
It remains to show that a relaxed triangle inequality holds. Again, we consider the case when T = 0,
with the general case following identically up to a more cumbersome notation. Let x, y ∈ RD, using
the notation of equation 3, for j = 0, . . . , J define the constant

βj
def.
= max{max{sj , lj} − 1, 0}.

Note that, βj = 0 whenever both sj and lj ≤ 1 and it equals to (max{sj , lj}−1) otherwise. Further,
note that if sj = lj > 1, then βj = sj − 1.

By definition of the operator norm of each matrix Wj we have that: for j = 1, . . . , J

∥uj∥ ≤ ∥Wj∥op ∥σsj ,lj (uj−1)∥. (13)

By (Xia, 2009, Example 2.2): for each j = 1, . . . , J we have that

∥σsj ,lj (uj−1)∥ ≤ 2βj ∥uj−1∥. (14)

Upon combining the bounds in equation 13 and equation 14 for each j = 1, . . . , J we arrive at

D(x, y) ≤
J∏

j=1

(
∥Wj∥op 2βj

)
∥u0∥ = 2

∑J
j=1 βj

(
J∏

j=1

∥Wj∥op

)
∥u0∥. (15)

21

Published as a conference paper at ICLR 2025

Again using (Xia, 2009, Example 2.2) we have that

∥u0∥ =

(
d∑

i=1

|σs0,l0(xi)− σs0,l0(yi)|2
)1/2

≤

(
d∑

i=1

(
2β0 |xi − yi|

)2)1/2

=2β0

(
d∑

i=1

|xi − yi|2
)1/2

=2β0 ∥x− y∥.

(16)

Upon combining the estimates in equation 15 with those in equation 16 we find that

D(x, y) ≤2
∑J

j=1 βj

(
J∏

j=1

∥Wj∥op

)
∥u0∥

≤2
∑J

j=1 βj

(
J∏

j=1

∥Wj∥op

)
2β0 ∥x− y∥ (17)

=2
∑J

j=0 βj

(
J∏

j=1

∥Wj∥op

)
∥x− y∥. (18)

Finally, notice that if for each j = 1, . . . , J the matrix Wj is orthogonal and 0 < sj , lj ≤ 1
then equation 18 becomes 1 ∥x− y∥; in which case D is a metric. This concludes the proof.

B.2 EMBEDDING RESULTS

We will routinely use the following ordering.

Definition 9 (Product Order). Let T ∈ N+. The product, or coordinate, order ≲× on RT is defined
for each x, y ∈ RT by

x ≲× y ⇔ xt ≤ yt for all t = 1, . . . , T.

Equivalently, x ≲× y if 1 =
∏T

t=1 Ixt≤yt
. (We use ≲T to refer to the ordering given by the neural

partial order specifically).

A key step in our main results is the ability of neural spacetimes to encode the product order in time
and snowflake metrics in space. This is quantified by the following helper lemma.

Lemma 1 (An Implementation Lemma for Neural Spacetimes). Let α > 0, 1 ≤ p < ∞, and
T,D ∈ N+. Then, there exist maps T : RD+T → RT and D : RD+T × RD+T → [0,∞), with
respective representations equation 3 and equation 4, such that for all x, y ∈ RD+T

(i) Implementation of Product Ordering:

(x)D+1:D+T ≲T (y)D+1:D+T ⇔ T (x)t ≤ T (y)t for t = D + 1, . . . , D + T

(ii) Implementation of Snowflake of the ℓp metric:

D(x, y) = ∥(x)1:D − (y)1:D∥αp

Furthermore, the parametric complexity of T and D are given by:

(a) Depth: Depth(T) = 1 and Depth(D) = 2

(b) Width: Width(T) = T and Width(D) = D

(c) No. Non-zero Parameters: No.Param(T) = T + 2 and No.Par(D) = 2(3 +D).

22

Published as a conference paper at ICLR 2025

Proof of Lemma 1. In what follows we use, for any i ∈ N+, let Ii denotes the i× i identity matrix,
let 0i denote the zero vector in Ri, and we use 1Ri to denote the identity map on Ri.

Step 1 - Implementation of the Product Order

Observe that the product ordering (Definition 9) and the ordering equation 5 coincide if T (x) =
(x)D+1:D+T for all x ∈ RD+T . Consider the map T : RD+T → RT defined for any x ∈ RD+T by

T (x) def.
= ITσ1,1 • (x)D+1:D+T + 0T (19)

is of the form of equation 4 and by construction T (x) = xD+1:D+T for all x ∈ RD+T . By
construction, T has: depth 1, width T , and T + 2 non-zero parameters (the identity matrix diagonal
entries plus s and l).

Step 2 - Implementation of the α-Snowflake of the ℓp-Quasi-Metric
Fix J = 2, set s0 = l0

def.
= 1, s1 = l1

def.
= p, W1 = ID, and s2 = l2

def.
= α/p, 1D

def.
= W2 ∈ R1×D with

(W2)i = 1 for each i = 1, . . . , D. Therefore,

u0
def.
=
(
|σ1,1(xi)− σ1,1(yi)|

)d
i=1

=
(
|xi − yi|

)d
i=1

∴ u1
def.
= IDσp,p • (u0) =

(
|xi − yi|p

)d
i=1

∴ u2
def.
= σα/p,α/p

(
1Du1

)
=

(D∑
i=1

|xi − yi|p
)α

p

= ∥(x)1:D − (y)1:D∥αp .

(20)

Consequentially, the mapD(x, y) def.
= u2, with u2 defined by equation 20, is of the form of equation 3

and satisfies: for each x, y ∈ RD+T

D(x, y) = ∥(x)1:D − (y)1:D∥αp .

Observe that D has depth 2, width d, and 2 · 3 +D +D = 2(3 +D) non-zero parameters.

The following is a more technical version of Theorem 1, which we prove here as it implies the
version found in the main text of our manuscript. Note that so far we have used x, y ∈ RD+T for
our proofs and derivations. Next, we use xu, xv ∈ RN to denote the original node features of two
given nodes u and v. Recall the identification V ∈ v ↔ xv ∈ RN from Section 2.1. x, y used thus
far would correspond to the encoded node features E(xu), E(xv).
Theorem 3 (Universal Spacetime Embeddings). Fix W,N, k ∈ N+, K > 0, and let (P,≲, d)
be a k-point causal metric space with doubling constant K, width W , and feature encoding
P

def.
= {xv}v∈V ⊆ RN . There exists a D ∈ O(log(K)), T def.

= W , an MLP E : RN → RD+T ,
T : RD+T → RT with representation equation 4, and D : RD+T × RD+T → [0,∞) with repre-
sentation equation 3 such that: for each xu, xv ∈ P

(i) Order Embedding: xu ≼ xv if and only if E(xu) ≲T E(xv),

(ii) Metric Embedding: d(xu, xv) ≤ D
(
E(xu), E(xv)

)
≤ O

(
log(K)5

)
d(xu, xv),

Furthermore, there is some D ≤ k such that (ii) can be improved to

d(xu, xv) = D
(
E(xu), E(xv)

)
In either case, we have the following parametric complexity estimates:

(i) Geometric Complexity: Together, D and T are defined by a total of

D + T + 8

non-zero parameters,

(ii) Encoding Complexity: E depends on

O
(
k5/2D4N log(N) log

(
k2 diam(P, d)

sep(P, d)

))
non-zero parameters.

23

Published as a conference paper at ICLR 2025

Consequentially, together, D, T , and E depend at-most on a total of

O
(
D + T + k5/2D4N log(N) log

(
k2 diam(P, d)

sep(P, d)

))
non-zero parameters.

Proof of Theorem 1. Let α ∈ (1/2, 1) and δ ∈ (0, 1], both of which will be fixed retroactively.

Step 1 - Causal Embedding:
By (Dilworth, 1950, Theorem 1.1), (P,≲) has width W only if there exists an order embedding
Ẽ⋆ : P → ({0, 1}W ,≲×). Since the inclusion ι of ({0, 1}W ,≲×) into (RW ,≲×) trivially defines
an order embedding, then E(1) def.

= ι ◦ Ẽ : (P,≲)→ (RW ,≲×) is an order embedding.

Step 2 (Case I) - Metric Embedding - Low-Distortion Case:
By Naor and Neiman’s Assouad embedding theorem, as formulated in (Naor & Neiman, 2012,
Theorem 1.2), there exists an absolute constant c > 0 such that for each 1/2 < α < 1 and 0 < δ ≤ 1,
there exists a bi-Lipschitz embedding E(2)(P, d1−α)→ (RD, ∥ ·∥2) satisfying: for each xu, xv ∈ P

d1−α(xu, xv) ≤ ∥E(2)(xu)− E(2)(xv)∥2 ≤ c
(log(K)

1− α

)1+δ

d1−α(xu, xv) (21)

where4 D ∈ O(log(K)/δ). Equivalently, for each xu, xv ∈ P

d(xu, xv) ≤ ∥E(2)(xu)− E(2)(xv)∥1/(1−α)
2 ≤ c1/(1−α)

(log(K)

1− α

) 1+δ
1−α

d(xu, xv). (22)

Step 2 (Case II) - Metric Embedding - Isometric Case:

Since (P, d) is such that P is finite, i.e. k = #P <∞ then, 5 implies that setting α def.
= γ(k−1)/2 def.

