
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NOISE AUGMENTED FINE TUNING FOR MITIGATING
HALLUCINATIONS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) often produce inaccurate or misleading con-
tent—hallucinations. To address this challenge, we introduce Noise-Augmented
Fine-Tuning (NoiseFiT), a novel framework that leverages adaptive noise injec-
tion based on the signal-to-noise ratio (SNR) to enhance model robustness. Our
contribution is threefold. First, NoiseFiT selectively perturbs layers identified as
either high-SNR (more robust) or low-SNR (potentially under-regularized) using a
dynamically scaled Gaussian noise. Second, we further propose a hybrid loss that
combines standard cross-entropy, soft cross-entropy, and consistency regularization
to ensure stable and accurate outputs under noisy training conditions. Third, a the-
oretical analysis proposed shows that adaptive noise injection is both unbiased and
variance-preserving, providing strong guarantees for convergence in expectation.
Moreover, empirical results on multiple test and benchmark datasets, demonstrate
that NoiseFiT significantly reduces hallucination rates, often improving or match-
ing baseline performance in key tasks. These findings highlight the promise of
noise-driven strategies for achieving robust, trustworthy language modeling with-
out incurring prohibitive computational overhead. We have publicly released the
fine-tuning logs, benchmark evaluation artifacts, and source code online at W&B,
Hugging Face, and GitHub, respectively, to foster further research, accessibility
and reproducibility.

1 INTRODUCTION

LLMs such as GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI et al., 2024), built upon transformer
architectures (Vaswani et al., 2017), have revolutionized the field of natural language processing by
achieving state-of-the-art performance on a diverse range of tasks. Despite their impressive capabili-
ties, these models are known to generate content that is often inaccurate or misleading—phenomena
broadly referred to as hallucinations (Ji et al., 2023; Bang et al., 2023; Niu et al., 2024). The risk
of such hallucinations not only arises in specialized domains such as healthcare (Moor et al., 2023)
and finance (Wu et al., 2023), where reliability is paramount, but also extends to a variety of more
general-purpose benchmarks and tasks such as question answering, underscoring the urgency of
developing robust mitigation strategies. Consequently, ensuring the trustworthiness of LLM outputs is
critical, making the reduction of hallucinations both a technical and practical imperative for real-world
adoption.

Recent research has increasingly focused on noise injection as a means to enhance model robustness.
Early work in image restoration demonstrated the efficacy of learning from noisy data (Lehtinen
et al., 2018), and this idea has since been adapted for natural language processing. In the context of
LLM fine-tuning, noise injection techniques have shown promising results. For instance, methods
such as noise perturbation fine-tuning for robust quantization (WANG & Yang, 2025) and the use
of noisy embeddings to improve instruction fine-tuning (Jain et al., 2024) illustrate that controlled
noise can help models generalize better under diverse and challenging conditions. Additional studies
have revealed hidden capabilities of noise injection in reducing overconfidence and mitigating model
biases (Tice et al., 2024; Yadav & Singh, 2023), and even enhancing hallucination detection (Liu et al.,
2025). Complementary evaluation frameworks, including large-scale benchmarks for hallucination
evaluation (Li et al., 2023a) and rigorous instruction-following assessments (Zhou et al., 2023),
further motivate the development of noise-based approaches in addressing LLM shortcomings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In light of these advancements, we propose Noise-Augmented Fine-Tuning (NoiseFiT), a novel
framework that integrates adaptive noise injection into the fine-tuning process of LLMs. The key
innovation of NoiseFiT lies in its use of adaptive Gaussian noise injection, which is guided by the
SNR of internal representations, i.e., the ratio of meaningful information to background noise. By
selectively perturbing transformer layers based on the behavior of internal hidden states (Sriramanan
et al., 2024), our approach aims to directly enhance robustness against hallucinations while minimizing
disruption to overall performance. This strategy is further supported by recent studies demonstrating
the benefits of noise regularization and stochastic perturbations in fine-tuning settings (Wang et al.,
2023a; Wu et al., 2020; Hua et al., 2023).

The central research questions motivating this work are:

• RQ1: How does adaptive noise injection during fine-tuning help mitigate hallucinations in
the outputs of LLMs?

• RQ2: What is the relationship between the intensity of noise injection and the trade-off
between robustness and task performance across diverse applications?

• RQ3: How does the proposed NoiseFiT framework affect the computational efficiency and
scalability of hallucination mitigation?

The remainder of this paper is organized as follows. Section 2 reviews recent advances in the field
and situates our contributions within this context. Section 3 details the NoiseFiT methodology,
including the adaptive noise injection strategy. Section 4 reports the experimental setup and results,
benchmarking NoiseFiT against state-of-the-art methods. Section 5 presents limitations and discusses
the broader implications of our findings. Finally, Section 6 concludes this paper and outlines future
research directions.

2 RELATED WORK

Existing strategies to reduce hallucinations include retrieval-augmented generation (RAG), which
grounds outputs in external knowledge retrieved at different stages of inference (Lewis et al., 2020;
Asai et al., 2024; Wang et al., 2025). Reinforcement learning from human feedback (RLHF) (Ouyang
et al., 2022) where aligns models with human preferences by training a reward model from cu-
rated signals or annotations, then optimizing responses through reinforcement learning. Self-
consistency (Wang et al., 2023b) is a decoding strategy built on chain-of-thought prompting (Wei
et al., 2022), which improves reasoning reliability by sampling diverse reasoning paths and selecting
the most consistent answer. Contrastive decoding (Li et al., 2023b), and adversarial training (Zhu
et al., 2024). More recently, CDCR-SFT has been introduced as a supervised fine-tuning framework
in which LLMs are trained to construct variable-level directed acyclic graph (DAG) and subsequently
reason over them (Li et al., 2025).

While these methods have achieved some success, they often come with increasing computational
overhead, adding latency during inference, increased sensitivity to hyperparameter tuning, and limited
generalization across varying domains (Zhao et al., 2025; Zellers et al., 2019). These limitations
underscore the need for alternative approaches that can robustly improve model performance without
incurring prohibitive resource demands.

To address these questions, our methodology introduces a hybrid loss objective that combines
standard cross-entropy with soft target regularization and consistency-based penalties computed over
multiple noisy forward passes. This formulation not only ensures that the model retains its predictive
capabilities under perturbation but also enforces consistency in its outputs—a key requirement for
robust performance in safety-critical applications. Furthermore, our mathematical analysis establishes
theoretical properties of the adaptive noise injection mechanism, including its unbiasedness and
variance-preserving characteristics.

In summary, this paper makes the following contributions:

1. We introduce the NoiseFiT framework that leverages adaptive noise injection based on
internal SNR, addressing the critical issue of hallucinations in LLMs (RQ1).

2. We propose a novel hybrid loss function that integrates multiple regularization techniques to
ensure robust and consistent model behavior (RQ2).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3. We provide both theoretical analysis and empirical evidence demonstrating that our approach
reduces hallucinations while preserving competitive performance across various tasks, while
also maintaining computational efficiency and scalability (RQ1, RQ2, RQ3).

Empirical evaluations conducted on multiple benchmarks, such as the GPQA (Rein et al.,
2024), MUSR (Sprague et al., 2024), IFEval (Zhou et al., 2023), BBH (Suzgun et al., 2023),
MATH (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024), HaluEval (Li et al., 2023a), and
TruthfulQA multiple-choice (Lin et al., 2022) datasets, validate the effectiveness of NoiseFiT. Our ex-
periments demonstrate a noticeable reduction in hallucinations compared to conventional fine-tuning
methods, while maintaining or even improving performance on standard language understanding
tasks. These results are consistent with prior findings on the benefits of noise injection in both
vision (Lehtinen et al., 2018) and language domains (Jain et al., 2024; Tice et al., 2024; Yadav &
Singh, 2023).

3 METHODS

Our approach, Noise-Augmented Fine-Tuning, is designed to reduce hallucinations in LLMs by
integrating adaptive noise injection directly into the fine-tuning process and leveraging a hybrid
loss function. Additionally, NoiseFiT selectively injects noise into specific layers based on a SNR
criterion, thereby adapting perturbations to target layers with both stable (robust) and unstable (loose)
activations, depending on their contribution to model behavior.

3.1 DATASET

NoiseFiT was fine-tuned and evaluated using two distinct datasets, each comprising prompt-response
pairs. The first of these, which serves as the fine-tuning dataset, includes 832 samples in its training
split (with 208 samples in test split, structured similarly to the training), where each sample contains
a prompt and its corresponding response. We intentionally designed this dataset to be simple and
straightforward, with queries that, in many cases, large language models could be expected to answer
easily. To achieve this, we generated the data synthetically using the GROK 3.0 Think, ensuring a
broad but basic coverage of topics—from literature and history to geography and science—while
maintaining concise prompts and direct responses. Our main motivation for constructing the dataset
in this manner was twofold: (1) to demonstrate that our fine-tuning strategy remains effective even
when starting from a minimal, uncomplicated dataset; and (2) to show that incorporating additional
complexity is not strictly necessary to validate the viability of our approach. By emphasizing
simplicity in content and structure, we also reduce potential confounding factors, allowing us to
isolate and examine the impact of the fine-tuning methodology itself.

3.2 LAYER SELECTION VIA SNR

To determine which layers are suited for noise injection, we perform the following steps:

(a) Clean and Noisy Forward Passes: A clean forward pass through the model produces
hidden states hclean

ℓ ∈ RB×Lℓ×H , where B is the batch size, Lℓ the sequence length at
layer ℓ, and H the hidden dimensionality. In parallel, multiple noisy forward passes using
adaptive noise injection yield hnoisy

ℓ ∈ RB×Lℓ×H .
(b) SNR Computation: The SNR helps identify transformer layers with robust or loose

activations. We define:
• Signal Metric: The signal Sℓ, computed as the mean absolute activation of the clean

hidden states, is given by:

Sℓ =
1

B · Lℓ ·H

B∑
b=1

Lℓ∑
t=1

H∑
i=1

∣∣∣[hclean
ℓ

]
b,t,i

∣∣∣ . (1)

• Noise Metric: The noise Nℓ, estimated as the average absolute difference between
noisy and clean activations, is:

Nℓ =
1

B · Lℓ ·H

B∑
b=1

Lℓ∑
t=1

H∑
i=1

∣∣∣∣[hnoisy
ℓ − hclean

ℓ

]
b,t,i

∣∣∣∣ . (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• SNR Definition: The SNR for layer ℓ is then:

SNRℓ =
Sℓ

Nℓ + ϵ
, (3)

where ϵ > 0 (e.g., 10−6) avoids division by zero.
A higher Sℓ indicates stronger activations in the clean pass, while a lower Nℓ implies
less distortion under noise. Thus, higher SNRℓ suggests more stable activations under
perturbation.

(c) Layer Selection: Given the SNR values {SNRℓ}Lℓ=1 (with L the total number of layers),
a fixed number k of layers with the highest or lowest SNR values are selected for noise
injection during fine-tuning.

3.3 ADAPTIVE NOISE INJECTION

Adaptive noise injection perturbs hidden states by injecting zero-mean Gaussian noise, scaled using
robust statistics and model uncertainty. For a hidden state vector h ∈ RH , noise injection is defined
as:

h̃ = h+ ξ, ξ ∼ N (0, IH), (4)
where IH is the H ×H identity matrix.

3.3.1 ADAPTIVE SCALING VIA ROBUST STATISTICS AND UNCERTAINTY

Noise is adaptively scaled using the median µmed = median(h) and the Median Absolute Deviation
(MAD):

MAD(h) = median (|h− µmed|) . (5)

Exponential Weighting: Define a weighting function that emphasizes deviations from the median:

w(h) = exp

(
−β

|h− µmed|
MAD(h) + ϵ

)
, (6)

where β > 0 is a hyperparameter controlling the sensitivity to deviations, and ϵ is a small constant to
ensure numerical stability.

Uncertainty-Based Noise Factor: To capture model uncertainty, we define a noise factor η that
dynamically scales the noise magnitude. Two strategies are used to compute the noise factor (η):

• Using Logits: If logits z ∈ RB×L×V , where B is the batch size, L is the sequence length,
and V is the vocabulary size (the number of unique tokens), are available, compute the
softmax probabilities. The logits z are the raw, unnormalized scores output by the model,
representing the likelihood of each token in the vocabulary at each sequence position. For
each token position t ∈ {1, 2, . . . , L} and vocabulary token k ∈ {1, 2, . . . , V }, the logit
zt,k is the score for token k at position t. The softmax probabilities are:

pt,k =
exp(zt,k)∑V
j=1 exp(zt,j)

. (7)

Then, for each token position t, the entropy is:

Ht = −
V∑

k=1

pt,k log
(
pt,k + ϵ

)
. (8)

The average entropy over the token sequence is:

H̄ =
1

L

L∑
t=1

Ht, (9)

and the noise factor is defined as:
η = exp

(
H̄
)
. (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Variance of Hidden States: In the absence of logits, a pseudo-entropy is computed from
the variance of the hidden states:

η = exp

(
Var(h)

E
[
Var(h)

]
+ ϵ

)
. (11)

Effective Noise Scale. The final noise scale is computed by integrating base standard deviation
σbase, a learnable scalar α, an external noise gate gnoise ∈ [0, 1], the MAD, the weighting function,
and the uncertainty factor:

σeff = σbase · α · gnoise ·MAD(h) · w(h) · η. (12)
The perturbed hidden state is finally defined as:

h̃ = h+ σeff · ξ, ξ ∼ N (0, IH). (13)

3.4 HYBRID LOSS OBJECTIVE WITH CONSISTENCY REGULARIZATION

To ensure robust representation learning under noise, the training objective is augmented with multiple
loss components:

3.4.1 CROSS-ENTROPY LOSS (LCE)

A standard cross-entropy loss is computed on the clean forward pass:

Lce = − 1

N

N∑
t=1

log
(
p
(
yt | hclean

t

))
, (14)

where N is the number of valid tokens and yt is the ground-truth token at iteration step t.

3.4.2 SOFT CROSS-ENTROPY LOSS (LSOFT)

Inspired by knowledge distillation, we encourage the noisy model to align with the clean model’s
softened predictions (via temperature scaling), which provides informative soft targets and boosts
calibration (Buciluă et al., 2006; Hinton et al., 2015; Guo et al., 2017). To further guide the model
under noise, a soft target distribution is computed from the clean logits zclean using temperature
scaling:

psoft
t = softmax

(zclean
t

τ

)
, (15)

where τ > 0 is the temperature. For a noisy forward pass producing logits znoisy, the soft cross-entropy
loss is:

Lsoft =
1

N

N∑
t=1

KL
(
psoft
t

∥∥∥ softmax(znoisy
t)

)
, (16)

with KL(· ∥ ·) denoting the Kullback–Leibler divergence.

3.4.3 CONSISTENCY LOSS (LCONSISTENCY)

To enforce stability across noisy passes, two independent noisy forward passes are performed yielding
logits znoisy

1 and znoisy
2 . The consistency loss is then defined as:

Lconsistency =
1

N

N∑
t=1

KL
(
softmax(znoisy

1,t)
∥∥∥ softmax(znoisy

2,t)
)
. (17)

3.4.4 HYBRID LOSS AND FINAL TRAINING OBJECTIVE

The hybrid loss combines the clean and soft cross-entropy losses:
Lhybrid = λce · Lce + (1− λce) · Lsoft, (18)

where λce ∈ [0, 1] balances the two objectives. The final training loss, incorporating the consistency
regularization, is:

Lfinal = Lhybrid + λconsistency · Lconsistency, (19)
with λconsistency governing the weight of the consistency loss.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENTAL SETUP

We conducted experiments to assess the effectiveness of NoiseFiT, implemented using PyTorch’s
multiprocessing on four Tesla V-100 GPUs (each equipped with 32 GB of GPU memory) (Var-
rette et al., 2022). Our method incorporates adaptive noise injection, a hybrid loss function, and
parameter-efficient fine-tuning (PEFT) using Low-Rank Adaptation (LoRA). We used pre-trained
causal language models as base models, varying across architectures including LLaMA (Grattafiori
et al., 2024), Qwen (Bai et al., 2023), Gemma (Team, 2025), and Mistral (Jiang et al., 2023). The
fine-tuning dataset was structured to include user prompts and assistant responses in a conversational
format.

