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ABSTRACT

Large language models (LLMs) often produce inaccurate or misleading con-
tent—hallucinations. To address this challenge, we introduce Noise-Augmented
Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injec-
tion based on the signal-to-noise ratio (SNR) to enhance model robustness. Our
contribution is threefold. First, NoiseFiT selectively perturbs layers identified as
either high-SNR (more robust) or low-SNR (potentially under-regularized) using a
dynamically scaled Gaussian noise. Second, we further propose a hybrid loss that
combines standard cross-entropy, soft cross-entropy, and consistency regularization
to ensure stable and accurate outputs under noisy training conditions. Third, a the-
oretical analysis proposed shows that adaptive noise injection is both unbiased and
variance-preserving, providing strong guarantees for convergence in expectation.
Moreover, empirical results on multiple test and benchmark datasets, demonstrate
that NoiseFiT significantly reduces hallucination rates, often improving or match-
ing baseline performance in key tasks. These findings highlight the promise of
noise-driven strategies for achieving robust, trustworthy language modeling with-
out incurring prohibitive computational overhead. We have publicly released the
fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B,
Hugging Face, and GitHub, respectively, to foster further research, accessibility
and reproducibility.

1 INTRODUCTION

LLMs such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI et al., 2024), built upon transformer
architectures (Vaswani et al., 2017), have revolutionized the field of natural language processing by
achieving state-of-the-art performance on a diverse range of tasks. Despite their impressive capabili-
ties, these models are known to generate content that is often inaccurate or misleading—phenomena
broadly referred to as hallucinations (Ji et al., 2023; Bang et al., 2023; Niu et al., 2024). The risk
of such hallucinations not only arises in specialized domains such as healthcare (Moor et al., 2023)
and finance (Wu et al., 2023), where reliability is paramount, but also extends to a variety of more
general-purpose benchmarks and tasks such as question answering, underscoring the urgency of
developing robust mitigation strategies. Consequently, ensuring the trustworthiness of LLM outputs is
critical, making the reduction of hallucinations both a technical and practical imperative for real-world
adoption.

Recent research has increasingly focused on noise injection as a means to enhance model robustness.
Early work in image restoration demonstrated the efficacy of learning from noisy data (Lehtinen
et al., 2018), and this idea has since been adapted for natural language processing. In the context of
LLM fine-tuning, noise injection techniques have shown promising results. For instance, methods
such as noise perturbation fine-tuning for robust quantization (WANG & Yang, 2025) and the use
of noisy embeddings to improve instruction fine-tuning (Jain et al., 2024) illustrate that controlled
noise can help models generalize better under diverse and challenging conditions. Additional studies
have revealed hidden capabilities of noise injection in reducing overconfidence and mitigating model
biases (Tice et al., 2024; Yadav & Singh, 2023), and even enhancing hallucination detection (Liu et al.,
2025). Complementary evaluation frameworks, including large-scale benchmarks for hallucination
evaluation (Li et al., 2023a) and rigorous instruction-following assessments (Zhou et al., 2023),
further motivate the development of noise-based approaches in addressing LLM shortcomings.
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In light of these advancements, we propose Noise-Augmented Fine-Tuning (NoiseFiT), a novel
framework that integrates adaptive noise injection into the fine-tuning process of LLMs. The key
innovation of NoiseFiT lies in its use of adaptive Gaussian noise injection, which is guided by the
SNR of internal representations, i.e., the ratio of meaningful information to background noise. By
selectively perturbing transformer layers based on the behavior of internal hidden states (Sriramanan
et al., 2024), our approach aims to directly enhance robustness against hallucinations while minimizing
disruption to overall performance. This strategy is further supported by recent studies demonstrating
the benefits of noise regularization and stochastic perturbations in fine-tuning settings (Wang et al.,
2023a; Wu et al., 2020; Hua et al., 2023).

The central research questions motivating this work are:

• RQ1: How does adaptive noise injection during fine-tuning help mitigate hallucinations in
the outputs of LLMs?

• RQ2: What is the relationship between the intensity of noise injection and the trade-off
between robustness and task performance across diverse applications?

• RQ3: How does the proposed NoiseFiT framework affect the computational efficiency and
scalability of hallucination mitigation?

The remainder of this paper is organized as follows. Section 2 reviews recent advances in the field
and situates our contributions within this context. Section 3 details the NoiseFiT methodology,
including the adaptive noise injection strategy. Section 4 reports the experimental setup and results,
benchmarking NoiseFiT against state-of-the-art methods. Section 5 presents limitations and discusses
the broader implications of our findings. Finally, Section 6 concludes this paper and outlines future
research directions.

2 RELATED WORK

Existing strategies to reduce hallucinations include retrieval-augmented generation (RAG), which
grounds outputs in external knowledge retrieved at different stages of inference (Lewis et al., 2020;
Asai et al., 2024; Wang et al., 2025). Reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022) where aligns models with human preferences by training a reward model from cu-
rated signals or annotations, then optimizing responses through reinforcement learning. Self-
consistency (Wang et al., 2023b) is a decoding strategy built on chain-of-thought prompting (Wei
et al., 2022), which improves reasoning reliability by sampling diverse reasoning paths and selecting
the most consistent answer. Contrastive decoding (Li et al., 2023b), and adversarial training (Zhu
et al., 2024). More recently, CDCR-SFT has been introduced as a supervised fine-tuning framework
in which LLMs are trained to construct variable-level directed acyclic graph (DAG) and subsequently
reason over them (Li et al., 2025).

While these methods have achieved some success, they often come with increasing computational
overhead, adding latency during inference, increased sensitivity to hyperparameter tuning, and limited
generalization across varying domains (Zhao et al., 2025; Zellers et al., 2019). These limitations
underscore the need for alternative approaches that can robustly improve model performance without
incurring prohibitive resource demands.

To address these questions, our methodology introduces a hybrid loss objective that combines
standard cross-entropy with soft target regularization and consistency-based penalties computed over
multiple noisy forward passes. This formulation not only ensures that the model retains its predictive
capabilities under perturbation but also enforces consistency in its outputs—a key requirement for
robust performance in safety-critical applications. Furthermore, our mathematical analysis establishes
theoretical properties of the adaptive noise injection mechanism, including its unbiasedness and
variance-preserving characteristics.

In summary, this paper makes the following contributions:

1. We introduce the NoiseFiT framework that leverages adaptive noise injection based on
internal SNR, addressing the critical issue of hallucinations in LLMs (RQ1).

2. We propose a novel hybrid loss function that integrates multiple regularization techniques to
ensure robust and consistent model behavior (RQ2).
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3. We provide both theoretical analysis and empirical evidence demonstrating that our approach
reduces hallucinations while preserving competitive performance across various tasks, while
also maintaining computational efficiency and scalability (RQ1, RQ2, RQ3).

Empirical evaluations conducted on multiple benchmarks, such as the GPQA (Rein et al.,
2024), MUSR (Sprague et al., 2024), IFEval (Zhou et al., 2023), BBH (Suzgun et al., 2023),
MATH (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), HaluEval (Li et al., 2023a), and
TruthfulQA multiple-choice (Lin et al., 2022) datasets, validate the effectiveness of NoiseFiT. Our ex-
periments demonstrate a noticeable reduction in hallucinations compared to conventional fine-tuning
methods, while maintaining or even improving performance on standard language understanding
tasks. These results are consistent with prior findings on the benefits of noise injection in both
vision (Lehtinen et al., 2018) and language domains (Jain et al., 2024; Tice et al., 2024; Yadav &
Singh, 2023).

3 METHODS

Our approach, Noise-Augmented Fine-Tuning, is designed to reduce hallucinations in LLMs by
integrating adaptive noise injection directly into the fine-tuning process and leveraging a hybrid
loss function. Additionally, NoiseFiT selectively injects noise into specific layers based on a SNR
criterion, thereby adapting perturbations to target layers with both stable (robust) and unstable (loose)
activations, depending on their contribution to model behavior.

3.1 DATASET

NoiseFiT was fine-tuned and evaluated using two distinct datasets, each comprising prompt-response
pairs. The first of these, which serves as the fine-tuning dataset, includes 832 samples in its training
split (with 208 samples in test split, structured similarly to the training), where each sample contains
a prompt and its corresponding response. We intentionally designed this dataset to be simple and
straightforward, with queries that, in many cases, large language models could be expected to answer
easily. To achieve this, we generated the data synthetically using the GROK 3.0 Think, ensuring a
broad but basic coverage of topics—from literature and history to geography and science—while
maintaining concise prompts and direct responses. Our main motivation for constructing the dataset
in this manner was twofold: (1) to demonstrate that our fine-tuning strategy remains effective even
when starting from a minimal, uncomplicated dataset; and (2) to show that incorporating additional
complexity is not strictly necessary to validate the viability of our approach. By emphasizing
simplicity in content and structure, we also reduce potential confounding factors, allowing us to
isolate and examine the impact of the fine-tuning methodology itself.

3.2 LAYER SELECTION VIA SNR

To determine which layers are suited for noise injection, we perform the following steps:

(a) Clean and Noisy Forward Passes: A clean forward pass through the model produces
hidden states hclean

ℓ ∈ RB×Lℓ×H , where B is the batch size, Lℓ the sequence length at
layer ℓ, and H the hidden dimensionality. In parallel, multiple noisy forward passes using
adaptive noise injection yield hnoisy

ℓ ∈ RB×Lℓ×H .
(b) SNR Computation: The SNR helps identify transformer layers with robust or loose

activations. We define:
• Signal Metric: The signal Sℓ, computed as the mean absolute activation of the clean

hidden states, is given by:

Sℓ =
1

B · Lℓ ·H

B∑
b=1

Lℓ∑
t=1

H∑
i=1

∣∣∣[hclean
ℓ

]
b,t,i

∣∣∣ . (1)

• Noise Metric: The noise Nℓ, estimated as the average absolute difference between
noisy and clean activations, is:

Nℓ =
1

B · Lℓ ·H

B∑
b=1

Lℓ∑
t=1

H∑
i=1

∣∣∣∣[hnoisy
ℓ − hclean

ℓ

]
b,t,i

∣∣∣∣ . (2)
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• SNR Definition: The SNR for layer ℓ is then:

SNRℓ =
Sℓ

Nℓ + ϵ
, (3)

where ϵ > 0 (e.g., 10−6) avoids division by zero.
A higher Sℓ indicates stronger activations in the clean pass, while a lower Nℓ implies
less distortion under noise. Thus, higher SNRℓ suggests more stable activations under
perturbation.

(c) Layer Selection: Given the SNR values {SNRℓ}Lℓ=1 (with L the total number of layers),
a fixed number k of layers with the highest or lowest SNR values are selected for noise
injection during fine-tuning.

3.3 ADAPTIVE NOISE INJECTION

Adaptive noise injection perturbs hidden states by injecting zero-mean Gaussian noise, scaled using
robust statistics and model uncertainty. For a hidden state vector h ∈ RH , noise injection is defined
as:

h̃ = h+ ξ, ξ ∼ N (0, IH), (4)
where IH is the H ×H identity matrix.

3.3.1 ADAPTIVE SCALING VIA ROBUST STATISTICS AND UNCERTAINTY

Noise is adaptively scaled using the median µmed = median(h) and the Median Absolute Deviation
(MAD):

MAD(h) = median (|h− µmed|) . (5)

Exponential Weighting: Define a weighting function that emphasizes deviations from the median:

w(h) = exp

(
−β

|h− µmed|
MAD(h) + ϵ

)
, (6)

where β > 0 is a hyperparameter controlling the sensitivity to deviations, and ϵ is a small constant to
ensure numerical stability.