=
log2(1 + 1/(k − 1))/2 ∈ (0, 1] (with the case where α = 1 only being achieved when P is a
singleton) there exists some D̃ ∈ N+ and Ẽ(2) : P → RD̃ such that: for each xu, xv ∈ P

d(xu, xv)
α = ∥Ẽ(2)(xu)− Ẽ(2)(xv)∥2. (23)

Since D def.
= dim

(
span{Ẽ(xu)}xu∈P

)
≤ #P = k and since all D dimensional linear of RD̃

subspaces are isometrically isomorphic to the D-dimensional Euclidean space; then there ex-
ists some linear surjection T : RD̃ → RD which restricts to a bijective isomorphism from
span{Ẽ(xu)}xu∈P to RD (both equipped with Euclidean metrics). Then, the composite map
E(2) def.

= T ◦ Ẽ(2) : (P, dα) → (RD, ∥ · ∥) is an isometric embedding. Consequentially: for each
xu, xv ∈ P we have that

d(xu, xv) = ∥E(2)(xu)− E(2)(xv)∥1/α2 (24)
and we emphasize that D ≤ k.

Step 3 - Interpolation:
Define the “spacetime embedding” E : P → RD+W by: for each xu ∈ P

E(xu)
def.
=
(
E(1)(xu), E(2)(xu)

)
. (25)

We memorize/interpolate E using (Kratsios et al., 2023a, Lemma 20); thus, there exists a ReLU
MLP Ê : RN → RD+W satisfying: for each xu ∈ P we have that

Ê(xu) = E(xu). (26)

Furthermore, (Kratsios et al., 2023a, Lemma 20) guarantees that number of trainable parameters
defining E is

O
(
k5/2D4N log(N) log

(
k2 aspect(P, d)

))
,

4Note that ε def.
= 1− α in the notation of Naor & Neiman (2012).

5The isometric embeddability into a Euclidean snowflake characterizes finite metric spaces; see (Le Donne
et al., 2018, Corollary 2.2).

24

Published as a conference paper at ICLR 2025

where similarly to Krauthgamer et al. (2005) the aspect ratio of the finite metric space (P, d) is
defined by

aspect(P, d)
def.
=

maxxu,xv∈P d(xu, xv)

minxu,xv∈P ; xu ̸=xv
d(xu, xv)

def.
=

diam(P, d)

sep(P, d)
.

Thus, the number of non-zero parameters determining E is at-most

O
(
k5/2D4N log(N) log

(
k2 diam(P, d)

sep(P, d)

))
.

Furthermore, by equation 22 (in case I) and by definition of E , we have that: for each xu, xv ∈ P

d(xu, xv) ≤ ∥π ◦ E(xu)− π ◦ E(xv)∥1/(1−α)
2 ≤ c1/(1−α)

(log(K)

1− α

) 1+δ
1−α

d(xu, xv) (27)

xu ≲ xv ⇔ E(xu) ≲T E(xv). (28)

Retroactively set δ def.
= 1/4 ∈ (0, 1] and α def.

= 3/4 ∈ (1/2, 1). Then, equation 27 and equation 28
become

d(xu, xv) ≤ ∥π ◦ E(xu)− π ◦ E(xv)∥1/(1−α)
2 ≤

(
1024 c4 log(K)5

)
d(xu, xv) (29)

xu ≲ xv ⇔ E(xu) ≲T E(xv). (30)

In case II, instead, equation 24 implies that: for each u, v ∈ V

d(xu, xv) = ∥π ◦ E(xu)− π ◦ E(xv)∥1/α2 (31)

xu ≲ xv ⇔ E(xu) ≲T E(xv). (32)

Step 4 - Encoding Product Order in time and snowflake in space as (T ,D)
In either case, since RD+W is equipped with the product order on its last W (temporal) dimen-
sions and the 1/(1 − α) (resp. 1/α)-snowflake of the Euclidean (ℓ2) metric on its first D (spatial)
dimension, then the conditions for Lemma 1 are met. Applying Lemma 1 concludes the proof.

Proof of Proposition 3. Set W ∈ {1, 2} and D ∈ N+. By definition, of the order on RD+W , given
in Lemma 1 (i), a spacetime embedding E : P → RD+W exists if and only if p ◦ E : P → RW is
an order embedding into (RW ,≲×) where ≲× is the product order and p : RD+W ∋ (xi)

D+W
i=1 →

(xi)
W
i=1 ∈ RW is the canonical projection. By (Baker et al., 1970, Theorem 6.1) an order embedding

of (P,≲) into (R2,≲×) exists if and only if (P,≲) has a planar Hasse diagram.

Proof of Theorem 2. Step 1 - Time Embedding
Since the Hasse diagram of (P,≲) has been assumed to be planar, then (Baker et al., 1970, Theorem
6.1) implies that there exists an other embedding

E(1) : (P,≲)→ (R2,≲×).

Step 2 - Spatial Embedding
Since we have assumed that the Hasse diagram of (P,≲) is planar, then we may instead use (Rao,
1999, Theorem 9) to deduce that there exists a D ∈ N+ and an injective map E(2) : P → RD such
that: for each xu, xv ∈ P

1

c
√
log(k)

dH(xu, xv) ≤ ∥E(2)(xv)− E(2)(xu)∥2 ≤ dH(xu, xv), (33)

where c > 0 is an absolute constant. Resealing E(2) by a factor of c
√
log(k), and multiplying

across equation 33 by c
√
log(k), we find that: for each xu, xv ∈ P

dH(xu, xv) ≤ ∥E(2)(xv)− E(2)(xu)∥2 ≤ c
√
log(k) dH(xu, xv). (34)

25

Published as a conference paper at ICLR 2025

Furthermore, by remark at the beginning of (Rao, 1999, Section 4) by the Johnson-Lindenstrauss
lemma, as formulated in (Dubhashi & Panconesi, 2009, Theorem 2.1), one may take k def.

= #P an in-
cur an additional factor of c̃

√
log(k), for an absolute constant c̃ > 0, in the distortion in equation 34;

that is find that: for each u, v ∈ P

dH(xu, xv) ≤ ∥E(2)(xv)− E(2)(xu)∥2 ≤ C log(k) dH(xu, xv), (35)

where C def.
= cc̃ > 0. Set p def.

= 1 and recall that ∥ · ∥2 ≤ ∥ · ∥1 ≤ C̃
√
log(k)∥ · ∥2 on RC̃ log(k), for

any C̃ > 0. Thus, equation 35 implies that: for each xu, xv ∈ P we have

dH(xu, xv) ≤ ∥E(2)(xv)− E(2)(xu)∥p1 ≤ C ′ log(k)2 dH(xu, xv), (36)

where C ′ def.
= CC̃ > 0 and p def.

= 1.

Step 3 - Interpolation Embedding
Pick some x⋆ ∈ RD+2 \ [∪2i=1 E(i)(P)]. Since P ⊂ RN then consider the map E : RN → RD+2

defined for each x ∈ RN by

E(x) def.
=

{(
E(1)(x), E(2)(x)

)
if x ∈ P

x⋆ if x ̸∈ P.

We memorize/interpolate E using (Kratsios et al., 2023a, Lemma 20) over the finite set P . Whence,
there exists a ReLU MLP Ê : RN → RD+W satisfying: for each xu ∈ P

Ê(xu) = E(xu). (37)

Again, as in the proof of Theorem 1, (Kratsios et al., 2023a, Lemma 20) guarantees that number of
trainable parameters defining E is

O
(
k5/2D4N log(N) log

(
k2 aspect(P, dH)

))
,

where, in this case, aspect ratio of the finite metric space (P, dH) is defined by

aspect(P, dH)
def.
=

maxxu,xv∈P dH(xu, xv)

minxu,xv∈P ; xu ̸=xv
dH(xu, xv)

def.
=

diam(P, dH)

sep(P, 1)
= diam(P, dH),

where we used the fact that the minimal edge weights between adjacent distance nodes are equal to
1 in an unweighted graph. Consequentially, the number of non-zero parameters determining E is

O
(
k5/2D4N log(N) log

(
k2 diam(P, dH)

))
.

Step 4 - Encoding Product Order in time and snowflake in space as (T ,D)

Since RD+2 is equipped with the product order on its last two (time) dimensions and the p def.
= 1/α-

snowflake of the Euclidean (ℓ2) metric on its first D (space) dimension, then the conditions for
Lemma 1 are met. Applying Lemma 1 concludes the proof.