The fine-tuning process leverages the following key steps. First, the trainer selects layers for noise
injection based on their SNR. The number of layers selected—set to 3 for most architectures, and to
3, 6, 12, and all layers in the case of larger model Mistral-7B—corresponded to those exhibiting the
highest or lowest SNR values. These were identified using forward-pass statistics computed from
both clean and noise-injected hidden states. Then, zero-mean Gaussian noise was injected into the
hidden states of the selected layers. The noise was adaptively scaled based on hidden state statistics,
using base standard deviations of 0.001, 0.01, and 0.1, further modulated by layer-specific scaling
factors.

Finally, the training objective combines three components including a standard cross-entropy (CE)
loss, a soft cross-entropy loss whose soft targets are computed from the clean (noiseless) logits
via temperature scaling (teacher), and a consistency loss between two independently noise-injected
student passes; see Eqs. (15)–(16). We used λce = 0.5 and λconsistency = 0.1 across all of the
experiments. LoRA was applied with a rank of 8, targeting q proj and v proj modules, with
an alpha of 16 and dropout of 0.05. In addition to the above settings, we set batch size of 4 per
device, with 4 gradient accumulation steps, learning rate to 5 × 10−5 (with a cosine scheduler,
Appendix, Figure A.3). We used Paged AdamW in 32-bit (Loshchilov & Hutter, 2019), with mixed
precision (FP16) and gradient clipping at 1.0 as the optimizer by setting number of epochs to 5, with a
maximum of 1000 steps. Training histories were logged using Weights & Biases (Appendix, Figures
A.1 and A.2) (Biewald, 2020).

4.2 RESULTS

4.2.1 LEADERBOARD BENCHMARKS AND HALLUCINATION EVALUATIONS

Table 1 summarizes the performance of various model configurations (extended evaluation results for
Mistral-7B are provided in Table D.1), derived from the leaderboard evaluation task benchmarks (Gao
et al., 2024), supplemented by the hallucination evaluation results using HaluEval (Li et al., 2023a)
and TruthfulQA multiple-choice (TfQA-MC) (Lin et al., 2022) datasets. Each model family is
evaluated by varying:

(i) #Layers: The number of layers selected for adaptive noise injection (where applicable),
with All denoting full-layer injection and BaseFiT indicating a fine-tuning with no noise
setup (we used cross-entropy loss for fine-tuning).

(ii) STD: The base standard deviation for noise was typically chosen from the set {0.01, 0.1}.
Increasing this value results in stronger perturbations.

(iii) SNR: Highest layers first (favoring more robust activations) vs. Lowest layers first (targeting
weaker activations), or N/A (e.g., when no targeted noise injection is performed).

Impact of Noise Levels: As demonstrated in Table 1, injecting noise at various levels (STD=0.01,
0.1, or 0.3) can confer notable performance advantages across multiple tasks and model families.
Although higher noise levels (e.g., STD=0.3) are sometimes associated with greater instability,
moderate levels (STD=0.01 or 0.1) frequently yield improvements in domains such as Math or BBH.
For instance, Llama-1B exhibits enhanced Math accuracy (0.17) under STD=0.1 when targeting
layers with high SNR, signifying that carefully calibrated noise can strengthen certain forms of
reasoning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Layer Selection via SNR: Results for Highest vs. Lowest SNR noise injected layers reveal that
directing noise to specific layers can accentuate its benefits. For example, Mistral-7B achieves its
highest BBH score (45.84) when noise is restricted to three Lowest-SNR layers, while Llama-1B
attains superior Math performance (0.17) by injecting noise into the Highest-SNR layers. These
outcomes highlight the importance of selectively targeting layers based on SNR profiles, indicating
that the optimal approach may vary according to both the model architecture and the specific task
objectives. Appendix G provides insights via SNR curves and five auxiliary metrics: sparsity, logit
entropy, gradient cosine, L2 norm, and attention entropy.

Table 1: Benchmark and hallucination results across models, #Layers, STD, and SNR. Mistral-7B
attains 52.34 on HaluEval with our approach, compared to 48.20 in CDCR-SFT (Li et al., 2025).

Model #Layers STD SNR MMLU-Pro BBH GPQA Math IFEval MUSR TfQA-MC HaluEval

L
la

m
a3

.2
-1

B 3 0.01 Highest 12.28 31.48 24.22 0.00 7.58 32.46 33.33 33.18
3 0.01 Lowest 12.05 31.91 24.90 0.07 7.02 32.07 29.68 29.07

BaseFiT N/A N/A 11.86 31.90 24.84 0.07 8.69 32.21 29.82 28.86
3 0.1 Highest 11.79 31.72 23.99 0.17 7.95 33.54 33.77 33.67
3 0.1 Lowest 11.67 31.05 24.56 0.05 6.47 32.75 30.99 28.13

L
la

m
a3

.2
-3

B 3 0.01 Lowest 25.85 38.56 25.91 0.80 9.43 34.05 38.16 40.16
BaseFiT N/A N/A 25.81 38.27 25.41 1.31 9.98 34.59 37.87 39.77

3 0.1 Highest 25.52 39.38 27.83 1.32 8.87 33.79 38.74 41.24
3 0.01 Highest 25.29 38.64 26.49 1.52 9.80 35.65 40.35 42.60
3 0.1 Lowest 25.27 38.39 28.08 1.04 10.91 34.06 39.33 41.86

Q
w

en
2.

5-
.5

B 3 0.01 Highest 18.75 31.84 28.36 0.45 14.60 34.20 33.48 28.34
3 0.01 Lowest 18.56 31.45 25.13 0.58 13.31 35.40 31.58 27.42
3 0.1 Lowest 18.51 31.80 25.07 0.42 13.68 34.59 33.04 28.79
3 0.1 Highest 18.29 31.77 28.08 0.68 12.20 34.05 34.65 29.12

BaseFiT N/A N/A 17.43 32.17 26.89 0.70 15.16 34.59 31.58 27.08

G
em

m
a3

-1
B BaseFiT N/A N/A 14.92 35.11 28.00 4.74 37.52 32.75 21.35 24.37

3 0.001 Lowest 14.85 34.25 27.88 4.40 34.57 33.95 21.49 25.08
3 0.1 Highest 13.63 35.14 27.51 2.15 29.21 31.01 19.88 21.62
3 0.01 Lowest 14.59 34.54 26.94 4.45 38.08 33.02 21.64 25.18
3 0.01 Highest 14.37 34.84 28.39 5.08 39.37 33.41 21.78 25.39

M
is

tr
al

-7
B 6 0.1 Highest 30.28 44.63 29.46 2.69 13.31 39.51 38.20 51.40

BaseFiT N/A N/A 30.01 44.34 29.29 2.97 11.46 38.84 37.62 47.60
3 0.1 Lowest 29.97 45.84 28.07 3.01 13.49 39.89 39.41 50.72
6 0.01 Lowest 29.74 45.08 29.66 3.43 11.83 40.18 41.24 52.34
3 0.3 Lowest 29.53 44.53 30.54 2.75 10.91 39.51 37.26 49.40

Mean Top-5 ∆ (%) relative to BaseFiT +5.74↑ +1.94↑ +6.84↑ +36.58↑ +10.27↑ +3.40↑ +10.18↑ +11.42↑

BaseFiT vs Noise-Injected Runs: Comparisons with the BaseFiT baseline (fine-tuning without
noise) underscore the capacity of noise injection to surpass baseline results in multiple settings.
For instance, Qwen-0.5B with STD=0.01 in the high-SNR configuration outperforms BaseFiT on
MMLU-Pro (18.75 vs. 17.43) and GPQA (28.36 vs. 26.89). Similarly, Gemma-1B realizes substantial
gains in majority of the tasks under targeted noise conditions. These findings demonstrate that
noise-injected configurations can frequently exceed baseline performance when the noise parameters
and layer selections are carefully optimized.

Task-Specific Observations: Across a diverse set of evaluation benchmarks, the impact of noise
injection varies by task type and model architecture, but notable patterns emerge. In several cases,
injecting moderate levels of noise appears to improve performance, suggesting it may act as a form
of regularization or stimulus for deeper reasoning:

• Math: Table 1 shows that moderate noise (STD=0.01 or 0.1) can substantially improve
Math accuracy. For example, Llama-1B’s score rises from 0.05 to 0.17 under STD=0.1
(highest-SNR layers), and Gemma-1B reaches 5.08 (vs. 4.74) under STD=0.01 (highest
SNR). These improvements suggest that carefully tuned noise benefits numerical reasoning.

• BBH and MMLU-Pro: These broader language understanding benchmarks often show
moderate fluctuation with noise, yet select configurations demonstrate that noise can push
performance above the baseline. In Llama-3B, for example, BBH rises to 39.38 under
STD=0.1 (highest SNR), exceeding the BaseFiT score of 38.27. On MMLU-Pro, for
example, Qwen-0.5B at STD=0.01 (highest SNR) rises to 18.75 from a baseline of 17.43.
These results confirm that noise, particularly at moderate levels, can be harnessed to refine
performance in language understanding tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• GPQA: Detailed inspection of the GPQA results shows consistent gains under targeted noise
strategies. Llama-3B moves from 25.41 (BaseFiT) to 27.83 (STD=0.1, Highest SNR), while
Qwen-0.5B increases from 26.89 (BaseFiT) to 28.36 (STD=0.01, Highest SNR). Gemma-
1B also achieves its top GPQA score (28.39) with STD=0.01 in the Highest-SNR layers,
surpassing the base 28.00. Notably, Mistral-7B records 30.54 (STD=0.3, three Lowest-
SNR layers), indicating that, with the right noise level and layer selection, graduate-level
question-answering performance can be enhanced across various model families.

• IFEval and MUSR: Noise can also yield performance improvements in following instruc-
tions (IFEval) and multistep soft reasoning (MUSR). In Gemma-1B, IFEval rises from 37.52
(BaseFiT) to 39.37 (STD=0.01, Highest SNR), and MUSR increases from 32.75 to 33.41
under the same setting. Likewise, Mistral-7B achieves up to 13.49 on IFEval (STD=0.1,
3 Lowest-SNR layers) compared to 11.46 at BaseFiT, and elevates MUSR from 38.84
(BaseFiT) to 40.18 (STD=0.01, 6 Lowest-SNR layers).

Consistency Across Model Families: Despite variability in architecture and scale (Llama, Qwen,
Gemma, Mistral), several consistent observations emerge:

• Efficacy of moderate noise across model-task configurations: While high noise magni-
tudes (e.g., STD=0.3) can induce instability in performance, moderate perturbation levels
(STD=0.01 or 0.1) frequently yield consistent gains across a range of tasks and architectures.

• Targeted perturbation via layer-wise selection: Constraining noise application to specific
layer subsets—such as those with the highest or lowest signal-to-noise ratios—enables more
precise control over performance modulation, highlighting the utility of structurally selective
noise injection.

• Augmenting BaseFiT with stochastic refinement: Although BaseFiT establishes a
robust baseline, many noise-augmented configurations achieve comparable or superior
results on specific benchmarks, suggesting that noise injection can function as an effective
complement or enhancement to traditional fine-tuning methodologies.

4.2.2 TEST DATASET

We evaluated our fine-tuning approach using a test set of 208 unique prompts. We employed the same
models as the base, incorporating a PEFT adapter. The entire generation procedure was accelerated
across multiple GPUs. We employed GROK 3.0 Think (xAI, 2025) to assess the hallucination
performance in the generated responses (online supplementary material).

The results illustrate the effects of noise injection on the performance of various models across
multiple categories (Appendix, Tables E.2-E.6). A consistent trend observed across models is that
noise-injection under various scenarios, often outperform their respective base models, suggesting
that controlled noise can improve the models’ ability to produce less hallucinated responses and
handle diverse inputs, potentially by mimicking real-world data variability.

5 DISCUSSION AND LIMITATIONS

Across four model families, multiple leaderboards and hallucination evaluation datasets, NoiseFiT
routinely matches or outperforms standard fine-tuning (BaseFiT) while reducing hallucinations.
Moderate perturbation magnitudes are consistently effective, whereas large magnitudes can be
unstable (Table 1). Extended ablations on Mistral-7B show that targeted injection into a small subset
of layers (3–6) dominates all-layers injection (Table D.1). Beyond point estimates, distributional
analysis with the Epps–Singleton test confirms statistically reliable shifts in hallucination scores for
noisy variants versus base models (§E.2).

Appendix G reveals complementary trends that clarifies mechanics of SNR injection. In larger models
such as Mistral-7B, low-SNR layers deeper in the stack behave as pattern amplifiers; injecting noise
there increases gradient diversity, elevates attention entropy slightly, and curbs memorization-driven
errors—aligning with the finding that lowest-SNR targeting works best for Mistral-7B. In smaller
models, high-SNR layers are already robust; adding moderate noise functions as gentle regularization
without destabilizing training, which matches the gains we observe with highest-SNR targeting.

8

https://noiseft.github.io

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Across families, we also see (i) higher sparsity and (ii) modestly higher attention entropy under
NoiseFiT, both consistent with better generalization and less over-confident false assertions.

The training objective blends: (a) standard CE for task fidelity, (b) soft-target cross-entropy that distills
from the clean pass (teacher) at temperature τ , and (c) a consistency term across two independently
noised passes. Together, these terms encourage calibrated logits and stability to perturbations, which
concretely reduces the model’s tendency to run away from weak evidence. Our theory (Appendix B)
supports this picture. Appendix C summarizes our heuristics as a practical recipe for NoiseFiT.

Limitations.

• We primarily compare against BaseFiT. Methods like RAG, RLHF, self-consistency, and con-
trastive decoding optimize orthogonal axes (retrieval, reward shaping, inference-time ensembling).
A controlled, apples-to-apples comparison is non-trivial; we therefore frame NoiseFiT as comple-
mentary. (We provide preliminary truthfulness gains on TruthfulQA/HaluEval in Table 1.)

• Our core fine-tuning set is compact and partly synthetic; and hallucinations on the custom test set
are assessed by an LLM judge and corroborated through human evaluation. To mitigate bias we
report public-benchmark results (TfQA-MC, HaluEval) and provide distributional tests (§E.2).

• Although the heuristics above work well, per-task tuning is encouraged based on our findings.
In practice, gains are sensitive to the choice of k perturbed layers, the base noise scale and
ramp; mis-setting these can yield non-monotonic behavior. The SNR bootstrap that ranks layers
from most stable to most unstable relies on brief noisy forward passes and can be brittle under
domain shift or when validation sets are small; longer pilots or robust smoothing/averaging may
be required.

• The SNR-based targeting rationale is supported by auxiliary metrics (Appendix G), but we do
not claim a full causal account. Understanding functional roles of low-SNR vs. high-SNR layers
across architectures is an active direction.

Overall, NoiseFiT is a simple, training-time technique that improves factual reliability without
inference-time cost, but it benefits from small, targeted sweeps and broader evaluations to fully
establish external validity.

