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Abstract
We investigate Learning from Label Proportions
(LLP), a partial information setting where exam-
ples in a training set are grouped into bags, and
only aggregate label values in each bag are avail-
able. Despite the partial observability, the goal
is still to achieve small regret at the level of indi-
vidual examples. We give results on the sample
complexity of LLP under square loss, showing
that our sample complexity is essentially optimal.
From an algorithmic viewpoint, we rely on care-
fully designed variants of Empirical Risk Mini-
mization, and Stochastic Gradient Descent algo-
rithms, combined with ad hoc variance reduction
techniques. On one hand, our theoretical results
improve in important ways on the existing liter-
ature on LLP, specifically in the way the sample
complexity depends on the bag size. On the other
hand, we validate our algorithmic solutions on
several datasets, demonstrating improved empiri-
cal performance (better accuracy for less samples)
against recent baselines.

1. Introduction
Learning with Label Proportions (LLP) is a semi-supervised
learning setting where the learning algorithm only observes
label values of a training set at the resolution of groups of
feature vectors. Specifically, the training set is partitioned
into collections of unlabeled feature vectors, called bags
in the literature, and only the proportion of positive labels
within each bag are observed, instead of the individual labels.
The motivation comes from a number of practical scenar-
ios where the access to individual labels is either costly or
impossible to achieve, or made available to a learner at an
aggregate level because of privacy-preserving concerns.

Among these practical scenarios, it is worth mentioning
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e-commerce, medical databases (Patrini et al., 2014), high
energy physics (Dery et al., 2018), election prediction (Sun
et al., 2017), medical image analysis (Bortsova et al., 2018),
remote sensing (Ding et al., 2017).

Though early contributions to LLP date back to the mid
2000s (e.g., (de Freitas & Kuck, 2005; Musicant et al.,
2007; Quadrianto et al., 2008)), it is only more recently
that we have seen a general resurgence of interest in this
problem (e.g., (Dulac-Arnold et al., 2019; Lu et al., 2019;
Scott & Zhang, 2020; Saket, 2021; 2022; Tsai & Lin, 2020;
Lu et al., 2021; Zhang et al., 2022; Busa-Fekete et al., 2023;
Li et al., 2024; Havaldar et al., 2024)), often related to the
desire of preserving the privacy of user data/activity in data-
intensive online businesses.

Relevant practical scenarios where LLP has started to play a
pivotal role relate to the ad conversion reporting systems pro-
posed by Apple (SKAN, (app, 2025)) and Google Chrome
and Android (Privacy Sandbox (chr, 2021)), where user
conversions (like user purchases) are only available at the
aggregate level (e.g., by ad campaign), and training a con-
version model is thus forced to leverage such aggregate
signals as much as possible. Still, the models trained this
way are required to perform well at the level of individual
conversions.

This paper is inspired by two recently published works
in the LLP literature (Busa-Fekete et al., 2023; Li et al.,
2024), where regret guarantees are given under standard
statistical learning assumptions for randomly drawn (and
non-overlapping) bags of a given size. In the first paper, the
authors describe a general debiasing technique that applies
to any bounded loss function (or loss gradient) to turn aggre-
gate label signal into an individual label signal at the cost of
an inflated variance of the resulting estimator. This allows
the authors to seamlessly adapt their technique to standard
learning methods like Empirical Risk Minimization (ERM)
and Stochastic Gradient Descent (SGD). In particular, the
authors give regret guarantees in general non-realizable sce-
narios showing that when the learner deals with bags of
size k, the sample complexity of ERM and SGD with label
proportions increases by a factor of roughly k2.

In (Li et al., 2024), the authors improve upon (Busa-Fekete
et al., 2023) when the loss function is the square loss, in that
their bounds yield fast rates of convergence in realizable
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settings (unlike (Busa-Fekete et al., 2023)). Yet, this is
achieved at the cost of a widely sub-optimal dependence on
the bag size k. In this paper, we leverage variance reduction
techniques to achieve essentially optimal (up to log factors)
sample complexity guarantees for LLP under square loss
for both ERM and SGD. For instance, a quick comparison
to (Busa-Fekete et al., 2023; Li et al., 2024) for square
loss reveals the following. Call β > 0 the target regret
guarantee. Then our sample complexity bounds are of the
form k

β2 in the non-realizable case, and k
β in the realizable

case. In contrast, (Busa-Fekete et al., 2023) only contains
non-realizable (i.e., slow rate) guarantees, which are of the
form k2

β2 , while the realizable (fast rates) guarantees from

(Li et al., 2024) are of the form k3

β . We also show that in the
realizable case the sample bound k

β is the best one can hope
for.1

Moreover, we perform a thorough set of experiments, where
we compare our algorithm to the folklore proportion match-
ing algorithm, which was reported to be a strong baseline
in (Busa-Fekete et al., 2023), to the debiasing method from
(Li et al., 2024), and to a number of alternative methods
available in the LLP literature. The general goal of these
experiments was to validate our theory on improved sample
complexity guarantees. On diverse combinations of datasets
and learning models, our experiments do indeed reveal the
superior performance of our variance reduction methods
over the tested baselines. The empirical performance differ-
ence is particularly stunning when the training procedure is
restricted to only a few training epochs, thereby showcasing
a substantial enhancement in convergence speed.

1.1. Related work

Initial interest in LLP dates back to at least (de Freitas &
Kuck, 2005; Musicant et al., 2007; Quadrianto et al., 2008;
Rueping, 2010; Stolpe & Morik, 2011; Yu et al., 2013; Pa-
trini et al., 2014). In (de Freitas & Kuck, 2005) the authors
propose a hierarchical model generating labels according
to the given label proportions, and formulates an MCMC-
based inference scheme which, unfortunately, does not scale
to large datasets. Musicant et al. (2007) stress that standard
supervised learning algorithms (like SVM and k-Nearest
Neighbors) can be adapted to LLP by a reformulation of
their objective functions, but no experiments are reported in
that paper on classification tasks. Quadrianto et al. (2008)
give an algorithm to learn an exponential generative model,
which was further generalized in (Patrini et al., 2014). Both
papers, however, make very strong modeling assumptions,
like conditional exponential models, which are often inade-
quate for Deep Neural Network (DNN) and more modern

1A similar statement can also be extracted from (Li et al., 2024).
Their lower bound has a wider scope than ours, but at the cost of
extra log k factors.

machine learning architectures. Rueping (2010); Yu et al.
(2013) propose an adaptation of SVMs to LLP. In particular,
Yu et al. (2013) propose an SVM algorithm for regression
which optimizes the SVM loss by matching available la-
bel proportions (this general approach is called proportion
matching in (Busa-Fekete et al., 2023)). Yet, their approach
turns out to be restricted to linear models in some feature
space. Similar limitations are contained in other SVM-based
papers on LLP, like (Qi et al., 2017; Shi et al., 2019). Being
very natural, the proportion matching idea was extended to
other classifiers. For instance, Li & Taylor (2015) extends
the formulation to CNNs with a generative model where the
maximum likelihood estimator is computed via Expectation
Maximization. Yet, this turns out not to be scalable even
to moderately large DNN architectures. Liu et al. (2019)
experimentally investigate multiclass LLP via Generative
Adversarial Networks. Another very recent experimental
paper is (Havaldar et al., 2024), where the authors adopt an
iterative process with two phases, in which a Gibbs distri-
bution is first defined over labels that factors in the feature
vectors so as to force nearby vector to have similar labels,
and then use Belief Propagation to obtain pseudo-labels that
produce embedding refinements.

Among the more theoretically-oriented papers on LLP are
(Saket, 2021; 2022; Brahmbhatt et al., 2023; Lu et al., 2019;
2021; Scott & Zhang, 2020; Zhang et al., 2022), as well as
the already mentioned (Busa-Fekete et al., 2023; Li et al.,
2024). In (Saket, 2021; 2022; Brahmbhatt et al., 2023)
the authors are essentially restricting to linear-threshold
functions and in some cases rely on the fact that bags can be
overlapping. In contrast, we are following here the learning
setting of Busa-Fekete et al. (2023); Li et al. (2024), and
working with non-overlapping i.i.d. bags with more general
model classes.

In (Lu et al., 2019; 2021) the authors tackle the problem of
learning from multiple unlabeled datasets, which is similar
to LLP. The authors propose a debiasing method for the loss
function, and prove consistency results (which are similar
in spirit to those contained here, as well as those in (Busa-
Fekete et al., 2023; Li et al., 2024)), but they do so by
imposing further restrictions, like the separation of the class
priors over bags. This can only be done by enabling access
to the class conditional distributions. In contrast, the bags
proposed in our setup are drawn i.i.d. from the same prior
distribution, a setting where the algorithms proposed in (Lu
et al., 2019; 2021) would fail.

