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Abstract

Accurate segmentation of laparoscopic surgical videos is essential for enhancing intraoper-
ative guidance and improving patient outcomes. However, this task remains challenging
due to the constrained field of view, visual clutter, frequent occlusions, and inconsistent il-
lumination. To address these challenges, we propose SSTC-Seg (Surgical Spatial-Temporal
Consistency Segmentation), a lightweight deep learning framework for video-based seg-
mentation. It integrates a memory system and a Hierarchical Dense Conditional Random
Field (HD-CRF) with skip connections for spatial details preservation to refine coarse
predictions and model contextual relationships across frames. Evaluated on the Dresden
Surgical Anatomy Dataset (DSAD), SSTC-Seg achieves competitive multi-organ segmenta-
tion performance with significantly fewer parameters compared to existing state-of-the-art
methods.

Keywords: Computer Vision, Segmentation, CRF, Machine learning.

1. Introduction

Integrating advanced technologies into laparoscopic surgery offers considerable potential to
improve procedural accuracy, operational efficiency, and patient outcomes. Among these
innovations, computer vision has emerged as a transformative tool, enabling real-time video
segmentation to support intraoperative decision-making and reduce the risk of human error
(Maier-Hein et al., 2017; Twinanda et al., 2016). This capability is particularly valuable in
robotic-assisted surgery, where novice surgeons often struggle with spatial orientation and
organ recognition due to limited sensory feedback and complex anatomical environments.

Despite advances in vision-based segmentation, most existing approaches are either de-
veloped for natural images with wide fields of view (Kirillov et al., 2023; Yang et al., 2018)
or tailored for static medical imaging modalities such as MRI or CT (Akkus et al., 2017;
Ronneberger et al., 2015). These methods often fail to generalize to the unique visual do-
main of laparoscopic procedures. Surgical videos introduce specific challenges, including a
narrow and dynamically shifting field of view, frequent occlusions and visual clutter from
instruments and tissue manipulation, proximity to organ boundaries that obscure anatom-
ical context, and highly variable illumination with specular reflections. These factors make
accurate segmentation particularly difficult.
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Figure 1: Overview of the proposed SSTC-Seg architecture. HD-CRF refines the coarse
segmentation mask. Green lines represent skip connections that provide hierar-
chical features for improved spatial awareness. The refined output is encoded and
stored in a memory bank, which feeds back into the memory attention module
via the red loop to promote temporal consistency across frames.

Given these challenges, it is essential to design segmentation frameworks that explic-
itly model both spatial and temporal consistency. Maintaining spatial coherence ensures
anatomically meaningful boundaries, while temporal consistency is crucial for robust perfor-
mance across video frames in real-time surgical environments. To address these issues, we
propose SSTC-Seg (Surgical Spatial-Temporal Consistency Segmentation). Architecturally,
SSTC-Seg adopts an encoder-decoder backbone similar to U-Net, but modified for multi-
scale detection, and extends it with dense CRF modules to explicitly model inter-object
and intra-object relationships, resulting in sharper segmentation boundaries and improved
contextual understanding.

We validate our approach on the Dresden Surgical Anatomy Dataset (DSAD) (Carstens
et al., 2023), covering eight anatomical classes. Both quantitative and qualitative evalu-
ations demonstrate that our method achieves performance comparable to state-of-the-art
techniques while maintaining a lightweight parameter structure.

2. Method

Our proposed SSTC-Seg architecture builds on a dual-branch encoder-decoder backbone,
enhanced with a memory bank for temporal modeling, U-Net-style skip connections for
spatial detail preservation (Ronneberger et al., 2015), and a Hierarchical Dense Conditional
Random Field (HD-CRF) for structured refinement (Zhang et al., 2015; Ladickỳ et al.,
2013). An overview of the complete network structure is shown in Fig. 1.

The HD-CRF module, applied after the mask decoder, refines coarse predictions by mod-
eling spatial and temporal relationships through dense pairwise connections and contextual
features from skip connections. This promotes anatomical boundary sharpness and local
consistency, particularly in the presence of occlusion and lighting artifacts. A multi-scale
refinement strategy further improves robustness: a downsampled version of the prediction
undergoes parallel HD-CRF processing, then is upsampled and fused with the full-resolution
output, enhancing accuracy in complex surgical scenes.

Finally, the memory bank encodes and updates historical feature representations, allow-
ing the network to leverage temporal context across frames. This mechanism enhances tem-
poral consistency and improves the model’s ability to track dynamically changing anatom-
ical structures over time (Zhu et al., 2024).
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Figure 2: Qualitative comparisons.

3. Experimental Results

We built published methods including UNet (Ronneberger et al., 2015), CFPNet-M (Lou
et al., 2023), and MFCPNet (Hou et al., 2025) for comparison. All models were adapted
to support multi-class segmentation. Both qualitative (Fig.2) and quantitative results (Ta-
ble.1) demonstrate that SSTC-Seg achieves performance on par with state-of-the-art meth-
ods such as MFCPNet, while using significantly fewer parameters (10M vs. 45M), under-
scoring its computational efficiency. Moreover, SSTC-Seg achieves the lowest Hausdorff
Distance among all compared methods, indicating superior boundary localization—an es-
sential attribute for precise surgical guidance. Compared to the U-Net baseline, our method
exhibits consistent improvements across all metrics. While CFPNet-M has shown strength
in general medical image segmentation, its performance degrades significantly in this set-
ting, highlighting the unique difficulty of laparoscopic multi-class segmentation tasks and
the importance of tailored solutions like SSTC-Seg.

Table 1: Model-wise Performance Comparison
Method Params Accuracy(%) Dice Jaccard HD95
UNET 31.0M 80.3 0.628 0.615 11.133
CFPNet-M 0.54M 41.3 0.139 0.092 33.899
MFCPNet 45.7M 84.87 0.712 0.699 8.39
SSTC-Seg (Ours) 10.0M 82.17 0.6786 0.6492 7.6838

4. Conclusion

This study introduces SSTC-Seg, a lightweight yet effective segmentation framework de-
signed to address the challenges of multi-organ segmentation in laparoscopic surgical videos.
By integrating a memory-guided attention mechanism, U-Net-style skip connections, and
a Hierarchical Dense Conditional Random Field (HD-CRF) module, our method promotes
both spatial and temporal consistency, resulting in improved segmentation accuracy in visu-
ally complex surgical environments. In future work, we plan to further develop our method
by refining the network architecture and improving memory modeling strategies. We also
aim to evaluate SSTC-Seg on larger-scale datasets with more anatomical classes to further
validate its generalizability and robustness in diverse surgical scenarios.
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