6 CONCLUSION AND FUTURE WORK

We introduced NoiseFiT, an adaptive, SNR-guided noise-augmented fine-tuning framework with
a hybrid objective. Empirically, across LLaMA, Qwen, Gemma, and Mistral, moderate noise
injected into a small, SNR-selected subset of layers yields reliable improvements on truthfulness and
reasoning leaderboards (Table 1), with extended Mistral-7B ablations favoring 3–6 targeted layers
(Table D.1). Notably, on hallucination-focused benchmarks, NoiseFiT achieves average gains of
3.72% on TfQA-MC and 4.70% on HaluEval across models.

Overall, we find that targeted layer-wise noise outperforms blanket perturbation; moderate magni-
tudes (STD 0.01–0.1) are consistently best; the optimal layer choice is model dependent—larger
models benefit from injecting into lowest-SNR (less stable) layers, whereas smaller models benefit
from highest-SNR (more robust) layers; and the gains stem chiefly from improved calibration and
perturbation stability rather than raw accuracy alone. NoiseFiT is training-time only, adds no test-time
latency, and is compatible with retrieval (RAG), RLHF, self-consistency, and decoding-time defenses.
We view it as a lightweight regularizer that improves the base model’s factual reliability before any
downstream alignment or retrieval stack is applied.

We see two immediate directions: (1) an open-source auto-tuner that (a) bootstraps SNR with a short
warm-up, (b) selects k via validation hallucination proxies, and (c) schedules noise ramps; (2) testing
BitFit and AdaLoRA (Ben Zaken et al., 2022; Zhang et al., 2023), and composing NoiseFiT with
RAG/RLHF at scale.

By turning a small amount of targeted stochasticity into a principled regularizer, NoiseFiT improves
robustness and reduces hallucinations with minimal engineering burden. We hope the simple recipe,
theoretical guarantees, and practical heuristics make it a useful building block for reliable LLM
adaptation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-RAG: Learning
to retrieve, generate, and critique through self-reflection. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
hSyW5go0v8.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, and et al. Qwen technical report,
2023. URL https://arxiv.org/abs/2309.16609.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interactiv-
ity. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and
Adila Alfa Krisnadhi (eds.), Proceedings of the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 675–718, Nusa Dua, Bali, November
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.45. URL
https://aclanthology.org/2023.ijcnlp-main.45/.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. BitFit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. In Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.1. URL
https://aclanthology.org/2022.acl-short.1/.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 535–541. ACM, 2006. doi: 10.1145/1150402.1150464.

Thomas W. Epps and Kenneth J. Singleton. An omnibus test for the two-sample problem using the
empirical characteristic function. Journal of Statistical Computation and Simulation, 26:177–203,
1986. URL https://api.semanticscholar.org/CorpusID:120867220.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Sebastian J Goerg and Johannes Kaiser. Nonparametric testing of distributions—the epps–singleton
two-sample test using the empirical characteristic function. The Stata Journal, 9(3):454–465, 2009.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, and et al. Anthony Hartshorn. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

10

https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
https://arxiv.org/abs/2309.16609
https://aclanthology.org/2023.ijcnlp-main.45/
https://aclanthology.org/2022.acl-short.1/
https://www.wandb.com/
https://www.wandb.com/
https://api.semanticscholar.org/CorpusID:120867220
https://zenodo.org/records/12608602
https://arxiv.org/abs/2407.21783

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning, volume 70,
pp. 1321–1330. PMLR, 2017.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hang Hua, Xingjian Li, Dejing Dou, Cheng-Zhong Xu, and Jiebo Luo. Improving pretrained language
model fine-tuning with noise stability regularization. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

Neel Jain, Ping yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. NEFTune: Noisy embeddings improve instruction finetuning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=0bMmZ3fkCk.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation.
ACM Comput. Surv., 55(12), March 2023. ISSN 0360-0300. doi: 10.1145/3571730. URL
https://doi.org/10.1145/3571730.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and
Timo Aila. Noise2Noise: Learning image restoration without clean data. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 2965–2974. PMLR, 10–15 Jul 2018.
URL https://proceedings.mlr.press/v80/lehtinen18a.html.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks. NIPS ’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Junyi Li, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. HaluEval: A large-scale
hallucination evaluation benchmark for large language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 6449–6464, Singapore, December 2023a. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.397. URL https://aclanthology.org/
2023.emnlp-main.397/.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 12286–
12312, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
v1/2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687/.

Yuangang Li, Yiqing Shen, Yi Nian, Jiechao Gao, Ziyi Wang, Chenxiao Yu, Shawn Li, Jie Wang,
Xiyang Hu, and Yue Zhao. Mitigating hallucinations in large language models via causal reasoning,
2025. URL https://arxiv.org/abs/2508.12495.

11

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=0bMmZ3fkCk
https://openreview.net/forum?id=0bMmZ3fkCk
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://proceedings.mlr.press/v80/lehtinen18a.html
https://aclanthology.org/2023.emnlp-main.397/
https://aclanthology.org/2023.emnlp-main.397/
https://aclanthology.org/2023.acl-long.687/
https://arxiv.org/abs/2508.12495

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Litian Liu, Reza Pourreza, Sunny Panchal, Apratim Bhattacharyya, Yao Qin, and Roland Memisevic.
Enhancing hallucination detection with noise injection, 2025. URL https://openreview.
net/forum?id=2bWf4M5tRo.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Michael Moor, Oishi Banerjee, Zahra Shakeri Hossein Abad, Harlan M Krumholz, Jure Leskovec,
Eric J Topol, and Pranav Rajpurkar. Foundation models for generalist medical artificial intelligence.
Nature, 616(7956):259–265, 2023.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103:
127–152, 2005.

Mengjia Niu, Hao Li, Jie Shi, Hamed Haddadi, and Fan Mo. Mitigating hallucinations in large
language models via self-refinement-enhanced knowledge retrieval. In The Second Workshop
on Generative Information Retrieval, 2024. URL https://openreview.net/forum?id=
H6Kz3tRugR.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, et al. Training language
models to follow instructions with human feedback. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022.
Curran Associates Inc. ISBN 9781713871088.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Zayne Rea Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. MuSR: Testing the
limits of chain-of-thought with multistep soft reasoning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
jenyYQzue1.

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda,
and Soheil Feizi. LLM-check: Investigating detection of hallucinations in large language models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=LYx4w3CAgy.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.824. URL https://aclanthology.org/2023.
findings-acl.824/.

Gemma Team. Gemma 3. 2025. URL https://goo.gle/Gemma3Report.

Cameron Tice, Philipp Alexander Kreer, Nathan Helm-Burger, Prithviraj Singh Shahani, Fedor
Ryzhenkov, Jacob Haimes, Felix Hofstätter, and Teun van der Weij. Noise injection reveals hidden
capabilities of sandbagging language models. arXiv preprint arXiv:2412.01784, 2024.

Sebastien Varrette, Hyacinthe Cartiaux, Sarah Peter, Emmanuel Kieffer, Teddy Valette, and Abatcha
Olloh. Management of an academic hpc & research computing facility: The ulhpc experience
2.0. In Proceedings of the 2022 6th High Performance Computing and Cluster Technologies
Conference, pp. 14–24, 2022.

12

https://arxiv.org/abs/2109.07958
https://openreview.net/forum?id=2bWf4M5tRo
https://openreview.net/forum?id=2bWf4M5tRo
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=H6Kz3tRugR
https://openreview.net/forum?id=H6Kz3tRugR
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=jenyYQzue1
https://openreview.net/forum?id=LYx4w3CAgy
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/
https://goo.gle/Gemma3Report

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 6000–6010, Red Hook, NY,
USA, 2017. Curran Associates Inc. ISBN 9781510860964.

DONGWEI WANG and Huanrui Yang. Taming sensitive weights : Noise perturbation fine-tuning for
robust LLM quantization. In The Second Conference on Parsimony and Learning (Proceedings
Track), 2025. URL https://openreview.net/forum?id=VehapTAftQ.

Song Wang, Zhen Tan, Ruocheng Guo, and Jundong Li. Noise-robust fine-tuning of pretrained lan-
guage models via external guidance. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2023, pp. 12528–12540, Singapore, De-
cember 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.
834. URL https://aclanthology.org/2023.findings-emnlp.834/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024.

Zilong Wang, Zifeng Wang, Long Le, Steven Zheng, Swaroop Mishra, Vincent Perot, Yuwei Zhang,
Anush Mattapalli, Ankur Taly, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Speculative RAG:
Enhancing retrieval augmented generation through drafting. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=xgQfWbV6Ey.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023.

Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao, Irwin King, Michael R Lyu, and Yu-Wing Tai.
Boosting the transferability of adversarial samples via attention. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1161–1170, 2020.

xAI. Grok 3 (think mode) [computer software], 2025. URL https://x.ai. Accessed: March
2025 to April 2025.

Abhay Kumar Yadav and Arjun Singh. Symnoise: Advancing language model fine-tuning with
symmetric noise. arXiv preprint arXiv:2312.01523, 2023.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. Defending against neural fake news. Curran Associates Inc., Red Hook, NY, USA,
2019.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=lq62uWRJjiY.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, et al. A survey of large language models,
2025. URL https://arxiv.org/abs/2303.18223.

13

https://openreview.net/forum?id=VehapTAftQ
https://aclanthology.org/2023.findings-emnlp.834/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=xgQfWbV6Ey
https://openreview.net/forum?id=xgQfWbV6Ey
https://x.ai
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://arxiv.org/abs/2303.18223

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang,
Wei Ye, Yue Zhang, Neil Gong, and Xing Xie. Promptrobust: Towards evaluating the robustness
of large language models on adversarial prompts. In Proceedings of the 1st ACM Workshop
on Large AI Systems and Models with Privacy and Safety Analysis, LAMPS ’24, pp. 57–68,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712098. doi:
10.1145/3689217.3690621. URL https://doi.org/10.1145/3689217.3690621.

14

https://doi.org/10.1145/3689217.3690621

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOISEFIT ALGORITHM

Algorithm A.1 summarizes the operational mechanics of the NoiseFiT framework. It outlines the
key steps involved in our approach—from data and model preparation, performing clean and noisy
forward passes, and computing the SNR for each transformer layer, to select layers for adaptive noise
injection and finally calculating the hybrid loss components for backpropagation. This high-level
structure serves as a blueprint for implementing our NoiseFiT algorithm.

Algorithm A.1 NoiseFiT Algorithm

1: Input: Training data D, pretrained model M, number of layers k, hyperparameters λce,
λconsistency, τ , etc.

2: Output: Fine-tuned model M∗

3: Step 1: Data and Model Preparation
4: Load dataset and format each sample (prompt, response).
5: Initialize tokenizer and model M.
6: Step 2: Clean Forward Pass
7: For a batch, run a clean forward pass to obtain hidden states hclean

ℓ ∈ RB×Lℓ×H .
8: Step 3: Noisy Forward Passes
9: Enable noise hooks for the forward passes.

10: Run multiple forward passes with adaptive noise injection to obtain hnoisy
ℓ ∈ RB×Lℓ×H .

11: Step 4: SNR Computation (for all of the layers ℓ)
12: Compute signal: Sℓ =

1
B·Lℓ·H

∑
b,t,i

∣∣∣[hclean
ℓ

]
b,t,i

∣∣∣.
13: Compute noise: Nℓ =

1
B·Lℓ·H

∑
b,t,i

∣∣∣∣[hnoisy
ℓ − hclean

ℓ

]
b,t,i

∣∣∣∣.
14: Compute SNR: SNRℓ =

Sℓ

Nℓ+ϵ .
15: Step 5: Layer Selection
16: Select k layers with the highest (or lowest) SNRℓ values for noise injection.
17: Step 6: Loss Computation
18: (a) Cross-Entropy Loss: Lce = − 1

N

∑N
t=1 log

(
p(yt | hclean

t)
)
.

19: (b) Soft Cross-Entropy Loss: Lsoft =
1
N

∑N
t=1 KL

(
psoft
t

∥∥∥ softmax(znoisy
t)

)
, where psoft

t =

softmax
(

zclean
t

τ

)
.

20: (c) Consistency Loss: Lconsistency = 1
N

∑N
t=1 KL

(
softmax(znoisy

1,t)
∥∥∥ softmax(znoisy

2,t)
)

.
21: Step 7: Final Loss and Backpropagation
22: Compute hybrid loss: Lhybrid = λce Lce + (1− λce)Lsoft.
23: Compute overall loss: Lfinal = Lhybrid + λconsistency Lconsistency.
24: Backpropagate Lfinal and update model parameters.

B NOISEFIT MATHEMATICAL FOUNDATIONS

In this section, we introduce the theoretical underpinnings of our NoiseFiT framework. We begin
by outlining the core assumptions for unbiased noise injection and describe how these assumptions
inform the variance-preserving characteristics of our approach. In particular, we provide high-level
insights into why adaptive noise regularization improves generalization and stability, setting the stage
for the formal lemmas and theorems that follow.

B.1 UNBIASED NOISE INJECTION AND VARIANCE PRESERVATION

B.1.1 ZERO-MEAN NOISE

Lemma B.1. Let ξ be an n-dimensional random vector distributed as

ξ ∼ N (0, I),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure A.1: NoiseFiT training loss history per model, noise injection STD and layer selection strategy.
Available in interactive mode online at W&B.

Figure A.2: NoiseFiT training gradients norm history per fine-tuning step for different models, noise
injection STD and layer selection strategies. Available in interactive mode online at W&B.

16

https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx
https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure A.3: NoiseFiT training learning rate scheduling strategy across all experiments. Available in
interactive mode online at W&B.

that is, each component ξi of ξ is an independent standard normal random variable with mean 0 and
variance 1. Then the expectation of ξ is the zero vector:

E[ξ] = 0.

Proof. A random vector ξ ∈ Rn has the distribution N (0, I) if and only if each component ξi (for
i = 1, 2, . . . , n) is distributed according to a one-dimensional standard normal distribution N (0, 1),
and all components are mutually independent. The joint PDF of ξ can be written as

fξ(x) =
1√
(2π)n

exp
(
− 1

2∥x∥
2
)
,

where ∥x∥2 =
∑n

i=1 x
2
i . This density is spherically symmetric around the origin 0 ∈ Rn. The

expectation of ξ is the vector of expectations of its components:

E[ξ] =
(
E[ξ1], E[ξ2], . . . , E[ξn]

)
.

Equivalently, we can write

E[ξ] =

∫
Rn

x fξ(x) dx.

Since ξi ∼ N (0, 1) for each i, we know by the definition of the standard normal distribution that

E[ξi] = 0, for each i = 1, 2, . . . , n.

Hence, immediately we have
E[ξ] =

(
0, 0, . . . , 0

)
.

We can also see this from the integral form. For each component ξi,

E[ξi] =

∫ ∞

−∞
xi

(∫
Rn−1

fξ(x1, . . . , xi−1, xi, xi+1, . . . , xn) dx1 · · · dxi−1dxi+1 · · · dxn

)
dxi.

17

https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Because fξ(x) is an even function in each xi due to its form exp(− 1
2∥x∥

2) and the domain of
integration is symmetric (Rn), the integral of xifξ(x) over Rn is zero. This confirms E[ξi] = 0 for
every i. By combining the component-wise results, it follows that

E[ξ] =
(
E[ξ1], E[ξ2], . . . , E[ξn]

)
=
(
0, 0, . . . , 0

)
= 0.

This completes the proof.