Scott & Zhang (2020); Zhang et al. (2022) reduce LLP
to learning with label noise, in that bags are paired, and
each pair is seen as a problem of learning with label noise,
with label proportions being treated akin to label flipping
probabilities. Yet, as in (Lu et al., 2019), the bag pairing
heavily relies on the statistical diversity of the bags, which
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we explicitly rule out. The kind of population loss they are
interested in (balanced risk) is also a bit different from the
one we deal with here.

For the sake of fair comparison, in our experiments (Section
6) we followed prior experimental setups, like the one in
(Busa-Fekete et al., 2023), and chose to compare only to
methods with similar goals and settings as ours, like the folk-
lore proportion matching method (e.g., (Yu et al., 2013)),
the EasyLLP method by Busa-Fekete et al. (2023), the debi-
ased square loss method proposed by Li et al. (2024), and
the label generation approach by Dulac-Arnold et al. (2019)
(binary version thereof).

2. Preliminaries
For a natural number n, let [n] = {i ∈ N : i ≤ n}. Let
X be a feature (or instance) space, and Y be a binary
Y = {0, 1} label space. Let D be a joint distribution on
X × Y , encoding the correlation between the input fea-
tures and the labels. The marginal distribution over X will
be denoted by DX , and the conditional distribution of y
given x will be denoted by DY|x. In particular, we de-
note by η(x) = Py∼DY|x(y = 1|x) = Ey∼DY|x [y|x] the
probability of drawing label 1 conditioned on feature vec-
tor x. When clear from the surrounding context, we shall
remove the subscripts from probabilities and expectations
and, e.g., abbreviate Ey∼DY|x [y|x] by E[y|x]. A dataset
S = (x1, y1), . . . , (xn, yn) is a sequence of pairs (xi, yi),
each one drawn i.i.d. from D.

In our LLP scenario, the dataset S is partitioned uniformly
at random into bags of a given size k, where only feature
vectors and the fraction of positive labels in each bag are
available for learning, that is,

S = ((x1,1, . . . , x1,k), α1)︸ ︷︷ ︸
(B1,α1)

, . . . , ((xm,1, . . . , xm,k), αm)︸ ︷︷ ︸
(Bm,αm)

.

(1)
with n = mk, where Bj = {xj,i : i ∈ [k]}, αj =
1
k

∑k
i=1 yj,i is the label proportion (fraction of labels “1")

in the j-th bag, and all the involved samples (xj,i, yj,i) are
drawn i.i.d. from D. Thus, the learning algorithm gets infor-
mation about the n labels yj,i of the n instances xj,i from
dataset S only in the aggregate form determined by the m la-
bel proportions αj . Yet, note that the feature vectors xj,i are
individually observed. Also, note that, for a given sample
size n = mk, the bigger k the smaller the overall amount
of label information the algorithm receives.

As is standard in statistical learning, we are given a hypoth-
esis space H = {h : X → [0, 1]} of functions h mapping
X to [0, 1], where h(x) can be interpreted as the probabil-
ity that y = 1 given x according to model h, and a loss
function ℓ : [0, 1] × Y → R+. In LLP the learner has
access to S in the form (1) above, and tries to find a hy-

pothesis ĥ ∈ H with the smallest population loss (or risk)
L(h) = E(x,y)∼D[ℓ(h(x), y)] with high probability over the
random draw of S. In order not to clutter the paper with
too many mathematical details, we shall assume henceforth
that the hypothesis space H is finite. The theoretical anal-
yses contained in the paper can be easily lifted to infinite
hypothesis spaces via standard tools in empirical process
theory (e.g., (Bartlett et al., 2005; Boucheron et al., 2012;
Vershynin, 2018)).

Given H and D, the excess risk (or regret) R(ĥ) of ĥ is
R(ĥ) = L(ĥ) − L(ĥ⋆), where ĥ⋆ = argminh∈H L(h)
is the model in H having the smallest risk (sometimes
called best-in-class model). We say that we are in a re-
alizable setting when the Bayes-optimal predictor h⋆ =
argminh L(h), the minimum being taken over all possi-
ble (measurable) functions, belongs to H, and in a non-
realizable setting, otherwise. Clearly enough, in the realiz-
able setting, ĥ⋆ = h⋆.

Our goal is to design and analyze algorithms that com-
pute ĥ ∈ H with small R(ĥ) in both realizable and non-
realizable settings. In particular, for a given bag size k,
our goal is to minimize the number of bags m (the sam-
ple complexity is then n = mk) required for a particu-
lar regret guarantee. We will obtain tight bounds on the
sample complexity specifically for the square loss case,
ℓ(h(x), y) = (y − h(x))2.

In a sense, if we view label aggregation as a form of (label)
privatization mechanism (which is not differentially private,
though), this investigation aims at striking the best possi-
ble trade-offs between utility (that is, the regret R(ĥ) as a
function of the sample size n) and privacy in the form of the
label aggregation level k.

As in recent investigations on LLP (Busa-Fekete et al., 2023;
Li et al., 2024), we cover two kinds of standard learning algo-
rithms: Empirical Risk Minimization (ERM), and Stochastic
Gradient Descent (SGD), and show that we can improve in
various ways on the results of both papers.

3. Warmup: A realizable Setting with Two
Functions

As a warmup, we consider the simplest possible scenario
of LLP, a realizable setting where the function space H has
only two models H = {h1, h2}, with either η(·) = h1(·) or
η(·) = h2(·). Though the argument we are about to present
here clearly applies to more general loss functions, consider
for definiteness the square loss. It can be easily seen that in
this case the Bayes optimal predictor h⋆(·) coincides with
η(·).

Suppose the two models are significantly different from one
another, in the sense that |L(h1) − L(h2)| = β > 0. In
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this case, if we want achieve a regret smaller than β, we are
forced to identify h⋆ exactly. We will see momentarily that
this simple problem already poses significant challenges if
we want to prove optimal rates of convergence as a function
of both the number of bags m, and the bag size k.

Our algorithm for computing ĥ is presented as Algorithm 1.
For bag (Bj , αj), and hypothesis hs, for s ∈ {1, 2}, set for
brevity

Ej,s = E[kαj | Bj ] =
∑
x∈Bj

hs(x) .

Denote by {·} the indicator of the predicate at argument,
define µj = 1

2 (Ej,1 + Ej,2), for j ∈ [m], and consider the
statistics

A1 =

m∑
j=1

(kαj − Ej,1) A2 =

m∑
j=1

(kαj − Ej,2)

and

Q =

m∑
j=1

(
{Ej,1 ≤ Ej,2}(kαj − µj)

+ {Ej,1 > Ej,2}(µj − kαj)
)
.

Define the bias ∆ = E[h1(x) − h2(x)] ∈ [−1, 1], and
note that, since the underlying loss is the square loss,
the separation parameter β can also be written as β =
E[(h1(x) − h2(x))

2]. We assume here for simplicity that
both ∆ and β are known or easy to estimate. In fact, both
quantities can be estimated without labels, and we can do
so with an accuracy which is higher than the one allowed
by the m aggregate label signals (Section B.2 contains an
example of these estimates applied to the more involved
scenario of Section 4).

Intuitively, when |∆| is large, the models h1 and h2 are
distinguishable based only on the total number of positive
predictions they make. In this case, the algorithm predicts
based on A1 and A2, which compare the observed number
of positive labels to the number expected under h1 and h2,
respectively. However, when |∆| is small, the algorithm
needs to check for agreement between h1 and h2 and the
label proportion on each bag, which we do through Q.

The following theorem2 shows that a sample complexity
n = O(k/β) (without hidden log factors) is both necessary
and sufficient. The result improves on (Li et al., 2024) by
shaving off the log k factors appearing in both the upper
and the lower bounds analysis therein (see Theorem 1 and
Theorem 8 in (Li et al., 2024)).

Theorem 3.1. Let H = {h1, h2} be a hypothesis class
where h⋆ is either h1 or h2, Z = X × Y be the domain

2Full proofs are given in the appendix.

Algorithm 1 Algorithm for the two function realizable case.
Input: Sample S made up of m ≥ 1 bags, each of size
k ≥ 1, bias ∆ ∈ [−1, 1], separation parameter β ∈ (0, 1].

• If |∆| ≥
√

β
2k then:

– If |A1(S)| < |A2(S)| then: ĥ = h1

– Else: ĥ = h2

• Else ĥ =

{
h2 if Q(S) ≥ 0

h1 if Q(S) < 0

Output: ĥ

where a probability distribution D is defined,

β = E[(h1(x)− h2(x))
2] ,

and
∆ = E[h1(x)− h2(x)] ∈ [−1, 1] .

