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ABSTRACT

In contemporary architectural design, the generation of innovative and efficient
floor plans remains a critical challenge. This research introduces a novel appli-
cation of diffusion models, specifically adapted for the generation of architec-
tural floor plans. Unlike traditional generative models that broadly target image
generation, our approach harnesses the state-of-the-art in diffusion technology to
produce detailed, functional, and visually appealing architectural designs. We
demonstrate that diffusion models, when finely tuned and conditioned, not only
embrace “implicit, human-learned’ architectural semantics but also enhance de-
sign efficiency and creativity. The paper details our methodology from adapt-
ing the U-Net architecture within diffusion frameworks to incorporating advanced
upscaling techniques, significantly reducing computational overhead while main-
taining high-resolution outputs. Our results show a promising direction for inte-
grating Al in architectural design, opening new avenues for automated, creative
design processes that could revolutionize the industry.

1 INTRODUCTION

The fusion of artificial intelligence (AI) with architectural design has opened new pathways for
innovation in how spaces are conceived and visualized. Recent advancements in generative mod-
els, particularly diffusion models, have shown unprecedented success in image-generation tasks.
However, their application in specialized domains like architectural design, where detail, accuracy,
and adherence to design principles are paramount, remains largely unexplored. This study seeks
to bridge this gap by adapting and enhancing diffusion models for the specific task of generating
architectural floor plans.

The motivation behind this research is twofold: firstly, to explore the potential of state-of-the-art
Al models to understand and implement complex, implicit rules that govern architectural aesthetics
and functionality; and secondly, to provide a tool that significantly augments the architect’s ability
to generate diverse design alternatives quickly. By focusing on the specific use case of floor plan
generation, we aim to demonstrate how diffusion models can be meticulously tailored to not only
generate images but to do so in a way that adheres to professional architectural standards.

Our approach involves a customized adaptation of the U-Net architecture configured within a dif-
fusion modeling framework. This adaptation is geared towards capturing the nuanced requirements
of architectural designs, including the layout of spaces and their functional relationships. Further,
we employ upscaling techniques post-generation, allowing the model to operate efficiently at lower
resolutions without sacrificing output quality, thus addressing the dual challenges of detail fidelity
and computational efficiency.

This paper outlines our comprehensive methodology, from dataset preparation and model architec-
ture design to the detailed training regimen and the subsequent image enhancement techniques. We
present empirical results that illustrate the model’s capability to produce professional-grade floor
plans and discuss the potential applications of this technology in real-world architectural practices.
Lastly, we explore future enhancements that could enable more interactive and user-specific design
capabilities, underscoring the transformative potential of Al in the architectural field.
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2 DATASET

2.1 RATIONALE FOR DATASET SELECTION

This dataset was specifically chosen for its comprehensive and multi-faceted representation of ar-
chitectural floor plans, which is crucial for training our diffusion model to recognize and generate
realistic and functionally coherent designs. The inclusion of distinct images for walls, room seg-
mentation, and the overall floor plan allows the model to learn and reproduce the structural integrity
and the functional zoning of architectural spaces. Additionally, the descriptive metadata enhances
the model’s understanding of the contextual use of each space, fostering a more accurate semantic
interpretation of generated outputs. Additionally, this dataset presented a huge advantage compared
to other tested datasets, the number of rows. Other explored and tested datasets presented a few
hundred and at most a thousand rows, making it hard to train reliable and accurate models.

2.2 ADVANTAGES AND DISADVANTAGES OF USING THE DATASET
Advantages

* Number of Observations: The diverse number of images makes the dataset robust enough
so we can train a model using the 12K images.

* Resolution: The resolution of 512 x 512 pixels ensures that the model has enough detail
to generate precise and usable floor plans without consuming too much memory.

* Annotations: The inclusion of plain English descriptions provides an additional semantic
layer that can be used in future improvements.

Disadvantages

* Inconsistency in Annotations: Variability in the quality and detail of the plain English
descriptions can affect the consistency of the learning process in applications that combine
language.