C COMPUTATIONAL IMPLEMENTATION OF NEURAL SPACETIMES

In this appendix, we provide an extended discussion and additional details regarding the computa-
tional implementation of neural spacetimes. First, we explain what makes an activation function
fractalesque, followed by an analysis of the behavior of our proposed activation function for neural
(quasi-)metrics and neural partial orders. Moreover, we provide an algorithmic description of the en-
tire pipeline, extend the discussion on causality loss enforcement and time embeddings, and propose
optimization strategies at both the local and global geometry levels. Additionally, we explore po-
tential classical algorithms for computing the optimal embedding dimensions, weight initialization
strategies for the networks, and the algorithmic differences between neural snowflakes and neural
(quasi-)metrics.

26

Published as a conference paper at ICLR 2025

C.1 WHAT MAKES AN ACTIVATION FUNCTION FRACTALESQUE?

The terminology snowflake arises as follows. Consider the activation function σ : R → R given by
σ(x) = |x|α and set α = log(4)/ log(3). Then, dα(x, y)

def.
= σ(|x−y|) defines a metric on R and the

metric space (R, dα) is isometric to the (von) Koch snowflake fractal (Figure 4) X ⊂ R2 endowed
with the distance obtained by restriction of the Euclidean distance on R2 to X . Here, α is chosen
such that (X , dα) has positive and finite α-Hausdorff measure.

(a) (b) (c)

Figure 4: Koch snowflake with increasing number of refinement iterations from left to right.

Indeed, for any general α ∈ (0, 1) one can show that dα defines a metric on R with the property
that any line segment has infinite length, see Semmes (1996). Thus, intuitively, the snowflake space
(R, dα) contains infinitely more space to place points in while also maintaining a similar geometry
to the Euclidean line; see e.g. (Acciaio et al., 2024, Lemma 7.1). See Tyson & Wu (2005) for
an intrinsic characterization of metric spaces which arise as snowflakes of a subset of a (possibly
multidimensional) Euclidean space.

More generally, consider a continuous activation function σ : R → R . Since σ is continuous and
[0, 1] is compact then σ admits a modulus of continuity ω : [0,∞) → R on [0, 1]; i.e. for each
x, y ∈ R

|σ(x)− σ(y)| ≤ ω(|x− y|). (38)
We think of σ as being fractalesque if it is sub-Hölder and non-Lipschitz near 0. That is, there is an
α ∈ (0, 1) (note that α < 1) and some L > 0, such that the right-hand side of equation 38 can be
bounded above as

|σ(x)− σ(y)| ≤ ω(|x− y|) ≤ L |x− y|α. (39)
Thus, if the upper-bound in equation 39 holds for an activation function σ, e.g. our snowflake acti-
vation function defined in equation 11, then the Euclidean distance between points in the image of
the componentwise application of σ are comparable to those of the snowflaked space (Rd, ∥ · ∥α);
making it fractalesque.

C.1.1 THE ACTIVATION FUNCTION IN EQUATION 2

In this work, we leverage fractalesque activation functions, which exhibit different training dynamics
from typical activation functions used in artificial neural networks. We aim to visualize this type of
activations and to gain an intuitive understanding of their nature.

Neural spacetimes leverage the following equation:

σs,l(x)
def.
=

{
sgn(x) |x|s if |x| < 1

sgn(x) |x|l if |x| ≥ 1,

where the sign function sgn returns 1 for x ≥ 0 and −1 for x < 0. Both neural (quasi-)metrics and
neural partial orders in neural spacetimes implement variations of this expression.

We visualize the activation using different values for s and l in Figure 5a. As we can see from
the plot, the function is antisymmetric about the y-axis, monotonically increasing, and behaves
differently depending on the magnitude of the input. The network can learn to optimize s and l
alongside linear projection weights, which can route inputs to different regions of the function, to
model different scales independently.

27

Published as a conference paper at ICLR 2025

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

4

3

2

1

0

1

2

3

4

s,
l(x

)

s = 0.2, l = 0.5
s = 0.3, l = 1
s = 0.5, l = 2
s = 1.2, l = 1.5

(a) Neural (quasi-)metric activation
function used for spatial embeddings
(equation 2).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

2

4

6

8

10

12

14

′ s,
l(x

)

s = 0.2, l = 0.5
s = 0.3, l = 1
s = 0.5, l = 2
s = 1.2, l = 1.5

(b) Neural (quasi-)metric activation
function derivative.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

2

1

0

1

2

s,
s(x

)

s = 0.1
s = 0.5
s = 1
s = 1.5
s = 2

(c) Activation function used by neural
partial order without LeakyReLU.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.5

0.0

0.5

1.0

1.5

2.0

s,
s(L

ea
ky

Re
LU

(x
))

s = 0.1
s = 0.5
s = 1
s = 1.5
s = 2

(d) Activation function used by neural
partial order (equation 4).

Figure 5: NST activation visualizations.

In Figure 5b we plot a finite difference approximation of its derivative. The derivative rapidly in-
creases for absolute values of the input near 0 for exponents s < 1, meaning it has a very high second
derivative around these values. This can indirectly destabilize training. Moreover, the absolute value
of the derivative itself is also large. This can easily make training unstable as well, especially if we
compose this function with itself over multiple layers; when computing backpropagation using the
chain rule, the gradients can easily explode.

In the case of the neural partial order, we implement a variation of the activation which is not
able to distinguish between small and large scales since s = l. Although this would be theoretically
enough, and corresponds to the activation in Figure 5c, we empirically found it to be slow at training.
Instead, we compose the fractalesque activation with a LeakyReLU (refer back to equation 4), which
we find aids optimization and accelerates learning. As we can see in Figure 5d, this results in a clear
difference in the behavior of the function on the negative and positive axes of the input. By changing
the exponential coefficient, which is learned by gradient descent, the network can substantially alter
the behavior of the activation. As before, for exponential coefficients smaller than 1, this activation
can lead to instabilities for small input values. For s = 1 we recover LeakyReLU.

Based on these observation we restrict all activations to learn s and l coefficients greater than 1
only. These allows us to use fractalesque activations while restristing the functions to behave more
similarly to activations used in the literature such as ReLU, LeakyReLU or SiLU functions.

C.2 ALGORITHMIC DESCRIPTION

We complement the mathematical descriptions of neural spacetimes in Section 3 with the following
algorithm summaries. As discussed in the main text, let N ∈ N+ be the dimensionality of the
feature vectors xu, xv ∈ RN associated with nodes u, v ∈ V , where V represents the set of nodes
of the digraph GD = (ED, V,WD). Fix a space dimension D ∈ N+ and a time dimension T ∈ N+.
A neural spacetime is a learnable triplet S = (E ,D, T), where:

• E : RN → RD+T is an encoder network (MLP),

• D : RD+T × RD+T → [0,∞) is a learnable quasi-metric on RD, and

• T : RD+T → RT is a learnable partial order on RT .

28

Published as a conference paper at ICLR 2025

In particular, we implement D and T as two distinct artificial neural networks inspired by neural
snowflakes, which process the space and time dimensions of encoded feature vectors x̂u, x̂v

def.
=

E(xu), E(xv) ∈ RD+T in parallel.

Algorithm 1: Neural (quasi-)metric, D
Require: x̂u, x̂v ▷ Two Encoded Node Features Vectors

return suv ▷ Distance
u0 ← |σs0,l0 • (x̂u)1:D − σs0,l0 • (x̂v)1:D|
For j = 1 to J
uj ←Wjσsj ,lj • (uj−1)

end
suv ← uJ

Algorithm 2: Neural Partial Order, T
Require: x̂u ▷ Encoded Node Feature Vector

return tu ▷ Temporal Encoding
z0 ← (x̂u)D+1:D+T

For j = 1 to J
zj ← Vjσs̃j ◦ LeakyReLU •(zj−1) + bj

end
tu ← zJ

Algorithm 3: Neural Spacetime, S = (E ,D, T) (Forward Pass)
Require: xu, xv ▷ Two Node Features Vectors

return suv, tu, tv ▷ Distance and Temporal Encodings
x̂u, x̂v ← E(xu), E(xv) ▷ Enconde Feature Vectors
suv ← D(x̂u, x̂v) ▷ Compute Distance
tu, tv ← T (x̂u), T (x̂v) ▷ Apply Temporal Encoding

C.3 CAUSALITY LOSS AND TIME EMBEDDING

In Section 3.2 we introduced the procedure used to optimize our neural spacetime model. The
metric embedding in space is relatively simple an analogous to previous works (Borde & Kratsios,
2023; Kratsios et al., 2023b). In this appendix we expand on the computational approach used for
embedding causality and optimizing the time embedding.

The causality loss is given in the main text by:

LC
uv

def.
= AuvL∗

C

(T∑
t=1

SteepSigmoid(T (x̂u)t − T (x̂v)t)
)
,

with SteepSigmoid(x) = 1
1+e−10x (the value 10 was found experimentally, making the function too

steep can lead to training instabilities), and where L∗
C slightly modifies the expression (equation 40):

T∑
t=1

SteepSigmoid(T (x̂u)t − T (x̂v)t).