Let Algorithm 1 be fed with an i.i.d. sample of size n drawn
according to D, with m bags each of size k. Then, if k =
Ω(1/β), with probability at least 1− δ Algorithm 1 outputs
ĥ = h⋆, provided

n = O

(
min

{
1

∆2
,
k

β

}
log

1

δ

)
.

Moreover, when ∆ = 0 (which is the hardest case), a spe-
cific setting of H and D exists for which no algorithm can
be correct with probability at least 1 − δ, with δ < 1/2,
unless

n = Ω

(
k(1− E(δ))

β

)
,

where E(·) is the binary entropy function E(x) =
−x log2 x − (1 − x) log2(1 − x). In other words, when
∆ = 0 the sample size n must be linear in k.

Algorithm 1 can immediately be extended to the case of
more than two hypotheses, just by implementing an elimina-
tion tournament via pairwise comparisons. We do not know,
however, how to make it work in non-realizable settings.

The reader should observe that, being the decision rule Q a
pairwise statistic, it cannot be expressed as the difference of
two separate scoring functions (one for h1 and the other for
h2). Hence Algorithm 1, though sample optimal, does not
easily lend itself to extensions of practical relevance. We
now turn our attention to more viable solutions.

4. Empirical Risk Minimization
Our proposed Empirical Risk Minimization (ERM) algo-
rithm for square loss operates on a bag level loss that can be
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seen as a robust (or clipped) bag-level square loss. Specifi-
cally, for bag zj = (Bj , αj) and function h ∈ H, we set

Ej(h) =

k∑
i=1

h(xj,i) , Ẽj(h) = Ej(h)− kE[h(x)] .

Then we define the clipped bag-level square loss

ℓc(h, zj) =
1

k

(
kα̃j − Ẽj(h)

)2
Gj(h)+

(
E[h(x)]− p

)2
,

where α̃j = αj − p, p = E[h⋆(x)], and

Gj(h) =

{
|kα̃j − Ẽj(h)| ≤

√
8k log

2

θ

}
,

for a suitable value of parameter θ > 0. (Recall that {·}
denotes the indicator function for the predicate at argument.)

Again, for simplicity of presentation, we assume in the
above that E[h(x)], for h ∈ H, and p are known. In fact,
E[h(x)] can be easily estimated from unlabeled data, and
p can be easily estimated from label proportions αj , the
main point being that both quantities can be estimated at a
higher resolution than the one allowed by the aggregate label
signals. Appendix B.2 contains a version of the algorithm
where E[h(x)] and p are themselves estimated from data.
This is similar in spirit to the corresponding argument in
(Li et al., 2024), but the analysis here is somewhat more
involved, since special care has to be taken to ensure that
fast rates are preserved even after clipping the square loss.

Then we define the ERM estimator

ĥ(S) = argmin
h∈H

1

m

m∑
j=1

ℓc(h, zj) .

We have the following result.

Theorem 4.1. Let H be a finite hypothesis space, Z =
X × Y be the domain where a probability distribution D is
defined. Let the ERM estimator ĥ defined above be fed with
a sample of size n = mk, with m bags of size k, drawn i.i.d.
according to D, and let

γ(ĥ⋆, h⋆) = E[(ĥ⋆(x)− h⋆(x))2] .

Then, for all β > 0, if θ = β
16k2 in the clipping condition

defining Gj(h), and

m = O

((
γ(ĥ⋆, h⋆) + β

)
log k

β

β2
log

|Hβ |
δ

)
,

we have
R(ĥ) = L(ĥ)− L(ĥ⋆) < β

holding with probability at least 1− δ. In the above,

Hβ =
{
h ∈ H : R(h) ≥ β

}
⊆ H .

In particular, in the realizable case (γ(ĥ⋆, h⋆) = 0), the
number of bags m that suffices is

m = O

(
log k

β

β
log

|Hβ |
δ

)
.

Moreover, a similar algorithm exists, where the quantities
E[h(x)] and p are replaced by empirical estimates, which
enjoys the same sample complexity guarantees as above.

Proof sketch. Define the non-clipped version of the loss at
the bag level:

ℓ(h, zj) =
1

k

(
kα̃j − Ẽj(h)

)2
+
(
E[h(x)]− p

)2
, (2)

and let LB(h) denote the expected value of ℓ(h, zj) over the
random draw of bag zj . The first observation we make is
that this expectation is the same as the expectation of the
original square loss (y − h(x))2, when (x, y) is randomly
drawn according to D, i.e.,

LB(h) = L(h) . (3)

Then the proof essentially proceeds as a bias-variance trade-
off analysis. We show that the clipping operation that turns
ℓ(h, zj) into ℓc(h, zj) only introduces a small bias while, at
the same time, helping us reduce the variance substantially.

In fact, as is customary in fast rate analyses (e.g., (Massart,
2000; Mendelson, 2002; Bartlett et al., 2005)) the above
bias-variance trade-off does not refer to the loss itself, but
to the difference of losses ℓc(h, zj)− ℓc(ĥ⋆, zj), for which
we can prove a bias bound of the form kθ, a variance bound
of the form

γ(h, ĥ⋆) log
1

θ
+ k2θ ,

and a range bound of the form log 1
θ . In turn, for square

loss,

γ(h, ĥ⋆) = O
(
γ(ĥ⋆, h⋆) + L(h)− L(ĥ⋆)

)
,

where we recall that γ(h, h′) = E[(h(x)−h′(x))2]. Setting
θ = β

k2 in the above makes the bias smaller than the desired
regret bound β, and yields a variance bound of the form(

γ(ĥ⋆, h⋆) + L(h)− L(ĥ⋆)
)
log

k

β
(4)

and a range bound of the form log k
β .

In broad strokes, our goal in the ERM analysis is to make
sure that with high probability we are able to separate any
h from ĥ⋆, whenever h /∈ Hβ . This separation effort is
made easy as the loss difference L(h) − L(ĥ⋆) increases.
Yet, at the same time, the bigger L(h)− L(ĥ⋆) the higher
the variance (4). Solving this trade-off within standard
concentration inequalities, and taking a union bound over
h ∈ Hβ gives the claimed sample complexity bound.
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Theorem 4.1 improves in a number of ways over the existing
literature. For instance, comparing to (Busa-Fekete et al.,
2023), we have sharper sample complexity guarantees: our
bound reads n = Õ

(
k
(
γ(ĥ⋆, h⋆)+β

)
/β2
)
, which becomes

n = Õ(k/β) in the realizable case, while the regret guar-
antees in (Busa-Fekete et al., 2023) are only of the form
n = Õ(k2/β2) (that is, slow rates only and, in addition, a
quadratic dependence on k, instead of linear). On the other
hand, the results in (Busa-Fekete et al., 2023) apply to all
bounded losses, not just to square loss.

The more recent paper (Li et al., 2024) also covers the
square loss case, but the results contained there are widely
sub-optimal when it comes to the dependence on k. For
instance, the authors show fast rates for a debiased square
loss algorithm, but the sample complexity therein reads (in
our notation) n = Õ(k3/β). Besides, the authors consider
only a more restricted notion of realizability where L(h⋆) =
0 and the functions in the hypothesis space H have binary
output, thereby ruling out any potential noise in the labels.
Needless to say, the assumption about deterministic labels
is particularly problematic when we want to associate any
notion of privacy with the label aggregation mechanism.

Finally, compared to the optimal bounds in Theorem 3.1,
those in Theorem 4.1 are looser only by log factors, but they
clearly apply to wider settings.

5. Stochastic Gradient Descent
In this section, we show that a similar variance reduction
technique as in Section 4 leads to improved results for
Stochastic Gradient Descent methods applied to LLP tasks.

For the sake of this section, the loss is still the square loss
ℓ(h(x), y) = (y − h(x))2, but the hypothesis space is that
of norm-bounded d-dimensional linear predictors,

H = {hw : x → w · x | w ∈ Rd, ∥w∥ ≤ ρw} ,

with known ρw > 0. We can think of the labels y ∈ Y as
binary, as before, but there is no real need for this restric-
tion. So, in this section, we look at the problem more as a
regression problem, and assume the labels are real-valued
and bounded: Y = {y ∈ R : |y| ≤ ρy}, for some known
ρy > 0. The label aggregation at each bag Bj is still done
via averaging: αj =

1
k

∑k
i=1 yj,i. The population loss can

now be conveniently expressed as a function of w directly:

L(w) = E(x,y)∼D[ℓ(hw(x), y)] = E(x,y)∼D[(y − w · x)2]

Further, as is customary in SGD analyses, we assume that
D is such that ∥x∥ ≤ ρx almost surely, and that the constant
ρx > 0 is given to us. For simplicity we shall also assume
that the following quantities are known (exactly):

µx = E[x], µy = E[y] .