Uncertainty-Based Noise Factor: To capture model uncertainty, we define a noise factor η that
dynamically scales the noise magnitude. Two strategies are used to compute the noise factor (η):

• Using Logits: If logits z ∈ RB×L×V , where B is the batch size, L is the sequence length,
and V is the vocabulary size (the number of unique tokens), are available, compute the
softmax probabilities. The logits z are the raw, unnormalized scores output by the model,
representing the likelihood of each token in the vocabulary at each sequence position. For
each token position t ∈ {1, 2, . . . , L} and vocabulary token k ∈ {1, 2, . . . , V }, the logit
zt,k is the score for token k at position t. The softmax probabilities are:

pt,k =
exp(zt,k)∑V
j=1 exp(zt,j)

. (7)

Then, for each token position t, the entropy is:

Ht = −
V∑

k=1

pt,k log
(
pt,k + ϵ

)
. (8)

The average entropy over the token sequence is:

H̄ =
1

L

L∑
t=1

Ht, (9)

and the noise factor is defined as:
η = exp

(
H̄
)
. (10)
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• Variance of Hidden States: In the absence of logits, a pseudo-entropy is computed from
the variance of the hidden states:

η = exp

(
Var(h)

E
[
Var(h)

]
+ ϵ

)
. (11)

Effective Noise Scale. The final noise scale is computed by integrating base standard deviation
σbase, a learnable scalar α, an external noise gate gnoise ∈ [0, 1], the MAD, the weighting function,
and the uncertainty factor:

σeff = σbase · α · gnoise ·MAD(h) · w(h) · η. (12)
The perturbed hidden state is finally defined as:

h̃ = h+ σeff · ξ, ξ ∼ N (0, IH). (13)

3.4 HYBRID LOSS OBJECTIVE WITH CONSISTENCY REGULARIZATION

To ensure robust representation learning under noise, the training objective is augmented with multiple
loss components:

3.4.1 CROSS-ENTROPY LOSS (LCE)

A standard cross-entropy loss is computed on the clean forward pass:

Lce = − 1

N

N∑
t=1

log
(
p
(
yt | hclean

t

))
, (14)

where N is the number of valid tokens and yt is the ground-truth token at iteration step t.

3.4.2 SOFT CROSS-ENTROPY LOSS (LSOFT)

Inspired by knowledge distillation, we encourage the noisy model to align with the clean model’s
softened predictions (via temperature scaling), which provides informative soft targets and boosts
calibration (Buciluă et al., 2006; Hinton et al., 2015; Guo et al., 2017). To further guide the model
under noise, a soft target distribution is computed from the clean logits zclean using temperature
scaling:

psoft
t = softmax

(zclean
t

τ

)
, (15)

where τ > 0 is the temperature. For a noisy forward pass producing logits znoisy, the soft cross-entropy
loss is:

Lsoft =
1

N

N∑
t=1

KL
(
psoft
t

∥∥∥ softmax(znoisy
t )

)
, (16)

with KL(· ∥ ·) denoting the Kullback–Leibler divergence.

3.4.3 CONSISTENCY LOSS (LCONSISTENCY)

To enforce stability across noisy passes, two independent noisy forward passes are performed yielding
logits znoisy

1 and znoisy
2 . The consistency loss is then defined as:

Lconsistency =
1

N

N∑
t=1

KL
(
softmax(znoisy

1,t )
∥∥∥ softmax(znoisy

2,t )
)
. (17)

3.4.4 HYBRID LOSS AND FINAL TRAINING OBJECTIVE

The hybrid loss combines the clean and soft cross-entropy losses:
Lhybrid = λce · Lce + (1− λce) · Lsoft, (18)

where λce ∈ [0, 1] balances the two objectives. The final training loss, incorporating the consistency
regularization, is:

Lfinal = Lhybrid + λconsistency · Lconsistency, (19)
with λconsistency governing the weight of the consistency loss.

5
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4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We conducted experiments to assess the effectiveness of NoiseFiT, implemented using PyTorch’s
multiprocessing on four Tesla V-100 GPUs (each equipped with 32 GB of GPU memory) (Var-
rette et al., 2022). Our method incorporates adaptive noise injection, a hybrid loss function, and
parameter-efficient fine-tuning (PEFT) using Low-Rank Adaptation (LoRA). We used pre-trained
causal language models as base models, varying across architectures including LLaMA (Grattafiori
et al., 2024), Qwen (Bai et al., 2023), Gemma (Team, 2025), and Mistral (Jiang et al., 2023). The
fine-tuning dataset was structured to include user prompts and assistant responses in a conversational
format.

The fine-tuning process leverages the following key steps. First, the trainer selects layers for noise
injection based on their SNR. The number of layers selected—set to 3 for most architectures, and to
3, 6, 12, and all layers in the case of larger model Mistral-7B—corresponded to those exhibiting the
highest or lowest SNR values. These were identified using forward-pass statistics computed from
both clean and noise-injected hidden states. Then, zero-mean Gaussian noise was injected into the
hidden states of the selected layers. The noise was adaptively scaled based on hidden state statistics,
using base standard deviations of 0.001, 0.01, and 0.1, further modulated by layer-specific scaling
factors.

Finally, the training objective combines three components including a standard cross-entropy (CE)
loss, a soft cross-entropy loss whose soft targets are computed from the clean (noiseless) logits
via temperature scaling (teacher), and a consistency loss between two independently noise-injected
student passes; see Eqs. (15)–(16). We used λce = 0.5 and λconsistency = 0.1 across all of the
experiments. LoRA was applied with a rank of 8, targeting q proj and v proj modules, with
an alpha of 16 and dropout of 0.05. In addition to the above settings, we set batch size of 4 per
device, with 4 gradient accumulation steps, learning rate to 5 × 10−5 (with a cosine scheduler,
Appendix, Figure A.3). We used Paged AdamW in 32-bit (Loshchilov & Hutter, 2019), with mixed
precision (FP16) and gradient clipping at 1.0 as the optimizer by setting number of epochs to 5, with a
maximum of 1000 steps. Training histories were logged using Weights & Biases (Appendix, Figures
A.1 and A.2) (Biewald, 2020).

4.2 RESULTS

4.2.1 LEADERBOARD BENCHMARKS AND HALLUCINATION EVALUATIONS

Table 1 summarizes the performance of various model configurations (extended evaluation results for
Mistral-7B are provided in Table D.1), derived from the leaderboard evaluation task benchmarks (Gao
et al., 2024), supplemented by the hallucination evaluation results using HaluEval (Li et al., 2023a)
and TruthfulQA multiple-choice (TfQA-MC) (Lin et al., 2022) datasets. Each model family is
evaluated by varying:

(i) #Layers: The number of layers selected for adaptive noise injection (where applicable),
with All denoting full-layer injection and BaseFiT indicating a fine-tuning with no noise
setup (we used cross-entropy loss for fine-tuning).

(ii) STD: The base standard deviation for noise was typically chosen from the set {0.01, 0.1}.
Increasing this value results in stronger perturbations.

(iii) SNR: Highest layers first (favoring more robust activations) vs. Lowest layers first (targeting
weaker activations), or N/A (e.g., when no targeted noise injection is performed).

Impact of Noise Levels: As demonstrated in Table 1, injecting noise at various levels (STD=0.01,
0.1, or 0.3) can confer notable performance advantages across multiple tasks and model families.
Although higher noise levels (e.g., STD=0.3) are sometimes associated with greater instability,
moderate levels (STD=0.01 or 0.1) frequently yield improvements in domains such as Math or BBH.
For instance, Llama-1B exhibits enhanced Math accuracy (0.17) under STD=0.1 when targeting
layers with high SNR, signifying that carefully calibrated noise can strengthen certain forms of
reasoning.
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Layer Selection via SNR: Results for Highest vs. Lowest SNR noise injected layers reveal that
directing noise to specific layers can accentuate its benefits. For example, Mistral-7B achieves its
highest BBH score (45.84) when noise is restricted to three Lowest-SNR layers, while Llama-1B
attains superior Math performance (0.17) by injecting noise into the Highest-SNR layers. These
outcomes highlight the importance of selectively targeting layers based on SNR profiles, indicating
that the optimal approach may vary according to both the model architecture and the specific task
objectives. Appendix G provides insights via SNR curves and five auxiliary metrics: sparsity, logit
entropy, gradient cosine, L2 norm, and attention entropy.

Table 1: Benchmark and hallucination results across models, #Layers, STD, and SNR. Mistral-7B
attains 52.34 on HaluEval with our approach, compared to 48.20 in CDCR-SFT (Li et al., 2025).

Model #Layers STD SNR MMLU-Pro BBH GPQA Math IFEval MUSR TfQA-MC HaluEval

L
la

m
a3

.2
-1

B 3 0.01 Highest 12.28 31.48 24.22 0.00 7.58 32.46 33.33 33.18
3 0.01 Lowest 12.05 31.91 24.90 0.07 7.02 32.07 29.68 29.07

BaseFiT N/A N/A 11.86 31.90 24.84 0.07 8.69 32.21 29.82 28.86
3 0.1 Highest 11.79 31.72 23.99 0.17 7.95 33.54 33.77 33.67
3 0.1 Lowest 11.67 31.05 24.56 0.05 6.47 32.75 30.99 28.13

L
la

m
a3

.2
-3

B 3 0.01 Lowest 25.85 38.56 25.91 0.80 9.43 34.05 38.16 40.16
BaseFiT N/A N/A 25.81 38.27 25.41 1.31 9.98 34.59 37.87 39.77

3 0.1 Highest 25.52 39.38 27.83 1.32 8.87 33.79 38.74 41.24
3 0.01 Highest 25.29 38.64 26.49 1.52 9.80 35.65 40.35 42.60
3 0.1 Lowest 25.27 38.39 28.08 1.04 10.91 34.06 39.33 41.86

Q
w

en
2.

5-
.5

B 3 0.01 Highest 18.75 31.84 28.36 0.45 14.60 34.20 33.48 28.34
3 0.01 Lowest 18.56 31.45 25.13 0.58 13.31 35.40 31.58 27.42
3 0.1 Lowest 18.51 31.80 25.07 0.42 13.68 34.59 33.04 28.79
3 0.1 Highest 18.29 31.77 28.08 0.68 12.20 34.05 34.65 29.12

BaseFiT N/A N/A 17.43 32.17 26.89 0.70 15.16 34.59 31.58 27.08

G
em

m
a3

-1
B BaseFiT N/A N/A 14.92 35.11 28.00 4.74 37.52 32.75 21.35 24.37

3 0.001 Lowest 14.85 34.25 27.88 4.40 34.57 33.95 21.49 25.08
3 0.1 Highest 13.63 35.14 27.51 2.15 29.21 31.01 19.88 21.62
3 0.01 Lowest 14.59 34.54 26.94 4.45 38.08 33.02 21.64 25.18
3 0.01 Highest 14.37 34.84 28.39 5.08 39.37 33.41 21.78 25.39

M
is

tr
al

-7
B 6 0.1 Highest 30.28 44.63 29.46 2.69 13.31 39.51 38.20 51.40

BaseFiT N/A N/A 30.01 44.34 29.29 2.97 11.46 38.84 37.62 47.60
3 0.1 Lowest 29.97 45.84 28.07 3.01 13.49 39.89 39.41 50.72
6 0.01 Lowest 29.74 45.08 29.66 3.43 11.83 40.18 41.24 52.34
3 0.3 Lowest 29.53 44.53 30.54 2.75 10.91 39.51 37.26 49.40

Mean Top-5 ∆ (%) relative to BaseFiT +5.74↑ +1.94↑ +6.84↑ +36.58↑ +10.27↑ +3.40↑ +10.18↑ +11.42↑

BaseFiT vs Noise-Injected Runs: Comparisons with the BaseFiT baseline (fine-tuning without
noise) underscore the capacity of noise injection to surpass baseline results in multiple settings.
For instance, Qwen-0.5B with STD=0.01 in the high-SNR configuration outperforms BaseFiT on
MMLU-Pro (18.75 vs. 17.43) and GPQA (28.36 vs. 26.89). Similarly, Gemma-1B realizes substantial
gains in majority of the tasks under targeted noise conditions. These findings demonstrate that
noise-injected configurations can frequently exceed baseline performance when the noise parameters
and layer selections are carefully optimized.

Task-Specific Observations: Across a diverse set of evaluation benchmarks, the impact of noise
injection varies by task type and model architecture, but notable patterns emerge. In several cases,
injecting moderate levels of noise appears to improve performance, suggesting it may act as a form
of regularization or stimulus for deeper reasoning:

• Math: Table 1 shows that moderate noise (STD=0.01 or 0.1) can substantially improve
Math accuracy. For example, Llama-1B’s score rises from 0.05 to 0.17 under STD=0.1
(highest-SNR layers), and Gemma-1B reaches 5.08 (vs. 4.74) under STD=0.01 (highest
SNR). These improvements suggest that carefully tuned noise benefits numerical reasoning.