For the sake of understanding, let us focus on the equation above first.

SteepSigmoid(x)→ 0 as x→ −∞.

29

Published as a conference paper at ICLR 2025

In particular, SteepSigmoid(x) tends to 0 faster than Sigmoid(x) as x → −∞ (see Figure 6). In
asymptotic notation:

lim
x→−∞

SteepSigmoid(x)

Sigmoid(x)
= 0.

Importantly, SteepSigmoid (T (x̂u)t − T (x̂v)t) ≈ 0∀ (T (x̂u)t − T (x̂v)t) < 0 even if
|T (x̂u)t − T (x̂v)t| is small. As discussed in Section 3.2, the loss for two causally connected events
u ≼ v in the first neighborhood of each other (Auv = 1) is minimized when x̂u ≲T x̂v is satis-
fied (equation 5).

In our mathematical formulation, the exact magnitude of the negative difference is not important.
At first glance, a more straightforward way of imposing this condition is to use ReLU activation
functions instead. However, these are discontinuous and lead to unstable training, which we verified
experimentally. Hence, we want a continuous function that is easy to optimize and reaches zero
quickly as the partial order is satisfied. Remember that we are optimizing the distance loss for
the spatial component of the spacetime embedding and the time embedding using the causality
loss simultaneously. If the causality loss does not reach zero quickly enough, we will be wasting
computation trying to make the difference between partial embeddings more negative for no reason
and, as a consequence, failing to further optimize the metric distortion of the embedding when we
have already satisfied causality.

Finally, to ensure that the causality loss provides good gradients while being zero as soon as the
partial order is satisfied we use the following expression, which we converged to empirically and
that satisfies all our requirements:

LC
uv

def.
= Auv

(T∑
t=1

SteepSigmoid(T (x̂u)t − T (x̂v)t)
)
× (1− TotalCorrect), (40)

where the second term is not differentiable but makes the loss zero when all the directed edges have
been correctly embedded. To compute this we can indeed use the ReLU function:

TotalCorrect
def.
=

∑uM

u=u1

∑vM
v=v1

Auv · I
(∑T

t=1 ReLU(T (x̂u)t − T (x̂v)t) = 0
)

|ED|
,

where the expression in the enumerator counts how many times the function evaluates to zero for
connected nodes.

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
SteepSigmoid

Figure 6: Comparison between (standard) Sigmoid and SteepSigmoid function.

30

Published as a conference paper at ICLR 2025

C.4 HOW TO THEORETICALLY ENFORCE THE GLOBAL CAUSAL GEOMETRY

In Section 3.2, we discuss that for practical purposes, we only focus on encoding local geometry,
which in turn optimizes the causal geometry of the neural spacetime implicitly for causally con-
nected events due to transitivity. For anti-chains, the no causality condition will be satisfied with
high probability, especially as the number of time dimensions increases. For completeness, here we
provide a loss function to enforce the global causal geometry of DAGs if the causal connectivity in
the input geometry was easily computable. Note that for large graphs, this becomes very computa-
tionally expensive since we need to verify that for anti-chains, there is no path between those two
given nodes.

LC
uv

def.
= A′

uv

(T∑
t=1

ReLU(T (x̂u)t − T (x̂v)t)
)

︸ ︷︷ ︸
Check: Causality

+Buv

(
min
t

(
ReLU(ε+ T (x̂v)t − T (x̂u)t)

))
︸ ︷︷ ︸

Check: No Causality

,

(41)

where B
def.
= (I(u�≼v∧v�≼u))uv with entries Buv for two events u and v, which can be deduced from

A′, and where ε > 0 is a margin. A′
uv in this case is not the adjacency matrix, but a mask which is 1

for causally connected nodes or events. Note that here unlike in the main text we are not restricting
causality to the first hop. Also, B is symmetric: Buv = Bvu.

The loss above enforces causal connectivity and lack of causal connectivity. Both x̂u��≲
T x̂v and

x̂v��≲
T x̂u must be satisfied by our representation for anti-chains. T > 1 is required, otherwise it is not

possible to avoid causality in at least one direction. In the simplest case, when T = 2 and t ∈ {t1, t2}
the following must be satisfied if we associate x̂u with u and x̂v with v: T (x̂v)t1 > T (x̂u)t1 and
T (x̂u)t2 > T (x̂v)t2 , or T (x̂v)t2 > T (x̂u)t2 and T (x̂u)t1 > T (x̂v)t1 . To satisfy the no causality
condition when T > 2, as long as one of the time dimensions breaks ≲T in equation 5 it suffices.
ε would be included in this hypothetical optimization objective to avoid the collapse of the encoder
network to a single embedding. Lastly, we would like to highlight that this causality loss should
be optimized alongside a distance loss based on the graph geodesic distance instead of the local
distance. Although this is a theoretical exercise, in practice it may be best to substitute ReLU with
SteepSigmoid for optimization purposes as in Section C.3.

C.5 POTENTIAL CLASSICAL ALGORITHMS TO COMPUTE SPACE AND TIME DIMENSIONS

Theorem 1 shows that the number of time dimensions should be at least equal to the width of the
poset being embedded by the NST. In theory, the width of a poset could be computed in polynomial
time (Felsner et al., 2003). Furthermore, for posets with a width of less than 4, there are algorithms
with a runtime of O(n log(n)) (sub-quadratic time) that can detect if the poset has a width of
at most 4. Nevertheless this theoretical results become impractical for large graphs. Similarly,
Theorem 1 shows that the required number of spatial dimensions needed to obtain a faithful low-
distortion metric embedding of the graph underlying a poset is determined by its doubling constant.
It is known that an exact computation of this doubling dimension is generally NP-hard Gottlieb &
Krauthgamer (2013). Alternatives algorithms to obtain accurate upper bounds (up to an absolute
constant factor) are also discussed in the literature (Har-Peled & Mendel, 2005), but these are in
general impractical for large DAGs.

C.6 WEIGHT INITIALIZATION AND HANDLING THE ABSENCE OF NORMALIZATION

Weight initialization is important to avoid initial network predictions from shrinking or exploding.
Networks with fractalesque activations are particularly susceptible to this problem, as they use acti-
vations with exponential coefficients. This is not such a prevalent issue if we use the well-established
ReLU activation or its variants (ELU, LeakyReLU, etc.), since this activations only zero out part of
the axis and leave the rest of the transformation linear.

In the original neural snowflake model (equation 10), the matrices A, B, and C are initialized
with weights sampled from a uniform distribution spanning from 0 to 1, which are then normalized
according to the dimensions of each matrix. Specifically, for matrix A, the weights are drawn from
a distribution ranging between 0 and 1/(dA1dA2), where dA1 represents the number of rows and

31

Published as a conference paper at ICLR 2025

dA2 represents the number of columns of matrix A. We follow the same approach to initialize W in
equation 3. While better initialization alternatives may be possible, it was noted previously in (Borde
& Kratsios, 2023) that drawing the weights from a normal Gaussian or using Xavier initialization
can lead to instabilities and exploding numbers in the forward pass. We also observe that this
initialization technique is important to avoid the metric prediction becoming either too small or too
large when making the network deeper since we cannot naively apply normalization layers inside
our parametric representation of the metric. Additionally, we find that neural (quasi-)metrics are
better than the original neural snowflakes in maintaining the same order of magnitude in its distance
prediction as the number of layers is increased.

C.7 NEURAL SNOWFLAKES VS NEURAL (QUASI-)METRICS

Next, we discuss similarities and differences between the original neural snowflake and neural
(quasi-)metrics. We first provide an algorithmic description of neural snowflakes, which can be
used to compare against that presented in Appendix C.2 for the neural (quasi-)metric model.

Algorithm 4: Neural Snowflake
Require: x̂u, x̂v ▷ Two Node Features Vectors

return sij ▷ Distance similarity measure
u0 ← ||x̂u − x̂v||2 ▷ Euclidean Distance
For j = 1 to J
ûj−1 ← Ajuj−1 ▷ Linear Projection
Σj ← ψûj−1 ▷ Snowflake Activation
uj ← BjΣjCj ▷ Linear Projections

end
sij ← u

1+|p|
J ▷ Quasi-metric

Embedding Experiments. In terms of experiments, generally, we find that neural (quasi-)metrics
have a smoother optimization landscape. They tend to converge faster for a low number of epochs,
and in the case of snowflakes, we experimentally observed sudden drops in MSE loss, similar to
those reported in Appendix I of (Borde & Kratsios, 2023). As shown in Section D.1, the neural
(quasi-)metric construction performs better at tree embedding. What we observed is that if trained
for a sufficient duration, snowflakes will eventually find a good local minimum. On the other hand,
our new model seems more reliable in terms of optimization and achieves better performance for
lower epochs.