Algorithm 2 SGD-based algorithm
Input: stepsize η, clipping threshold γ > 0
Initialize at w1 = 0
for bags j = 1, 2, . . . ,m do

Compute centroid x̄j =
1
k

∑k
i=1 xj,i ;

if ∥x̄j − µx∥ ≤ γρx then
update

wj+1 = Π[wj − η∇ℓ(wj , zj)]

where ℓ(w, zj) is as in the main text.
else

skip update and proceed to the next step
end if

end for
Output w̄m = 1

m

∑m
j=1 wj .

These are the marginal expectations under D, that can be
approximated from (either individual or bagged) data in a
straightforward and sample-efficient manner. We emphasize
that the method we are about to present can be immediately
modified to have µx and µy estimated from data instead (the
modification would be similar in spirit to the one contained
in Section B.2). Observe that, due to our assumptions, we
have ∥µx∥ ≤ ρx and ∥µy∥ ≤ ρy .

The algorithm we propose and analyze for this setting in
presented in Algorithm 2. The algorithm operates with the
bag-level square loss

ℓ(w, zj) = k
(
w · (x̄j−µx)− (αj−µy)

)2
+(w ·µx−µy)

2

which can be easily verified to coincide with the non-clipped
bag level loss (2), upon setting h(x) = w · x and p = E[y].
Essentially, the algorithm constructs a debiased version
ℓ(·, zj) of the square loss (y − w · x)2 based on each bag
zj = (Bj , αj), and performs SGD updates on a truncated
(variance-reduced) version of this loss function, defined as

ℓ̃(w, zj) = ℓ(w, zj) {∥x̄j − µx∥ ≤ θρx} ,

for some θ > 0. The updates are projected back to the
feasible set of norm-bounded models {w ∈ Rd : ∥w∥ ≤
ρw}; here Π denotes the Euclidean projection operator onto
the latter set.

Our main result in this section is the following population
excess risk bound for Algorithm 2:

Theorem 5.1. Let X ,Y , D, H, µx, µy, ρw, ρx, ρy be as
described earlier in this section. Let a sample S of size
n = mk, with m bags of size k, be drawn i.i.d. according
to D. Set

θ =

√
8

k
log

(
9km(ρwρx + ρy)2

ρ2wρ
2
x

)
6
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and

ζ = (kθ2 + 1)ρ2x .

Then, for any L⋆ > 0, the hypothesis w̄m output by Algo-
rithm 2 with step size

η = min
{ ρw√

2ζmL⋆
,
1

2ζ

}
and clipping threshold θ satisfies, for all w∗ such that
∥w∗∥ ≤ ρw and L(w∗) ≤ L⋆, and any β > 0

E[L(w̄m)]− L(w∗) ≤ β ,

whenever

m = Õ

(
ρ2xρ

2
w

β
+

L⋆ρ2xρ
2
w

β2

)
.

In the above, the expectation is over the generation of S,
and the asymptotic notation hides logarithmic factors of the
form log(km) and log

(
1 +

ρy

ρwρx

)
.

In particular, in the nearly realizable case when L⋆ ≈ 0,
the theorem gives a fast O(1/m) rate of convergence, as
opposed to the O(1/

√
m) rate obtained in the non-realizable

case (where L⋆ ≫ 0).

The sample complexity above reads n = Õ(k/β2) in the
non-realizable case, and n = Õ(k/β) in the realizable case.
It is instructive to compare to the SGD result from Busa-
Fekete et al. (2023) (Thm 6.1 therein), whose sample bound
is of the form n = Õ(k2/β2). Thus, in addition to obtaining
fast rates, we shave a factor k from the sample complexity.
On the other hand, it is fair to say that the result in (Busa-
Fekete et al., 2023) applies to more general convex losses.

Proof sketch. Our basic approach to Algorithm 2 and es-
tablishing Theorem 5.1 is to observe that the algorithm
performs online projected gradient updates with respect to
the loss sequence ℓ̃(·, z1), . . . , ℓ̃(·, zm), and to appeal to an
online-to-batch argument for obtaining a population-level
excess risk bound for this algorithm. Crucially, our analy-
sis leverages the fact that the non-truncated bag-level loss
ℓ(w, zj) is an unbiased estimator of the population square
loss at the individual example level (recall Equation (3)), as
well as the smoothness of the (truncated) squared loss func-
tions to obtain fast rates in (nearly) realizable scenarios.

6. Experiments
In this section we compare our proposed LLP loss to base-
line losses on several datasets and models following closely
the setup of Busa-Fekete et al. (2023).

6.1. Experimental Setup

We prepare each training dataset by shuffling the data, parti-
tioning it into consecutive bags of size k, and replacing the
labels within each bag by their average. Then we train mod-
els on the LLP data as follows: On each training epoch (a
single pass through the processed training data), we shuffle
the order of the bags and group them into batches contain-
ing a fixed number N of examples. The examples within
each bag are the same on each epoch, only the order of the
bags is permuted. On all datasets we choose a batch size of
N = 1024 and use bag sizes k = 2i for i = 0, . . . , 9. For
each batch, we compute the gradient of the aggregate loss
function and use Adam (Kingma & Ba, 2015) to update the
model parameters. After completing E training epochs, we
evaluate the model’s test accuracy at the level of individual
examples (x, y).

We repeat the above training procedure 10 times for each
loss function, dataset, bag size, and Adam learning rate
in the set {10−6, 5 · 10−6, 10−5, 10−4, 5 · 10−4, 10−3, 5 ·
10−3, 10−2}. Each repetition uses a different partition of
the training data into bags and different random model ini-
tialization. For each bag size and aggregate loss, we report
the average test accuracy at the end of E training epochs
(that is, cycles through the data) achieved by the best per-
forming learning rate.

6.2. Datasets and Models

We conduct our experiments on the following datasets and
models. We use versions of MNIST (LeCun et al., 2010) and
CIFAR-10 (Krizhevsky, 2009) with binary labels, together
with the Higgs (Baldi et al., 2014) and UCI Adult (Kohavi
& Becker, 1996) datasets, which are already binary tasks.
Following Busa-Fekete et al. (2023), we binarize the labels
of MNIST based on whether they are even or odd and, for
CIFAR-10, we replace the original labels by whether the
image depicts an animal (bird, cat, deer, dog, frog, horse)
or machine (airplane, automobile, ship, truck). On MNIST
and CIFAR-10 we train CNN models, while on Higgs and
UCI Adult we train fully connected networks. Full details
of the datasets and models are given in Appendix D.

6.3. Aggregate Losses

We train models using five aggregate losses. OURS refers
to the unclipped3 version of our proposed loss, given in
(2). LI ET AL. is the aggregate loss proposed by Li et al.
(2024), which is also an unbiased estimate of the squared

3Our choice of using the unclipped loss rather than the clipped
one was mainly practical. On one hand, the clipped loss introduces
one more parameter to tune (the clipping constant θ). On the other,
we observed in preliminary experiments that our method works
well even without clipping.
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Figure 1. Plots showing the final test accuracy of models trained on selected datasets as a function of the LLP bag size and number of
training epochs. Error bars show one standard error in the average over 10 repetitions of each run. Each data point represents the accuracy
achieved by a learning rate tuned for that bag size and loss. Some of the curves are not visible since they are overlapping. This is the case,
in particular, for VANILLACE, which is often overalapped with VANILLASQ.

loss at individual examples, but suffers from higher vari-
ance. VANILLASQ and VANILLACE refer to the proportion
matching losses where we compare the model’s average
prediction to the label proportion using squared loss and
binary cross-entropy, respectively. Finally, EASYLLP refers
to the unbiased loss estimate of Busa-Fekete et al. (2023)
applied with the binary cross-entropy loss. Full details of
the aggregate losses are given in Appendix D, including
the way we implemented the estimation of the unknown
quantities E[h(x)] and p for OURS.

6.4. Results

Figure 1 shows the final test accuracy of each aggregate
loss at various bag sizes and number of training epochs
(some of the curves are not visible since they are overlap-
ping to one another). The aggregate losses OURS, LI ET
AL., and EASYLLP are all unbiased estimates of the pop-
ulation loss at the level of individual examples. However,
as we will see in Section 6.5, the variance of OURS grows
significantly slower with the bag size k than that of LI ET
AL. and EASYLLP. In comparison, the VANILLA baselines
are not unbiased. At every bag size and training duration,
our proposed method achieves the highest accuracy. In com-
parison, even though the other methods perform reasonably
well at low bag sizes, once k is sufficiently large, the high
variance of these method eventually causes them to perform

far worse worse.4 We also note that OURS tends to widely
outperform the other baselines especially when the number
of training epochs is lower, suggesting that these losses lead
to more computationally efficient training.