• BBH and MMLU-Pro: These broader language understanding benchmarks often show
moderate fluctuation with noise, yet select configurations demonstrate that noise can push
performance above the baseline. In Llama-3B, for example, BBH rises to 39.38 under
STD=0.1 (highest SNR), exceeding the BaseFiT score of 38.27. On MMLU-Pro, for
example, Qwen-0.5B at STD=0.01 (highest SNR) rises to 18.75 from a baseline of 17.43.
These results confirm that noise, particularly at moderate levels, can be harnessed to refine
performance in language understanding tasks.

7
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• GPQA: Detailed inspection of the GPQA results shows consistent gains under targeted noise
strategies. Llama-3B moves from 25.41 (BaseFiT) to 27.83 (STD=0.1, Highest SNR), while
Qwen-0.5B increases from 26.89 (BaseFiT) to 28.36 (STD=0.01, Highest SNR). Gemma-
1B also achieves its top GPQA score (28.39) with STD=0.01 in the Highest-SNR layers,
surpassing the base 28.00. Notably, Mistral-7B records 30.54 (STD=0.3, three Lowest-
SNR layers), indicating that, with the right noise level and layer selection, graduate-level
question-answering performance can be enhanced across various model families.

• IFEval and MUSR: Noise can also yield performance improvements in following instruc-
tions (IFEval) and multistep soft reasoning (MUSR). In Gemma-1B, IFEval rises from 37.52
(BaseFiT) to 39.37 (STD=0.01, Highest SNR), and MUSR increases from 32.75 to 33.41
under the same setting. Likewise, Mistral-7B achieves up to 13.49 on IFEval (STD=0.1,
3 Lowest-SNR layers) compared to 11.46 at BaseFiT, and elevates MUSR from 38.84
(BaseFiT) to 40.18 (STD=0.01, 6 Lowest-SNR layers).

Consistency Across Model Families: Despite variability in architecture and scale (Llama, Qwen,
Gemma, Mistral), several consistent observations emerge:

• Efficacy of moderate noise across model-task configurations: While high noise magni-
tudes (e.g., STD=0.3) can induce instability in performance, moderate perturbation levels
(STD=0.01 or 0.1) frequently yield consistent gains across a range of tasks and architectures.

• Targeted perturbation via layer-wise selection: Constraining noise application to specific
layer subsets—such as those with the highest or lowest signal-to-noise ratios—enables more
precise control over performance modulation, highlighting the utility of structurally selective
noise injection.

• Augmenting BaseFiT with stochastic refinement: Although BaseFiT establishes a
robust baseline, many noise-augmented configurations achieve comparable or superior
results on specific benchmarks, suggesting that noise injection can function as an effective
complement or enhancement to traditional fine-tuning methodologies.

4.2.2 TEST DATASET

We evaluated our fine-tuning approach using a test set of 208 unique prompts. We employed the same
models as the base, incorporating a PEFT adapter. The entire generation procedure was accelerated
across multiple GPUs. We employed GROK 3.0 Think (xAI, 2025) to assess the hallucination
performance in the generated responses (online supplementary material).

The results illustrate the effects of noise injection on the performance of various models across
multiple categories (Appendix, Tables E.2-E.6). A consistent trend observed across models is that
noise-injection under various scenarios, often outperform their respective base models, suggesting
that controlled noise can improve the models’ ability to produce less hallucinated responses and
handle diverse inputs, potentially by mimicking real-world data variability.

5 DISCUSSION AND LIMITATIONS

Across four model families, multiple leaderboards and hallucination evaluation datasets, NoiseFiT
routinely matches or outperforms standard fine-tuning (BaseFiT) while reducing hallucinations.
Moderate perturbation magnitudes are consistently effective, whereas large magnitudes can be
unstable (Table 1). Extended ablations on Mistral-7B show that targeted injection into a small subset
of layers (3–6) dominates all-layers injection (Table D.1). Beyond point estimates, distributional
analysis with the Epps–Singleton test confirms statistically reliable shifts in hallucination scores for
noisy variants versus base models (§E.2).

Appendix G reveals complementary trends that clarifies mechanics of SNR injection. In larger models
such as Mistral-7B, low-SNR layers deeper in the stack behave as pattern amplifiers; injecting noise
there increases gradient diversity, elevates attention entropy slightly, and curbs memorization-driven
errors—aligning with the finding that lowest-SNR targeting works best for Mistral-7B. In smaller
models, high-SNR layers are already robust; adding moderate noise functions as gentle regularization
without destabilizing training, which matches the gains we observe with highest-SNR targeting.
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Across families, we also see (i) higher sparsity and (ii) modestly higher attention entropy under
NoiseFiT, both consistent with better generalization and less over-confident false assertions.

The training objective blends: (a) standard CE for task fidelity, (b) soft-target cross-entropy that distills
from the clean pass (teacher) at temperature τ , and (c) a consistency term across two independently
noised passes. Together, these terms encourage calibrated logits and stability to perturbations, which
concretely reduces the model’s tendency to run away from weak evidence. Our theory (Appendix B)
supports this picture. Appendix C summarizes our heuristics as a practical recipe for NoiseFiT.

Limitations.

• We primarily compare against BaseFiT. Methods like RAG, RLHF, self-consistency, and con-
trastive decoding optimize orthogonal axes (retrieval, reward shaping, inference-time ensembling).
A controlled, apples-to-apples comparison is non-trivial; we therefore frame NoiseFiT as comple-
mentary. (We provide preliminary truthfulness gains on TruthfulQA/HaluEval in Table 1.)

• Our core fine-tuning set is compact and partly synthetic; and hallucinations on the custom test set
are assessed by an LLM judge and corroborated through human evaluation. To mitigate bias we
report public-benchmark results (TfQA-MC, HaluEval) and provide distributional tests (§E.2).

• Although the heuristics above work well, per-task tuning is encouraged based on our findings.
In practice, gains are sensitive to the choice of k perturbed layers, the base noise scale and
ramp; mis-setting these can yield non-monotonic behavior. The SNR bootstrap that ranks layers
from most stable to most unstable relies on brief noisy forward passes and can be brittle under
domain shift or when validation sets are small; longer pilots or robust smoothing/averaging may
be required.

• The SNR-based targeting rationale is supported by auxiliary metrics (Appendix G), but we do
not claim a full causal account. Understanding functional roles of low-SNR vs. high-SNR layers
across architectures is an active direction.

Overall, NoiseFiT is a simple, training-time technique that improves factual reliability without
inference-time cost, but it benefits from small, targeted sweeps and broader evaluations to fully
establish external validity.

6 CONCLUSION AND FUTURE WORK

We introduced NoiseFiT, an adaptive, SNR-guided noise-augmented fine-tuning framework with
a hybrid objective. Empirically, across LLaMA, Qwen, Gemma, and Mistral, moderate noise
injected into a small, SNR-selected subset of layers yields reliable improvements on truthfulness and
reasoning leaderboards (Table 1), with extended Mistral-7B ablations favoring 3–6 targeted layers
(Table D.1). Notably, on hallucination-focused benchmarks, NoiseFiT achieves average gains of
3.72% on TfQA-MC and 4.70% on HaluEval across models.

Overall, we find that targeted layer-wise noise outperforms blanket perturbation; moderate magni-
tudes (STD 0.01–0.1) are consistently best; the optimal layer choice is model dependent—larger
models benefit from injecting into lowest-SNR (less stable) layers, whereas smaller models benefit
from highest-SNR (more robust) layers; and the gains stem chiefly from improved calibration and
perturbation stability rather than raw accuracy alone. NoiseFiT is training-time only, adds no test-time
latency, and is compatible with retrieval (RAG), RLHF, self-consistency, and decoding-time defenses.
We view it as a lightweight regularizer that improves the base model’s factual reliability before any
downstream alignment or retrieval stack is applied.

We see two immediate directions: (1) an open-source auto-tuner that (a) bootstraps SNR with a short
warm-up, (b) selects k via validation hallucination proxies, and (c) schedules noise ramps; (2) testing
BitFit and AdaLoRA (Ben Zaken et al., 2022; Zhang et al., 2023), and composing NoiseFiT with
RAG/RLHF at scale.

By turning a small amount of targeted stochasticity into a principled regularizer, NoiseFiT improves
robustness and reduces hallucinations with minimal engineering burden. We hope the simple recipe,
theoretical guarantees, and practical heuristics make it a useful building block for reliable LLM
adaptation.
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A NOISEFIT ALGORITHM

Algorithm A.1 summarizes the operational mechanics of the NoiseFiT framework. It outlines the
key steps involved in our approach—from data and model preparation, performing clean and noisy
forward passes, and computing the SNR for each transformer layer, to select layers for adaptive noise
injection and finally calculating the hybrid loss components for backpropagation. This high-level
structure serves as a blueprint for implementing our NoiseFiT algorithm.

Algorithm A.1 NoiseFiT Algorithm

1: Input: Training data D, pretrained model M, number of layers k, hyperparameters λce,
λconsistency, τ , etc.

2: Output: Fine-tuned model M∗

3: Step 1: Data and Model Preparation
4: Load dataset and format each sample (prompt, response).
5: Initialize tokenizer and model M.
6: Step 2: Clean Forward Pass
7: For a batch, run a clean forward pass to obtain hidden states hclean

ℓ ∈ RB×Lℓ×H .
8: Step 3: Noisy Forward Passes
9: Enable noise hooks for the forward passes.

10: Run multiple forward passes with adaptive noise injection to obtain hnoisy
ℓ ∈ RB×Lℓ×H .

11: Step 4: SNR Computation (for all of the layers ℓ)
12: Compute signal: Sℓ =

1
B·Lℓ·H

∑
b,t,i

∣∣∣[hclean
ℓ

]
b,t,i

∣∣∣.
13: Compute noise: Nℓ =

1
B·Lℓ·H

∑
b,t,i

∣∣∣∣[hnoisy
ℓ − hclean

ℓ

]
b,t,i

∣∣∣∣.
14: Compute SNR: SNRℓ =

Sℓ

Nℓ+ϵ .
15: Step 5: Layer Selection
16: Select k layers with the highest (or lowest) SNRℓ values for noise injection.
17: Step 6: Loss Computation
18: (a) Cross-Entropy Loss: Lce = − 1

N

∑N
t=1 log

(
p(yt | hclean

t )
)
.

19: (b) Soft Cross-Entropy Loss: Lsoft =
1
N

∑N
t=1 KL

(
psoft
t

∥∥∥ softmax(znoisy
t )

)
, where psoft

t =

softmax
(

zclean
t

τ

)
.

20: (c) Consistency Loss: Lconsistency = 1
N

∑N
t=1 KL

(
softmax(znoisy

1,t )
∥∥∥ softmax(znoisy

2,t )
)

.
21: Step 7: Final Loss and Backpropagation
22: Compute hybrid loss: Lhybrid = λce Lce + (1− λce)Lsoft.
23: Compute overall loss: Lfinal = Lhybrid + λconsistency Lconsistency.
24: Backpropagate Lfinal and update model parameters.

B NOISEFIT MATHEMATICAL FOUNDATIONS

In this section, we introduce the theoretical underpinnings of our NoiseFiT framework. We begin
by outlining the core assumptions for unbiased noise injection and describe how these assumptions
inform the variance-preserving characteristics of our approach. In particular, we provide high-level
insights into why adaptive noise regularization improves generalization and stability, setting the stage
for the formal lemmas and theorems that follow.

B.1 UNBIASED NOISE INJECTION AND VARIANCE PRESERVATION

B.1.1 ZERO-MEAN NOISE

Lemma B.1. Let ξ be an n-dimensional random vector distributed as

ξ ∼ N (0, I),

15
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Figure A.1: NoiseFiT training loss history per model, noise injection STD and layer selection strategy.
Available in interactive mode online at W&B.

Figure A.2: NoiseFiT training gradients norm history per fine-tuning step for different models, noise
injection STD and layer selection strategies. Available in interactive mode online at W&B.
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Figure A.3: NoiseFiT training learning rate scheduling strategy across all experiments. Available in
interactive mode online at W&B.

that is, each component ξi of ξ is an independent standard normal random variable with mean 0 and
variance 1. Then the expectation of ξ is the zero vector:

E[ξ] = 0.