Optimizing exponents. In Equation 11, a and b are in principle presented as learnable compo-
nents via gradient descent. However, in practice, exponents can be unstable to optimize via back-
prop (Borde & Kratsios, 2023). The original neural snowflake fixes a = b = 1, to avoid optimization
issues. Nevertheless note that p, which controls the quasi-metric in Equation 10 is indeed optimized.
Optimizing exponents closer to the final computations of the network is in general more stable. We
hypothesize that this could be due to the fact that there are less chain-rule multiplications, reducing
the likelihood of gradient explosion. We observe similar behaviour for neural (quasi-)metrics, note
that our activation function relies on learning the exponents (equation 2). In general we find that we
can learn the exponents for all layers in this configuration. But we also experimented with trying
to approximate fractal metrics and observed that under some extreme cases it may be better to only
optimize the exponents of the last layer for stability.

D EXPERIMENTAL DETAILS

In this appendix we expand on the experimental procedure used to obtain the results presented
in the main text in Section 4. Additionally, we present more validation experiments, including
undirected tree embeddings, synthetic DAG embeddings with different metrics and varying levels of
connectivity, and large DAG citation network embeddings.

32

Published as a conference paper at ICLR 2025

D.1 UNDIRECTED TREE EMBEDDING

Overview of Results for Preliminary Undirected Embeddings. Before proceeding to DAGs, fol-
lowing Kratsios et al. (2023b), we first test the spatial component of the NST model, on embedding
trees and compare it to Euclidean embeddings implemented by an MLP and to hyperbolic embed-
dings via HNNs Ganea et al. (2018). We use the same training procedure as in Kratsios et al. (2023b)
and perform experiments for both binary and ternary trees. In the case of the snowflake geometry,
inputs are mapped using an MLP, and the metric induced by the tree structure is learned by a neural
(quasi-)metric with 4 layers operating on the embedding space dimensionality. We measure dis-
tortion as the ratio between true and predicted distances. Consistent with the theoretical results
in (Gupta, 2000), we find that in general, the difference in average distortion between metric spaces
is not as pronounced as the maximum distortion since most metric spaces are ”treelike” on average.
Indeed, we find that our proposed model better restricts the maximum distortion and that it is able
to achieve an average distortion of 1.00 even with an embedding space of dimension 2 only. For
completeness we also test the neural snowflake model in the same task, which although it is able to
minimize the MSE loss, the (max) distortion is very high. Additional discussion comparing neural
snowflakes and neural (quasi-)metrics can be found in Appendix C.7.

Table 3: Tree Embedding distortion leveraging Euclidean, Hyperbolic, Neural Snowflake and Neural
(Quasi-)metric spaces.

Tree Type Embedding dim Geometry Avg Distortion St dev Distortion Max Distortion MSE

Binary

2

Euclidean 1.66 3.53 1224.17 26.27
Hyperbolic 1.04 1.61 402.52 12.76

Neural (Quasi-)Metric 1.00 0.23 3.09 10.09
Snowflake 1.01 3.01 2261.35 9.47

4

Euclidean 1.15 0.68 159.74 10.19
Hyperbolic 1.00 0.17 11.03 4.14

Neural (Quasi-)Metric 1.00 0.19 3.87 4.88
Snowflake 1.00 0.65 539.71 5.92

Ternary

2

Euclidean 1.69 3.17 602.96 11.55
Hyperbolic 1.09 1.23 135.81 5.55

Neural (Quasi-)Metric 1.00 0.20 6.33 3.34
Snowflake 1.01 4.78 4017.99 3.64

4

Euclidean 1.17 0.82 185.73 4.82
Hyperbolic 1.00 0.15 16.56 1.37

Neural (Quasi-)Metric 1.00 0.16 4.19 1.72
Snowflake 1.00 0.47 237.88 2.15

Experimental Procedure for Undirected Tree Embeddings. Neural spacetimes provide guaran-
tees in terms of global and local embeddings. In general, from a computational perspective, local
embedding is more tractable. However, in these particular preliminary experiments for metric em-
bedding, similar to (Kratsios et al., 2023b), we embed the full undirected tree geometry. The distance
between any two nodes u, v ∈ V simplifies to the usual shortest path distance on an unweighted
graph

dT (u, v) = inf
{
i : ∃ {v, v1}, . . . {vi−1, u} ∈ E

}
. (42)

Using the expression above, we compute the tree induced graph geodesic between nodes. We work
with both binary and ternary trees with all edge weights being equal to 1. To find all-pairs shortest
path lengths we use Floyd’s algorithm (Floyd, 1962). Note that Floyd’s algorithm has a running time
complexity of O(|V |3) and running space of O(|V |2). This makes it not scalable for large graphs.

The networks receive the xu and yu coordinates of the graph nodes in R2 and are tasked with map-
ping them to a new embedding space which must preserve the distance. An algorithm is employed to
generate input coordinates, mimicking a force-directed layout of the tree. In this simulation, edges
act as springs, drawing nodes closer, while nodes behave as objects with repelling forces, similar
to anti-gravity effects. This process continues iteratively until the positions reach equilibrium. The
algorithm can be replicated using the NetworkX library and the spring layout for the graph.

The networks need to find an appropriate way to gauge the distance. We adjust the network parame-
ters by computing the Mean Squared Error (MSE) loss, which compares the actual distance between
nodes given by the tree topology, dtrue, to the distance predicted by the network mappings, dpred:

33

Published as a conference paper at ICLR 2025

Loss = MSE(dtrue, dpred).

For the Multi-Layer Perceptron (MLP) baseline, the predicted distance is calculated as:

dpred = ∥MLP(xu, yu)−MLP(xv, yv)∥2,

where (xu, yu) and (xv, yv) represent the coordinates in R2 of a synthetically generated tree. On
the other hand, for the HNN, we utilize the hyperbolic distance between embeddings with fixed
curvature of -1:

dpred = d−1(HNN(xu, yu),HNN(xv, yv)).

In the case of HNNs, we employ the hyperboloid model, incorporating an exponential map at the
pole to map the representations to hyperbolic space, as detailed in Borde et al. (2023b). Notably,
we do not even need any hyperbolic biases to discern the performance disparity between MLP and
HNN models (Kratsios et al., 2023b).

Note that in the previous two baselines, the geometry of the space is effectively fixed, and we only
optimize the location of the node embeddings in the manifold. In the case of neural snowflakes,
the metric is also parametric and optimized via gradient descent. This means that we change both
the location of events in the manifold and the geometry of the manifold itself during optimization.
Following (Borde & Kratsios, 2023), the neural (quasi-)metric model also leverages the encoder E
which is implemented as an MLP (same as in the Euclidean baseline). The predicted distance is

dpred = dNQM (MLP(xu, yu),MLP(xv, yv)),

where dNQM is parametrized by a neural (quasi-)metric network. Importantly, feature vectors are
passed independently to the metric learning network (unlike in (Borde & Kratsios, 2023) where an
intermediate Euclidean distance representation is fed instead).

In terms of hyperparameters, we generate trees with 1000 nodes and embed them into features of
dimensionality 2 and 4 in different experiments. We employ a batch size of 10,000 to learn the
distances, train for 10 epochs with a learning rate of 3 × 10−3 and AdamW optimizer, and apply
a max gradient norm of 1. All encoders have a total of 10 hidden layers with 100 neurons and a
final projection layer to the embedding dimension. The neural (quasi-)metric has a total of 4 layers,
with a hidden layer dimension equal to the event embedding dimensions, that is, either 2 or 4, and
the last layer projects the representation to a scalar, i.e., the predicted distance. We use the same
configuration for the snowflakes.

D.2 METRIC DAG EMBEDDING

In this appendix, we provide additional details on the synthetic weighted DAG embedding exper-
iments described in Section 4, focusing on local embedding. Similar to the previous setup, the
networks receive the xu and yu coordinates of the graph nodes in R2 and are tasked with map-
ping these coordinates to a new embedding space that preserves both the distance and directionality
of the generated DAG. We train the embedding following Section 3.2. As discussed in the main
text, we optimize the spacetime embedding by running gradient descent based on both a distance
and a causality loss. The procedure used to train the neural (quasi-)metric in terms of the spatial
embedding is identical to that described in Appendix D.1.

We use the Graphviz dot layout algorithm to generate the input coordinates, positioning the
nodes from top to bottom according to the directionality of the DAG. This process can be replicated
using the NetworkX library. Additionally, the coordinates are normalized to lie between 0 and
1. The DAG is constructed from a random graph where each node has a 0.9 probability of being
connected to other nodes, defining the directionality and connectivity of the DAG (see Figure 7).
The metric distance is then calculated based on the spatial coordinates of the nodes after they have
been embedded in the plane. The specific distance functions used in the experiments are listed in
Table 1 and are based on (Borde & Kratsios, 2023).