As for comparison to the method proposed by Dulac-Arnold
et al. (2019), we note that their method has already been
shown to underperform in comparable experimental setups.
For instance, on CIFAR-10, Busa-Fekete et al. (2023) report
a test set accuracy of around 0.65 with bag size k = 26 (see
Figure 4 therein), while all the methods we tested are above
0.8 on a similar CNN architecture. On Higgs, with the very
same NN architecture (the one originating from (Baldi et al.,
2014)), all the methods we tested have test set accuracy
which is above by at least 5% across all large enough bag
sizes. E.g., for k = 26, Busa-Fekete et al. (2023) report a
test accuracy below 0.6 (see Figure 6 therein), while all our
methods are above 0.65.
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Figure 2. Plot showing how the variance of the loss estimate of
OURS, LI ET AL and EASYLLP, grows with the bag size in the
simple setting described in Section 6.5. Both LI ET AL. and
EASYLLP have variacne that grows linearly with the bag size,
while OURS has constant variance, close to zero.

6.5. Variance comparison

In this section we compare the variance of the loss estimates
produced by our method, LI ET AL., and EASYLLP for a
simple synthetic data distribution and model ĥ defined be-
low. Recall that all three of these methods produce unbiased
estimates of the squared loss on individual examples, so the
variance characterizes how reliable those estimates are. We
showed that the variance of the loss estimate computed from
a single bag using our method does not grow with k, while
the variance of all prior methods does.

We consider the simple setting where x is uniform in [0, 1],
and the distribution of y is Pr(y = 1 | x) := h∗(x) =

x2. We estimate the loss of the model ĥ(x) = x. Each
method is used to estimate E[(y − ĥ(x))2] based on LLP
data. We compute the label marginal p exactly, and estimate
E[ĥ(x)] in the same way as our learning experiments. That
is, we break that data into batches containing 1024 examples
(regardless of bag size) and for each bag within the batch,
we estimate E[ĥ(x)] as the sample average of ĥ(x) over the
batch excluding that bag.

In Figure 2 we plot the empirical variance of the loss esti-
mates computed from n = 220 examples worth of bags for
bags of size k = 2, 4, 8, 16, 32, 64, 128, 256. We see that
both LI ET AL. and EASYLLP have empirical variance that
grows linearly with the bag size, while OURS is essentially
constantly equal to 0.034. We remark that the variance of
OURS does grow slightly to 0.055 at bag size k = 256,
but this is because, as the bag size grows, there are fewer
remaining examples within the batch to estimate E[ĥ(x)].

4In this respect, we need to point out that our original im-
plementation of the method from (Li et al., 2024) did contain a
measurement bug that made it perform better than reported here.
This bug was contained in the original submission of this paper,
and has now been fixed.

7. Conclusions, Limitations, and Ongoing
Research

We have studied LLP in the relevant case where bags are
drawn i.i.d. according to a fixed but unknown distribution
over X × Y . Via suitable variance reduction techniques,
we have proven tight bounds on the sample complexity in
realizable and non-realizable settings, with substantial im-
provements over prior art in comparable statistical learning
settings.

We have empirically contrasted our variance reduction meth-
ods to available LLP baselines on a variety of datasets and
underlying model architectures, showing superior test set
performance at the individual example level. The perfor-
mance gap is especially remarkable for big bag sizes, the
regime that matters the most for LLP applications.

As for current limitations, this paper could be extended
along a number of directions.

• We would like to achieve regret guarantees also for
practically relevant loss functions beyond square loss,
like the log loss for ERM and more general convex
losses than square loss for SGD. The extension to log
loss, for instance, is nontrivial, as the log loss is itself
an unbounded loss function. This is a loss function
commonly adopted in DNN training.

• As currently presented, our analysis only applies to
binary classification. A suitable extension to multiclass
classification would be important in practice.

• Another practically important extension is the case
when the examples within the bags or the bags them-
selves come from distributions that drifts over time.
This is another practically relevant scenario where a
low variance estimator is expected to have an edge,
thanks to its higher adaptivity.

• There are also technical limitations related to some
of the formal statements we provided. For instance,
Theorem 3.1 applies only when k is big enough (k =
Ω(1/β)), not for smaller k.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs for Section 3
This appendix contains the proofs for the theorems contained in the warmup section.

A.1. Proof of Theorem 3.1

In order to quantify the probability of error of Algorithm 1, suppose |∆| ≥
√

β
2k , with h⋆ = h1. Note that we can rewrite

A1 =

m∑
j=1

k∑
i=1

(yj,i − h1(xj,i)) A2 =

m∑
j=1

k∑
i=1

(yj,i − h2(xj,i)) .

Also, E(x,y)[y−h1(x)] = 0 while E(x,y)[y−h2(x)] = ∆. Set Cδ(m, k) =
√

mk
2 log 4

δ . Then, from a standard concentration
inequality (Hoeffding) we have, with probability at least 1− δ over the random draw of S,

|A1(S)| ≤ Cδ(m, k) and |A2(S)−mk∆| ≤ Cδ(m, k)

so that, with the same probability,

|A1(S)| ≤ Cδ(m, k) and |A2(S)| ≥ mk|∆| − Cδ(m, k) > Cδ(m, k) ,

the last inequality holding provided mk > 2
∆2 log 4

δ .

A symmetric argument holds if h⋆ = h2. We conclude that if |∆| ≥
√

β
2k the total sample size n = mk needed to insure

P(ĥ ̸= h⋆) ≤ δ is

n = O

(
1

∆2
log

1

δ

)
.

On the other hand, in the sequel we also show that when |∆| <
√

β
2k , the sample size n = mk also satisfies

n = O

(
k

β
log

1

δ

)
.

Since 1
∆2 < 2k

β (that is, the first bound is better than the second) if and only if |∆| ≥
√

β
2k , this will show that the overall

sample size indeed satisfies

n = O

(
min

{
1

∆2
,
k

β

}
log

1

δ

)
.

We now continue by analyzing the probability of error when Algorithm 1 relies on the sign of Q(S), under the condition

|∆| <
√

β
2k .

Denote for brevity by P′(·) the conditional probability P(· | B1, . . . ,Bm), that is, the probability on the labels conditioned
on the values of the xj,i on all bags Bj = {xj,1, . . . , xj,k} in S.

Suppose ∆2 ≤ β/2 (which is implied by the condition |∆| <
√

β
2k ) and k ≥ 2

Φ2(−1)β , where Φ(t) is the cumulative
distribution function of the standard Gaussian distribution.

We say that Bj is discriminative for {h1, h2} at threshold θ if

Ej,1 ≥ Ej,2 + θ or Ej,2 ≥ Ej,1 + θ ,

for a suitable θ = θ(β, k, δ) > 0 that we set later on. Let us rewrite Q so as to single out discriminative and nondiscriminative
bags:

Q =

m∑
j=1

{Ej,1 ≤ Ej,2 − θ}(kαj − µj) +

m∑
j=1

{Ej,2 − θ < Ej,1 ≤ Ej,2}(kαj − µj)

+

m∑
j=1

{Ej,1 > Ej,2 + θ}(µj − kαj) +

m∑
j=1

{Ej,2 + θ ≥ Ej,1 > Ej,2}(µj − kαj) .

12
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Assume h⋆ = h1. We want then to bound the probability that Q ≥ 0 (that is, the probability that we make the wrong
decision).

Now,

{Ej,1 ≤ Ej,2 − θ}(kαj − µj) ≤ {Ej,1 ≤ Ej,2 − θ}(kαj − Ej,1 − θ/2)

{Ej,2 − θ < Ej,1 ≤ Ej,2}(kαj − µj) ≤ {Ej,2 − θ < Ej,1 ≤ Ej,2}(kαj − Ej,1)

{Ej,1 > Ej,2 + θ}(µj − kαj) ≤ {Ej,1 > Ej,2 + θ}(Ej,1 − θ/2− kαj)

{Ej,2 + θ ≥ Ej,1 > Ej,2}(µj − kαj) ≤ {Ej,2 + θ ≥ Ej,1 > Ej,2}(Ej,1 − kαj) ,

so that
P′(Q ≥ 0) ≤ P′(Q1 ≥ 0) ,

where

Q1 =

m∑
j=1

{Ej,1 ≤ Ej,2 − θ}(Σj,1 − θ/2) +

m∑
j=1

{Ej,2 − θ < Ej,1 ≤ Ej,2}Σj,1

+

m∑
j=1

{Ej,1 > Ej,2 + θ}(−Σj,1 − θ/2) +

m∑
j=1

{Ej,2 + θ ≥ Ej,1 > Ej,2}(−Σj,1)

being Σj = kαj − Ej,1 a (conditionally) zero-mean random variable. Introduce the short-hands

m1 =

m∑
j=1

{Ej,1 ≤ Ej,2 − θ}+
m∑
j=1

{Ej,1 > Ej,2 + θ}

m2 =

m∑
j=1

{Ej,2 − θ < Ej,1 ≤ Ej,2}+
m∑
j=1

{Ej,2 + θ ≥ Ej,1 > Ej,2} ,

and note that the above quantities are fully determined by B1, . . . ,Bm. Also, m1 +m2 = m for all θ ≥ 0.