Figure 1: Selection of 16 random floor plans from the dataset

3 DIFFUSION MODELS

3.1 OVERVIEW OF DIFFUSION MODELS

Diffusion models are a class of generative models that have gained prominence for their ability to
produce high-quality, high-fidelity images. Essentially, diffusion models work by gradually trans-
forming a distribution of random noise into a structured image over a series of iterative steps, each
guided by a learned reverse diffusion process. This process is often visualized as reversing the
diffusion of particles from a concentrated point outwards, hence the name “diffusion models”
Dickstein et al.| (2015).
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3.2 RATIONALE FOR USING DIFFUSION MODELS

The decision to utilize diffusion models in the generation of architectural floor plans was driven by
several factors. First, the nature of diffusion models to generate images through a gradual refining
process allows for the capture of intricate details that are essential in architectural designs, such as
the layout of rooms, placement of doors and windows, and the delineation of living spaces. This
ability to manage and manipulate fine details aligns well with the requirements for generating usable
and precise architectural plans. Furthermore, diffusion models have demonstrated a lower tendency
towards mode collapse compared to GANSs, offering a richer diversity in generated outputs which is
beneficial for exploring a wide range of architectural styles and configurations |Ho et al.| (2020).

3.3 CURRENT STATE OF DIFFUSION MODELS

Recent advancements in diffusion models have established them as a leading technology in image
generation. The introduction of conditional diffusion models has further expanded their applicabil-
ity, allowing for the generation of images based on specific conditions or attributes, thereby increas-
ing their utility in tasks requiring high degrees of specificity and customization Dhariwal & Nichol
(2021). In the field of architectural design, these advancements present a promising avenue for not
only generating floor plans from scratch but also modifying existing ones according to precise user
specifications. The state-of-the-art models now feature improvements in training efficiency and the
quality of the generated images, which make them particularly suitable for applications where detail
and accuracy are paramount Nichol & Dhariwal| (2021)).

4 ARCHITECTURE OF THE U-NET MODEL

4.1 HISTORY AND BACKGROUND OF THE U-NET

The U-Net model was originally developed for biomedical image segmentation. The model was
designed to work with a limited amount of data but still deliver strong performance, which was
crucial in the medical imaging field where high-quality, annotated datasets are often small. U-
Net’s architecture is particularly noted for its effectiveness in handling multi-class segmentation
Ronneberger et al.[(2015).

4.2 DESCRIPTION OF THE ARCHITECTURE

The architecture of U-Net is characterized by its symmetric shape, which gives it the name “U-Net.”
It consists of a contracting path to capture context and a symmetrically expanding path that enables
precise localization. The model uses a series of convolutional layers and max pooling layers in the
contracting step to extract features and reduce the spatial dimensions of the input image. Each step
in the expansive path consists of an upsampling of the feature map followed by a convolutional layer
that halves the number of feature channels. A crucial feature of U-Net is the concatenation of feature
maps from the contracting path to the upsampled output, a method known as skip connections. These
connections help the network to propagate context information to higher resolution layers, allowing
for more precise localization Ronneberger et al.[(2015).

4.3 DIFFERENCES BETWEEN U-NET MODELS AND OTHER MODELS

Unlike many deep learning models that primarily focus on down-sampling to learn increasingly
abstract representations, U-Net maintains a large amount of high-resolution information through
its expansive path. This is in contrast to models like the standard convolutional networks, which
may lose important local information due to repeated pooling operations. The ability of U-Net to
maintain high-resolution details makes it exceptionally good at capturing the nuances of images,
which is essential for tasks requiring precise segmentation and detailed reconstructions.

4.4 SUITABILITY OF U-NETS FOR ARCHITECTURAL FLOOR PLAN GENERATION

U-Nets are particularly well-suited for the task of generating architectural floor plans due to their
powerful segmentation capabilities and the ability to handle fine-grained details—a necessity in
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architectural designs where accuracy in the layout and clear differentiation of spaces are crucial.
For this research, the U-Net’s ability to effectively process and reconstruct complex spatial rela-
tionships within an image allows it to generate detailed and precise architectural layouts from a
high-dimensional latent space. Furthermore, the skip connections in U-Nets help in recovering the
exact spatial hierarchies and relationships of different architectural elements, such as walls, doors,
and room designations, ensuring that the generated floor plans are not only aesthetically pleasing
but also architecturally coherent.