Proof. A random vector ξ ∈ Rn has the distribution N (0, I) if and only if each component ξi (for
i = 1, 2, . . . , n) is distributed according to a one-dimensional standard normal distribution N (0, 1),
and all components are mutually independent. The joint PDF of ξ can be written as

fξ(x) =
1√
(2π)n

exp
(
− 1

2∥x∥
2
)
,

where ∥x∥2 =
∑n

i=1 x
2
i . This density is spherically symmetric around the origin 0 ∈ Rn. The

expectation of ξ is the vector of expectations of its components:

E[ξ] =
(
E[ξ1], E[ξ2], . . . , E[ξn]

)
.

Equivalently, we can write

E[ξ] =

∫
Rn

x fξ(x) dx.

Since ξi ∼ N (0, 1) for each i, we know by the definition of the standard normal distribution that

E[ξi] = 0, for each i = 1, 2, . . . , n.

Hence, immediately we have
E[ξ] =

(
0, 0, . . . , 0

)
.

We can also see this from the integral form. For each component ξi,

E[ξi] =

∫ ∞

−∞
xi

(∫
Rn−1

fξ(x1, . . . , xi−1, xi, xi+1, . . . , xn) dx1 · · · dxi−1dxi+1 · · · dxn

)
dxi.

17

https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Because fξ(x) is an even function in each xi due to its form exp(− 1
2∥x∥

2) and the domain of
integration is symmetric (Rn), the integral of xifξ(x) over Rn is zero. This confirms E[ξi] = 0 for
every i. By combining the component-wise results, it follows that

E[ξ] =
(
E[ξ1], E[ξ2], . . . , E[ξn]

)
=
(
0, 0, . . . , 0

)
= 0.

This completes the proof.

B.1.2 UNBIASEDNESS OF NOISY REPRESENTATIONS

Theorem B.1. Let h ∈ Rn be a deterministic hidden state and consider its noisy counterpart

h̃ = h + σeff · ξ,

where σeff ∈ R is a deterministic noise scale. Then,

E[h̃] = h.

Proof. We wish to show that the expectation of the noisy hidden state h̃, which is formed by
adding Gaussian noise scaled by σeff, remains equal to the original deterministic hidden state h.
Mathematically, we want to prove E[h̃] = h. By definition, we have

h̃ = h + σeff · ξ.

Since h and σeff are deterministic, the only source of randomness in h̃ is ξ. One of the key properties
we use is that expectation is a linear operator, which means:

E[ aX+ bY ] = aE[X] + bE[Y],

for any random vectors X,Y and scalars (deterministic constants) a, b ∈ R. Applying this to
h̃ = h+ σeffξ, we obtain:

E[h̃] = E[h+ σeffξ] = E[h] + E[σeffξ].

Since h is not random, its expectation is simply:

E[h] = h.

Conceptually, viewing h as fixed means that integrating (or summing) over its distribution does not
introduce any randomness. Next, consider E[σeffξ]. Because σeff is a constant (deterministic with
respect to the random vector ξ), it factors out of the expectation:

E[σeffξ] = σeff E[ξ].

This step relies again on the linearity of expectation and the property that constants can be pulled out
of expectation. By Lemma B.1 (Zero-Mean Noise), we know that E[ξ] = 0. Substituting this result,
we get:

E[σeffξ] = σeff · 0 = 0.

Putting all the above together:

E[h̃] = E[h] + E[σeffξ] = h+ 0 = h.

Hence the noisy representation h̃ is unbiased, completing the proof.

B.1.3 VARIANCE PRESERVATION

Lemma B.2. Assume that h and ξ are independent. Recalling the definitions from Theorem B.1, the
covariance of h̃ is given by

Cov[h̃] = Cov[h] + σ2
eff I.
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Proof. For an n-dimensional random vector X, the covariance matrix is

Cov[X] = E
[
(X− E[X])(X− E[X])⊤

]
.

Covariance is a bilinear operator, meaning that if X and Y are random vectors, then

Cov[X+Y] = Cov[X] + Cov[Y] + 2 Cov[X,Y].

Since h̃ = h+ σeff ξ, we write

Cov[h̃] = Cov[h+ σeff ξ] = Cov[h] + Cov[σeff ξ] + 2 Cov
[
h, σeff ξ

]
.

This follows directly from the bilinear expansion of covariance. We are given that h and ξ are
independent. By definition, if two random vectors A and B are independent, then E[AB⊤] =
E[A]E[B]⊤. It follows that

Cov
[
h, ξ

]
= E

[
(h− E[h])(ξ − E[ξ])⊤

]
= 0,

because E[ξ] = 0 and h, ξ are independent. Therefore,

Cov
[
h, σeff ξ

]
= σeff Cov[h, ξ] = σeff · 0 = 0.

Hence, the cross-covariance term vanishes. Next, we analyze Cov[σeff ξ]. If ξ ∼ N (0, I), its
covariance is I. For any deterministic scalar α, scaling a random vector X by α scales its covariance
matrix by α2. Hence,

Cov[σeff ξ] = σ2
eff Cov[ξ] = σ2

eff I.

Putting everything together, we get

Cov[h̃] = Cov[h] + σ2
eff I + 2 · 0 = Cov[h] + σ2

eff I.

Thus, adding independent Gaussian noise with variance σ2
eff to the random vector h increases its

covariance by σ2
effI, preserving the original variances plus a constant isotropic inflation.

B.2 LIPSCHITZ CONTINUITY OF THE ADAPTIVE NOISE INJECTION

Lemma B.3. Let h ∈ Rn lie in a bounded set (so there exists some Ω > 0 with ∥h∥ ≤ Ω for all
relevant h). Suppose the noise-scale function σeff(h) is Lipschitz continuous with constant Lσ > 0;
i.e., ∣∣σeff(h1) − σeff(h2)

∣∣ ≤ Lσ ∥h1 − h2∥ ∀h1,h2.

Define the mapping (for a fixed realization of ξ)

T (h) = h + σeff(h) ξ.

Then T (h) is Lipschitz continuous almost surely in ξ.

Proof. We need to show that there exists a (random) constant L such that

∥T (h1)− T (h2)∥ ≤ L ∥h1 − h2∥,

for all h1 and h2 in our domain, except on an event of probability zero (hence the phrase almost
surely). Recall

T (h) = h+ σeff(h) ξ.

While h is a variable in Rn, ξ is a random vector. Once ξ is fixed, T becomes a deterministic function
of h. For any two points h1,h2 ∈ Rn, consider:

T (h1)−T (h2) =
(
h1+σeff(h1) ξ

)
−
(
h2+σeff(h2) ξ

)
=
(
h1−h2

)
+
(
σeff(h1)−σeff(h2)

)
ξ.

Hence, by the triangle inequality,

∥T (h1)− T (h2)∥ ≤ ∥h1 − h2∥ +
∣∣∣σeff(h1)− σeff(h2)

∣∣∣ ∥ξ∥.
Since σeff(h) is Lipschitz with constant Lσ , we have∣∣∣σeff(h1)− σeff(h2)

∣∣∣ ≤ Lσ ∥h1 − h2∥.
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Therefore,
∥T (h1)− T (h2)∥ ≤ ∥h1 − h2∥ + Lσ ∥h1 − h2∥ ∥ξ∥ =

(
1 + Lσ ∥ξ∥

)
∥h1 − h2∥.

For a fixed realization of ξ, define
L(ξ) = 1 + Lσ ∥ξ∥.

Clearly, L(ξ) is a (finite) constant whenever ξ is given. Thus T is Lipschitz continuous with
Lipschitz constant L(ξ). Since ∥ξ∥ might be unbounded theoretically, the mapping T may have
different Lipschitz constants for different realizations of ξ. However, ξ is almost surely finite (i.e., the
probability that ∥ξ∥ is infinite is zero). Hence, T is almost surely Lipschitz continuous with constant
1 + Lσ∥ξ∥. This completes the proof.

B.3 STABILITY OF HYBRID LOSS GRADIENTS

Lemma B.4. Let f(h) denote the (scalar or vector) output of a neural network as a differentiable
function of the hidden state h ∈ Rn. Suppose:

1. The noise injection is unbiased (Theorem B.1), i.e., E[ξ] = 0.

2. The noise variance is bounded by σ2
eff.

3. The function f is sufficiently smooth (i.e., it has Lipschitz-continuous gradients or can be
approximated by its first-order Taylor expansion with bounded higher-order terms).

Recalling the definition of noisy hidden state h̃ from Theorem B.1, then, the difference between the
gradients computed on the clean and the noisy hidden states is O(σeff). Moreover, as σeff → 0, the
gradients converge.

Proof. We consider the loss function f(h), which is differentiable with respect to the hidden state h.
We write ∇f(h) for the gradient of f evaluated at h. We introduce the noisy state h̃ = h + σeffξ

and seek to understand how ∇f(h̃) differs from ∇f(h) for small σeff. For a small perturbation
∆ ≡ σeff ξ around h, the output f

(
h+∆

)
can be approximated by the first-order Taylor expansion:

f(h+∆) ≈ f(h) + ∇f(h)⊤∆ + R(h,∆)︸ ︷︷ ︸
higher-order remainder

.

If f is C2 (twice continuously differentiable) and/or has Lipschitz-continuous gradients, the remainder
R(h,∆) is of order ∥∆∥2. Concretely,

R(h,∆) = O
(
∥∆∥2

)
= O

(
σ2

eff

)
,

since ∥∆∥ = O(σeff). Given E[ξ] = 0 (unbiased noise) and Var(ξ) = I (each component has unit
variance), the perturbation ∆ = σeffξ has zero mean and bounded second moment E

[
∥∆∥2

]
= nσ2

eff.
This ensures that: 1. E[∆] = 0, 2. ∆ is O(σeff) in norm, on average or with high probability (e.g., by
concentration inequalities). The gradient difference of interest is

∇f(h̃) − ∇f(h) = ∇f(h+∆) − ∇f(h).

Under standard smoothness conditions (e.g., f having an L-Lipschitz gradient), we have:∥∥∇f(h+∆)−∇f(h)
∥∥ ≤ L ∥∆∥ = O(σeff),

where L is the Lipschitz constant of ∇f . Equivalently, if one uses a second-order expansion of f ,
the difference in gradients can be bounded by the magnitude of ∆. Either viewpoint shows that
the discrepancy is controlled by σeff. Since the difference in gradients is at most proportional to
∥∆∥ ∼ σeff, letting σeff → 0 forces ∆ → 0 and therefore

lim
σeff→0

∥∥∇f(h+∆)−∇f(h)
∥∥ ≤ lim

σeff→0
L ∥∆∥ = L · 0 = 0.

Hence,
lim

σeff→0

∥∥∇f(h+∆)−∇f(h)
∥∥ = 0,

Thus, for very small noise levels, the gradient computed on the noisy hidden state becomes arbitrarily
close to the gradient computed on the clean hidden state. In other words, the gradients converge. We
conclude that under the assumptions of unbiasedness, bounded noise variance, and smoothness of f ,
the difference between the gradients evaluated at the clean and noisy states is of order σeff. Hence, in
the limit σeff → 0, the gradient discrepancy vanishes.
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B.4 ROBUSTNESS OF CONSISTENCY LOSS

Lemma B.5. Let z(1), z(2) ∈ RK be two logit vectors of dimension K. Define the consistency loss
between their associated softmax outputs by

Lconsistency = KL
(
softmax(z(1))

∥∥ softmax(z(2))
)
.

Then Lconsistency is minimized if and only if

softmax(z(1)) = softmax(z(2)).

Proof. For a vector z = (z1, . . . , zK) ∈ RK , the softmax function is defined component-wise by

softmax(z)i =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K.

This ensures that each component softmax(z)i is non-negative and
∑K

i=1 softmax(z)i = 1. There-
fore, softmax(z) is a valid probability distribution over the K outcomes. Consider two discrete
probability distributions p = (p1, . . . , pK) and q = (q1, . . . , qK), both lying in the probability
simplex (pi, qi ≥ 0 and

∑
i pi =

∑
i qi = 1). The Kullback–Leibler (KL) divergence from q to p is

defined as

KL(p ∥q) =

K∑
i=1

pi log
(pi
qi

)
,

where by convention 0 log(0/q) = 0 and p log(p/0) = ∞ for p > 0. A key property of KL
divergence is its non-negativity:

KL(p ∥q) ≥ 0,

with equality if and only if p = q (i.e., pi = qi for each i). In our setup, we let

p = softmax(z(1)) and q = softmax(z(2)).

Then the consistency loss is exactly

Lconsistency = KL
(
softmax(z(1))

∥∥ softmax(z(2))
)

=

K∑
i=1

softmax(z(1))i log
( softmax(z(1))i
softmax(z(2))i

)
.