Consider the four sums defining Q1 as aggregated in pairs according to the definition of m1 and m2 above. Observe that
the random variables yj,1, yj,2, . . . , yj,k, for all j such that Ej,1 ≤ Ej,2 − θ or such that Ej,1 > Ej,2 + θ are m1k-many
conditionally independent Bernoulli random variables, each with its own bias. Hence we can apply standard concentration
bounds (Hoeffding’s inequality) to conclude that

P′

 m∑
j=1

{Ej,1 ≤ Ej,2 − θ}(Σj,1 − θ/2) +

m∑
j=1

{Ej,1 > Ej,2 + θ}(−Σj,1 − θ/2) > t1


= P′

 m∑
j=1

{Ej,1 ≤ Ej,2 − θ}Σj,1 −
m∑
j=1

{Ej,1 > Ej,2 + θ}Σj,1 > m1θ/2 + t1


≤ exp

(
−2(m1θ/2 + t1)

2

m1k

)
for all t1 > −m1θ/2. Similarly,

P′

 m∑
j=1

{Ej,2 − θ < Ej,1 ≤ Ej,2}Σj,1 −
m∑
j=1

{Ej,2 + θ ≥ Ej,1 > Ej,2}Σj,1 > t2

 ≤ exp

(
− 2t22
m2k

)
for all t2 > 0.

Therefore, in order to bound P′(Q1 ≥ 0), it suffices to select t1 and t2 in the above in such a way that t1 + t2 = 0, with the
constraints t1 > −m1θ/2, and t2 > 0, allowing us to conclude that

P′(Q ≥ 0) ≤ exp

(
−2(m1θ/2 + t1)

2

m1k

)
+ exp

(
− 2t22
m2k

)
.

13
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The above constraints are easily satisfied if m1 and m2 are constant multiples of one another. For instance, suppose there
exist positive constants c1 and c2 such that mi = cim, and c1 + c2 = 1. Then we may set

t1 = −c1mθ

4
, t2 =

c1mθ

4

obtaining

P′(Q ≥ 0) ≤ exp

(
−c1θ

2m

8k

)
+ exp

(
−c21θ

2m

8c2k

)
(5)

which is of the form exp
(
− θ2m

k

)
, provided c1 and c2 are constants independent of m and θ.

We expect to be able to set θ to be of the form θ = β
√
k via an anti-concentration argument.

Now we lower bound via anti-concentration the probability of drawing a bag Bj that is discriminative for {h1, h2}. Recall
that ∆ = E[h1(x)]− E[h2(x)]. We can write

{Ej,1 ≥ Ej,2 + θ}+ {Ej,1 < Ej,2 − θ} =

∑
x∈Bj

(h1(x)− h2(x)) ≥ θ

+

∑
x∈Bj

(h2(x)− h1(x)) ≥ θ

 .

Hence, we are left to lower bound the expectation of the indicators above. Now, the variables

Zj,i = h1(xj,i)− h2(xj,i), i = 1, . . . , k ,

are i.i.d. random variables with range [−1, 1] and expectation ∆ ∈ [−1, 1]. Thus we are compelled to leverage anti-
concentration inequalities for sum of [−1, 1]-valued i.i.d. random variables.

Since we are working under the assumption ∆2 ≤ β/2 and k ≥ 2
Φ2(−1)β , an easy route is to go through Berry-Esseen’s

finite sample version of the Central Limit Theorem, and then rely on the anti-concentration of standard normal variables.
One version of Berry-Esseen’s theorem claims that for Σ =

∑k
i=1 Xi, where X1, . . . , Xk are i.i.d. with zero mean, variance

σ2 = E[X2], and finite third moment ρ = E[|X|3] we have

sup
t

|P(Σ ≤ tσ
√
k)− Φ(t)| ≤ ρ

2σ3
√
k
,

where Φ(t) is the cumulative distribution function of the standard Gaussian. Note that by convexity ρ ≥ σ3. Moreover,
ρ ≤ σ2 since in our case |X| ≤ 1.

We have

E [{Ej,1 ≥ Ej,2 + θ}] + E [{Ej,1 < Ej,2 − θ}] = P

(
k∑

i=1

Zj,i ≥ θ

)
+ P

(
k∑

i=1

Zj,i < −θ

)

= P

(
k∑

i=1

(Zj,i −∆) ≥ θ − k∆

)
+ P

(
k∑

i=1

(Zj,i −∆) < −θ − k∆

)

≥ Φ

(
−θ − k∆

σ
√
k

)
+Φ

(
−θ + k∆

σ
√
k

)
− 2ρ

2σ3
√
k

≥ Φ

(
−θ − k∆

σ
√
k

)
+Φ

(
−θ + k∆

σ
√
k

)
− 1√

σ2 k

(since ρ ≤ σ2) ,

≥ Φ

(
−θ − k∆

σ
√
k

)
+Φ

(
−θ + k∆

σ
√
k

)
−
√

2

β k
(6)

(since σ2 = β −∆2 ≥ β/2, by the assumption ∆2 ≤ β/2) ,

14



Nearly Optimal Sample Complexity for LLP

where
σ2 = E[(Zj,i −∆)2], ρ = E[|Zj,i −∆|3] .

We set θ = k|∆|+ σ
√
k. With this setting of θ, if ∆ ≥ 0 then Φ

(
− θ−k∆

σ
√
k

)
= Φ(−1). On the other hand, if ∆ < 0, then

Φ
(
− θ+k∆

σ
√
k

)
= Φ(−1). In both cases

(6) ≥ Φ(−1)−
√

2

β k
≥ Φ(−1)/2 ,

the last inequality using k ≥ 2
Φ2(−1)β . This yields

E [{Ej,1 ≥ Ej,2 + θ}] + E [{Ej,1 < Ej,2 − θ}] ≥ Φ (−1) /2 .

Thus, on a sample S made up of m i.i.d. bags, on average, a fraction of at least mΦ (−1) /2 bags will be discriminative at
threshold θ = k|∆|+ σ

√
k, that is,

EB1,...,Bm∼Dmk
X

[m1] ≥ mΦ (−1) /2 .

Since the m bags are i.i.d., the random variables {Ej,1 ≥ Ej,2 + θ}+ {Ej,1 < Ej,2 − θ} are i.i.d. Bernoulli variables (w.r.t.
the random draws of B1, . . . ,Bm). From standard multiplicative Chernoff bounds, this implies that

PB1,...,Bm∼Dmk
X

(
m1 ≤ m

4
Φ (−1)

)
≤ exp

(
−mΦ(−1)

16

)
.

In order to conclude, we get back to (5). Combining with the above yields

E[{Q ≥ 0}] ≤ E
[
{Q ≥ 0,m1 >

m

4
Φ(−1)}

]
+ E

[
{m1 ≤ m

4
Φ(−1)}

]
≤ e−Θ(θ2m/k) + e−Θ(m) .

We want to make the above smaller than δ. It suffices to pick

m =

(
1 +

k

θ2

)
log

2

δ
.

Now, observe how θ depends on the separation parameter β. Note that β = E[Z2
j,i], and recall that σ2 = β −∆2. We have

θ2

k
= k∆2 + 2|∆|σ

√
k + σ2

= (k − 1)∆2 + 2|∆|σ
√
k + β

≥ (k − 1)∆2 + β

≥ β ,

independent of the bias ∆ (and in fact, we have equality to β if ∆ = 0). Thus the sample complexity n = mk becomes

n = O

(
k

(k − 1)∆2 + β
log

1

δ

)
= O

(
min

{
1

∆2
,
k

β

}
log

1

δ

)
.

The case Q < 0 with h⋆ = h2 is treated similarly, since it is completely symmetric. This proves the first part of Theorem 3.1

In order to prove the second half, consider the following simple problem. Let the input space X be binary, X = {0, 1}, and
the hypothesis space H be H = {h1, h2}, where h1, h2 : X → [0, 1]. Let the marginal distribution of x be Bernoulli(1/2).
Moreover, given parameter β ∈ [0, 1], the conditional distribution h⋆(x) = η(x) = P(y = 1 |x) is{

P(y = 1 |x = 1) = 1/2 +
√
β/2 P(y = 1 |x = 0) = 1/2−

√
β/2 if h⋆ = h1

P(y = 1 |x = 1) = 1/2−
√
β/2 P(y = 1 |x = 0) = 1/2 +

√
β/2 if h⋆ = h2 .