5 DATA PREPARATION

5.1 OVERVIEW OF DATA PREPARATION

Early iterations of the model, which utilized smaller datasets, demonstrated limited variability in re-
sults, with the model failing to accurately interpret the intricacies of floorplans. For example, there
were instances where rooms were depicted without proper access. Similar issues were observed
when testing the model with a plain, untransformed dataset, resulting in images of suboptimal qual-
ity. Consequently, to enhance the generation of high-quality architectural floor plans using diffusion
models, we implemented a rigorous preprocessing routine. This process involved standardizing and
optimizing the dataset to better suit the specific requirements of this application.

5.2 TRANSFORMATION OF THE ENTIRE DATASET

The dataset transformation process involves several key steps designed to ensure that the input im-
ages are in a uniform format, which helps in reducing model complexity and improving training
efficiency and most importantly, the final generated images. Here is an outline of the transforma-
tions applied:

a) Detection of the Floor Plan from the Image

* Objective: Isolate the architectural floor plan from any extraneous elements within the
image. More specifically, separate the floor plan from the colored background.

* Method: Implement a detection algorithm that utilizes the wall outline image attribute
from the dataset to distinguish the walls of the floor plan from the colored background.

b) Rotation to Align the Floor Plan

* Objective: Given that the dataset presents floorplans with different orientations, here we
want to ensure that all floor plans are oriented in the same direction, which is essential for
consistent model training.

e Method:

— Contour Detection: The process begins by converting the mask image, which high-
lights the floor plan’s footprint, to grayscale using the cv2 . cvtColor function from
the OpenCV library |Bradski (2000). This grayscale image is then binarized using the
cv2.threshold function to create a binary mask where the floor plan is repre-
sented by white pixels, and the background is black.

— Edge Detection: To refine the contours, the grayscale image is blurred using a Gaus-
sian filter cv2.GaussianBlur to reduce noise, and then edges are detected using
the Canny edge detection algorithm cv2 . Canny |Bradski| (2000).

— Angle Calculation: The largest contour, corresponding to the floor plan, is identified
using the cv2.findContours function. From this contour, the minimum area
rectangle that can enclose the floor plan is computed using cv2.minAreaRect.
The angle of this rectangle is extracted, and a correction is applied if the angle is less
than -45 degrees. This correction is necessary to ensure the correct orientation, as
angles close to -90 degrees would otherwise flip the floor plan Bradski| (2000).

— Rotation Application: Once the correct rotation angle is determined, the floor
plan is rotated using the cv2.getRotationMatrix2D function to create a
rotation matrix, followed by cv2.warpAffine to apply this rotation. The
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cv2.warpAffine function is configured with cv2.INTER_CUBIC interpola-
tion for the image and cv2.INTER.NEAREST for the mask to preserve edge
sharpness, ensuring the rotation does not introduce padding or distortions. The
cv2 .BORDER.REPLICATE mode is used for the image rotation to handle border
pixels, while cv2 . BORDER_.CONSTANT with a zero border value is used for the mask

(2000).

¢) Background Standardization

* Objective: Homogenize the background of all images to a uniform color, enhancing the
model’s ability to focus on the structural elements of the floor plans.

* Method: The background of each image is standardized by first checking if the image
contains an alpha channel (transparency) and converting it to a standard RGB format using
OpenCV’s cv2 . cvtColor functionBradskil (2000), if necessary. A binary mask is then
created by thresholding the grayscale version of the mask, and inverting it so that the back-
ground is highlighted. This binary mask is expanded to match the RGB channels of the
original image using cv2.cvtColor, ensuring compatibility for background replace-
ment. The replacement is performed by creating a new background array filled with the
target color (white) using NumPy [Harris et al.| (2020), and applying it to the non-floor plan
areas indicated by the mask. This process is executed using a custom function, ensuring
that all images have a consistent, uniform background color.