From the fundamental property of KL divergence, we know that
KL(p ∥q) ≥ 0, with equality if and only if p = q.

Translating this to our softmax distributions, we get

KL
(
softmax(z(1)), softmax(z(2))

)
≥ 0,

and it is equal to 0 precisely when

softmax(z(1)) = softmax(z(2)).

Hence, the consistency loss Lconsistency achieves its global minimum of 0 if and only if

softmax(z(1)) = softmax(z(2)),

as required. This completes the proof.

B.5 BOUND ON THE FINAL LOSS DUE TO NOISE

We now derive a simple upper bound showing how the presence of adaptive noise injection affects the
final training loss. Consider the final loss Lfinal in Equation equation 19, which we write abstractly as
a function of the model parameters Θ:

Lfinal(Θ) = λce Lce(Θ) + (1− λce)Lsoft(Θ)︸ ︷︷ ︸
Lhybrid(Θ)

+ λconsistency Lconsistency(Θ).

Because each term in Lfinal (cross-entropy, KL divergence, etc.) is β-smooth (Nesterov, 2005) with
respect to the logits, and the logits themselves are Lipschitz continuous with respect to the hidden
states h (assuming bounded weight matrices), we can show that random perturbations in h of size
∥∆∥ shift the loss by at most O(∥∆∥).
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Theorem B.2. Let ∆ = h̃− h be the per-token perturbation introduced by noise injection. Suppose
∆ has zero mean and bounded second moment such that

E[∥∆∥2] ≤ σ2
max.

Then, for sufficiently smooth loss components, the expected deviation in Lfinal satisfies∣∣E[Lfinal(Θ +∆)
]
− Lfinal(Θ)

∣∣ ≤ C σ2
max,

for some constant C > 0 depending on the network’s Lipschitz constants and the smoothness
parameters of the loss.

Proof. For simplicity of notation, write Lfinal(Θ) as a function that ultimately depends on the hidden
states h. In typical neural network architectures, the hidden states h themselves depend on subsets
of Θ (e.g., weights and biases), so a perturbation ∆ to h can be seen as an effective perturbation to
the logits or subsequent layers. Formally, let z(h,Θ) denote the logits. Then Lfinal(Θ) depends on
z(h,Θ). We assume that z(h,Θ) is L-Lipschitz in h. That is, there exists some constant L > 0 such
that ∥∥z(h1,Θ)− z(h2,Θ)

∥∥ ≤ L ∥h1 − h2∥,
for any h1,h2. This typically follows from bounding the norm of weight matrices and using standard
results on Lipschitz continuity of affine and activation transformations. Each term in Lfinal (e.g.,
cross-entropy, soft loss, or KL term) is β-smooth with respect to its input logits z. Concretely, this
means the gradient of Lfinal with respect to z is β-Lipschitz. Equivalently, the second derivative (or
Hessian) of Lfinal w.r.t. z is bounded by β in norm:∥∥∇2

z Lfinal(z)
∥∥ ≤ β.

Therefore, under small perturbations to z, the change in Lfinal is O(∥∆z∥2), where ∆z is the corre-
sponding change in logits. Given ∆ = h̃−h, the corresponding change in the logits is approximately

∆z ≈ z(h+∆,Θ) − z(h,Θ).

By Lipschitz continuity in h, we have ∥∥∆z

∥∥ ≤ L ∥∆∥.

Then, if ∥∆∥ is small, we can write a first-order Taylor expansion for Lfinal around the unperturbed
logits z(h,Θ), yielding an extra second-order remainder term on the order of ∥∆z∥2. Let Lfinal(z)
denote the final loss viewed as a function of z. Under a small change ∆z, we have

Lfinal
(
z+∆z

)
= Lfinal(z) + ∇zLfinal(z)

⊤∆z + R
(
z,∆z

)︸ ︷︷ ︸
second-order term

.

With β-smoothness, R(z,∆z) = O
(
∥∆z∥2

)
. Since the noise ∆ has E[∆] = 0 and E[∥∆∥2] ≤ σ2

max,
we focus on bounding the expected magnitude of the remainder term. By combining Lipschitz
continuity of the logits with β-smoothness of Lfinal, one obtains:∣∣E[Lfinal

(
z+∆z

)]
− Lfinal(z)

∣∣ ≤ E
[∣∣R(z,∆z

)∣∣] = O
(
E
[
∥∆z∥2

])
.

Since ∥∆z∥ ≤ L ∥∆∥, we have ∥∆z∥2 ≤ L2∥∆∥2. Taking expectations,

E
[
∥∆z∥2

]
≤ L2 E

[
∥∆∥2

]
≤ L2 σ2

max.

Hence the overall change is∣∣E[Lfinal
(
z+∆z

)]
− Lfinal(z)

∣∣ ≤ C σ2
max,

where C encapsulates constants like L2, β, and possibly other network-dependent factors. This
shows that the expected difference in Lfinal under perturbation ∆ with bounded second moment
σ2
max remains upper-bounded by a term proportional to σ2

max. Thus, moderate noise levels do not
drastically increase the final loss, aligning with empirical observations that adaptive noise injection
remains stable in training.
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B.6 CONVERGENCE IN EXPECTATION

Next, we show that under standard assumptions, NoiseFiT converges in expectation to a local
minimum even in the presence of adaptive noise.

Theorem B.3. Let Θ∗ ∈ Rd be a local minimum of the final loss Lfinal(Θ). Suppose the following
conditions hold:

(a) Lfinal(Θ) is continuously differentiable on Rd and bounded below, i.e., infΘ Lfinal(Θ) >
−∞.

(b) The gradient ∇Lfinal(Θ) is L-Lipschitz continuous with respect to Θ. Formally,

∥∇Lfinal(Θ1)−∇Lfinal(Θ2)∥ ≤ L ∥Θ1 −Θ2∥,

for all Θ1,Θ2 ∈ Rd.

(c) The adaptive noise injection yields unbiased hidden states in expectation (Theorem B.1)
with bounded variance. Concretely, at each iteration t, the hidden-state noise ∆t satisfies
E[∆t] = 0 and E[∥∆t∥2] ≤ σ2

max for some σmax > 0.

Then, performing stochastic gradient descent (or any standard first-order optimizer) on the noised
hidden states converges to Θ∗ in expectation. In other words, if Θt denotes the parameters at iteration
t,

lim
t→∞

E
[
∥∇Lfinal(Θt)∥

]
= 0.

Proof. We outline the main ideas, referencing standard results from stochastic optimization (Bottou
et al., 2018). At iteration t, let ht be the hidden states (a function of Θt) and let h̃t = ht +∆t be the
noised hidden states, where ∆t is the adaptive noise added at iteration t. By assumption (c), we have

E[∆t] = 0, E[∥∆t∥2] ≤ σ2
max.

The gradient of Lfinal with respect to Θ can be approximated by backpropagation through h̃t, leading
to an update of the form:

Θt+1 = Θt − αt ∇̂Lfinal(Θt, h̃t),

where αt is the step size at iteration t. Because the noise injection is unbiased in expectation
(Theorem B.1), the difference between h̃t and ht introduces no systematic bias into the gradient.
Effectively, ∇̂Lfinal(Θt, h̃t) can be seen as a stochastic gradient estimator of ∇Lfinal(Θt). While it
may have increased variance due to noise, the expectation of this estimator still aligns with the true
gradient (up to standard stochastic sampling noise). Formally, one can write:

E
[
∇̂Lfinal(Θt, h̃t) | Θt

]
= ∇Lfinal(Θt),

provided the only randomness comes from ∆t (and possibly mini-batch subsampling), both of which
are classical scenarios in stochastic gradient methods. Under assumption (c), the second moment of
∆t is bounded by σ2

max, which implies that the gradient estimator has bounded variance. Specifically,
one can show:

E
[∥∥∇̂Lfinal(Θt, h̃t) − ∇Lfinal(Θt)

∥∥2 | Θt

]
≤ σ2

g ,

for some constant σ2
g > 0 that depends on σ2

max and network/Lipschitz constants (see also the
discussion in Section B.5 for how noise affects loss gradients). The convergence in expectation for
stochastic gradient-type methods requires:

• Lfinal is lower-bounded and differentiable,

• ∇Lfinal(Θ) is L-Lipschitz,

• The gradient estimator is unbiased with bounded variance,

• A suitable step-size (αt) decay schedule, such as αt =
1√
t

or αt =
1
t .
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Under these conditions, classical results in stochastic optimization (Bottou et al., 2018)) guarantee
that ∇Lfinal(Θt) converges to 0 in expectation, which implies Θt converges to a stationary (or local
minimum) point of Lfinal. Finally, assumption (c) and our earlier result that the gradient difference
induced by noise is O(∥∆t∥) (see Lemma B.4) implies∥∥∇Lfinal(Θt, h̃t) − ∇Lfinal(Θt,ht)

∥∥ = O
(
∥∆t∥

)
,

and since E[∥∆t∥2] ≤ σ2
max, this does not disrupt the overall convergence analysis. The difference

diminishes for small noise and remains bounded for moderate noise, preserving the standard stochastic
gradient convergence arguments. Hence, all the conditions of a standard convergence theorem for
stochastic gradient methods are satisfied: (1) Lfinal is smooth and bounded below, (2) its gradient is
Lipschitz, (3) the noised gradient is unbiased with bounded variance, (4) the step size can be chosen
to decay appropriately. Therefore, the standard result

lim
t→∞

E
[
∥∇Lfinal(Θt)∥

]
= 0

holds, indicating convergence in expectation to a local minimum (or stationary point) Θ∗. This
completes the proof.

C PRACTICAL RECIPE FOR NOISEFIT

To make NoiseFiT usable without extensive sweeps, we distill the strongest settings that consistently
reproduced the trends in Table 1.

1. Warm-up SNR bootstrap: run a short pilot forward passes with uniform, small noise to
estimate per-layer SNR curves from clean vs. noisy passes; rank layers by stability (high
SNR) / instability (low SNR) and then freeze the k target layers for injection.

2. for large models, start with k=3 lowest-SNR layers; for small models, start with k=3
highest-SNR layers. If the validation hallucination rate plateaus, adjust k by ±3.

3. use STD=0.01 as a safe default; consider 0.1 on larger models if validation remains stable.
Apply a short linear ramp-up over the first 10–20% of steps.

Runtime overhead. NoiseFiT adds negligible training-time cost beyond a second (noisy) forward
pass. On V100 GPUs we observed slightly higher memory but similar or lower utilization/power
than BASEFIT (Table F.1), which is acceptable for multi-GPU fine-tuning.

D EXTENDED EVALUATION FOR MISTRAL-7B

To assess how our method scales to a relatively large-parameter model (Mistral-7B), we conduct
extended ablations over (i) the # layers to which we apply noise injection and (ii) the magnitude of
the injected noise (STD), alongside two SNR settings (Highest/Lowest). This study complements the
cross-model results as shown in Table 1. Table D.1 shows that selective noise injection (3–12 layers)
generally outperforms injecting into all layers, suggesting that broader perturbation is not always
beneficial at larger scale.

E TEST PERFORMANCE ANALYSIS

This section presents detailed experimental results for NoiseFiT in mitigating hallucinations of LLMs
based on the test dataset. The evaluated models include Llama-3.2-1B, Llama-3.2-3B, Gemma-3-1B,
Qwen2.5-0.5B, and Mistral-7B-v0.1. For each model, performance is assessed across 17 distinct
categories of prompts, encompassing a total of 208 prompts, under multiple configurations: the
base model, the base model with fine-tuning (denoted BaseFiT), and several noise-injected variants
using NoiseFiT. These NoiseFiT configurations vary by the number of layers affected, the standard
deviation (STD) of the injected noise (e.g., 0.001, 0.01, 0.1), and the signal-to-noise ratio (SNR),
where ’L’ denotes the lowest SNR (highest noise relative to signal were selected for noise injection)
and ’H’ denotes the highest SNR (lowest noise relative to signal were selected for noise injection).
Performance metrics are averaged across five runs per prompt to ensure statistical reliability (online
supplementary material).
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Table D.1: Extended leaderboard benchmark and hallucination evaluation results for Mistral-7B
model across different #Layers, STD, and SNR

Model #Layers STD SNR MMLU-Pro BBH GPQA Math IFEval MUSR TfQA-MC HaluEval
M

is
tr

al
7B

-v
0.