15
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Notice that this implies

P(y = 1) =
1

2
P(y = 1 |x = 1) +

1

2
P(y = 1 |x = 0) =

1

2

for both h⋆ = h1 and h⋆ = h2.

Moreover, for square loss,

|L(h1)− L(h2)| = E[(h1(x)− h2(x))
2] =

1

2
(h1(1)− h2(1))

2 +
1

2
(h1(0)− h2(0))

2 = β .

Consider an i.i.d. sample of m bags of size k:

S = ((x1,1, x1,2, . . . , x1,k), α1)︸ ︷︷ ︸
(B1,α1)

, . . . , ((xm,1, xm,2, . . . , xm,k), αm)︸ ︷︷ ︸
(Bm,αm)

,

and any function ĥ : {S} → H that maps any such sample to H. We consider the amount of information needed to perform
the inference of separating h1 from h2 out of S through the standard tools of (Shannon) information theory. Let then equip
h⋆ with a prior distribution

h⋆ =

{
h1 w.p. 1/2
h2 w.p. 1/2

and view h⋆ itself as a random variable. Consider the mutual information I(h⋆, ĥ). By the so-called data-processing
inequality and the chain rule of mutual information we have

I(h⋆, ĥ) ≤ I(h⋆, S) =

m∑
i=1

I(h⋆; (Bj , αi) | (B1, α1), . . . , (Bi−1, αi−1)) .

Now, since (Bj , αi) is conditionally independent of (B1, α1), . . . , (Bj−1, αj−1) given5 h⋆, we also have, for all j,

I(h⋆; (Bj , αi) | (B1, α1), . . . , (Bj−1, αj−1)) ≤ I(h⋆; (Bj , αi))

so that from the above we can write
I(h⋆, ĥ) ≤ mI(h⋆; (B1, α1)) .

Moreover, by Fano’s inequality,
I(h⋆, ĥ) ≥ 1− E(Pe) ,

where E(·) is the binary entropy function

E(x) = −x log2 x− (1− x) log2(1− x) ,

and Pe is the “probability of error" Pe = P(ĥ ̸= h⋆). If we stipulate that we want the target excess risk β to be achieved
with probability ≥ 1− δ, with δ < 1/2, this implies Pe ≤ δ and I(h⋆, ĥ) ≥ 1− E(δ).

Putting together
1− E(δ) ≤ mI(h⋆, (B1, α1))

which immediately yields the lower bound

m ≥ 1− E(δ)
I(h⋆; (B1, α1))

. (7)

5This is sometimes phrased by saying that these three variables form a Markov chain

(B1, α1), . . . , (Bj−1, αj−1) → h⋆ → (Bj , αj) ,

see, e.g., Chapter 2 in (Cover & Thomas, 2006).
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We are then left with the problem of finding an upper bound on I(h⋆, (B1, α1)). Using the chain rule of mutual information,
together with I(X;Y ) = H(Y )−H(Y |X), where H denotes the Shannon entropy, we can write

I(h⋆; (B1, α1)) = I(h⋆;B1)︸ ︷︷ ︸
=0

+I(h⋆;α1 | B1)

= H(α1 | B1)−H(α1 | B1, h
⋆) .

Now, since

P(y = 1 |x) = P(y = 1h⋆ = h1 |x) + P(y = 1h⋆ = h2 |x)

=
1

2
P(y = 1 |h⋆ = h1, x) +

1

2
P(y = 1 |h⋆ = h2, x)

=
1

2

independent of x ∈ {0, 1}, the distribution of α1 given B1 will be the distribution of a (scaled) Binomial(k, 1/2), and its
entropy H(α1 | B1) will be the same as the entropy of a Binomial(k, 1/2).

The following theorem from (Adell et al., 2010) provides useful bounds on it.

Theorem A.1. Let X ∼ Binomial(k, p), and q = 1− p. Then, for p ∈ (0, 1),6

H(X) =
1

2
log2(2πekpq) +O

(
1

k

)
.

Thus,

H(α1 | B1) =
1

2
log2(πek/2) +O

(
1

k

)
.

Also, the following upper and lower bounds from (Harremoës, 2001) (Theorem 6 and Theorem 7 therein) on the entropy of
a Poisson-Binomial distribution7 PBin in terms of the entropy of related binomial distributions will be useful.

Theorem A.2. Let X ∼ PBin(p1, . . . , pk), set µ =
∑k

i=1 pi, and k̄ = ⌊ µ
pmax

⌋, where pmax = maxi pi. Let B̄ ∼
Binomial(k̄, µ/k̄), and B ∼ Binomial(k, µ/k) Then

1

2
log2(2πeµ(1− µ/k)) +O

(
1

k

)
= H(B) ≥ H(X) ≥ H(B̄) =

1

2
log2(2πeµ(1− µ/k̄)) +O

(
1

k̄

)
,

the equalities coming from Theorem A.1.

As for H(α1 | B1, h
⋆), consider the following argument about the conditional distribution of α1 given B1 and h⋆. Let B1

be a Boolean vector containing s ones and k − s zeroes. The position of these zeros and ones will be immaterial, so for
definiteness, let us visualize B1 as follows:

B1 = [11 . . . 1︸ ︷︷ ︸
s

00 . . . 0︸ ︷︷ ︸
k−s

] . (8)

Suppose h⋆ = h1, and let Y (s)
1 and Y

(s)
2 be the random variables counting the number of yi = 1 in bag B1 among its first s

components, and among its last k − s components, respectively. Since h⋆ = h1, we clearly have

Y
(s)
1 ∼ Binomial(s, 1/2 + β) and Y

(s)
2 ∼ Binomial(k − s, 1/2− β) ,

the two variables being independent. Moreover, kα =
∑k

i=1 yi = Y
(s)
1 + Y

(s)
2 has distribution

PBin(1/2 +
√
β/2, . . . , 1/2 +

√
β/2︸ ︷︷ ︸

s

, 1/2−
√

β/2, . . . , 1/2−
√
β/2︸ ︷︷ ︸

k−s

) .

6(Adell et al., 2010) also contains non-asymptotic upper and lower bounds, which are not reported here for brevity.
7A Poisson-Binomial random variable with parameters p1, . . . , pk is the sum of k independent Bernoulli random variables, where the

i-th Bernoulli variable has bias pi.
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When h⋆ = h2 it is easy to see that we simply have to swap
√
β/2 with −

√
β/2 in the two binomials, so that kα ∼

PBin(1/2−
√
β/2, . . . , 1/2−

√
β/2︸ ︷︷ ︸

s

, 1/2 +
√
β/2, . . . , 1/2 +

√
β/2︸ ︷︷ ︸

k−s

).

Consider the situation when s =
∑

i xi is such that s ∈ A, where

A =
{
s : k/2−

√
k log k/2 ≤ s ≤ k/2 +

√
k log k/2

}
, (9)

so that when k → ∞ both s and k − s diverge.

By Theorem A.2 (lower bound side), when h⋆ = h1 and s ∈ A we have

H(α1 | s, h1) = H

(
α
∣∣∣∑

i

xi = s, h⋆ = h1

)
≥ 1

2
log2

(
2πeµ1

(
1− µ1

k̄1

))
+O

(
1

k̄1

)
,

where

k̄1 =

⌊
k +

√
β(2s− k)

1 +
√
β

⌋
, µ1 = k/2 +

√
β(2s− k)/2 .

and

H(α1 | s, h2) = H

(
α
∣∣∣∑

i

xi = s, h⋆ = h2

)
≥ 1

2
log2

(
2πeµ2

(
1− µ2

k̄2

))
+O

(
1

k̄2

)
,

where

k̄2 =

⌊
k −

√
β(2s− k)

1 +
√
β

⌋
, µ2 = k/2−

√
β(2s− k)/2 .

Now, we observe that the condition s ∈ A implies

k/2−
√
β
√
k log k/2 ≤ µ1, µ2 ≤ k/2 +

√
β
√
k log k/2 .

and
k̄1, k̄2 = Ω(k) .

Moreover, from the inequality
x

⌊x/a⌋

(
1− x

⌊x/a⌋

)
≥ a(1− a)(1− 1/

√
x)

holding for a ∈ (1/2, 1), and x ≥ 2a
1−a , we also have

µ1

k̄1

(
1− µ1

k̄1

)
≥
(
1

4
− β

4

)(
1− 1

√
µ1

)
=

(
1

4
− β

4

)(
1−O

(
1√
k

))
,

and similarly,
µ2

k̄2

(
1− µ2

k̄2

)
≥
(
1

4
− β

4

)(
1− 1

√
µ2

)
=

(
1

4
− β

4

)(
1−O

(
1√
k

))
.