B.1.2 UNBIASEDNESS OF NOISY REPRESENTATIONS

Theorem B.1. Let h ∈ Rn be a deterministic hidden state and consider its noisy counterpart

h̃ = h + σeff · ξ,

where σeff ∈ R is a deterministic noise scale. Then,

E[h̃] = h.

Proof. We wish to show that the expectation of the noisy hidden state h̃, which is formed by
adding Gaussian noise scaled by σeff, remains equal to the original deterministic hidden state h.
Mathematically, we want to prove E[h̃] = h. By definition, we have

h̃ = h + σeff · ξ.

Since h and σeff are deterministic, the only source of randomness in h̃ is ξ. One of the key properties
we use is that expectation is a linear operator, which means:

E[aX+ bY] = aE[X] + bE[Y],

for any random vectors X,Y and scalars (deterministic constants) a, b ∈ R. Applying this to
h̃ = h+ σeffξ, we obtain:

E[h̃] = E[h+ σeffξ] = E[h] + E[σeffξ].

Since h is not random, its expectation is simply:

E[h] = h.

Conceptually, viewing h as fixed means that integrating (or summing) over its distribution does not
introduce any randomness. Next, consider E[σeffξ]. Because σeff is a constant (deterministic with
respect to the random vector ξ), it factors out of the expectation:

E[σeffξ] = σeff E[ξ].

This step relies again on the linearity of expectation and the property that constants can be pulled out
of expectation. By Lemma B.1 (Zero-Mean Noise), we know that E[ξ] = 0. Substituting this result,
we get:

E[σeffξ] = σeff · 0 = 0.

Putting all the above together:

E[h̃] = E[h] + E[σeffξ] = h+ 0 = h.

Hence the noisy representation h̃ is unbiased, completing the proof.

B.1.3 VARIANCE PRESERVATION

Lemma B.2. Assume that h and ξ are independent. Recalling the definitions from Theorem B.1, the
covariance of h̃ is given by

Cov[h̃] = Cov[h] + σ2
eff I.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. For an n-dimensional random vector X, the covariance matrix is

Cov[X] = E
[
(X− E[X])(X− E[X])⊤

]
.

Covariance is a bilinear operator, meaning that if X and Y are random vectors, then

Cov[X+Y] = Cov[X] + Cov[Y] + 2 Cov[X,Y].

Since h̃ = h+ σeff ξ, we write

Cov[h̃] = Cov[h+ σeff ξ] = Cov[h] + Cov[σeff ξ] + 2 Cov
[
h, σeff ξ

]
.

This follows directly from the bilinear expansion of covariance. We are given that h and ξ are
independent. By definition, if two random vectors A and B are independent, then E[AB⊤] =
E[A]E[B]⊤. It follows that

Cov
[
h, ξ

]
= E

[
(h− E[h])(ξ − E[ξ])⊤

]
= 0,

because E[ξ] = 0 and h, ξ are independent. Therefore,

Cov
[
h, σeff ξ

]
= σeff Cov[h, ξ] = σeff · 0 = 0.

Hence, the cross-covariance term vanishes. Next, we analyze Cov[σeff ξ]. If ξ ∼ N (0, I), its
covariance is I. For any deterministic scalar α, scaling a random vector X by α scales its covariance
matrix by α2. Hence,

Cov[σeff ξ] = σ2
eff Cov[ξ] = σ2

eff I.

Putting everything together, we get

Cov[h̃] = Cov[h] + σ2
eff I + 2 · 0 = Cov[h] + σ2

eff I.

Thus, adding independent Gaussian noise with variance σ2
eff to the random vector h increases its

covariance by σ2
effI, preserving the original variances plus a constant isotropic inflation.

B.2 LIPSCHITZ CONTINUITY OF THE ADAPTIVE NOISE INJECTION

Lemma B.3. Let h ∈ Rn lie in a bounded set (so there exists some Ω > 0 with ∥h∥ ≤ Ω for all
relevant h). Suppose the noise-scale function σeff(h) is Lipschitz continuous with constant Lσ > 0;
i.e., ∣∣σeff(h1) − σeff(h2)

∣∣ ≤ Lσ ∥h1 − h2∥ ∀h1,h2.

Define the mapping (for a fixed realization of ξ)

T (h) = h + σeff(h) ξ.

Then T (h) is Lipschitz continuous almost surely in ξ.

Proof. We need to show that there exists a (random) constant L such that

∥T (h1)− T (h2)∥ ≤ L ∥h1 − h2∥,

for all h1 and h2 in our domain, except on an event of probability zero (hence the phrase almost
surely). Recall

T (h) = h+ σeff(h) ξ.

While h is a variable in Rn, ξ is a random vector. Once ξ is fixed, T becomes a deterministic function
of h. For any two points h1,h2 ∈ Rn, consider:

T (h1)−T (h2) =
(
h1+σeff(h1) ξ

)
−
(
h2+σeff(h2) ξ

)
=
(
h1−h2

)
+
(
σeff(h1)−σeff(h2)

)
ξ.

Hence, by the triangle inequality,

∥T (h1)− T (h2)∥ ≤ ∥h1 − h2∥ +
∣∣∣σeff(h1)− σeff(h2)

∣∣∣ ∥ξ∥.
Since σeff(h) is Lipschitz with constant Lσ , we have∣∣∣σeff(h1)− σeff(h2)

∣∣∣ ≤ Lσ ∥h1 − h2∥.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Therefore,
∥T (h1)− T (h2)∥ ≤ ∥h1 − h2∥ + Lσ ∥h1 − h2∥ ∥ξ∥ =

(
1 + Lσ ∥ξ∥

)
∥h1 − h2∥.

For a fixed realization of ξ, define
L(ξ) = 1 + Lσ ∥ξ∥.

Clearly, L(ξ) is a (finite) constant whenever ξ is given. Thus T is Lipschitz continuous with
Lipschitz constant L(ξ). Since ∥ξ∥ might be unbounded theoretically, the mapping T may have
different Lipschitz constants for different realizations of ξ. However, ξ is almost surely finite (i.e., the
probability that ∥ξ∥ is infinite is zero). Hence, T is almost surely Lipschitz continuous with constant
1 + Lσ∥ξ∥. This completes the proof.

B.3 STABILITY OF HYBRID LOSS GRADIENTS

Lemma B.4. Let f(h) denote the (scalar or vector) output of a neural network as a differentiable
function of the hidden state h ∈ Rn. Suppose:

1. The noise injection is unbiased (Theorem B.1), i.e., E[ξ] = 0.

2. The noise variance is bounded by σ2
eff.

3. The function f is sufficiently smooth (i.e., it has Lipschitz-continuous gradients or can be
approximated by its first-order Taylor expansion with bounded higher-order terms).

Recalling the definition of noisy hidden state h̃ from Theorem B.1, then, the difference between the
gradients computed on the clean and the noisy hidden states is O(σeff). Moreover, as σeff → 0, the
gradients converge.

Proof. We consider the loss function f(h), which is differentiable with respect to the hidden state h.
We write ∇f(h) for the gradient of f evaluated at h. We introduce the noisy state h̃ = h + σeffξ

and seek to understand how ∇f(h̃) differs from ∇f(h) for small σeff. For a small perturbation
∆ ≡ σeff ξ around h, the output f

(
h+∆

)
can be approximated by the first-order Taylor expansion:

f(h+∆) ≈ f(h) + ∇f(h)⊤∆ + R(h,∆)︸ ︷︷ ︸
higher-order remainder

.

If f is C2 (twice continuously differentiable) and/or has Lipschitz-continuous gradients, the remainder
R(h,∆) is of order ∥∆∥2. Concretely,

R(h,∆) = O
(
∥∆∥2

)
= O

(
σ2

eff

)
,

since ∥∆∥ = O(σeff). Given E[ξ] = 0 (unbiased noise) and Var(ξ) = I (each component has unit
variance), the perturbation ∆ = σeffξ has zero mean and bounded second moment E

[
∥∆∥2

]
= nσ2

eff.
This ensures that: 1. E[∆] = 0, 2. ∆ is O(σeff) in norm, on average or with high probability (e.g., by
concentration inequalities). The gradient difference of interest is

∇f(h̃) − ∇f(h) = ∇f(h+∆) − ∇f(h).

Under standard smoothness conditions (e.g., f having an L-Lipschitz gradient), we have:∥∥∇f(h+∆)−∇f(h)
∥∥ ≤ L ∥∆∥ = O(σeff),

where L is the Lipschitz constant of ∇f . Equivalently, if one uses a second-order expansion of f ,
the difference in gradients can be bounded by the magnitude of ∆. Either viewpoint shows that
the discrepancy is controlled by σeff. Since the difference in gradients is at most proportional to
∥∆∥ ∼ σeff, letting σeff → 0 forces ∆ → 0 and therefore

lim
σeff→0

∥∥∇f(h+∆)−∇f(h)
∥∥ ≤ lim

σeff→0
L ∥∆∥ = L · 0 = 0.

Hence,
lim

σeff→0

∥∥∇f(h+∆)−∇f(h)
∥∥ = 0,

Thus, for very small noise levels, the gradient computed on the noisy hidden state becomes arbitrarily
close to the gradient computed on the clean hidden state. In other words, the gradients converge. We
conclude that under the assumptions of unbiasedness, bounded noise variance, and smoothness of f ,
the difference between the gradients evaluated at the clean and noisy states is of order σeff. Hence, in
the limit σeff → 0, the gradient discrepancy vanishes.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4 ROBUSTNESS OF CONSISTENCY LOSS

Lemma B.5. Let z(1), z(2) ∈ RK be two logit vectors of dimension K. Define the consistency loss
between their associated softmax outputs by

Lconsistency = KL
(
softmax(z(1))

∥∥ softmax(z(2))
)
.

Then Lconsistency is minimized if and only if

softmax(z(1)) = softmax(z(2)).

Proof. For a vector z = (z1, . . . , zK) ∈ RK , the softmax function is defined component-wise by

softmax(z)i =
ezi∑K
j=1 e

zj
for i = 1, 2, . . . ,K.

This ensures that each component softmax(z)i is non-negative and
∑K

i=1 softmax(z)i = 1. There-
fore, softmax(z) is a valid probability distribution over the K outcomes. Consider two discrete
probability distributions p = (p1, . . . , pK) and q = (q1, . . . , qK), both lying in the probability
simplex (pi, qi ≥ 0 and

∑
i pi =

∑
i qi = 1). The Kullback–Leibler (KL) divergence from q to p is

defined as

KL(p ∥q) =

K∑
i=1

pi log
(pi
qi

)
,

where by convention 0 log(0/q) = 0 and p log(p/0) = ∞ for p > 0. A key property of KL
divergence is its non-negativity:

KL(p ∥q) ≥ 0,

with equality if and only if p = q (i.e., pi = qi for each i). In our setup, we let

p = softmax(z(1)) and q = softmax(z(2)).

Then the consistency loss is exactly

Lconsistency = KL
(
softmax(z(1))

∥∥ softmax(z(2))
)

=

K∑
i=1

softmax(z(1))i log
(softmax(z(1))i
softmax(z(2))i

)
.

From the fundamental property of KL divergence, we know that
KL(p ∥q) ≥ 0, with equality if and only if p = q.

Translating this to our softmax distributions, we get

KL
(
softmax(z(1)), softmax(z(2))

)
≥ 0,

and it is equal to 0 precisely when

softmax(z(1)) = softmax(z(2)).

Hence, the consistency loss Lconsistency achieves its global minimum of 0 if and only if

softmax(z(1)) = softmax(z(2)),

as required. This completes the proof.

B.5 BOUND ON THE FINAL LOSS DUE TO NOISE

We now derive a simple upper bound showing how the presence of adaptive noise injection affects the
final training loss. Consider the final loss Lfinal in Equation equation 19, which we write abstractly as
a function of the model parameters Θ:

Lfinal(Θ) = λce Lce(Θ) + (1− λce)Lsoft(Θ)︸ ︷︷ ︸
Lhybrid(Θ)

+ λconsistency Lconsistency(Θ).

Because each term in Lfinal (cross-entropy, KL divergence, etc.) is β-smooth (Nesterov, 2005) with
respect to the logits, and the logits themselves are Lipschitz continuous with respect to the hidden
states h (assuming bounded weight matrices), we can show that random perturbations in h of size
∥∆∥ shift the loss by at most O(∥∆∥).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Theorem B.2. Let ∆ = h̃− h be the per-token perturbation introduced by noise injection. Suppose
∆ has zero mean and bounded second moment such that

E[∥∆∥2] ≤ σ2
max.

Then, for sufficiently smooth loss components, the expected deviation in Lfinal satisfies∣∣E[Lfinal(Θ +∆)
]
− Lfinal(Θ)

∣∣ ≤ C σ2
max,

for some constant C > 0 depending on the network’s Lipschitz constants and the smoothness
parameters of the loss.

Proof. For simplicity of notation, write Lfinal(Θ) as a function that ultimately depends on the hidden
states h. In typical neural network architectures, the hidden states h themselves depend on subsets
of Θ (e.g., weights and biases), so a perturbation ∆ to h can be seen as an effective perturbation to
the logits or subsequent layers. Formally, let z(h,Θ) denote the logits. Then Lfinal(Θ) depends on
z(h,Θ). We assume that z(h,Θ) is L-Lipschitz in h. That is, there exists some constant L > 0 such
that ∥∥z(h1,Θ)− z(h2,Θ)

∥∥ ≤ L ∥h1 − h2∥,
for any h1,h2. This typically follows from bounding the norm of weight matrices and using standard
results on Lipschitz continuity of affine and activation transformations. Each term in Lfinal (e.g.,
cross-entropy, soft loss, or KL term) is β-smooth with respect to its input logits z. Concretely, this
means the gradient of Lfinal with respect to z is β-Lipschitz. Equivalently, the second derivative (or
Hessian) of Lfinal w.r.t. z is bounded by β in norm:∥∥∇2

z Lfinal(z)
∥∥ ≤ β.

Therefore, under small perturbations to z, the change in Lfinal is O(∥∆z∥2), where ∆z is the corre-
sponding change in logits. Given ∆ = h̃−h, the corresponding change in the logits is approximately

∆z ≈ z(h+∆,Θ) − z(h,Θ).

By Lipschitz continuity in h, we have ∥∥∆z

∥∥ ≤ L ∥∆∥.

Then, if ∥∆∥ is small, we can write a first-order Taylor expansion for Lfinal around the unperturbed
logits z(h,Θ), yielding an extra second-order remainder term on the order of ∥∆z∥2. Let Lfinal(z)
denote the final loss viewed as a function of z. Under a small change ∆z, we have

Lfinal
(
z+∆z

)
= Lfinal(z) + ∇zLfinal(z)

⊤∆z + R
(
z,∆z

)︸ ︷︷ ︸
second-order term

.

With β-smoothness, R(z,∆z) = O
(
∥∆z∥2

)
. Since the noise ∆ has E[∆] = 0 and E[∥∆∥2] ≤ σ2

max,
we focus on bounding the expected magnitude of the remainder term. By combining Lipschitz
continuity of the logits with β-smoothness of Lfinal, one obtains:∣∣E[Lfinal

(
z+∆z

)]
− Lfinal(z)

∣∣ ≤ E
[∣∣R(z,∆z

)∣∣] = O
(
E
[
∥∆z∥2

])
.

Since ∥∆z∥ ≤ L ∥∆∥, we have ∥∆z∥2 ≤ L2∥∆∥2. Taking expectations,

E
[
∥∆z∥2

]
≤ L2 E

[
∥∆∥2

]
≤ L2 σ2

max.