Figure 2] displays a batch of floor plan images after getting transformed.

i
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Figure 2: Selection of 16 random floor plan images after getting transformed

6 TRAINING

6.1 TRAINING CONFIGURATION

The training of the model followed this predefined configuration to ensure consistency and repro-
ducibility of the results. The key parameters used within the training were as follows:

» Image Size: Each image was resized to 128x128 pixels to balance detail and computational
efficiency.

* Batch Sizes: We utilized a training and evaluation batch size of 16.

* Learning Rate and Scheduler:An initial learning rate of 1e-4 was employed, with a warm-
up phase of 500 steps to gradually reach the target rate.

* Precision Settings: To enhance computational efficiency, we employed automatic mixed
precision (fp16), which significantly accelerated the training process without compromis-
ing the quality of the results.
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6.2 UNET2DMODEL ARCHITECTURE

We utilized the UNet2DModel from the diffusers library |von Platen et al.|(2022). The configuration
for our model architecture was defined as follows:

* ResNet Layers: Each block in the U-Net structure contains 2 ResNet layers. This setup
was chosen to leverage the robustness of ResNet architectures in feature extraction and
representation learning |He et al.| (2015)).

* Block Channel Outputs: The output channels for the blocks were set as follows: 128,
128, 256, 256, 512, 512. This progressive increase in channel depth allows the network to
capture increasingly abstract features at different levels of the network.

* Downsampling Blocks: The model incorporated a mix of regular and attention-enhanced
ResNet downsampling blocks. The configuration included four DownBlock2D regular
blocks and one AttnDownBlock2D block, the latter integrating spatial self-attention to im-
prove the focus on relevant features.

» Upsampling Blocks: Similar to the downsampling pathway, the upsampling path used a
combination of regular UpBlock2D blocks and an AttnUpBlock2D block. The inclusion of
attention mechanisms in the upsampling path helps in restoring image details more effec-
tively during the generation process.

7 ENHANCING RESULTS THROUGH UPSCALING TECHNIQUES

7.1 INTRODUCTION TO UPSCALING

Upscaling, in the context of image processing, refers to the technique of increasing the resolution of
an image to enhance its resolution and detail. This is achieved by interpolating additional pixels into
the original image using various algorithms designed to predict and replicate the underlying patterns
and textures.

7.2 RATIONALE FOR USING UPSCALING

In the generation of architectural floor plans using Al the resolution of output images directly im-
pacts their usability. Higher-resolution images can provide more detail, making them more practical
for real-world applications. However, generating high-resolution images directly from the model can
be computationally intensive and inefficient. By using upscaling, we can produce lower-resolution
images during the generation phase—which requires less computational power—and subsequently
enhance their resolution and detail post-generation, achieving great results at a lower cost.

7.3 APPLICATION OF UPSCALING TECHNIQUES

Following the generation of the floor plan images by our model, each image is processed through
the upscaling tool. This post-processing step refines the visual details of the plans, enhancing lines,
borders, and textures.

7.4 TRADE-OFFS AND ADVANTAGES

Opting to upscale lower-resolution images rather than directly generating high-resolution outputs
presents several advantages. Primarily, it allows for faster model training and less intensive use of
computational resources during the generation phase. Training models on high-resolution images
not only requires significantly more memory and processing power but also increases the complexity
of the model, leading to longer training time.

The trade-off here involves balancing the initial quality of generated images with the effectiveness
of the upscaling process. By choosing to generate images at a lower resolution, we accept a compro-
mise on initial detail with the understanding that the subsequent upscaling will restore and enhance
these details efficiently. This strategy has proven effective, enabling the production of high-quality
architectural floor plans with a fraction of the computational cost associated with high-resolution
image generation.
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8 EVALUATION

The evaluation of the generated architectural floor plans was conducted through a straightforward,
yet effective qualitative analysis. Given the visual and functional nature of architectural designs,
our primary evaluation method involved a direct visual inspection of the generated images. This
approach allowed the research team to assess the practical utility and aesthetic quality of the floor
plans in a manner that closely mirrors the real-world evaluation processes used by architects.