1
6 0.1 Highest 30.28 44.63 29.46 2.69 13.31 39.51 38.20 51.40

12 0.001 Highest 30.14 44.32 29.01 2.49 13.68 39.37 36.64 47.13
All 0.01 N/A 30.14 45.12 29.17 2.70 13.86 40.98 35.12 46.96

BaseFiT N/A N/A 30.01 44.34 29.29 2.97 11.46 38.84 37.62 47.60
12 0.1 Lowest 30.01 43.59 28.86 2.52 11.65 41.49 40.63 51.46
12 0.01 Lowest 30.00 43.74 28.83 3.05 13.68 39.50 38.44 49.37
3 0.1 Lowest 29.97 45.84 28.07 3.01 13.49 39.89 39.41 50.72
3 0.01 Lowest 29.95 45.47 25.16 3.35 13.68 39.48 36.24 46.88
3 0.01 Highest 29.95 45.56 26.09 2.63 10.91 39.11 37.02 47.13

12 0.01 Highest 29.93 44.05 28.86 3.30 14.05 39.77 37.14 47.39
12 0.1 Highest 29.93 44.37 28.90 2.71 13.31 40.30 39.84 50.44
3 0.1 Highest 29.75 44.62 28.36 3.10 10.17 37.65 38.54 49.71
6 0.01 Lowest 29.74 45.08 29.66 3.43 11.83 40.18 41.24 52.34
6 0.01 Highest 29.72 44.67 28.74 2.78 13.68 38.97 37.05 47.17
6 0.1 Lowest 29.67 44.53 30.04 3.19 12.20 38.71 37.72 47.85
6 0.001 Lowest 29.59 45.61 30.18 2.26 12.75 39.64 35.43 47.12

All 0.001 N/A 29.57 44.51 28.74 2.26 11.65 38.58 34.71 46.58
3 0.3 Highest 29.56 44.65 29.67 3.22 12.38 39.38 37.46 48.21
3 0.3 Lowest 29.53 44.53 30.54 2.75 10.91 39.51 37.26 49.40

12 0.001 Lowest 29.24 45.16 28.48 1.69 14.42 41.23 38.33 50.19
All 0.1 N/A 29.00 44.81 29.69 2.45 11.65 40.31 34.35 49.91

Prompt Formatting and Generation: To generate model responses, we formatted each user
prompt with specific delimiters (<|im start|>user ... <|im end|>) followed by the assistant
token. We used the generation configuration demonstrated in Table E.1.

Table E.1: Generation configuration hyperparameters.

Max. New Tokens Temperature Top-p Top-k Rep. Penalty

Value 50 0.5 0.9 40 1.2

This setup allowed us to obtain diverse responses while mitigating overly repetitive outputs. Each
local process repeated the generation step for five rounds, independently producing slightly varied
outputs for each prompt.

The tables in this appendix (Tables E.2 to E.6) provide category-wise performance scores alongside
overall performance metrics for each model and configuration. This enables a comprehensive
evaluation of how NoiseFiT mitigates hallucinations across different tasks and setups.

E.1 ANALYSIS OF RESULTS

The results in this appendix highlight the effectiveness of NoiseFiT in mitigating hallucinations in
LLMs, demonstrating both general trends across models and specific insights tailored to this task.
Below, we analyze these findings, with an in-depth focus on the Mistral-7B-v0.1 model due to its
comprehensive set of noise injection configurations.

General Performance Trends Across Models: Fine-tuning the base models (BaseFiT) generally
improves performance over the untrained base models, serving as a foundational step in reducing
hallucinations by better aligning the model with the training data. For Llama-3.2-1B, overall
performance increases from 48.6% to 54.0%; for Llama-3.2-3B, from 60.0% to 66.4%; for Qwen2.5-
0.5B, from 26.4% to 28.8%; and for Mistral-7B-v0.1, from 70.6% to 77.2%. However, Gemma-3-1B
shows a decline from 50.6% to 47.6% with BaseFiT, suggesting that standard fine-tuning alone may
not always mitigate hallucinations effectively and could even exacerbate them in some cases.

NoiseFiT, designed specifically to tackle hallucinations, frequently enhances performance beyond
BaseFiT, particularly in categories prone to factual inaccuracies. For Llama-3.2-3B, the best NoiseFiT
variant (3 layers, STD 0.01, highest SNR) achieves 70.2%, surpassing BaseFiT’s 66.4%. Qwen2.5-
0.5B improves significantly from 28.8% (BaseFiT) to 36.6% (3 layers, STD 0.1, highest SNR). In
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Gemma-3-1B, NoiseFiT recovers performance to 54.6% (3 layers, STD 0.1, highest SNR) from
BaseFiT’s 47.6%, exceeding the base model’s 50.6%. These improvements indicate that NoiseFiT’s
noise injection enhances the model’s ability to generalize, reducing its tendency to hallucinate by
regularizing its learned representations.

Mistral-7B-v0.1: The Mistral-7B-v0.1 model, with its 7 billion parameters, provides a robust case
study for evaluating NoiseFiT’s impact on hallucination mitigation, as it was tested with noise applied
to 3 layers, 12 layers, or all layers, across various STDs and SNRs. The key findings are as follows:

- Optimal Number of Layers for Noise Injection: Injecting noise into fewer layers (specifically
3 layers) consistently outperforms configurations with noise applied to 12 layers or all layers in
mitigating hallucinations. The highest overall performance of 78.4% is achieved with 3 layers, STD
0.1, and lowest SNR, compared to 77.2% for BaseFiT. In contrast, the best 12-layer configuration
(STD 0.1, lowest SNR) yields 76.4%, and the best all-layer configuration (STD 0.1) also reaches
76.4%. This suggests that targeting a small, critical subset of layers with noise injection enhances the
model’s ability to distinguish correct from incorrect information, effectively reducing hallucinations,
while broader noise application may disrupt learned hidden states excessively.

- Impact of Noise Level and SNR: Within the 3-layer configurations, higher noise levels (STD 0.1)
paired with lower SNR (more noise relative to signal) outperform lower noise levels or higher SNR
settings. For example, 3 layers with STD 0.1 and lowest SNR achieves 78.4%, while the same STD
with highest SNR yields 77.4%, and STD 0.01 with lowest and highest SNR scores 76.5% and 77.3%,
respectively. This indicates that substantial noise, when carefully applied, acts as a strong regularizer
in Mistral-7B-v0.1, reducing overconfidence in incorrect outputs and thus mitigating hallucinations.
The preference for lower SNR underscores the benefit of higher noise intensity in this context.

- Category-wise Performance Variations: NoiseFiT significantly improves performance in cate-
gories where hallucinations are particularly prevalent. In ”Medical (Disease Causes),” performance
reaches 100.0% across multiple 3-layer configurations (e.g., STD 0.1, lowest SNR), up from 93.3%
in BaseFiT. ”Scientific Discoveries” improves from 81.2% to 88.2% (3 layers, STD 0.01, lowest
SNR), ”Who Invented” from 82.1% to 85.2% (3 layers, STD 0.1, highest SNR), and ”Sports (Famous
Players)” from 74.7% to 92.0% (3 layers, STD 0.01, lowest SNR). These gains highlight NoiseFiT’s
effectiveness in enhancing factual accuracy and reducing hallucinations in knowledge-intensive
tasks. However, categories like ”Animals” (BaseFiT: 34.1%, best NoiseFiT: 43.6% with 12 layers,
STD 0.001, highest SNR, still below base’s 63.5%) and ”Art (Painting Subjects)” (BaseFiT: 32.2%,
best NoiseFiT: 40.0% with 12 layers, STD 0.1, highest or lowest SNR, below base’s 42.2%) show
persistent challenges, indicating that NoiseFiT may not fully mitigate hallucinations in tasks requiring
nuanced or context-sensitive understanding.

- Comparison with Other Models: Unlike smaller models like Llama-3.2-1B (best: STD 0.1, highest
SNR, 55.8%) or Qwen2.5-0.5B (best: STD 0.1, highest SNR, 36.6%), where higher SNR (less noise)
often performs better, Mistral-7B-v0.1 favors lower SNR (more noise) in its optimal configuration.
This difference likely reflects Mistral’s larger capacity, allowing it to benefit from higher noise levels
as a stronger regularizer against hallucinations, whereas smaller models may be more sensitive to
noise, requiring lower levels to maintain stability.

- Layer Selection Implications: The superior performance of the 3-layer configuration suggests
an optimal subset exists—possibly layers critical with high variance. Broader noise application (12
layers or all layers) reduces effectiveness (e.g., 12 layers, STD 0.001, lowest SNR: 77.0%; all layers,
STD 0.001: 74.4%), emphasizing the importance of layer selection strategy for noise injection in
mitigating hallucination.

These findings demonstrate that for Mistral-7B-v0.1, injecting significant noise (STD 0.1, lowest
SNR) into a small, targeted set of layers (3 layers) optimizes performance, slightly surpassing BaseFiT
and outperforming broader noise applications in reducing hallucinations. The category-wise analysis
reveals substantial benefits in factual, knowledge-based tasks, though challenges persist in areas like
”Animals” and ”Art,” suggesting limitations in NoiseFiT’s applicability across those domains for our
specific test dataset.

In conclusion, NoiseFiT proves to be a promising technique for mitigating hallucinations in LLMs,
particularly in knowledge-intensive categories, by leveraging noise injection to enhance robustness
and reduce overconfidence in incorrect outputs. However, its effectiveness varies across tasks and
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models, necessitating task-specific optimization of noise injection parameters and further research to
address remaining challenges in certain domains.

Table E.2: Category-wise performance of Llama-3.2-1B configurations. Performance is averaged
across 5 runs per prompt (208 prompts total). For noise-injected cases (3 layers), the first value is the
standard deviation (STD), with ’L’ indicating Lowest SNR and ’H’ indicating Highest SNR.

Llama-3.2-1B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H

Medical (Disease Causes) 76.6 50.0 53.4 60.0 56.6 63.4
Geography – Landmarks 65.4 69.0 81.8 85.4 80.0 81.8
Geography – Capitals 66.6 75.0 50.0 75.0 98.4 80.0
Geography – Currency 34.6 66.6 65.4 74.6 77.4 74.6
Geography – Landmark Locations 53.4 100.0 100.0 91.6 91.6 100.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year Events) 54.6 91.0 100.0 100.0 87.2 85.4
History (When Events) 48.4 98.4 100.0 96.6 96.6 93.4
Inventions 40.0 25.0 41.2 40.0 38.8 22.6
Animals 14.2 34.2 29.4 36.4 22.4 24.8
Music/Composers 43.4 53.4 46.6 50.0 50.0 60.0
Scientific Discoveries 57.6 36.4 36.4 41.2 35.2 29.4
Who Invented 45.2 32.6 42.2 33.6 35.8 37.8
Sports (Famous Players) 74.6 30.6 26.6 29.4 30.6 32.0
Art (Painting Subjects) 22.2 13.4 12.2 10.0 13.4 12.2
Literature 60.0 70.6 60.0 64.2 67.4 53.6
Miscellaneous 80.0 100.0 100.0 100.0 100.0 100.0

Overall 48.6 54.0 53.4 55.8 55.4 52.4

Table E.3: Category-wise performance of Llama-3.2-3B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Llama-3.2-3B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H
Medical (Disease Causes) 73.4 63.4 80.0 63.4 70.0 80.0
Geography – Landmarks 92.8 100.0 98.4 94.6 96.7 85.4
Geography – Capitals 78.3 91.6 85.0 91.6 91.6 91.7
Geography – Currency 84.0 100.0 98.6 100.0 98.7 100.0
Geography – Landmark Locations 86.7 96.6 100.0 100.0 100.0 100.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year Events) 85.5 90.9 63.6 81.8 89.1 96.4
History (When Events) 70.0 91.6 91.6 91.6 91.6 98.3
Inventions 33.8 48.8 47.6 50.0 43.8 37.5
Animals 27.1 22.4 11.8 15.2 16.5 32.9
Music/Composers 76.7 60.0 66.6 50.0 63.3 63.3
Scientific Discoveries 49.4 48.2 49.4 58.8 52.9 55.3
Who Invented 51.6 66.4 75.8 83.2 82.1 74.7
Sports (Famous Players) 10.7 49.4 54.6 57.4 53.3 60.0
Art (Painting Subjects) 45.6 25.6 16.6 21.2 16.7 20.0
Literature 83.2 77.8 81.0 84.2 83.2 93.7
Miscellaneous 100.0 100.0 100.0 100.0 100.0 100.0