Hence the overall change is∣∣E[Lfinal
(
z+∆z

)]
− Lfinal(z)

∣∣ ≤ C σ2
max,

where C encapsulates constants like L2, β, and possibly other network-dependent factors. This
shows that the expected difference in Lfinal under perturbation ∆ with bounded second moment
σ2
max remains upper-bounded by a term proportional to σ2

max. Thus, moderate noise levels do not
drastically increase the final loss, aligning with empirical observations that adaptive noise injection
remains stable in training.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.6 CONVERGENCE IN EXPECTATION

Next, we show that under standard assumptions, NoiseFiT converges in expectation to a local
minimum even in the presence of adaptive noise.

Theorem B.3. Let Θ∗ ∈ Rd be a local minimum of the final loss Lfinal(Θ). Suppose the following
conditions hold:

(a) Lfinal(Θ) is continuously differentiable on Rd and bounded below, i.e., infΘ Lfinal(Θ) >
−∞.

(b) The gradient ∇Lfinal(Θ) is L-Lipschitz continuous with respect to Θ. Formally,

∥∇Lfinal(Θ1)−∇Lfinal(Θ2)∥ ≤ L ∥Θ1 −Θ2∥,

for all Θ1,Θ2 ∈ Rd.

(c) The adaptive noise injection yields unbiased hidden states in expectation (Theorem B.1)
with bounded variance. Concretely, at each iteration t, the hidden-state noise ∆t satisfies
E[∆t] = 0 and E[∥∆t∥2] ≤ σ2

max for some σmax > 0.

Then, performing stochastic gradient descent (or any standard first-order optimizer) on the noised
hidden states converges to Θ∗ in expectation. In other words, if Θt denotes the parameters at iteration
t,

lim
t→∞

E
[
∥∇Lfinal(Θt)∥

]
= 0.

Proof. We outline the main ideas, referencing standard results from stochastic optimization (Bottou
et al., 2018). At iteration t, let ht be the hidden states (a function of Θt) and let h̃t = ht +∆t be the
noised hidden states, where ∆t is the adaptive noise added at iteration t. By assumption (c), we have

E[∆t] = 0, E[∥∆t∥2] ≤ σ2
max.

The gradient of Lfinal with respect to Θ can be approximated by backpropagation through h̃t, leading
to an update of the form:

Θt+1 = Θt − αt ∇̂Lfinal(Θt, h̃t),

where αt is the step size at iteration t. Because the noise injection is unbiased in expectation
(Theorem B.1), the difference between h̃t and ht introduces no systematic bias into the gradient.
Effectively, ∇̂Lfinal(Θt, h̃t) can be seen as a stochastic gradient estimator of ∇Lfinal(Θt). While it
may have increased variance due to noise, the expectation of this estimator still aligns with the true
gradient (up to standard stochastic sampling noise). Formally, one can write:

E
[
∇̂Lfinal(Θt, h̃t) | Θt

]
= ∇Lfinal(Θt),

provided the only randomness comes from ∆t (and possibly mini-batch subsampling), both of which
are classical scenarios in stochastic gradient methods. Under assumption (c), the second moment of
∆t is bounded by σ2

max, which implies that the gradient estimator has bounded variance. Specifically,
one can show:

E
[∥∥∇̂Lfinal(Θt, h̃t) − ∇Lfinal(Θt)

∥∥2 | Θt

]
≤ σ2

g ,

for some constant σ2
g > 0 that depends on σ2

max and network/Lipschitz constants (see also the
discussion in Section B.5 for how noise affects loss gradients). The convergence in expectation for
stochastic gradient-type methods requires:

• Lfinal is lower-bounded and differentiable,

• ∇Lfinal(Θ) is L-Lipschitz,

• The gradient estimator is unbiased with bounded variance,

• A suitable step-size (αt) decay schedule, such as αt =
1√
t

or αt =
1
t .

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Under these conditions, classical results in stochastic optimization (Bottou et al., 2018)) guarantee
that ∇Lfinal(Θt) converges to 0 in expectation, which implies Θt converges to a stationary (or local
minimum) point of Lfinal. Finally, assumption (c) and our earlier result that the gradient difference
induced by noise is O(∥∆t∥) (see Lemma B.4) implies∥∥∇Lfinal(Θt, h̃t) − ∇Lfinal(Θt,ht)

∥∥ = O
(
∥∆t∥

)
,

and since E[∥∆t∥2] ≤ σ2
max, this does not disrupt the overall convergence analysis. The difference

diminishes for small noise and remains bounded for moderate noise, preserving the standard stochastic
gradient convergence arguments. Hence, all the conditions of a standard convergence theorem for
stochastic gradient methods are satisfied: (1) Lfinal is smooth and bounded below, (2) its gradient is
Lipschitz, (3) the noised gradient is unbiased with bounded variance, (4) the step size can be chosen
to decay appropriately. Therefore, the standard result

lim
t→∞

E
[
∥∇Lfinal(Θt)∥

]
= 0

holds, indicating convergence in expectation to a local minimum (or stationary point) Θ∗. This
completes the proof.

C PRACTICAL RECIPE FOR NOISEFIT

To make NoiseFiT usable without extensive sweeps, we distill the strongest settings that consistently
reproduced the trends in Table 1.

1. Warm-up SNR bootstrap: run a short pilot forward passes with uniform, small noise to
estimate per-layer SNR curves from clean vs. noisy passes; rank layers by stability (high
SNR) / instability (low SNR) and then freeze the k target layers for injection.

2. for large models, start with k=3 lowest-SNR layers; for small models, start with k=3
highest-SNR layers. If the validation hallucination rate plateaus, adjust k by ±3.

3. use STD=0.01 as a safe default; consider 0.1 on larger models if validation remains stable.
Apply a short linear ramp-up over the first 10–20% of steps.

Runtime overhead. NoiseFiT adds negligible training-time cost beyond a second (noisy) forward
pass. On V100 GPUs we observed slightly higher memory but similar or lower utilization/power
than BASEFIT (Table F.1), which is acceptable for multi-GPU fine-tuning.

D EXTENDED EVALUATION FOR MISTRAL-7B

To assess how our method scales to a relatively large-parameter model (Mistral-7B), we conduct
extended ablations over (i) the # layers to which we apply noise injection and (ii) the magnitude of
the injected noise (STD), alongside two SNR settings (Highest/Lowest). This study complements the
cross-model results as shown in Table 1. Table D.1 shows that selective noise injection (3–12 layers)
generally outperforms injecting into all layers, suggesting that broader perturbation is not always
beneficial at larger scale.

E TEST PERFORMANCE ANALYSIS

This section presents detailed experimental results for NoiseFiT in mitigating hallucinations of LLMs
based on the test dataset. The evaluated models include Llama-3.2-1B, Llama-3.2-3B, Gemma-3-1B,
Qwen2.5-0.5B, and Mistral-7B-v0.1. For each model, performance is assessed across 17 distinct
categories of prompts, encompassing a total of 208 prompts, under multiple configurations: the
base model, the base model with fine-tuning (denoted BaseFiT), and several noise-injected variants
using NoiseFiT. These NoiseFiT configurations vary by the number of layers affected, the standard
deviation (STD) of the injected noise (e.g., 0.001, 0.01, 0.1), and the signal-to-noise ratio (SNR),
where ’L’ denotes the lowest SNR (highest noise relative to signal were selected for noise injection)
and ’H’ denotes the highest SNR (lowest noise relative to signal were selected for noise injection).
Performance metrics are averaged across five runs per prompt to ensure statistical reliability (online
supplementary material).

24

https://noiseft.github.io
https://noiseft.github.io

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table D.1: Extended leaderboard benchmark and hallucination evaluation results for Mistral-7B
model across different #Layers, STD, and SNR

Model #Layers STD SNR MMLU-Pro BBH GPQA Math IFEval MUSR TfQA-MC HaluEval
M

is
tr

al
7B

-v
0.

1
6 0.1 Highest 30.28 44.63 29.46 2.69 13.31 39.51 38.20 51.40

12 0.001 Highest 30.14 44.32 29.01 2.49 13.68 39.37 36.64 47.13
All 0.01 N/A 30.14 45.12 29.17 2.70 13.86 40.98 35.12 46.96

BaseFiT N/A N/A 30.01 44.34 29.29 2.97 11.46 38.84 37.62 47.60
12 0.1 Lowest 30.01 43.59 28.86 2.52 11.65 41.49 40.63 51.46
12 0.01 Lowest 30.00 43.74 28.83 3.05 13.68 39.50 38.44 49.37
3 0.1 Lowest 29.97 45.84 28.07 3.01 13.49 39.89 39.41 50.72
3 0.01 Lowest 29.95 45.47 25.16 3.35 13.68 39.48 36.24 46.88
3 0.01 Highest 29.95 45.56 26.09 2.63 10.91 39.11 37.02 47.13

12 0.01 Highest 29.93 44.05 28.86 3.30 14.05 39.77 37.14 47.39
12 0.1 Highest 29.93 44.37 28.90 2.71 13.31 40.30 39.84 50.44
3 0.1 Highest 29.75 44.62 28.36 3.10 10.17 37.65 38.54 49.71
6 0.01 Lowest 29.74 45.08 29.66 3.43 11.83 40.18 41.24 52.34
6 0.01 Highest 29.72 44.67 28.74 2.78 13.68 38.97 37.05 47.17
6 0.1 Lowest 29.67 44.53 30.04 3.19 12.20 38.71 37.72 47.85
6 0.001 Lowest 29.59 45.61 30.18 2.26 12.75 39.64 35.43 47.12

All 0.001 N/A 29.57 44.51 28.74 2.26 11.65 38.58 34.71 46.58
3 0.3 Highest 29.56 44.65 29.67 3.22 12.38 39.38 37.46 48.21
3 0.3 Lowest 29.53 44.53 30.54 2.75 10.91 39.51 37.26 49.40

12 0.001 Lowest 29.24 45.16 28.48 1.69 14.42 41.23 38.33 50.19
All 0.1 N/A 29.00 44.81 29.69 2.45 11.65 40.31 34.35 49.91

Prompt Formatting and Generation: To generate model responses, we formatted each user
prompt with specific delimiters (<|im start|>user ... <|im end|>) followed by the assistant
token. We used the generation configuration demonstrated in Table E.1.

Table E.1: Generation configuration hyperparameters.

Max. New Tokens Temperature Top-p Top-k Rep. Penalty

Value 50 0.5 0.9 40 1.2

This setup allowed us to obtain diverse responses while mitigating overly repetitive outputs. Each
local process repeated the generation step for five rounds, independently producing slightly varied
outputs for each prompt.

The tables in this appendix (Tables E.2 to E.6) provide category-wise performance scores alongside
overall performance metrics for each model and configuration. This enables a comprehensive
evaluation of how NoiseFiT mitigates hallucinations across different tasks and setups.

E.1 ANALYSIS OF RESULTS

The results in this appendix highlight the effectiveness of NoiseFiT in mitigating hallucinations in
LLMs, demonstrating both general trends across models and specific insights tailored to this task.
Below, we analyze these findings, with an in-depth focus on the Mistral-7B-v0.1 model due to its
comprehensive set of noise injection configurations.

General Performance Trends Across Models: Fine-tuning the base models (BaseFiT) generally
improves performance over the untrained base models, serving as a foundational step in reducing
hallucinations by better aligning the model with the training data. For Llama-3.2-1B, overall
performance increases from 48.6% to 54.0%; for Llama-3.2-3B, from 60.0% to 66.4%; for Qwen2.5-
0.5B, from 26.4% to 28.8%; and for Mistral-7B-v0.1, from 70.6% to 77.2%. However, Gemma-3-1B
shows a decline from 50.6% to 47.6% with BaseFiT, suggesting that standard fine-tuning alone may
not always mitigate hallucinations effectively and could even exacerbate them in some cases.

NoiseFiT, designed specifically to tackle hallucinations, frequently enhances performance beyond
BaseFiT, particularly in categories prone to factual inaccuracies. For Llama-3.2-3B, the best NoiseFiT
variant (3 layers, STD 0.01, highest SNR) achieves 70.2%, surpassing BaseFiT’s 66.4%. Qwen2.5-
0.5B improves significantly from 28.8% (BaseFiT) to 36.6% (3 layers, STD 0.1, highest SNR). In

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Gemma-3-1B, NoiseFiT recovers performance to 54.6% (3 layers, STD 0.1, highest SNR) from
BaseFiT’s 47.6%, exceeding the base model’s 50.6%. These improvements indicate that NoiseFiT’s
noise injection enhances the model’s ability to generalize, reducing its tendency to hallucinate by
regularizing its learned representations.

Mistral-7B-v0.1: The Mistral-7B-v0.1 model, with its 7 billion parameters, provides a robust case
study for evaluating NoiseFiT’s impact on hallucination mitigation, as it was tested with noise applied
to 3 layers, 12 layers, or all layers, across various STDs and SNRs. The key findings are as follows:

- Optimal Number of Layers for Noise Injection: Injecting noise into fewer layers (specifically
3 layers) consistently outperforms configurations with noise applied to 12 layers or all layers in
mitigating hallucinations. The highest overall performance of 78.4% is achieved with 3 layers, STD
0.1, and lowest SNR, compared to 77.2% for BaseFiT. In contrast, the best 12-layer configuration
(STD 0.1, lowest SNR) yields 76.4%, and the best all-layer configuration (STD 0.1) also reaches
76.4%. This suggests that targeting a small, critical subset of layers with noise injection enhances the
model’s ability to distinguish correct from incorrect information, effectively reducing hallucinations,
while broader noise application may disrupt learned hidden states excessively.

- Impact of Noise Level and SNR: Within the 3-layer configurations, higher noise levels (STD 0.1)
paired with lower SNR (more noise relative to signal) outperform lower noise levels or higher SNR
settings. For example, 3 layers with STD 0.1 and lowest SNR achieves 78.4%, while the same STD
with highest SNR yields 77.4%, and STD 0.01 with lowest and highest SNR scores 76.5% and 77.3%,
respectively. This indicates that substantial noise, when carefully applied, acts as a strong regularizer
in Mistral-7B-v0.1, reducing overconfidence in incorrect outputs and thus mitigating hallucinations.
The preference for lower SNR underscores the benefit of higher noise intensity in this context.

- Category-wise Performance Variations: NoiseFiT significantly improves performance in cate-
gories where hallucinations are particularly prevalent. In ”Medical (Disease Causes),” performance
reaches 100.0% across multiple 3-layer configurations (e.g., STD 0.1, lowest SNR), up from 93.3%
in BaseFiT. ”Scientific Discoveries” improves from 81.2% to 88.2% (3 layers, STD 0.01, lowest
SNR), ”Who Invented” from 82.1% to 85.2% (3 layers, STD 0.1, highest SNR), and ”Sports (Famous
Players)” from 74.7% to 92.0% (3 layers, STD 0.01, lowest SNR). These gains highlight NoiseFiT’s
effectiveness in enhancing factual accuracy and reducing hallucinations in knowledge-intensive
tasks. However, categories like ”Animals” (BaseFiT: 34.1%, best NoiseFiT: 43.6% with 12 layers,
STD 0.001, highest SNR, still below base’s 63.5%) and ”Art (Painting Subjects)” (BaseFiT: 32.2%,
best NoiseFiT: 40.0% with 12 layers, STD 0.1, highest or lowest SNR, below base’s 42.2%) show
persistent challenges, indicating that NoiseFiT may not fully mitigate hallucinations in tasks requiring
nuanced or context-sensitive understanding.