8.1 CRITERIA FOR EVALUATION

* Accuracy: Each generated image was reviewed to ensure that it accurately represented
viable architectural spaces. This included checking for the presence and correct placement
of essential elements such as walls, doors, and windows.

* Coherence: The coherence of the overall layout was assessed to determine if the generated
designs made logical sense from an architectural standpoint. For instance, the flow between
rooms, the functionality of the space, and the appropriateness of the design for hypothetical
real-world applications were considered.

 Aesthetics: The aesthetic appeal of the floor plans was also a crucial evaluation criterion,
reflecting the model’s ability to generate visually attractive designs.

9 RESULTS

The performance of our model in generating architectural floor plans is demonstrated through a
comprehensive analysis of training dynamics and visual results from both the initial generation and
subsequent enhancement stages. This section presents the quantitative and qualitative outcomes of
our experiments.

9.1 INITIAL RESULTS AND SUBSEQUENT IMPROVEMENTS

The initial results served as a fundamental benchmark for the subsequent refinements and enhance-
ments applied to the model. These early results were essential in identifying key areas for improve-
ment and in setting the trajectory for the research.

Figure 3| shows the initial batch-generated images.

Figure 3: Initial batch of generated images

9.2 GENERATED FLOOR PLANS

After training, the model produced a series of floor plan images that were successfully evaluated for
their quality and coherence. Figure ] shows a batch of generated floor plans.
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Figure 4: Batch of 16 generated floor plan images without enhancement

9.3 ENHANCED IMAGES THROUGH UPSCALING

To further enhance the utility and clarity of the generated images, an upscaling technique was applied
post-generation. This step significantly improved the resolution and detail of the images, making
them more practical for professional use. Figure[5|shows a batch of generated images with upscaling.

Figure 5: Batch of 16 generated floor plan images with upscaling

Figure 6: Close up of a single generated floor plan with enhanced quality
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10  APPLICATIONS

The advancements achieved in this project not only enhance the capabilities of generative models
in producing architectural floor plans but also open up a multitude of practical applications across
different sectors. Below are several key applications that demonstrate the wide-reaching impact and
utility of this research.

10.1 INSPIRATION FOR ARCHITECTS

The ability to generate diverse and innovative floor plans automatically provides architects with a
powerful tool for inspiration. By generating a variety of design alternatives quickly, architects can
explore creative possibilities without the usual time constraints associated with manual drafting.
This can lead to the discovery of novel design solutions and architectural innovations, pushing the
boundaries of traditional architectural practices.

10.2 GUIDANCE IN REMODELING AND SPACE OPTIMIZATION

Our model can play a crucial role in the remodeling of spaces by providing optimized floor plans
that make the best use of available space. This is particularly valuable in urban environments where
space efficiency is paramount. The model can suggest configurations that maximize utility and
comfort, taking into account the specific dimensions and constraints of the existing structures.

10.3 AUTOMATED COMPLIANCE CHECKS

Integrating the model with tools that evaluate compliance with local building codes and regulations
could significantly streamline the design and approval processes. By automatically generating de-
signs that are pre-checked for compliance, the model can reduce the time and effort needed for
regulatory approvals, making the construction process faster and more efficient.

11 FUTURE WORK

The promising results achieved thus far in our project pave the way for several exciting directions
in future research. Building upon the foundation laid by our current model, we aim to explore
advanced techniques that could further enhance the flexibility, precision, and utility of our Al-driven
architectural design tools.

11.1 DEVELOPMENT OF A CONDITIONAL MODEL

One of our primary objectives moving forward is the development of a conditional model that in-
corporates user-defined prompts to guide the generation process. This approach would allow users
to specify certain characteristics or elements they wish to see in the floor plans, such as “a large
bay window facing south” or ”an open kitchen layout.” By integrating natural language processing
(NLP) techniques with our diffusion model, the system could interpret these prompts and directly
incorporate the specified features into the generated designs.