34

Published as a conference paper at ICLR 2025

In terms of hyperparameters, we generate DAGs with 50 nodes and embed them into spacetimes of
D = T = 2, 4, 10. The 50 nodes induce 502 possible distances. We do not apply mini-batching;
we optimize all of them at the same time. We train for 5,000 epochs with a learning rate of 10−4

using the AdamW optimizer, and apply a max gradient norm of 1. The initial encoders have a total
of 10 hidden layers with 100 neurons each and a final projection layer to the embedding dimension
D + T . The neural (quasi-)metric and the neural partial order have a total of 4 layers, each with a
hidden layer dimension of 10.

0.49

0.2
9

0.35

0.60

0.67

0.
65 0.91

0.74

0.
84

0.63

0.53

0.
35

0.
45

0.7
1 0.60

0.7
5

0.8
9

0.21

0.61

0.65

0.47
0.59

0.65

0.44

0.48

0.
35

0.46

0.
56

0.12

0.48 0.39

0.49

0.65

0.45 0.34

0.42

0.15

0.
25

0.65

0.21

Figure 7: Example DAG with 10 nodes and using the first metric in Table 1.

D.2.1 VARYING GRAPH CONNECTIVITY

We conduct additional experiments to analyze the effect of graph topology on the embedding results.
Specifically, we fix the synthetic metric to ∥x−y∥0.5 log(1+∥x−y∥)0.5 and experiment with graphs
having varying connection probabilities, which control the sparsity of the random DAGs, i.e., their
connectivity. Across all geometries, we observe that as the DAG becomes more sparsified, its direc-
tionality is captured less accurately. However, it also becomes easier to achieve lower distortion, as
expected, due to the reduction in the number of edges to encode, see Table 4.

Table 4: Embedding results for arxiv citation network.

Neural Spacetime Minkowski De Sitter

Connectivity E
m

be
d.

D
im

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

90%
2 1.09 ± 0.24 3.18 1.00 2.86 ± 5.22 72.66 0.99 ∞± ∞ 0.99
4 1.02 ± 0.06 1.51 1.00 1.70 ± 2.77 71.09 0.99 -4.33 ± 816.47 10,235.71 0.99

10 1.00 ± 0.03 1.24 1.00 1.21 ± 1.33 35.58 0.99 288.17 ± 9,794.97 324,027.5 0.99

50%
2 1.14 ± 0.42 3.94 1.00 3.35 ± 10.44 215.65 1.00 -238.02 ± 5,432.33 13,879.30 0.99
4 1.01 ± 0.07 1.38 1.00 1.27 ± 0.82 12.45 1.00 -12.61 ± 2,253.31 43,124.32 0.99

10 1.00 ± 0.18 1.06 1.00 1.02 ± 0.19 4.03 1.00 -53.30 ± 1,600.69 18,756.20 0.99

10%
2 1.00 ± 0.30 2.65 0.98 1.01 ± 2.41 15.96 0.93 -1.18 ± 19.43 69.29 0.92
4 1.00 ± 0.01 1.01 1.00 1.00 ± 0.02 1.03 0.96 1.09 ± 14.32 130.62 0.91

10 1.00 ± 0.00 1.00 0.98 1.00 ± 0.02 1.08 0.96 2.39 ± 20.30 176.60 0.93

D.3 REAL-WORLD NETWORK EMBEDDING

WebKB datasets. In these datasets (Rozemberczki et al., 2021), nodes represent web pages, while
edges denote hyperlinks between them. Each node’s features are given by the bag-of-words repre-
sentation of its web page. We summarize the datasets in Table 5.

As discussed in the main text in Section 4, these datasets are not pure DAGs. As a preprocessing
step, we remove self-loops. However, we do not remove cycles, nor do we further process edge
directionality. This explains why in Table 1, it is not possible to get a perfect embedding in time.
The local metric between nodes is computed as the cosine similarity between the node feature em-
beddings (since the datasets do not have edge weights). Note that here we do not embed graphs in
the plane; we already have bag-of-words features that can be passed to the encoder, unlike in the

35

Published as a conference paper at ICLR 2025

Table 5: Statistics of WebKB datasets

Name #nodes #edges
Cornell 183 298
Texas 183 325
Wisconsin 251 515

synthetic DAG experiments. In terms of training, the procedure is the same as in Appendix D.2 and
using a learning rate of 10−4.

Table 6: Statistics of Dream5 datasets

Name #nodes #edges
In silico 1,565 4,012
Escherichia coli 1,081 2,066
Saccharomyces cerevisiae 1,994 3,940

Dream5 datasets. The Dream5 datasets (Marbach et al., 2012) were originally introduced as part of
the Network Inference Challenge, where participants were provided with four microarray compendia
and tasked with deducing the structure of the underlying transcriptional (gene) regulatory networks.
Each compendium encompasses numerous microarray experiments, spanning various genetic, drug,
and environmental alterations (or simulations thereof, in the case of the in-silico network). In this
work, instead of focusing on network structure prediction, we test our neural spacetime algorithm
in the context of graph embedding, following the spacetime representation literature (Law & Lucas,
2023; Sim et al., 2021). We embed the graph topology in R2 using Graphviz dot layout
and compute the strength between the connections based on the cosine similarity, since the original
networks do not have weights. In Table 6 we record the number of nodes and edges for each dataset.
Note that these are not pure DAGs either (but it is possible to embed over 99% of the directed edges
correctly, see Table 10). For training, we follow Appendix D.2 with learning rate 10−4.

Ogbn-arxiv Large Citation Graph Embedding. Given that the previous graphs are relatively
small, we conduct an additional experiment on the ogbn-arxiv dataset (Hu et al., 2021), which is
orders of magnitude larger (see Table 7). We use a similar procedure as before: we remove self-
loops to avoid returning similarity scores of 1.0 and also remove edges between nodes whose feature
vectors have a cosine similarity score greater than 0.99. In this particular dataset, we found that some
nodes had almost identical features, which, due to numerical truncation when computing the distance
between nodes, resulted in a distance of zero and led to numerical instabilities. This resulted in 269
rejected edges out of 1,166,243, or 0.02%.

Table 7: Statistics of Ogbn-arxiv dataset

Name #nodes #edges
Arxiv 169,343 1,166,243

We train all models for 40 epochs, using the AdamW optimizer with a learning rate of 10−4 and a
batch size of 10,000. We report the results in Table 8 below. Once again, we observe that, under
the same training conditions, NSTs are superior at embedding compared to their fixed geometry
counterparts. However, we observe a degradation in performance compared to previous experiments
with smaller graphs. Additionally, note that we do not modify the parameter count of the neural
networks.

Table 8: Embedding results for arxiv citation network.
Neural Spacetime Minkowski De Sitter

Dataset E
m

be
d.

D
im

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

D
is

to
rt

io
n

M
ax

D
is

to
rt

io
n

D
ir

ec
tio

na
lit

y

Arxiv 2 1.88 ± 4.37 1,031.11 0.80 4.64 ± 7,322.96 1,811,858.75 0.83 -133.12 ± 16,142.16 1,845,115.5 0.77

36

Published as a conference paper at ICLR 2025

D.4 ADDITIONAL RESULTS

In this appendix, we provide extended tables of the results presented in the main text.

Table 9: DAG embedding results. Embedding dimension D = T = 2, 4, 10.

Neural Spacetime

Metric Embedding Dim Distortion (average ± stand dev) Max Distortion Directionality

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 1.13 ± 0.37 5.82 1.0
4 1.02 ± 0.06 1.34 1.0
10 1.00 ± 0.02 1.28 1.0

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 1.16 ± 0.45 6.21 1.0
4 1.02 ± 0.07 1.75 1.0
10 1.00 ± 0.04 1.47 1.0

1 − 1
(1+∥x−y∥0.5)

2 1.53 ± 1.25 14.20 1.0
4 1.10 ± 0.38 5.81 1.0
10 1.01 ± 0.06 1.63 1.0

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 1.51 ± 1.18 13.55 1.0
4 1.11 ± 0.41 8.92 1.0
10 1.01 ± 0.05 1.31 1.0

1 − 1
1+∥x−y∥0.2+∥x−y∥0.5

2 1.60 ± 1.42 17.07 1.0
4 1.13 ± 0.45 4.44 1.0
10 1.00 ± 0.05 1.44 1.0

Minkowski

Metric Embedding Dim Distortion (average ± stand dev) Max Distortion Directionality

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 2.86 ± 5.22 72.66 0.99
4 1.70 ± 2.77 71.09 0.99
10 1.21 ± 1.33 35.58 0.99

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 6.77 ± 133.68 1669.83 0.99
4 1.70 ± 5.21 77.03 0.99
10 1.19 ± 1.09 25.18 0.99

1 − 1
(1+∥x−y∥0.5)

2 21.89 ± 759.05 18753.57 0.99
4 2.87 ± 20.17 643.71 0.99
10 1.17 ± 1.26 37.42 0.99