- Comparison with Other Models: Unlike smaller models like Llama-3.2-1B (best: STD 0.1, highest
SNR, 55.8%) or Qwen2.5-0.5B (best: STD 0.1, highest SNR, 36.6%), where higher SNR (less noise)
often performs better, Mistral-7B-v0.1 favors lower SNR (more noise) in its optimal configuration.
This difference likely reflects Mistral’s larger capacity, allowing it to benefit from higher noise levels
as a stronger regularizer against hallucinations, whereas smaller models may be more sensitive to
noise, requiring lower levels to maintain stability.

- Layer Selection Implications: The superior performance of the 3-layer configuration suggests
an optimal subset exists—possibly layers critical with high variance. Broader noise application (12
layers or all layers) reduces effectiveness (e.g., 12 layers, STD 0.001, lowest SNR: 77.0%; all layers,
STD 0.001: 74.4%), emphasizing the importance of layer selection strategy for noise injection in
mitigating hallucination.

These findings demonstrate that for Mistral-7B-v0.1, injecting significant noise (STD 0.1, lowest
SNR) into a small, targeted set of layers (3 layers) optimizes performance, slightly surpassing BaseFiT
and outperforming broader noise applications in reducing hallucinations. The category-wise analysis
reveals substantial benefits in factual, knowledge-based tasks, though challenges persist in areas like
”Animals” and ”Art,” suggesting limitations in NoiseFiT’s applicability across those domains for our
specific test dataset.

In conclusion, NoiseFiT proves to be a promising technique for mitigating hallucinations in LLMs,
particularly in knowledge-intensive categories, by leveraging noise injection to enhance robustness
and reduce overconfidence in incorrect outputs. However, its effectiveness varies across tasks and

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

models, necessitating task-specific optimization of noise injection parameters and further research to
address remaining challenges in certain domains.

Table E.2: Category-wise performance of Llama-3.2-1B configurations. Performance is averaged
across 5 runs per prompt (208 prompts total). For noise-injected cases (3 layers), the first value is the
standard deviation (STD), with ’L’ indicating Lowest SNR and ’H’ indicating Highest SNR.

Llama-3.2-1B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H

Medical (Disease Causes) 76.6 50.0 53.4 60.0 56.6 63.4
Geography – Landmarks 65.4 69.0 81.8 85.4 80.0 81.8
Geography – Capitals 66.6 75.0 50.0 75.0 98.4 80.0
Geography – Currency 34.6 66.6 65.4 74.6 77.4 74.6
Geography – Landmark Locations 53.4 100.0 100.0 91.6 91.6 100.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year Events) 54.6 91.0 100.0 100.0 87.2 85.4
History (When Events) 48.4 98.4 100.0 96.6 96.6 93.4
Inventions 40.0 25.0 41.2 40.0 38.8 22.6
Animals 14.2 34.2 29.4 36.4 22.4 24.8
Music/Composers 43.4 53.4 46.6 50.0 50.0 60.0
Scientific Discoveries 57.6 36.4 36.4 41.2 35.2 29.4
Who Invented 45.2 32.6 42.2 33.6 35.8 37.8
Sports (Famous Players) 74.6 30.6 26.6 29.4 30.6 32.0
Art (Painting Subjects) 22.2 13.4 12.2 10.0 13.4 12.2
Literature 60.0 70.6 60.0 64.2 67.4 53.6
Miscellaneous 80.0 100.0 100.0 100.0 100.0 100.0

Overall 48.6 54.0 53.4 55.8 55.4 52.4

Table E.3: Category-wise performance of Llama-3.2-3B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Llama-3.2-3B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H
Medical (Disease Causes) 73.4 63.4 80.0 63.4 70.0 80.0
Geography – Landmarks 92.8 100.0 98.4 94.6 96.7 85.4
Geography – Capitals 78.3 91.6 85.0 91.6 91.6 91.7
Geography – Currency 84.0 100.0 98.6 100.0 98.7 100.0
Geography – Landmark Locations 86.7 96.6 100.0 100.0 100.0 100.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year Events) 85.5 90.9 63.6 81.8 89.1 96.4
History (When Events) 70.0 91.6 91.6 91.6 91.6 98.3
Inventions 33.8 48.8 47.6 50.0 43.8 37.5
Animals 27.1 22.4 11.8 15.2 16.5 32.9
Music/Composers 76.7 60.0 66.6 50.0 63.3 63.3
Scientific Discoveries 49.4 48.2 49.4 58.8 52.9 55.3
Who Invented 51.6 66.4 75.8 83.2 82.1 74.7
Sports (Famous Players) 10.7 49.4 54.6 57.4 53.3 60.0
Art (Painting Subjects) 45.6 25.6 16.6 21.2 16.7 20.0
Literature 83.2 77.8 81.0 84.2 83.2 93.7
Miscellaneous 100.0 100.0 100.0 100.0 100.0 100.0

Overall 60.0 66.4 65.6 68.2 68.0 70.2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table E.4: Category-wise performance of Gemma-3-1B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Gemma-3-1B-it (3 layers if noise injected)

Category Base BaseFiT 0.1, H 0.01, H 0.001, L 0.01, L

Medical (disease causes) 43.4 76.7 60.0 70.0 66.6 70.0
Miscellaneous 80.0 100.0 100.0 20.0 100.0 80.0
Geography – Landmarks 43.6 85.5 92.8 80.0 83.6 76.4
Geography – Capitals 78.4 100.0 100.0 100.0 100.0 100.0
Geography – Currency 73.4 93.3 86.6 97.4 96.0 92.0
Language 80.0 100.0 100.0 100.0 100.0 100.0
History (Year events) 83.6 81.8 81.8 81.8 91.0 80.0
History (When events) 76.6 41.7 76.6 81.6 60.0 40.0
Inventions 55.0 32.5 40.0 37.6 31.2 27.6
Geography – Landmark Locations 70.0 66.7 100.0 100.0 100.0 20.0
Animals 31.8 7.1 21.2 10.6 9.4 9.4
Music/Composers 26.6 23.3 26.6 26.6 40.0 33.4
Scientific Discoveries 42.4 36.5 29.4 27.0 24.8 24.8
Who Invented 65.2 45.3 63.2 57.8 50.6 53.6
Sports (Famous Players) 26.6 30.7 32.0 28.0 26.6 30.6
Art (Painting Subjects) 7.8 8.9 7.8 16.6 14.4 7.8
Literature 44.2 31.6 40.0 35.8 31.6 34.8

Overall 50.6 47.6 54.6 53.2 51.0 43.8

Table E.5: Category-wise performance of Qwen2.5-0.5B configurations. Performance is averaged
across 208 prompts total. For noise-injected cases (3 layers), the first value is the standard deviation
(STD), with ‘L’ indicating Lowest SNR and ‘H’ indicating Highest SNR.

Qwen2.5-0.5B (3 layers if noise injected)

Category Base BaseFiT 0.1, L 0.1, H 0.01, L 0.01, H

Medical (disease causes) 66.7 76.6 80.0 80.0 86.6 73.4
Miscellaneous 60.0 100.0 100.0 100.0 20.0 100.0
Geography – Landmarks 21.8 31.0 16.4 40.0 18.2 36.4
Geography – Capitals 31.7 75.0 85.0 86.6 76.6 71.6
Geography – Currency 38.7 50.6 74.6 77.4 69.4 78.6
Language 80.0 100.0 20.0 100.0 80.0 100.0
History (Year events) 43.6 45.4 63.6 58.2 51.0 61.8
History (When events) 38.3 68.4 73.4 73.4 61.6 66.6
Inventions 23.8 5.0 11.2 10.0 11.2 7.6
Geography – Landmark Locations 60.0 93.4 88.4 93.4 81.6 80.0
Animals 17.6 5.8 3.6 18.8 9.4 7.0
Music/Composers 0.0 0.0 0.0 0.0 0.0 0.0
Scientific Discoveries 28.2 11.8 11.8 13.0 7.0 14.2
Who Invented 21.0 10.6 11.6 7.4 11.6 8.4
Sports (Famous Players) 9.3 6.6 9.4 17.4 9.4 20.0
Art (Painting Subjects) 3.3 3.4 1.2 3.4 2.2 1.2
Literature 16.8 8.4 26.4 25.2 20.0 20.0

Overall 26.4 28.8 33.0 36.6 30.2 33.0

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Ta
bl

e
E

.6
:C

at
eg

or
y-

w
is

e
pe

rf
or

m
an

ce
of

M
is

tr
al

-7
B

-v
0.

1
co

nfi
gu

ra
tio

ns
.P

er
fo

rm
an

ce
is

ty
pi

ca
lly

av
er

ag
ed

ac
ro

ss
20

8
pr

om
pt

s.
Fo

rn
oi

se
-i

nj
ec

te
d

ca
se

s,
co

lu
m

n
la

be
ls

sh
ow

#L
ay

er
s,

(S
T

D
,S

N
R

);
w

ith
‘L

’i
nd

ic
at

in
g

L
ow

es
tS

N
R

an
d

‘H
’i

nd
ic

at
in

g
H

ig
he

st
SN

R
.

M
is

tr
al

-7
B

-v
0.

1
C

at
eg

or
y

B
as

e
B

as
eF

iT
3

(0
.1

,L
)

3
(0

.1
,H

)
3

(0
.0

1,
L

)
3

(0
.0

1,
H

)
12

(0
.0

01
,L

)
12

(0
.0

01
,H

)
12

(0
.0

1,
L

)
12

(0
.0

1,
H

)
12

(0
.1

,L
)

12
(0

.1
,H

)
A

ll
(0

.0
01

)
A

ll
(0

.0
1)

A
ll

(0
.1

)

M
ed

ic
al

(D
is

ea
se

C
au

se
s)

90
.0

93
.3

10
0.

0
96

.6
10

0.
0

10
0.

0
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
M

is
ce

lla
ne

ou
s

80
.0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

G
eo

gr
ap

hy
–

L
an

dm
ar

ks
90

.9
96

.4
89

.1
94

.6
94

.6
98

.2
98

.2
10

0.
0

10
0.

0
96

.4
72

.8
10

0.
0

10
0.

0
10

0.
0

78
.2

G
eo

gr
ap

hy
–

C
ap

ita
ls

93
.3

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
96

.6
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
G

eo
gr

ap
hy

–
C

ur
re

nc
y

81
.3

10
0.

0
10

0.
0

10
0.

0
98

.6
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
L

an
gu

ag
e

80
.0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

H
is

to
ry

(Y
ea

rE
ve

nt
s)

89
.1

96
.4

90
.9

91
.0

91
.0

90
.9

10
0.

0
87

.2
92

.8
89

.0
98

.2
96

.4
10

0.
0

10
0.

0
98

.2
H

is
to

ry
(W

he
n

E
ve

nt
s)

91
.7

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

In
ve

nt
io

ns
37

.5
58

.8
53

.8
56

.2
50

.0
52

.5
58

.8
67

.6
56

.2
58

.8
55

.0
43

.8
45

.0
47

.6
56

.2
G

eo
gr

ap
hy

–
L

an
dm

ar
k

L
oc

at
io

ns
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
10

0.
0

A
ni

m
al

s
63

.5
34

.1
38

.8
25

.8
29

.4
36

.5
35

.2
43

.6
33

.0
35

.2
34

.2
30

.6
24

.8
31

.8
34

.2
M

us
ic

/C
om

po
se

rs
73

.3
80

.0
66

.7
70

.0
66

.6
66

.7
83

.4
66

.6
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
83

.4
Sc

ie
nt

ifi
c

D
is

co
ve

ri
es

57
.6

81
.2

82
.4

83
.6

88
.2

81
.2

76
.4

76
.4

76
.4

76
.4

74
.2

82
.4

75
.2

65
.8

76
.4

W
ho

In
ve

nt
ed

66
.3

82
.1

82
.1

85
.2

84
.2

78
.9

81
.0

69
.4

73
.6

73
.6

76
.8

73
.6

79
.0

73
.6

77
.8

Sp
or

ts
(F

am
ou

s
Pl

ay
er

s)
48

.0
74

.7
90

.7
89

.4
92

.0
77

.3
82

.6
81

.4
69

.4
77

.4
85

.4
77

.4
80

.0
88

.0
82

.6
A

rt
(P

ai
nt

in
g

Su
bj

ec
ts

)
42

.2
32

.2
37

.8
28

.8
33

.4
30

.0
31

.2
23

.4
38

.8
33

.4
40

.0
40

.0
27

.8
38

.8
38

.8
L

ite
ra

tu
re

81
.1

75
.8

78
.9

68
.4

82
.2

76
.8

71
.6

73
.6

63
.2

75
.8

80
.0

67
.4

70
.6

75
.8

70
.6

O
ve

ra
ll

70
.6

77
.2

78
.4

77
.4

76
.5

77
.3

77
.0

75
.6

74
.4

75
.8

76
.4

75
.2

74
.4

75
.8

76
.4

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E.2 STATISTICAL ANALYSIS

A hallucination score measures the degree to which a language model generates hallucinated out-
puts. Figure E.1 (panels a–d) and Figure E.2 display the mean hallucination scores (with standard
error interval for the mean) for each noisy fine-tuned variant alongside its base variants. To assess
whether noisy fine-tuning leads to statistically meaningful changes in the distribution of hallucina-
tion scores (beyond what can be inferred from mean and error-bar overlap alone), we employ the
Epps–Singleton two-sample test (Epps & Singleton, 1986; Goerg & Kaiser, 2009). This test is a
nonparametric method for comparing two continuous distributions without assuming normality or
equal variances—properties. Moreover, by examining the full empirical distribution rather than only
its first two moments (mean and variance), the Epps–Singleton test can detect shifts in shape, tail
behavior, or modality that might be missed by simpler tests.

All pairwise comparisons against the base model were performed in Python using SciPy’s
epps singleton 2samp function, with Holm’s method applied to control the familywise er-
ror rate at α = 0.05. The detailed results for each model family appear in Tables E.7–E.11. Across all
models, the adjusted p-values are consistently low (e.g., 0.000 to 0.018), and the ”Significant” column
is uniformly True, leading to the rejection of H0, indicating that the distributions of hallucination
scores for the noisy fine-tuned models differ significantly from those of their base variants. The
significant results across nearly all experiments confirm that adding noise during fine-tuning isn’t
a trivial change—it alters how the model generates outputs, as reflected in the hallucination scores.
This suggests that noise acts as a regularizer, helping the model avoid overfitting to the training data
and improving its ability to handle new inputs without hallucinating.

Table E.7: Statistical comparison between noisy fine-tuned models and the base variants of Llama-
3.2-1B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 93.975 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 52.584 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 60.025 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 53.175 0.000 0.000 True Reject H0 → distributions differ

Table E.8: Statistical comparison between noisy fine-tuned models and the base variants of Llama-
3.2-3B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 46.320 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 57.663 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 60.415 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 62.553 0.000 0.000 True Reject H0 → distributions differ

Table E.9: Statistical comparison between noisy fine-tuned models and the base variants of Qwen2.5-
0.5B.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 19.060 0.001 0.002 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 26.945 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 11.742 0.019 0.019 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 33.286 0.000 0.000 True Reject H0 → distributions differ

Table E.10: Statistical comparison between noisy fine-tuned models and the base variants of Gemma-
3-1B-it.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 19.498 0.001 0.002 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 23.610 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 7.663 0.105 0.105 False Fail to reject H0 → no evidence of difference
Noisy4 Epps-Singleton 18.095 0.001 0.002 True Reject H0 → distributions differ

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

N
oi

sy
1

N
oi

sy
2

N
oi

sy
3

N
oi

sy
4

B
as

e
0

0.
51

1.
52

2.
5

E
xp

er
im

en
ts

MeanHallucinationScore(0-5)

(a
)L

la
m

a-
3.