Overall 60.0 66.4 65.6 68.2 68.0 70.2
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Table E.4: Category-wise performance of Gemma-3-1B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Gemma-3-1B-it (3 layers if noise injected)

Category Base BaseFiT 0.1, H 0.01, H 0.001, L 0.01, L

Medical (disease causes) 43.4 76.7 60.0 70.0 66.6 70.0
Miscellaneous 80.0 100.0 100.0 20.0 100.0 80.0
Geography – Landmarks 43.6 85.5 92.8 80.0 83.6 76.4
Geography – Capitals 78.4 100.0 100.0 100.0 100.0 100.0
Geography – Currency 73.4 93.3 86.6 97.4 96.0 92.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year events) 83.6 81.8 81.8 81.8 91.0 80.0
History (When events) 76.6 41.7 76.6 81.6 60.0 40.0
Inventions 55.0 32.5 40.0 37.6 31.2 27.6
Geography – Landmark Locations 70.0 66.7 100.0 100.0 100.0 20.0
Animals 31.8 7.1 21.2 10.6 9.4 9.4
Music/Composers 26.6 23.3 26.6 26.6 40.0 33.4
Scientific Discoveries 42.4 36.5 29.4 27.0 24.8 24.8
Who Invented 65.2 45.3 63.2 57.8 50.6 53.6
Sports (Famous Players) 26.6 30.7 32.0 28.0 26.6 30.6
Art (Painting Subjects) 7.8 8.9 7.8 16.6 14.4 7.8
Literature 44.2 31.6 40.0 35.8 31.6 34.8

Overall 50.6 47.6 54.6 53.2 51.0 43.8

Table E.5: Category-wise performance of Qwen2.5-0.5B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Qwen2.5-0.5B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H

Medical (disease causes) 66.7 76.6 80.0 80.0 86.6 73.4
Miscellaneous 60.0 100.0 100.0 100.0 20.0 100.0
Geography – Landmarks 21.8 31.0 16.4 40.0 18.2 36.4
Geography – Capitals 31.7 75.0 85.0 86.6 76.6 71.6
Geography – Currency 38.7 50.6 74.6 77.4 69.4 78.6
Language 80.0 100.0 20.0 100.0 80.0 100.0
History (Year events) 43.6 45.4 63.6 58.2 51.0 61.8
History (When events) 38.3 68.4 73.4 73.4 61.6 66.6
Inventions 23.8 5.0 11.2 10.0 11.2 7.6
Geography – Landmark Locations 60.0 93.4 88.4 93.4 81.6 80.0
Animals 17.6 5.8 3.6 18.8 9.4 7.0
Music/Composers 0.0 0.0 0.0 0.0 0.0 0.0
Scientific Discoveries 28.2 11.8 11.8 13.0 7.0 14.2
Who Invented 21.0 10.6 11.6 7.4 11.6 8.4
Sports (Famous Players) 9.3 6.6 9.4 17.4 9.4 20.0
Art (Painting Subjects) 3.3 3.4 1.2 3.4 2.2 1.2
Literature 16.8 8.4 26.4 25.2 20.0 20.0

Overall 26.4 28.8 33.0 36.6 30.2 33.0
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E.2 STATISTICAL ANALYSIS

A hallucination score measures the degree to which a language model generates hallucinated out-
puts. Figure E.1 (panels a–d) and Figure E.2 display the mean hallucination scores (with standard
error interval for the mean) for each noisy fine-tuned variant alongside its base variants. To assess
whether noisy fine-tuning leads to statistically meaningful changes in the distribution of hallucina-
tion scores (beyond what can be inferred from mean and error-bar overlap alone), we employ the
Epps–Singleton two-sample test (Epps & Singleton, 1986; Goerg & Kaiser, 2009). This test is a
nonparametric method for comparing two continuous distributions without assuming normality or
equal variances—properties. Moreover, by examining the full empirical distribution rather than only
its first two moments (mean and variance), the Epps–Singleton test can detect shifts in shape, tail
behavior, or modality that might be missed by simpler tests.

All pairwise comparisons against the base model were performed in Python using SciPy’s
epps singleton 2samp function, with Holm’s method applied to control the familywise er-
ror rate at α = 0.05. The detailed results for each model family appear in Tables E.7–E.11. Across all
models, the adjusted p-values are consistently low (e.g., 0.000 to 0.018), and the ”Significant” column
is uniformly True, leading to the rejection of H0, indicating that the distributions of hallucination
scores for the noisy fine-tuned models differ significantly from those of their base variants. The
significant results across nearly all experiments confirm that adding noise during fine-tuning isn’t
a trivial change—it alters how the model generates outputs, as reflected in the hallucination scores.
This suggests that noise acts as a regularizer, helping the model avoid overfitting to the training data
and improving its ability to handle new inputs without hallucinating.

Table E.7: Statistical comparison between noisy fine-tuned models and the base variants of Llama-
3.2-1B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 93.975 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 52.584 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 60.025 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 53.175 0.000 0.000 True Reject H0 → distributions differ

Table E.8: Statistical comparison between noisy fine-tuned models and the base variants of Llama-
3.2-3B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 46.320 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 57.663 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 60.415 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 62.553 0.000 0.000 True Reject H0 → distributions differ

Table E.9: Statistical comparison between noisy fine-tuned models and the base variants of Qwen2.5-
0.5B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 19.060 0.001 0.002 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 26.945 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 11.742 0.019 0.019 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 33.286 0.000 0.000 True Reject H0 → distributions differ

Table E.10: Statistical comparison between noisy fine-tuned models and the base variants of Gemma-
3-1B-it.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 19.498 0.001 0.002 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 23.610 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 7.663 0.105 0.105 False Fail to reject H0 → no evidence of difference
Noisy4 Epps-Singleton 18.095 0.001 0.002 True Reject H0 → distributions differ
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Table E.11: Statistical comparison between noisy fine-tuned models and the base variants of Mistral-
7B-v0.1.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 63.822 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 49.946 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 63.714 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 50.750 0.000 0.000 True Reject H0 → distributions differ
Noisy5 Epps-Singleton 54.740 0.000 0.000 True Reject H0 → distributions differ
Noisy6 Epps-Singleton 54.225 0.000 0.000 True Reject H0 → distributions differ
Noisy7 Epps-Singleton 63.442 0.000 0.000 True Reject H0 → distributions differ
Noisy8 Epps-Singleton 83.037 0.000 0.000 True Reject H0 → distributions differ
Noisy9 Epps-Singleton 57.399 0.000 0.000 True Reject H0 → distributions differ
Noisy10 Epps-Singleton 77.249 0.000 0.000 True Reject H0 → distributions differ
Noisy11 Epps-Singleton 85.994 0.000 0.000 True Reject H0 → distributions differ
Noisy12 Epps-Singleton 60.581 0.000 0.000 True Reject H0 → distributions differ
Noisy13 Epps-Singleton 69.129 0.000 0.000 True Reject H0 → distributions differ

F COMPUTATIONAL EFFICIENCY AND SCALABILITY ANALYSIS

To evaluate the computational efficiency and scalability of the proposed NoiseFiT framework com-
pared to the common fine-tuning (BaseFiT), we analyzed a series of GPU performance metrics
recorded during the experiments (Figures F.1 and F.2). The metrics under consideration include:

• GPU Memory Allocated (%) – Indicates the percentage of total GPU memory used.

• GPU Power Usage (%) – Reflects the power consumption during model training.

• GPU Temperature (°C) – Monitors the thermal performance of the GPU.

• Time Spent Accessing Memory (%) – Measures the relative time the GPU spent in memory
operations.

• GPU Utilization (%) – Captures the overall usage of the GPU computational resources.

For each metric, we computed the mean and standard deviation over multiple experimental runs.
Table F.1 summarizes the performance for both BaseFiT (Base) and NoiseFiT configurations. The
results indicate that the NoiseFiT framework exhibits a mixed performance profile across the evaluated
GPU metrics:

• Memory and Power Efficiency: While NoiseFiT requires a higher GPU memory allocation
(61.3% vs. 35.5%), it achieves reduced power usage (64.0% vs. 67.3%). This suggests that,
despite the increased memory demand, NoiseFiT benefits from lower energy consumption
during training.

• Thermal Performance and Memory Operations: The GPU temperature and the time
spent accessing memory are marginally elevated in the NoiseFiT setup (58.6°C and 50.7%,
respectively) compared to BaseFiT (57.8°C and 49.0%). These slight differences indicate
that thermal management and memory operation times remain largely comparable between
the two approaches.

• Overall Utilization: The slightly lower overall GPU utilization observed with NoiseFiT
(75.5% vs. 77.2%) implies that similar or improved performance may be achieved with a
reduced computational load, which is beneficial for scalability.

In summary, the performance trade-offs observed with the NoiseFiT suggest a viable balance between
computational efficiency and resource allocation. Although NoiseFiT demands higher memory usage
and shows marginal increases in thermal metrics, its reduced power consumption and overall GPU
utilization indicate that it can mitigate hallucinations while decreasing the computational overhead
associated with training. These benefits are especially critical when scaling large language models in
resource-constrained environments, thereby enhancing both the practicality and the environmental
sustainability of deploying such systems.
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Table F.1: Summary of GPU performance metrics statistics comparing Base Fine Tuning (BaseFiT)
and Noisy Fine Tuning (NoiseFiT) workflows. Values represent the mean ± standard deviation across
multiple runs.

Metric BaseFiT NoiseFiT
GPU Memory Allocated (%) 35.5 ± 0.0 61.3 ± 0.5
GPU Power Usage (%) 67.3 ± 14.0 64.0 ± 16.1
GPU Temperature (°C) 57.8 ± 2.2 58.6 ± 1.2
Time Spent Accessing Memory (%) 49.0 ± 13.5 50.7 ± 19.4
GPU Utilization (%) 77.2 ± 20.6 75.5 ± 18.3

Figure F.1: NoiseFiT training GPU utilization history for different models, noise injection STD and
layer selection strategies. Available in interactive mode online at W&B.

G ANALYSIS OF LAYER-WISE METRICS

In this section, we analyze the layer-wise insights for the models. First, we provide an analysis of
the SNR trends per layer across multiple noise standard deviation (STD) values in the five models
(Figures G.1- G.5). Then, we provide an analysis of the metrics including sparsity, variance, logit
entropy, attention entropy, mean L2 norm, and rank of the hidden states across layers.

For Llama-3.2-1B, Llama-3.2-3B, and Mistral-7B-v0.1, SNR increases with layer index for all noise
STD values. Conversely, gemma-3-1b-it shows a unique decreasing SNR trend across layers, with
the decline more pronounced at lower STD values, indicating greater noise sensitivity in deeper
layers. Qwen2.5-0.5B presents a mixed trend: SNR remains stable for lower STD values but declines
for higher STD values, reflecting varying noise tolerance. Across all models, higher STD values
consistently yield lower SNR. The diversity in trends suggests that the model’s architecture plays a
crucial role in how noise injection influences the fine-tuning.

Here we briefly define the metrics used:
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Figure F.2: NoiseFiT training GPU memory allocation history for different models, noise injection
STD and layer selection strategies. Available in interactive mode online at W&B.

• Sparsity: The proportion of zero or near-zero values in the hidden states, indicating how
many features are inactive. Higher sparsity suggests a focus on fewer, potentially more
robust features.

• Variance: The spread of hidden state activations. Higher variance may indicate greater
expressiveness, while lower variance suggests stability.

• Logit Entropy: Measures uncertainty in the model’s output predictions. Lower entropy
reflects higher confidence, while higher entropy indicates more uncertainty.

• Attention Entropy: Assesses the distribution of attention weights. Lower entropy implies
concentrated attention on specific tokens, while higher entropy suggests more uniform
attention.

• Mean L2 Norm: The magnitude of hidden state activations. Larger norms indicate stronger
activations, while smaller norms suggest subdued activations.

• Rank: The effective rank of hidden states, reflecting the dimensionality of information
processed. Higher rank suggests more complex representations.

G.1 LLAMA-3.2-1B

• Sparsity (Fig. G.6a): The noisy variants show higher sparsity across most layers, especially
in the middle layers, compared to BaseFiT and the Base model. This suggests that noise
promotes sparser, potentially more robust representations. BaseFiT exhibits lower sparsity,
indicating reliance on more features, while the Base model maintains moderate sparsity
compared to other models.