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 11.37 ± 114.98 1876.54 0.98
4 2.49 ± 8.72 198.04 0.98
10 1.18 ± 2.49 82.67 0.99

1 − 1
1+∥x−y∥0.2+∥x−y∥0.5

2 20.65 ± 292.90 5471.07 0.96
4 2.83 ± 9.54 153.91 0.98
10 1.13 ± 0.91 28.45 0.99

De Sitter

Metric Embedding Dim Distortion (average ± stand dev) Max Distortion Directionality

∥x − y∥0.5 log(1 + ∥x − y∥)0.5
2 ∞± ∞ 0.99
4 -4.33 ± 816.47 10235.71 0.99
10 288.17 ± 9794.97 324027.5 0.99

∥x − y∥0.1 log(1 + ∥x − y∥)0.9
2 9.40 ± 2226.84 63968.21 0.99
4 174.69 ± 3637.32 115851.88 0.99
10 -10.66 ± 739.71 8997.62 0.99

1 − 1
(1+∥x−y∥0.5)

2 -63.56 ± 4438.15 43424.54 0.94
4 ∞± ∞ 0.94
10 -333.23 ± 8701.18 130111.80 0.94

1 − exp
−(∥x−y∥−1)
log(∥x−y∥)

2 -183.71 ± 9600.71 39648.66 0.94
4 83.04 ± 4313.82 97524.21 0.94
10 418.26 ± 6599.80 150543.73 0.94

1 − 1
1+∥x−y∥0.2+∥x−y∥0.5

2 -542.39 ± 22058.97 114491.45 0.94
4 ∞± ∞ 0.94
10 ∞ ± ∞ 0.94

37

Published as a conference paper at ICLR 2025

Table 10: Embedding results for real-world web page hyperlink graph datasets and gene regulatory
networks.

Neural Spacetime
Dataset Embedding Dim Distortion (avg. ± sdev.) Max Distortion Directionality

Cornell
2 1.00 ± 0.07 1.31 0.93
4 1.00 ± 0.04 1.08 0.94
10 1.00 ± 0.04 1.08 0.94

Texas
2 1.01 ± 0.10 2.27 0.89
4 1.00 ± 0.01 1.05 0.90
10 1.00 ± 0.00 1.00 0.90

Wisconsin
2 1.00 ± 0.10 1.67 0.89
4 1.00 ± 0.04 1.16 0.89
10 1.00 ± 0.04 1.20 0.89

In silico
2 1.06 ± 0.47 18.54 1.00
4 1.00 ± 0.09 1.73 1.00
10 1.00 ± 0.05 1.32 1.00

Escherichia coli
2 1.02 ± 0.45 15.37 1.00
4 1.00 ± 0.06 2.62 1.00
10 1.00 ± 0.05 1.17 1.00

Saccharomyces cerevisiae
2 1.05 ± 0.34 10.18 1.00
4 1.00 ±0.07 1.63 1.00
10 1.00± 0.05 1.57 1.00

Minkowski
Dataset Embedding Dim Distortion (avg. ± sdev.) Max Distortion Directionality

Cornell
2 1.07 ± 0.70 9.43 0.94
4 1.00 ± 0.00 1.01 0.94
10 1.00 ± 0.00 1.00 0.94

Texas
2 1.12 ± 1.73 31.27 0.90
4 1.00 ± 0.00 1.00 0.90
10 1.01 ± 0.01 1.05 0.90

Wisconsin
2 5.07 ± 65.99 1410.03 0.90
4 1.00 ± 0.04 1.19 0.90
10 1.13 ± 0.69 16.28 0.90

In silico
2 105.42 ± 4671.85 209248.72 0.94
4 0.25 ± 54.57 1315.76 0.95
10 1.00 ± 0.05 3.69 0.99

Escherichia coli
2 -4.25 ± 149.61 438.34 0.97
4 1.00 ± 0.01 1.08 0.98
10 1.00 ± 0.01 1.01 0.99

Saccharomyces cerevisiae
2 -2.38 ± 173.57 151.43 0.91
4 1.04 ± 2.25 63.17 0.98
10 1.01 ± 0.02 1.39 0.99

De Sitter
Dataset Embedding Dim Distortion (avg. ± sdev.) Max Distortion Directionality

Cornell
2 -55.83 ± 890.45 3950.88 0.92
4 -20.60 ± 249.49 403.46 0.94
10 0.80 ± 126.26 1543.07 0.93

Texas
2 -0.29 ± 84.42 818.10 0.90
4 42.03 ± 795.51 13939.25 0.90
10 2.60 ± 70.33 1107.60 0.90

Wisconsin
2 2.06 ± 63.46 1291.31 0.89
4 -0.78 ± 27.91 114.24 0.90
10 0.04 ± 215.94 2862.19 0.89

In silico
2 -63.59 ± 1866.69 56626.97 0.92
4 -468.81 ± 33021.14 65289.22 0.92
10 -129.13 ± 9623.30 261531.59 0.93

Escherichia coli
2 34.65 ± 2637.50 119047.23 0.91
4 -2.00 ± 3294.81 130509.59 0.91
10 -8.26 ± 94.57 652.96 0.91

Saccharomyces cerevisiae
2 55.36 ± 3960.09 160278.39 0.90
4 -28.60 ± 1175.67 63086.54 0.90
10 -121.17 ± 7550.16 84724.25 0.91

38

Published as a conference paper at ICLR 2025

D.5 FURTHER CLARIFICATIONS ON EXPERIMENTS USING NEURAL SPACETIME
EMBEDDINGS COMPARED TO FIXED-GEOMETRY BASELINES

In this section, we aim to provide additional intuition to the reader on how NSTs compare to the
fixed-geometry embedding baselines and why we expect them to perform better.

For all experiments, we use a feature encoder that maps the graph node features to the relevant man-
ifold. We assume that the output of the feature encoder is in Euclidean space in all cases. We then
proceed according to the specific geometry. This approach aligns with previous works such as neu-
ral snowflakes (Borde & Kratsios, 2023) and other studies on product manifold embeddings (Borde
et al., 2023b).

Intuitively, one can understand the problem as a two-step process, which in practice is learned jointly
via end-to-end gradient descent. In the first step, the encoder learns to position the graph nodes in
space—that is, it learns to map the original node features to coordinates in the manifold. In the
second step, the distance between points on the manifold is evaluated, either based on a given metric
when the geometry is fixed or by learning the geometry (the metric itself) in a data-driven fashion.

In the cases of Minkowski and De Sitter space, the geometry is not learned but given. More specif-
ically, in Minkowski space, we use the feature outputs of the Euclidean feature encoder, apply a
change in the metric tensor, and recognize that one coordinate has a different signature. In this
particular case, we do not require an exponential map since the space is flat. For De Sitter space,
the situation is similar: only the positioning of points in the manifold is optimized via gradient
descent, while the geometry remains fixed. In terms of implementation and metric calculation,
De Sitter space is a curved manifold, making computations more complicated than for Minkowski
space. We use an embedding approach that avoids exponential maps: we map points into a De Sitter
hyperboloid in a higher-dimensional Minkowski space and compute geodesic distances there. The
geometric operations we utilize include normalizing spatial components, computing the De Sitter
inner product, and handling both timelike and spacelike separations. Additionally, we would like
to highlight that, although the authors in (Law & Lucas, 2023) also use Minkowski and De Sit-
ter spaces, our baselines are more powerful. This is because we employ a neural network feature
encoder to optimize the placement of node embeddings within the manifold

NSTs are intrinsically different in that their geometry is not fixed but rather random at initializa-
tion and parametrized by a neural network that always outputs a pseudo-quasi-metric by construc-
tion. The specific pseudo-quasi-metric it generates is learned during optimization based on the input
graph. Hence, in this case, both the position of the points on the manifold and the geometry of the
manifold itself are learned jointly via gradient descent. For NSTs, we do not need exponential maps
either since the construction is based on warping a norm. During optimization, the inputs are the
graph node features, and the targets are both the distances between nodes (induced by the graph ge-
ometry) and the causality structure (given by the edge directions). Since neural spacetimes are able
to reshape the geometry of the embedding space as a function of the data, they are inherently more
flexible and they are able to embed DAGs with less distortion (the best possible value for distortion
is 1).