2-
1B

N
oi

sy
1

N
oi

sy
2

N
oi

sy
3

N
oi

sy
4

B
as

e
0

0.
51

1.
52

E
xp

er
im

en
ts

MeanHallucinationScore(0-5)

(b
)L

la
m

a-
3.

2-
3B

N
oi

sy
1

N
oi

sy
2

N
oi

sy
3

N
oi

sy
4

B
as

e
0

0.
51

1.
52

2.
53

3.
5

E
xp

er
im

en
ts

MeanHallucinationScore(0-5)

(c
)Q

w
en

2.
5-

0.
5B

N
oi

sy
1

N
oi

sy
2

N
oi

sy
3

N
oi

sy
4

B
as

e
0

0.
51

1.
52

2.
53

E
xp

er
im

en
ts

MeanHallucinationScore(0-5)

(d
)G

em
m

a-
3-

1b
-i

t

Fi
gu

re
E

.1
:E

rr
or

ba
rs

fo
rt

he
m

ea
n

ha
llu

ci
na

tio
n

sc
or

es
ac

ro
ss

th
e

m
od

el
s

an
d

ex
pe

ri
m

en
ts

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

N
oi

sy
1

N
oi

sy
2

N
oi

sy
3

N
oi

sy
4

N
oi

sy
5

N
oi

sy
6

N
oi

sy
7

N
oi

sy
8

N
oi

sy
9

N
oi

sy
10

N
oi

sy
11

N
oi

sy
12

N
oi

sy
13

Ba
se

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

E
xp

er
im

en
ts

MeanHallucinationScore(0-5)

Fi
gu

re
E

.2
:E

rr
or

ba
rs

fo
rt

he
m

ea
n

ha
llu

ci
na

tio
n

sc
or

es
ac

ro
ss

th
e

ex
pe

ri
m

en
ts

fo
rM

is
tr

al
-7

B
-V

0.
1.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table E.11: Statistical comparison between noisy fine-tuned models and the base variants of Mistral-
7B-v0.1.

Experiment Test used Statistic P-value raw P-value adjusted Significant Interpretation

Noisy1 Epps-Singleton 63.822 0.000 0.000 True Reject H0 → distributions differ
Noisy2 Epps-Singleton 49.946 0.000 0.000 True Reject H0 → distributions differ
Noisy3 Epps-Singleton 63.714 0.000 0.000 True Reject H0 → distributions differ
Noisy4 Epps-Singleton 50.750 0.000 0.000 True Reject H0 → distributions differ
Noisy5 Epps-Singleton 54.740 0.000 0.000 True Reject H0 → distributions differ
Noisy6 Epps-Singleton 54.225 0.000 0.000 True Reject H0 → distributions differ
Noisy7 Epps-Singleton 63.442 0.000 0.000 True Reject H0 → distributions differ
Noisy8 Epps-Singleton 83.037 0.000 0.000 True Reject H0 → distributions differ
Noisy9 Epps-Singleton 57.399 0.000 0.000 True Reject H0 → distributions differ
Noisy10 Epps-Singleton 77.249 0.000 0.000 True Reject H0 → distributions differ
Noisy11 Epps-Singleton 85.994 0.000 0.000 True Reject H0 → distributions differ
Noisy12 Epps-Singleton 60.581 0.000 0.000 True Reject H0 → distributions differ
Noisy13 Epps-Singleton 69.129 0.000 0.000 True Reject H0 → distributions differ

F COMPUTATIONAL EFFICIENCY AND SCALABILITY ANALYSIS

To evaluate the computational efficiency and scalability of the proposed NoiseFiT framework com-
pared to the common fine-tuning (BaseFiT), we analyzed a series of GPU performance metrics
recorded during the experiments (Figures F.1 and F.2). The metrics under consideration include:

• GPU Memory Allocated (%) – Indicates the percentage of total GPU memory used.

• GPU Power Usage (%) – Reflects the power consumption during model training.

• GPU Temperature (°C) – Monitors the thermal performance of the GPU.

• Time Spent Accessing Memory (%) – Measures the relative time the GPU spent in memory
operations.

• GPU Utilization (%) – Captures the overall usage of the GPU computational resources.

For each metric, we computed the mean and standard deviation over multiple experimental runs.
Table F.1 summarizes the performance for both BaseFiT (Base) and NoiseFiT configurations. The
results indicate that the NoiseFiT framework exhibits a mixed performance profile across the evaluated
GPU metrics:

• Memory and Power Efficiency: While NoiseFiT requires a higher GPU memory allocation
(61.3% vs. 35.5%), it achieves reduced power usage (64.0% vs. 67.3%). This suggests that,
despite the increased memory demand, NoiseFiT benefits from lower energy consumption
during training.

• Thermal Performance and Memory Operations: The GPU temperature and the time
spent accessing memory are marginally elevated in the NoiseFiT setup (58.6°C and 50.7%,
respectively) compared to BaseFiT (57.8°C and 49.0%). These slight differences indicate
that thermal management and memory operation times remain largely comparable between
the two approaches.

• Overall Utilization: The slightly lower overall GPU utilization observed with NoiseFiT
(75.5% vs. 77.2%) implies that similar or improved performance may be achieved with a
reduced computational load, which is beneficial for scalability.

In summary, the performance trade-offs observed with the NoiseFiT suggest a viable balance between
computational efficiency and resource allocation. Although NoiseFiT demands higher memory usage
and shows marginal increases in thermal metrics, its reduced power consumption and overall GPU
utilization indicate that it can mitigate hallucinations while decreasing the computational overhead
associated with training. These benefits are especially critical when scaling large language models in
resource-constrained environments, thereby enhancing both the practicality and the environmental
sustainability of deploying such systems.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table F.1: Summary of GPU performance metrics statistics comparing Base Fine Tuning (BaseFiT)
and Noisy Fine Tuning (NoiseFiT) workflows. Values represent the mean ± standard deviation across
multiple runs.

Metric BaseFiT NoiseFiT
GPU Memory Allocated (%) 35.5 ± 0.0 61.3 ± 0.5
GPU Power Usage (%) 67.3 ± 14.0 64.0 ± 16.1
GPU Temperature (°C) 57.8 ± 2.2 58.6 ± 1.2
Time Spent Accessing Memory (%) 49.0 ± 13.5 50.7 ± 19.4
GPU Utilization (%) 77.2 ± 20.6 75.5 ± 18.3

Figure F.1: NoiseFiT training GPU utilization history for different models, noise injection STD and
layer selection strategies. Available in interactive mode online at W&B.

G ANALYSIS OF LAYER-WISE METRICS

In this section, we analyze the layer-wise insights for the models. First, we provide an analysis of
the SNR trends per layer across multiple noise standard deviation (STD) values in the five models
(Figures G.1- G.5). Then, we provide an analysis of the metrics including sparsity, variance, logit
entropy, attention entropy, mean L2 norm, and rank of the hidden states across layers.

For Llama-3.2-1B, Llama-3.2-3B, and Mistral-7B-v0.1, SNR increases with layer index for all noise
STD values. Conversely, gemma-3-1b-it shows a unique decreasing SNR trend across layers, with
the decline more pronounced at lower STD values, indicating greater noise sensitivity in deeper
layers. Qwen2.5-0.5B presents a mixed trend: SNR remains stable for lower STD values but declines
for higher STD values, reflecting varying noise tolerance. Across all models, higher STD values
consistently yield lower SNR. The diversity in trends suggests that the model’s architecture plays a
crucial role in how noise injection influences the fine-tuning.

Here we briefly define the metrics used:

34

https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Figure F.2: NoiseFiT training GPU memory allocation history for different models, noise injection
STD and layer selection strategies. Available in interactive mode online at W&B.

• Sparsity: The proportion of zero or near-zero values in the hidden states, indicating how
many features are inactive. Higher sparsity suggests a focus on fewer, potentially more
robust features.

• Variance: The spread of hidden state activations. Higher variance may indicate greater
expressiveness, while lower variance suggests stability.

• Logit Entropy: Measures uncertainty in the model’s output predictions. Lower entropy
reflects higher confidence, while higher entropy indicates more uncertainty.

• Attention Entropy: Assesses the distribution of attention weights. Lower entropy implies
concentrated attention on specific tokens, while higher entropy suggests more uniform
attention.

• Mean L2 Norm: The magnitude of hidden state activations. Larger norms indicate stronger
activations, while smaller norms suggest subdued activations.

• Rank: The effective rank of hidden states, reflecting the dimensionality of information
processed. Higher rank suggests more complex representations.

G.1 LLAMA-3.2-1B

• Sparsity (Fig. G.6a): The noisy variants show higher sparsity across most layers, especially
in the middle layers, compared to BaseFiT and the Base model. This suggests that noise
promotes sparser, potentially more robust representations. BaseFiT exhibits lower sparsity,
indicating reliance on more features, while the Base model maintains moderate sparsity
compared to other models.

• Variance (Fig. G.6b): Base model displays higher variance, reflecting more diverse
activations. BaseFiT and noisy variants show lower variance, suggesting more stable
activations.

• Logit Entropy (Fig. G.6c): Noisy variants exhibit lower logit entropy median and higher
logit entropy variance, which may improve calibration. Base model shows moderate entropy
relatively higher median with less variance.

35

https://api.wandb.ai/links/afshin-khadangi-university-of-luxembourg/kzxs9pkx

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

• Attention Entropy (Fig. G.6d): Noisy variants have higher attention entropy, implying
more distributed attention across tokens. The Base model’s entropy increases gradually
across layers.

• Mean L2 Norm (Fig. G.6e): Noisy variants have lower mean L2 norms, especially in
deeper layers, suggesting smaller activations. Base model exhibits higher norms, indicating
stronger activations.

• Rank (Fig. G.6f): The rank is lower for base model, particularly in later layers, suggesting
compressed representations. The noisy variants show consistently higher rank.

G.2 LLAMA-3.2-3B

• Sparsity (Fig. G.7a): Noisy variants exhibit fluctuating higher sparsity, especially in middle
and later layers.

• Variance (Fig. G.7b): Noisy variants have higher variance. The Base model shows the
lowest variance.

• Logit Entropy (Fig. G.7c): Noisy variants display lower logit entropy, indicating greater
confidence, while Base model has higher entropy.

• Attention Entropy (Fig. G.7d): Noisy variants have slightly higher attention entropy,
especially in deeper layers, suggesting distributed attention. Base model’s entropy decreases
gradually relative to other models.

• Mean L2 Norm (Fig. G.7e): Mean L2 norms exhibit relatively similar pattern across all
models.

• Rank (Fig. G.7f): Ranks exhibit relatively similar pattern across all models.

G.3 QWEN2.5-0.5B

• Sparsity (Fig. G.8a): Noisy variants show higher sparsity, particularly in earlier layers,
compared to the Base model.

• Variance (Fig. G.8b): Base model exhibits relatively higher variance in the middle layers
with the BaseFiT and noisy variants maintaining lower variance across these layers.

• Logit Entropy (Fig. G.8c): Noisy variants have show higher output logit entropy median
and variance, indicating less confidence. Base model shows lower entropy.

• Attention Entropy (Fig. G.8d): Mean attention entropy exhibits similar pattern across all
models.

• Mean L2 Norm (Fig. G.8e): Mean L2 norms exhibit relatively similar pattern across all
models.

• Rank (Fig. G.8f): Ranks exhibit relatively similar pattern across all models.

G.4 GEMMA-3-1B-IT

• Sparsity (Fig. G.9a): Sparsity exhibits relatively similar pattern across all models.

• Variance (Fig. G.9b): Variance exhibits relatively similar pattern across all models.

• Logit Entropy (Fig. G.9c): Noisy variants display relatively higher logit entropy median
and higher variance, while Base model shows lower entropy median and variance.

• Attention Entropy (Fig. G.9d): Attention entropy exhibits relatively similar pattern across
all models.

• Mean L2 Norm (Fig. G.9e): Logit entropy exhibits relatively similar pattern across all
models with the noisy variants exhibiting relatively higher mean L2 norms in deeper layers.

• Rank (Fig. G.9f): Rank exhibits relatively similar pattern across all models with the noisy
variants exhibiting relatively higher rank in deeper layers.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

G.5 MISTRAL-7B-V0.1

Based on the layer-wise metrics for Mistral-7B-v0.1, we observe the following trends:

• Sparsity (Fig. G.10a): Sparsity exhibits similar pattern across all models.

• Variance (Fig. G.10b): Variance exhibits similar pattern across all models.

• Logit Entropy (Fig. G.10c): The noisy variants show lower logit entropy, suggesting high
confidence in predictions. Base model displays higher entropy.

• Attention Entropy (Fig. G.10d): Attention entropy exhibits relatively similar pattern across
all models with the noisy variants exhibiting relatively higher entropy in deeper layers.

• Mean L2 Norm (Fig. G.10e): The Mean L2 norms exhibit similar pattern across all models.

• Rank (Fig. G.10f): Ranks exhibit relatively similar pattern across all models.

G.6 SYNTHESIS OF THE FINDINGS

Across all five models, consistent patterns emerge:

• Sparsity: Noisy variants exhibit higher sparsity compared to their base counterparts, par-
ticularly in specific layers. In LLaMA-3.2-1B, noisy variants show elevated sparsity in
middle layers (Fig. G.6a), while in LLaMA-3.2-3B, this increase is more pronounced in
middle and later layers (Fig. G.7a). Similarly, Qwen2.5-0.5B displays higher sparsity in
earlier layers for noisy variants (Fig. G.8a). This pattern suggests that noise injection
may encourage sparser representations, potentially enhancing robustness by focusing on
fewer, critical features. However, in Gemma-3-1b-it and Mistral-7B-v0.1, sparsity remains
relatively consistent across all variants (Figs. G.9a and G.10a), indicating that the impact of
noise on sparsity may be architecture-dependent.

• Variance: In LLaMA-3.2-1B and Qwen2.5-0.5B, noisy variants tend to have lower variance
compared to the base models, particularly noticeable in middle layers for Qwen2.5-0.5B
(Figs. G.6b and G.8b), suggesting more stable activations. In contrast, LLaMA-3.2-3B
shows higher variance in noisy variants (Fig. G.7b), indicating greater activation diversity.
Gemma-3-1b-it and Mistral-7B-v0.1 exhibit similar variance patterns across all variants
(Figs. G.9b and G.10b), highlighting that the effect of noise on activation spread is not
uniform and likely influenced by model size or structure.

• Logit Entropy: In LLaMA-3.2-1B, noisy variants have a lower median but higher variance
in logit entropy (Fig. G.6c), potentially indicating better calibration. LLaMA-3.2-3B
and Mistral-7B-v0.1 show lower logit entropy in noisy variants (Figs. G.7c and G.10c),
suggesting increased prediction confidence. Conversely, Qwen2.5-0.5B and Gemma-3-1b-it
exhibit higher median and variance in logit entropy for noisy variants (Figs. G.8c and G.9c),
pointing to greater uncertainty.

• Attention Entropy: Attention entropy tends to increase in noisy variants across multiple
models. LLaMA-3.2-1B shows higher attention entropy in noisy variants (Fig. G.6d),
while LLaMA-3.2-3B and Mistral-7B-v0.1 exhibit slightly higher entropy in deeper layers
(Figs. G.7d and G.10d). This trend suggests that noise promotes more distributed attention
across tokens, possibly improving contextual awareness. In Qwen2.5-0.5B and Gemma-3-
1b-it, attention entropy patterns are largely similar across variants (Figs. G.8d and G.9d),
indicating less pronounced effects in these models.