11.2 INCORPORATION OF INFILLING TECHNIQUES

Another exciting avenue for future research involves the use of infilling techniques. Infilling allows
for the selective generation of parts of an image, based on either predefined or dynamically chosen
areas within a layout. In the context of architectural floor plans, this would enable users to select an
area of an existing plan and request modifications or complete redesigns of just that section.

12 RELATED WORK

The intersection of artificial intelligence with architectural design has garnered increasing research
interest, particularly in the application of generative models and automation techniques to enhance
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design efficiency and creativity. Generative Adversarial Networks (GANs)|Goodfellow et al.|(2014)
and their adaptations, such as DCGANs |Radford et al.| (2015), have set benchmarks in realistic
image generation across various domains, including architecture. Early efforts in architectural de-
sign automation, such as the automatic generation of building layouts Merrell et al.| (2010), along
with more recent developments like ArchGAN |Oyelade & Ezugwu! (2021), highlight the potential
of GANS in transforming architectural visualization and planning. Moreover, the use of upscaling
techniques, such as Super-Resolution Convolutional Neural Networks |Dong et al.|(2015), has sig-
nificantly improved the quality of images, including those in architectural floor plans. However,
historical attempts to automate floor plan generation using constraint-based algorithms Liggett &
Mitchell (1981) and evolutionary algorithms [Michalek et al.|(2002) have faced challenges in flex-
ibility, computational efficiency, and meeting user-specific aesthetic and functional requirements
Knecht et al.| (2010). Recent approaches, like those presented in House-GAN |Nauata et al.| (2021)),
attempt to address these issues but still struggle with ensuring that generated plans meet all practical
and regulatory standards. Our research builds on these foundations, leveraging advances in diffusion
models and upscaling techniques to enhance the automated generation of detailed and functional ar-
chitectural floor plans, addressing longstanding challenges in computational efficiency and design
adaptability.

13 CONCLUSIONS

This research set out to rigorously examine the applicability of state-of-the-art diffusion models
tailored specifically to the task of generating architectural floor plans. By innovatively adapting
these models to address the intricate requirements of detailed design tasks, our study has not only
demonstrated the feasibility of such adaptations but has also propelled the capabilities of generative
models to new heights. These findings affirm the potential of Al to master and implement complex
’implicit, human-learned’ semantics necessary for practical and aesthetic architectural design.

13.1 ACHIEVEMENT OF SPECIFIC USE-CASE ADAPTATION

One of the primary motivations behind this work was to find whether SOTA models could be adapted
to a specific use case that requires a high level of detail, such as architectural floor plans. Our findings
affirmatively demonstrate that with careful configuration and training, diffusion models can indeed
be specialized to handle such detailed tasks. The success in generating detailed, coherent, and
structurally coherent floor plans validates our approach and underscores the adaptability of diffusion
models to specialized domains.

13.2 LEARNING IMPLICIT, HUMAN-LEARNED SEMANTICS

A critical aspect of our research was to test if these models could learn and replicate “implicit,
human-learned’ semantics necessary for practical architectural design, such as the logical placement
of rooms and the structural necessities of buildings. The models not only learned these semantics but
were also able to apply them creatively, suggesting new design possibilities that maintain both aes-
thetic appeal and functional integrity. This capability signifies a profound step forward in applying
Al in design, bridging the gap between human expertise and machine-generated innovations.

13.3 COMPUTATIONAL EFFICIENCY THROUGH UPSCALING TECHNIQUES

The research further explored the efficacy of training smaller, less resource-intensive models com-
bined with post-process upscaling techniques instead of relying on larger, more computationally
demanding models. The results were clear: smaller models, when augmented with advanced up-
scaling technologies, could achieve comparable, if not superior, results in generating high-resolution
outputs. This approach conserves computational resources and enhances the scalability and acces-
sibility of Al technologies in architectural design, making it feasible for more firms to adopt this
technology without the need for extensive hardware investments.
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