D.6 DOWNSTREAM APPLICATION TESTING: NODE CLASSIFICAITION ON EMBEDDED
HETEROPHILIC GRAPHS

Lastly, we evaluate the downstream performance of our encoding approach in transductive node
classification for heterophilic graphs, specifically using the Cornell, Texas, and Wisconsin datasets.
It is important to note that this is not a standard application of NSTs, as their original design aims
to embed DAGs with minimal distortion. NSTs typically use the feature encoder network as an ini-
tial intermediate mapping to a latent space, which is then utilized by the learnable quasi-metric and
learnable partial order to encode distance and directionality respectively. While the neural quasi-
metric takes two node feature vectors as input and outputs a scalar distance value (making it un-
suitable as direct input for a downstream node classification task), the neural partial order operates
pointwise and returns a feature vector. Therefore, we adopt the following approach. First, we train
the complete NST model to encode the original graph into the continuous geometry, simultaneously
optimizing all three networks composing the NST, E , D, and T . Once trained, we use the frozen
feature encoder and neural partial order as pretrained featurizers to encode the original node features
from the dataset at hand. These transformed features are then fed into a downstream network that is
trained as a node-wise classifier. That is, the new node features for the graphs become:

39

Published as a conference paper at ICLR 2025

zv = xv ∥ (x̂v)1:D ∥ tv, where x̂v = E(xv), tv = T (x̂v), (43)

where we have augmented the original features with NST-based features optimized according to the
graph topology. In the equation above xv corresponds to the original features for node v, E and T
are the frozen feature encoder and partial order, which were originally optimized alongsideD. As in
the main text, the subscript in (x̂v)1:D means that we utilize the first D spatial dimensions from the
feature vector, and we use || for concatenation. We use pre-trained checkpoints with D = T = 10.

We display the downstream results in Table 11 below. We experiment with different down-
stream classifiers, including MLPs, GCNs (Kipf & Welling, 2017), GATs (Veličković et al., 2018),
CPGNN-MLPs (Zhu et al., 2021), and CPGNN-Cheby (Zhu et al., 2021; Defferrard et al., 2016).
Note that CPGNN is not just a network but also a framework for training on heterophilic graphs.
It employs an estimator network, such as an MLP or a Chebyshev polynomial-based model, for
prediction. The CPGNN method incorporates estimator pretraining and utilizes a compatibility ma-
trix, which is initialized using the training node labels and the training mask. This matrix is further
refined using the Sinkhorn-Knopp algorithm for initialization. Furthermore, the compatibility ma-
trix is regularized during training through an additional loss term on top of the cross-entropy loss.
We reimplement all baselines and test them on the Cornell, Texas, and Wisconsin datasets using
10-fold splits, based on the masks provided in PyTorch Geometric. Following (Zhu et al., 2021)
we use weight decay of 5× 10−4 for all networks and pretrain the estimators in CPGNN-MLP and
CPGNN-Cheby for 100 steps. All our downstream classifiers use two layers with a ReLU activation
function and are trained with a learning rate of 0.01 for 400 steps using AdamW. We experiment with
varying hidden dimensions—10, 20, 30, and 64—the last of which is the hidden dimension used by
the baselines in (Zhu et al., 2021). In our experiments, we study the effect of adding geometric
node features based on the NST encoding to downstream classifiers. We find that the MLP classifier
achieves the best downstream performance when augmented with NST features, particularly for the
Texas and Wisconsin datasets. For Cornell, the best downstream performance is achieved by the
MLP without NST features, which attains 71% accuracy with a hidden dimension of 64. The coun-
terpart augmented with NST features achieves 70% accuracy, making the difference not particularly
significant. Overall, in Cornell, we observe that adding NST features is especially beneficial for
smaller classifiers with fewer hidden dimensions.

These experiments confirm that the NST has learned meaningful features that can be used by down-
stream classifiers. However, we invite future research in this direction, as this paper primarily fo-
cuses on embeddings, and this appendix is only an initial exploration of the applicability of NSTs to
downstream tasks.

Table 11: Node classification results for heterophilic graphs, including the test accuracy mean and
standard deviation. ✓ denotes that the input features to the downstream classifier consist of the
original graph input features plus the NST features zv = xv ∥ (x̂v)1:D ∥ tv . In contrast, ✗ indicates
that only xv is passed into the model.

Dataset Hidden Dim NST Features MLP GCN GAT CPGNN-MLP CPGNN-ChebNet

Cornell

10 ✓ 0.55 ± 0.09 0.43 ± 0.09 0.48 ± 0.08 0.54 ± 0.05 0.51 ± 0.05
10 ✗ 0.40 ± 0.12 0.43 ± 0.06 0.48 ± 0.07 0.47 ± 0.10 0.46 ± 0.11
20 ✓ 0.61 ± 0.09 0.44 ± 0.09 0.49 ± 0.08 0.51 ± 0.05 0.50 ± 0.10
20 ✗ 0.56 ± 0.11 0.43 ± 0.06 0.49 ± 0.09 0.43 ± 0.11 0.41 ± 0.07
30 ✓ 0.70 ± 0.06 0.44 ± 0.09 0.47 ± 0.09 0.47 ± 0.12 0.52 ± 0.07
30 ✗ 0.70 ± 0.05 0.43 ± 0.07 0.50 ± 0.10 0.42 ± 0.11 0.41 ± 0.11
64 ✓ 0.70 ± 0.07 0.43 ± 0.09 0.50 ± 0.06 0.50 ± 0.08 0.52 ± 0.07
64 ✗ 0.71 ± 0.07 0.43 ± 0.07 0.50 ± 0.08 0.40 ± 0.10 0.40 ± 0.11

Texas

10 ✓ 0.58 ± 0.14 0.58 ± 0.08 0.56 ± 0.09 0.61 ± 0.05 0.62 ± 0.08
10 ✗ 0.41 ± 0.22 0.49 ± 0.08 0.50 ± 0.07 0.63 ± 0.10 0.62 ± 0.10
20 ✓ 0.64 ± 0.07 0.56 ± 0.07 0.54 ± 0.08 0.61 ± 0.06 0.63 ± 0.08
20 ✗ 0.57 ± 0.10 0.49 ± 0.07 0.50 ± 0.10 0.61 ± 0.10 0.61 ± 0.10
30 ✓ 0.72 ± 0.08 0.58 ± 0.08 0.52 ± 0.09 0.61 ± 0.06 0.64 ± 0.06
30 ✗ 0.67 ± 0.09 0.49 ± 0.07 0.52 ± 0.07 0.61 ± 0.10 0.62 ± 0.10
64 ✓ 0.74 ± 0.05 0.55 ± 0.07 0.54 ± 0.06 0.61 ± 0.06 0.68 ± 0.07
64 ✗ 0.68 ± 0.05 0.48 ± 0.07 0.47 ± 0.07 0.57 ± 0.10 0.55 ± 0.11

Wisconsin

10 ✓ 0.62 ± 0.13 0.49 ± 0.05 0.48 ± 0.07 0.48 ± 0.05 0.51 ± 0.08
10 ✗ 0.54 ± 0.16 0.45 ± 0.05 0.46 ± 0.05 0.61 ± 0.03 0.58 ± 0.05
20 ✓ 0.76 ± 0.10 0.50 ± 0.06 0.49 ± 0.08 0.50 ± 0.10 0.52 ± 0.11
20 ✗ 0.70 ± 0.09 0.44 ± 0.06 0.48 ± 0.05 0.60 ± 0.06 0.58 ± 0.05
30 ✓ 0.78 ± 0.06 0.49 ± 0.06 0.47 ± 0.09 0.50 ± 0.08 0.53 ± 0.11
30 ✗ 0.72 ± 0.05 0.44 ± 0.07 0.49 ± 0.08 0.61 ± 0.03 0.57 ± 0.04
64 ✓ 0.81 ± 0.05 0.49 ± 0.06 0.51 ± 0.10 0.51 ± 0.12 0.53 ± 0.13
64 ✗ 0.76 ± 0.08 0.43 ± 0.07 0.49 ± 0.06 0.57 ± 0.04 0.57 ± 0.07

40

	Introduction
	Preliminaries: Directed Graphs, Posets, and Quasi-Metrics
	Causal Structure
	Spatial Structure
	Spacetime Embeddings

	Neural Spacetimes
	Embedding Guarantees
	Computational Implementation

	Experimental Results
	Conclusion
	Additional Background
	Dimension and Size of a Metric Spaces
	Invertible Positive Matrices
	Neural Snowflakes
	Pseudo-Riemannian Manifolds and Lorentzian Spacetimes
	Related Work on Spacetime Representation Learning
	Hyperbolic Spaces as Compared to Neural Spacetime Embeddings

	Proofs
	Properties of Neural Spacetimes
	Embedding Results

	Computational Implementation of Neural Spacetimes
	What makes an Activation Function Fractalesque?
	The activation function

	Algorithmic Description
	Causality Loss and Time Embedding
	How to Theoretically Enforce the Global Causal Geometry
	Potential Classical Algorithms to Compute Space and Time Dimensions
	Weight Initialization and Handling the Absence of Normalization
	Neural Snowflakes vs Neural (Quasi-)Metrics

	Experimental Details
	Undirected Tree Embedding
	Metric DAG Embedding
	Varying Graph Connectivity

	Real-World Network Embedding
	Additional Results
	Further Clarifications on Experiments Using Neural Spacetime Embeddings Compared to Fixed-Geometry Baselines
	Downstream Application Testing: Node classificaition on Embedded Heterophilic graphs