• Mean L2 Norm: The mean L2 norm generally shows consistent patterns across variants
in most models, with some exceptions. In LLaMA-3.2-1B, noisy variants have lower
mean L2 norms, especially in deeper layers (Fig. G.6e), suggesting subdued activations,
whereas Gemma-3-1b-it displays higher norms in noisy variants in deeper layers (Fig. G.9e).
LLaMA-3.2-3B, Qwen2.5-0.5B, and Mistral-7B-v0.1 exhibit similar norm patterns across all
variants (Figs. G.7e, G.8e, and G.10e), suggesting that noise impact on activation magnitude
varies by model.

• Rank: LLaMA-3.2-1B’s noisy variants maintain a higher rank, particularly in later layers
(Fig. G.6f), indicating more complex representations. In Gemma-3-1b-it, noisy variants also

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

show higher rank in deeper layers (Fig. G.9f), while LLaMA-3.2-3B, Qwen2.5-0.5B, and
Mistral-7B-v0.1 display similar rank patterns across variants (Figs. G.7f, G.8f, and G.10f).
This suggests that noise may enhance representational dimensionality in some models.

These findings indicate that noise injection influences the internal representations of the models
in various ways. Increased sparsity and attention entropy are relatively consistent effects, while
variance, logit entropy, and mean L2 norm exhibit model-specific responses, highlighting the role of
architecture in noisy fine-tuning. Our findings demonstrate that NoiseFiT can effectively alter layer-
wise hidden states characteristics of language models for mitigating hallucinations. The increased
sparsity and attention entropy in noisy variants align with goals of reducing overfitting and enhancing
generalization. However, the mixed effects on variance and logit entropy emphasize the complexity
of noise’s impact and the need for careful calibration.

0 5 10 15

2

5
1000

2

5
10k

2

5
100k

2 Standard Deviation
STD = 0.01
STD = 0.02
STD = 0.04
STD = 0.08
STD = 0.1
STD = 0.14
STD = 0.2
STD = 0.3
STD = 0.4

SNR per Layer for Llama-3.2-1B

Layer Index

SN
R

(l
og

)

Figure G.1: Layerwise SNR for Llama-3.2-1B across different noise standard deviation values

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

0 10 20
2

5
1000

2

5
10k

2

5
100k

2
Standard Deviation

STD = 0.01
STD = 0.02
STD = 0.04
STD = 0.08
STD = 0.1
STD = 0.14
STD = 0.2
STD = 0.3
STD = 0.4

SNR per Layer for Llama-3.2-3B

Layer Index

SN
R

(l
og

)

Figure G.2: Layerwise SNR for Llama-3.2-3B across different noise standard deviation values

0 5 10 15 20 25
2

5

1000

2

5

10k

2

5

100k

2 Standard Deviation
STD = 0.01
STD = 0.02
STD = 0.04
STD = 0.08
STD = 0.1
STD = 0.14
STD = 0.2
STD = 0.3
STD = 0.4

SNR per Layer for Qwen2.5-0.5B

Layer Index

SN
R

(l
og

)

Figure G.3: Layerwise SNR for Qwen2.5-0.5B across different noise standard deviation values

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25

2

5
10

2

5
100

2

5
1000

2

5
10k Standard Deviation

STD = 0.01
STD = 0.02
STD = 0.04
STD = 0.08
STD = 0.1
STD = 0.14
STD = 0.2
STD = 0.3
STD = 0.4

SNR per Layer for gemma-3-1b-it

Layer Index

SN
R

(l
og

)

Figure G.4: Layerwise SNR for gemma-3-1b-it across different noise standard deviation values

0 10 20 30

2

5

10k

2

5

100k

2

5 Standard Deviation
STD = 0.01
STD = 0.02
STD = 0.04
STD = 0.08
STD = 0.1
STD = 0.14
STD = 0.2
STD = 0.3
STD = 0.4

SNR per Layer for Mistral-7B-v0.1

Layer Index

SN
R

(l
og

)

Figure G.5: Layerwise SNR for Mistral-7B-v0.1 across different noise standard deviation values

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

15.65 15.7 15.75 15.8 15.85

400

500

350

450

550

Model
Llama3.2.1B.0.1-L
Llama3.2.1B.0.1-H
Llama3.2.1B.0.01-L
Llama3.2.1B.0.01-H
Llama3.2.1B.BaseFiT
Llama-3.2-1B

Effective rank of hidden states per layer

Layer

Ra
nk

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

0.4

0.5

0.6
Model

Llama
Llama
Llama
Llama
Llama
Llama

Hidden states sparsity per layer

Layer

Fr
ac
 |
h|
<1
e-
5

(a) Sparsity

0 2 4 6 8 10 12 14

0

1

2

3

4

5

Model
Llama
Llama
Llama
Llama
Llama
Llama

Hidden states variance per layer

Layer
Va

r(
h)

(b) Variance

Llama3.2.1B.0.1-L Llama3.2.1B.0.1-H Llama3.2.1B.0.01-L Llama3.2.1B.0.01-H Llama3.2.1B.BaseFiT Llama-3.2-1B

2.5

3

3.5

4
Llama
Llama
Llama
Llama
Llama
Llama

Distribution of Logit Entropy for Each Model

Model

En
tr
op
y

(c) Logit Entropy

2 4 6 8 10 12 14 16

0.8

1

1.2

1.4

1.6

1.8 Llama
Llama
Llama
Llama
Llama
Llama

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y

(
b
i
t
s
)

(d) Attention Entropy

0 2 4 6 8 10 12 14

5

10

15

20

25

30

35

40
Model

Llama
Llama
Llama
Llama
Llama
Llama

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂
 (
me
an
)

(e) Mean L2 Norm

0 2 4 6 8 10 12 14

0

100

200

300

400

500

Model
Llama
Llama
Llama
Llama
Llama
Llama

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.6: Layerwise metrics for LLaMA-3.2-1B

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

27 27.2 27.4 27.6 27.8 28 28.2

7

6.75

6.8

6.85

6.9

6.95

7.05 Model
Llama-3.2-3B.0.1-L
Llama-3.2-3B.0.1-H
Llama-3.2-3B.0.01-L
Llama-3.2-3B.0.01-H
Llama-3.2-3B.BaseFiT
Llama-3.2-3B

Hidden states variance per layer

Layer

Va
r(

h)

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Model
Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Hidden states sparsity per layer

Layer

Fr
ac
 |
h|
<1
e-
5

(a) Sparsity

0 5 10 15 20 25

0

1

2

3

4

5

6

7
Model

Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Hidden states variance per layer

Layer
Va

r(
h)

(b) Variance

Llama-3.2-3B.0.1-L Llama-3.2-3B.0.1-H Llama-3.2-3B.0.01-L Llama-3.2-3B.0.01-H Llama-3.2-3B.BaseFiT Llama-3.2-3B
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8 Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Distribution of Logit Entropy for Each Model

Model

En
tr
op
y

(c) Logit Entropy

0 5 10 15 20 25

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y

(
b
i
t
s
)

(d) Attention Entropy

0 5 10 15 20 25
0

10

20

30

40

50

60

70

Model
Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂
 (
me
an
)

(e) Mean L2 Norm

0 5 10 15 20 25

0

100

200

300

400

500

600 Model
Llama-
Llama-
Llama-
Llama-
Llama-
Llama-

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.7: Layerwise metrics for LLaMA-3.2-3B

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

23.2 23.4 23.6 23.8 24 24.2

0.055

0.06

0.065

0.07

0.075

0.08

0.085 Model
Qwen2.5-0.5B-0.1-L
Qwen2.5-0.5B-0.1-H
Qwen2.5-0.5B-0.01-L
Qwen2.5-0.5B-0.01-H
Qwen2.5-0.5B-BaseFiT
Qwen2.5-0.5B

Hidden states sparsity per layer

Layer

Fr
ac

 |
h|

<1
e-

5

0 5 10 15 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Model

Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Hidden states sparsity per layer

Layer

Fr
ac

 |
h|

<1
e-

5

(a) Sparsity

0 5 10 15 20

0

20

40

60

80

100

120

140

160
Model

Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Hidden states variance per layer

Layer
Va
r(
h)

(b) Variance

Qwen2.5-0.5B-0.1-L Qwen2.5-0.5B-0.1-H Qwen2.5-0.5B-0.01-L Qwen2.5-0.5B-0.01-H Qwen2.5-0.5B-BaseFiT Qwen2.5-0.5B

2

2.5

3

3.5

Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Distribution of Logit Entropy for Each Model

Model

En
tr

op
y

(c) Logit Entropy

0 5 10 15 20 25

0.5

1

1.5

2

Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y

(
b
i
t
s
)

(d) Attention Entropy

0 5 10 15 20

0

50

100

150

200

250

Model
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂
 (
me
an
)

(e) Mean L2 Norm

0 5 10 15 20
0

100

200

300

400

500
Model

Qwen2
Qwen2
Qwen2
Qwen2
Qwen2
Qwen2

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.8: Layerwise metrics for Qwen2.5-0.5B:

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

25.6 25.7 25.8 25.9 26 26.1 26.2 26.3 26.4

400

500

420

440

460

480

520 Model
gemma-3-1b-it-0.001-L
gemma-3-1b-it-0.1-H
gemma-3-1b-it-0.01-L
gemma-3-1b-it-0.01-H
gemma-3-1b-it-BaseFiT
gemma-3-1b-it

Effective rank of hidden states per layer

Layer

Ra
nk

0 5 10 15 20 25

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Model
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Hidden states sparsity per layer

Layer

Fr
ac

 |
h|

<1
e-

5

(a) Sparsity

0 5 10 15 20 25

0

50k

100k

150k

200k

250k

300k

350k
Model

gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Hidden states variance per layer

Layer
Va
r(
h)

(b) Variance

gemma-3-1b-it-0.001-L

gemma-3-1b-it-0.1-H

gemma-3-1b-it-0.01-L

gemma-3-1b-it-0.01-H

gemma-3-1b-it-BaseFiT

gemma-3-1b-it

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Distribution of Logit Entropy for Each Model

Model

En
tr
op
y

(c) Logit Entropy

0 5 10 15 20 25
0.5

1

1.5

2

2.5 gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y

(
b
i
t
s
)

(d) Attention Entropy

0 5 10 15 20 25

0

2k

4k

6k

8k

10k

12k

14k

16k

18k Model
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂

 (
me

an
)

(e) Mean L2 Norm

0 5 10 15 20 25

100

200

300

400

500
Model

gemma-3
gemma-3
gemma-3
gemma-3
gemma-3
gemma-3

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.9: Layerwise metrics for Gemma-3-1b-it:

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

31.9 32 32.1 32.2 32.3 32.4 32.5 32.6 32.7

500

600

700

450

550

650

Model
Mistral-7B-v0.1-0.1-H
Mistral-7B-v0.1-0.1-L
Mistral-7B-v0.1-0.01-H
Mistral-7B-v0.1-0.01-L
Mistral-7B-v0.1-0.3-H
Mistral-7B-v0.1-6-0.1-H
Mistral-7B-v0.1-6-0.1-L

Mistral-7B-v0.1-6-0.01-H
Mistral-7B-v0.1-6-0.01-L
Mistral-7B-v0.1-6-0.001-L
Mistral-7B-v0.1-0.3-L
Mistral-7B-v0.1-12-0.01-H
Mistral-7B-v0.1-12-0.01-L
Mistral-7B-v0.1-12-0.1-H
Mistral-7B-v0.1-12-0.1-L

Mistral-7B-v0.1-12-0.001-L
Mistral-7B-v0.1-12-0.001-H
Mistral-7B-v0.1-all-0.001
Mistral-7B-v0.1-all-0.01
Mistral-7B-v0.1-all-0.1
Mistral-7B-v0.1-BaseFiT
Mistral-7B-v0.1

Effective rank of hidden states per layer

Layer

Ra
nk

Mistral-7B-v0.1

0 5 10 15 20 25 30

0

2

4

6

8

10

Model
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1

Hidden states sparsity per layer

Layer

Fr
ac

 |
h|

<1
e-

5

(a) Sparsity

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

Model
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Hidden states variance per layer

Layer
Va
r(
h)

(b) Variance

Mistral-7B-v0.1-0.1-H

Mistral-7B-v0.1-0.1-L

Mistral-7B-v0.1-0.01-H

Mistral-7B-v0.1-0.01-L

Mistral-7B-v0.1-0.3-H

Mistral-7B-v0.1-6-0.1-H

Mistral-7B-v0.1-6-0.1-L

Mistral-7B-v0.1-6-0.01-H

Mistral-7B-v0.1-6-0.01-L

Mistral-7B-v0.1-6-0.001-L

Mistral-7B-v0.1-0.3-L

Mistral-7B-v0.1-12-0.01-H

Mistral-7B-v0.1-12-0.01-L

Mistral-7B-v0.1-12-0.1-H

Mistral-7B-v0.1-12-0.1-L

Mistral-7B-v0.1-12-0.001-L

Mistral-7B-v0.1-12-0.001-H

Mistral-7B-v0.1-all-0.001

Mistral-7B-v0.1-all-0.01

Mistral-7B-v0.1-all-0.1

Mistral-7B-v0.1-BaseFiT

Mistral-7B-v0.1

2

3

4

5

6

7

Distribution of Logit Entropy for Each Model

Model

En
tr

op
y

(c) Logit Entropy

0 5 10 15 20 25 30

0.6

0.8

1

1.2

1.4

1.6

1.8

2 Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Mean Attention Entropy Per Layer for Each Model

Layer Index

E
n
t
r
o
p
y

(
b
i
t
s
)

(d) Attention Entropy

0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400 Model
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1-
Mistral-7B-v0.1

Mean L2-norm of hidden states per layer

Layer

‖h
‖₂

 (
me

an
)

(e) Mean L2 Norm

0 5 10 15 20 25 30

0

100

200

300

400

500

600

700
Model

Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v
Mistral-7B-v

Effective rank of hidden states per layer

Layer

Ra
nk

(f) Rank

Figure G.10: Layerwise metrics for Mistral-7B-v0.1:

45

	Introduction
	Related Work
	Methods
	Dataset
	Layer Selection via SNR
	Adaptive Noise Injection
	Adaptive Scaling via Robust Statistics and Uncertainty

	Hybrid Loss Objective with Consistency Regularization
	Cross-Entropy Loss (Lce)
	Soft Cross-Entropy Loss (Lsoft)
	Consistency Loss (Lconsistency)
	Hybrid Loss and Final Training Objective

	Experiments and Results
	Experimental Setup
	Results
	Leaderboard Benchmarks and Hallucination Evaluations
	Test Dataset

	Discussion and limitations
	Conclusion and Future Work
	NoiseFiT Algorithm
	NoiseFiT Mathematical Foundations
	Unbiased Noise Injection and Variance Preservation
	Zero-Mean Noise
	Unbiasedness of Noisy Representations
	Variance Preservation

	Lipschitz Continuity of the Adaptive Noise Injection
	Stability of Hybrid Loss Gradients
	Robustness of Consistency Loss
	Bound on the Final Loss Due to Noise
	Convergence in Expectation

	Practical Recipe for NoiseFiT
	Extended evaluation for Mistral-7B
	Test Performance Analysis
	Analysis of Results
	Statistical Analysis

	Computational Efficiency and Scalability Analysis
	Analysis of Layer-wise Metrics
	LLaMA-3.2-1B
	LLaMA-3.2-3B
	Qwen2.5-0.5B
	Gemma-3-1b-it
	Mistral-7B-v0.1
	Synthesis of the Findings