• Variance (Fig. G.6b): Base model displays higher variance, reflecting more diverse
activations. BaseFiT and noisy variants show lower variance, suggesting more stable
activations.

• Logit Entropy (Fig. G.6c): Noisy variants exhibit lower logit entropy median and higher
logit entropy variance, which may improve calibration. Base model shows moderate entropy
relatively higher median with less variance.
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• Attention Entropy (Fig. G.6d): Noisy variants have higher attention entropy, implying
more distributed attention across tokens. The Base model’s entropy increases gradually
across layers.

• Mean L2 Norm (Fig. G.6e): Noisy variants have lower mean L2 norms, especially in
deeper layers, suggesting smaller activations. Base model exhibits higher norms, indicating
stronger activations.

• Rank (Fig. G.6f): The rank is lower for base model, particularly in later layers, suggesting
compressed representations. The noisy variants show consistently higher rank.

G.2 LLAMA-3.2-3B

• Sparsity (Fig. G.7a): Noisy variants exhibit fluctuating higher sparsity, especially in middle
and later layers.

• Variance (Fig. G.7b): Noisy variants have higher variance. The Base model shows the
lowest variance.

• Logit Entropy (Fig. G.7c): Noisy variants display lower logit entropy, indicating greater
confidence, while Base model has higher entropy.

• Attention Entropy (Fig. G.7d): Noisy variants have slightly higher attention entropy,
especially in deeper layers, suggesting distributed attention. Base model’s entropy decreases
gradually relative to other models.

• Mean L2 Norm (Fig. G.7e): Mean L2 norms exhibit relatively similar pattern across all
models.

• Rank (Fig. G.7f): Ranks exhibit relatively similar pattern across all models.

G.3 QWEN2.5-0.5B

• Sparsity (Fig. G.8a): Noisy variants show higher sparsity, particularly in earlier layers,
compared to the Base model.

• Variance (Fig. G.8b): Base model exhibits relatively higher variance in the middle layers
with the BaseFiT and noisy variants maintaining lower variance across these layers.

• Logit Entropy (Fig. G.8c): Noisy variants have show higher output logit entropy median
and variance, indicating less confidence. Base model shows lower entropy.

• Attention Entropy (Fig. G.8d): Mean attention entropy exhibits similar pattern across all
models.

• Mean L2 Norm (Fig. G.8e): Mean L2 norms exhibit relatively similar pattern across all
models.

• Rank (Fig. G.8f): Ranks exhibit relatively similar pattern across all models.

G.4 GEMMA-3-1B-IT

• Sparsity (Fig. G.9a): Sparsity exhibits relatively similar pattern across all models.

• Variance (Fig. G.9b): Variance exhibits relatively similar pattern across all models.

• Logit Entropy (Fig. G.9c): Noisy variants display relatively higher logit entropy median
and higher variance, while Base model shows lower entropy median and variance.

• Attention Entropy (Fig. G.9d): Attention entropy exhibits relatively similar pattern across
all models.

• Mean L2 Norm (Fig. G.9e): Logit entropy exhibits relatively similar pattern across all
models with the noisy variants exhibiting relatively higher mean L2 norms in deeper layers.

• Rank (Fig. G.9f): Rank exhibits relatively similar pattern across all models with the noisy
variants exhibiting relatively higher rank in deeper layers.
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G.5 MISTRAL-7B-V0.1

Based on the layer-wise metrics for Mistral-7B-v0.1, we observe the following trends:

• Sparsity (Fig. G.10a): Sparsity exhibits similar pattern across all models.

• Variance (Fig. G.10b): Variance exhibits similar pattern across all models.

• Logit Entropy (Fig. G.10c): The noisy variants show lower logit entropy, suggesting high
confidence in predictions. Base model displays higher entropy.

• Attention Entropy (Fig. G.10d): Attention entropy exhibits relatively similar pattern across
all models with the noisy variants exhibiting relatively higher entropy in deeper layers.

• Mean L2 Norm (Fig. G.10e): The Mean L2 norms exhibit similar pattern across all models.

• Rank (Fig. G.10f): Ranks exhibit relatively similar pattern across all models.

G.6 SYNTHESIS OF THE FINDINGS

Across all five models, consistent patterns emerge:

• Sparsity: Noisy variants exhibit higher sparsity compared to their base counterparts, par-
ticularly in specific layers. In LLaMA-3.2-1B, noisy variants show elevated sparsity in
middle layers (Fig. G.6a), while in LLaMA-3.2-3B, this increase is more pronounced in
middle and later layers (Fig. G.7a). Similarly, Qwen2.5-0.5B displays higher sparsity in
earlier layers for noisy variants (Fig. G.8a). This pattern suggests that noise injection
may encourage sparser representations, potentially enhancing robustness by focusing on
fewer, critical features. However, in Gemma-3-1b-it and Mistral-7B-v0.1, sparsity remains
relatively consistent across all variants (Figs. G.9a and G.10a), indicating that the impact of
noise on sparsity may be architecture-dependent.

• Variance: In LLaMA-3.2-1B and Qwen2.5-0.5B, noisy variants tend to have lower variance
compared to the base models, particularly noticeable in middle layers for Qwen2.5-0.5B
(Figs. G.6b and G.8b), suggesting more stable activations. In contrast, LLaMA-3.2-3B
shows higher variance in noisy variants (Fig. G.7b), indicating greater activation diversity.
Gemma-3-1b-it and Mistral-7B-v0.1 exhibit similar variance patterns across all variants
(Figs. G.9b and G.10b), highlighting that the effect of noise on activation spread is not
uniform and likely influenced by model size or structure.

• Logit Entropy: In LLaMA-3.2-1B, noisy variants have a lower median but higher variance
in logit entropy (Fig. G.6c), potentially indicating better calibration. LLaMA-3.2-3B
and Mistral-7B-v0.1 show lower logit entropy in noisy variants (Figs. G.7c and G.10c),
suggesting increased prediction confidence. Conversely, Qwen2.5-0.5B and Gemma-3-1b-it
exhibit higher median and variance in logit entropy for noisy variants (Figs. G.8c and G.9c),
pointing to greater uncertainty.

• Attention Entropy: Attention entropy tends to increase in noisy variants across multiple
models. LLaMA-3.2-1B shows higher attention entropy in noisy variants (Fig. G.6d),
while LLaMA-3.2-3B and Mistral-7B-v0.1 exhibit slightly higher entropy in deeper layers
(Figs. G.7d and G.10d). This trend suggests that noise promotes more distributed attention
across tokens, possibly improving contextual awareness. In Qwen2.5-0.5B and Gemma-3-
1b-it, attention entropy patterns are largely similar across variants (Figs. G.8d and G.9d),
indicating less pronounced effects in these models.

• Mean L2 Norm: The mean L2 norm generally shows consistent patterns across variants
in most models, with some exceptions. In LLaMA-3.2-1B, noisy variants have lower
mean L2 norms, especially in deeper layers (Fig. G.6e), suggesting subdued activations,
whereas Gemma-3-1b-it displays higher norms in noisy variants in deeper layers (Fig. G.9e).
LLaMA-3.2-3B, Qwen2.5-0.5B, and Mistral-7B-v0.1 exhibit similar norm patterns across all
variants (Figs. G.7e, G.8e, and G.10e), suggesting that noise impact on activation magnitude
varies by model.

• Rank: LLaMA-3.2-1B’s noisy variants maintain a higher rank, particularly in later layers
(Fig. G.6f), indicating more complex representations. In Gemma-3-1b-it, noisy variants also
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show higher rank in deeper layers (Fig. G.9f), while LLaMA-3.2-3B, Qwen2.5-0.5B, and
Mistral-7B-v0.1 display similar rank patterns across variants (Figs. G.7f, G.8f, and G.10f).
This suggests that noise may enhance representational dimensionality in some models.

These findings indicate that noise injection influences the internal representations of the models
in various ways. Increased sparsity and attention entropy are relatively consistent effects, while
variance, logit entropy, and mean L2 norm exhibit model-specific responses, highlighting the role of
architecture in noisy fine-tuning. Our findings demonstrate that NoiseFiT can effectively alter layer-
wise hidden states characteristics of language models for mitigating hallucinations. The increased
sparsity and attention entropy in noisy variants align with goals of reducing overfitting and enhancing
generalization. However, the mixed effects on variance and logit entropy emphasize the complexity
of noise’s impact and the need for careful calibration.
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Figure G.1: Layerwise SNR for Llama-3.2-1B across different noise standard deviation values
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Figure G.2: Layerwise SNR for Llama-3.2-3B across different noise standard deviation values
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Figure G.3: Layerwise SNR for Qwen2.5-0.5B across different noise standard deviation values
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Figure G.4: Layerwise SNR for gemma-3-1b-it across different noise standard deviation values
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Figure G.5: Layerwise SNR for Mistral-7B-v0.1 across different noise standard deviation values
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Figure G.6: Layerwise metrics for LLaMA-3.2-1B
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Figure G.7: Layerwise metrics for LLaMA-3.2-3B
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Figure G.8: Layerwise metrics for Qwen2.5-0.5B:
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Figure G.9: Layerwise metrics for Gemma-3-1b-it:

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

31.9 32 32.1 32.2 32.3 32.4 32.5 32.6 32.7

500

600

700

450

550

650

Model
Mistral-7B-v0.1-0.1-H
Mistral-7B-v0.1-0.1-L
Mistral-7B-v0.1-0.01-H
Mistral-7B-v0.1-0.01-L
Mistral-7B-v0.1-0.3-H
Mistral-7B-v0.1-6-0.1-H
Mistral-7B-v0.1-6-0.1-L

Mistral-7B-v0.1-6-0.01-H
Mistral-7B-v0.1-6-0.01-L
Mistral-7B-v0.1-6-0.001-L
Mistral-7B-v0.1-0.3-L
Mistral-7B-v0.1-12-0.01-H
Mistral-7B-v0.1-12-0.01-L
Mistral-7B-v0.1-12-0.1-H
Mistral-7B-v0.1-12-0.1-L

Mistral-7B-v0.1-12-0.001-L
Mistral-7B-v0.1-12-0.001-H
Mistral-7B-v0.1-all-0.001
Mistral-7B-v0.1-all-0.01
Mistral-7B-v0.1-all-0.1
Mistral-7B-v0.1-BaseFiT
Mistral-7B-v0.1

Effective rank of hidden states per layer

Layer

Ra
nk

Mistral-7B-v0.1

0 5 10 15 20 25 30

0

2

4

6

8

10

Model
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1

Hidden states sparsity per layer

Layer

Fr
ac

 |
h|

<1
e-

5

(a) Sparsity

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

Model
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Hidden states variance per layer

Layer
Va
r(
h)

(b) Variance

Mistral-7B-v0.1-0.1-H

Mistral-7B-v0.1-0.1-L

Mistral-7B-v0.1-0.01-H

Mistral-7B-v0.1-0.01-L

Mistral-7B-v0.1-0.3-H

Mistral-7B-v0.1-6-0.1-H

Mistral-7B-v0.1-6-0.1-L

Mistral-7B-v0.1-6-0.01-H

Mistral-7B-v0.1-6-0.01-L

Mistral-7B-v0.1-6-0.001-L

Mistral-7B-v0.1-0.3-L

Mistral-7B-v0.1-12-0.01-H

Mistral-7B-v0.1-12-0.01-L

Mistral-7B-v0.1-12-0.1-H

Mistral-7B-v0.1-12-0.1-L

Mistral-7B-v0.1-12-0.001-L

Mistral-7B-v0.1-12-0.001-H

Mistral-7B-v0.1-all-0.001

Mistral-7B-v0.1-all-0.01

Mistral-7B-v0.1-all-0.1

Mistral-7B-v0.1-BaseFiT

Mistral-7B-v0.1

2

3

4

5

6

7

Distribution of Logit Entropy for Each Model

Model

En
tr

op
y

(c) Logit Entropy

0 5 10 15 20 25 30

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y
 
(
b
i
t
s
)

(d) Attention Entropy

0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400 Model
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂

 (
me

an
)

(e) Mean L2 Norm

0 5 10 15 20 25 30

0

100

200

300

400

500

600

700
Model

Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.10: Layerwise metrics for Mistral-7B-v0.1:
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