Putting the two entropies together, we then see that

Eh⋆ [H(α1 | s, h⋆)] =
1

2
H(α1 | s, h1) +

1

2
H(α1 | s, h2)

≥ 1

2
log2(2πe) +

1

4
log2

[
k

(
1

4
− β

4

) (
1− Õ

(
1√
k

))]
+

1

4
log2

[
k

(
1

4
− β

4

) (
1− Õ

(
1√
k

))]
−O

(
1

k

)
=

1

2
log2

(
2πe k

(
1

4
− β

4

))
− Õ

(
1√
k

)
.
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Finally, we have
H(α1 | B1, h

⋆) = E
s∼Binom(k,1/2)

[
Eh⋆ [H(α1 | s, h⋆)]

]
.

Since P(
∑

i xi ∈ A) ≥ 1− 1/k the above gives the lower bound

H(α1 | B1, h
⋆) ≥

(
1− 1

k

)
1

2
log2

(
2πe k

(
1

4
− β

4

))
− Õ

(
1√
k

)
as k grows large.

Piecing together and simplifying results in

I(h⋆; (B1, α1)) ≤
1

2
log2(πek/2)−

1

2
log2

(
2πe k

(
1

4
− β

4

))
= −1

2
log2(1− β) + Õ

(
1√
k

)
,

which is of the form

β + Õ

(
1√
k

)
when β → 0 and k is large. When k is large enough, the above becomes smaller than β/2. The lower bound on the number
of bags is then of the form

m = Ω

(
1− E(δ)

β

)
,

independent of k, when k is large enough, and β is a small constant (independent of k). The sample size n = mk must thus
scale linearly with k. In particular,

n = Ω

(
k(1− E(δ))

β

)
.

This concludes the proof.

B. Proofs and further results for Section 4
This appendix contains the proof of Theorem 4.1, as well as the extension of the ERM estimator in the case where p and
E[h(x)] are unknown.

B.1. Proof of Theorem 4.1: Known p and E[h(x)]

First, recall the notation introduced in the main body. For bag zj = (Bj , αj), and function h ∈ H, we set

Ej(h) =

k∑
i=1

h(xj,i) , Ẽj(h) =

k∑
i=1

h(xj,i)− kE[h(x)] , α̃j = αj − p ,

where p = E[h⋆(x)]. We also assumed that E[h(x)], for h ∈ H, and p are known.

Then, for bag zj = (Bj , αj), recall the definition of clipped (debiased) square loss

ℓc(h, zj) =
1

k

(
kα̃j − Ẽj(h)

)2
︸ ︷︷ ︸

Xj(h)

Gj(h) +
(
E[h(x)]− p

)2
︸ ︷︷ ︸

a(h)

,

where

Gj(h) =

{
|kα̃j − Ẽj(h)| ≤

√
8k log

2

θ

}
,

for a suitable value of parameter θ > 0, and then its population version

Lc
B(h) = Ez [ℓ

c(h, z)] .
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Also, define the non-clipped version of the loss at the bag level:

ℓ(h, zj) =
1

k

(
kα̃j − Ẽj(h)

)2
+
(
E[h(x)]− p

)2
,

and note that its population counterpart LB(h) = Ez [ℓ(h, z)] satisfies

LB(h) = L(h) .

In order to prove the above claim, set for brevity

vi = yj,i − p+ E[h(x)]− h(xj,i) ,

for j ∈ [k]. Then observe that ℓ(h, zj) can be rewritten as ℓ(h, zj) = 1
k

(∑k
i=1 vi

)2
+ (E[h(x)]− p)2 , where the variables

vi are i.i.d. with E[vi] = 0.

Therefore

LB(h) =
1

k
E

( k∑
i=1

vi

)2
+ (E[h(x)]− p)2

=
1

k
E

[
k∑

i=1

v2i

]
+

1

k
E

 k∑
i ̸=j

vivj

+ (E[h(x)]− p)2

= E[v21 ] + (E[h(x)]− p)2

(using the fact that the variables vi are zero-mean and independent)

= Var(yj,1 − h(xj,1)) + (E[h(x)]− p)2

= E[(y − h(x))2]

= L(h) ,

as anticipated.

In order to achieve fast rates, we will investigate loss differences. This is a by now standard observation that dates back to at
least (Massart, 2000; Mendelson, 2002), See also (Bartlett et al., 2005).

Now, for any pair h1, h2 ∈ H, we have

Lc
B(h1)− Lc

B(h2) = Ezj [Xj(h1)Gj(h1)−Xj(h2)Gj(h2) + a(h1)− a(h2)]

= Ezj

[
Xj(h1)−Xj(h2) + a(h1)− a(h2)−Xj(h1)Gj(h1) +Xj(h2)Gj(h2)

]
= Ezj

[
ℓ(h1, zj)− ℓ(h2, zj)−Xj(h1)Gj(h1) +Xj(h2)Gj(h2)

]
= L(h1)− L(h2) + Ezj

[
−Xj(h1)Gj(h1) +Xj(h2)Gj(h2)

]
,

so that

|Lc
B(h1)− Lc

B(h2)− (L(h1)− L(h2))| ≤ Ezj

[
|Xj(h1)|Gj(h1) + |Xj(h2)|Gj(h2)

]
≤ 4kEzj

[
Gj(h1) +Gj(h2)

]
(since |Xj(h1)| and |Xj(h1)| are both bounded by 4k)
≤ 8kθ (10)

(since Ezj [Gj(h1)] and Ezj [Gj(h1)] are both ≥ 1− θ) .
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Moreover,

(
ℓc(h1, zj)− ℓc(h2, zj)

)2
=
(
Xj(h1)Gj(h1)−Xj(h2)Gj(h2) + a(h1)− a(h2)

)2
=

((
Xj(h1)−Xj(h2)

)
Gj(h1)Gj(h2) +Xj(h1)Gj(h1)Gj(h2)−Xj(h2)Gj(h1)Gj(h2) + a(h1)− a(h2)

)2

≤ 4
(
Xj(h1)−Xj(h2)

)2
Gj(h1)Gj(h2) + 4X2

j (h1)Gj(h1)Gj(h2) + 4X2
j (h2)Gj(h1)Gj(h2) + 4

(
a(h1)− a(h2)

)2
(using (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2)) .

Now, define γ(h1, h2) = E[(h1(x)− h2(x))
2]. We have

(
a(h1)− a(h2)

)2
=
((

E[h1(x)]− p
)2−(E[h2(x)]− p

)2)2
=
(
E[h1(x)]− E[h2(x)]

)2(
E[h1(x)] + E[h2(x)]− 2p

)2
=

(
E[h1(x)− h2(x)]

)2
︸ ︷︷ ︸

≤E[(h1(x)−h2(x))2]=γ(h1,h2)

(
E[h1(x)] + E[h2(x)]− 2p

)2
︸ ︷︷ ︸

≤4

≤ 4γ(h1, h2) .

Taking the expectation then gives

E
[(

ℓc(h1, zj)− ℓc(h2, zj)
)2]

≤ 4E
[(

Xj(h1)−Xj(h2)
)2

Gj(h1)Gj(h2)

]
+ 4E

[
X2

j (h1)Gj(h1)Gj(h2)
]
+ 4E

[
X2

j (h2)Gj(h1)Gj(h2)
]

+ 16γ(h1, h2)

≤ 4E
[(

Xj(h1)−Xj(h2)
)2

Gj(h1)Gj(h2)

]
+ 128k2θ + 16γ(h1, h2)

=
4

k2
E
[(

Ẽj(h1)− Ẽj(h2)
)2(

2kα̃j − Ẽj(h1)− Ẽj(h2)
)2

Gj(h1)Gj(h2)

]
+ 128k2θ + 16γ(h1, h2)

≤ 4

k2
E
[(

Ẽj(h1)− Ẽj(h2)
)2(

|kα̃j − Ẽj(h1)|+ |kα̃j − Ẽj(h2)|
)2

Gj(h1)Gj(h2)

]
+ 128k2θ + 16γ(h1, h2)

≤ 128

k
E
[(

Ẽj(h1)− Ẽj(h2)
)2]

log
2

θ
+ 128k2θ + 16γ(h1, h2)

= 128 Var
(
h1(x)− h2(x)

)
log

2

θ
+ 128k2θ + 16γ(h1, h2)

≤ 144 γ(h1, h2) log
2

θ
+ 128k2θ . (11)

Further, recalling that ĥ⋆ is the best-in-class hypothesis, and h⋆ is the Bayes predictor h⋆(x) = P(y = 1|x), we observe
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that, for any h ∈ H, we can write

γ(h, ĥ⋆) = E[(h(x)− h⋆(x) + h⋆(x)− ĥ⋆(x))2]

= E[(h(x)− h⋆(x))2]− E[(ĥ⋆(x)− h⋆(x))2] + 2E[(h⋆(x)− ĥ⋆(x))(h(x)− ĥ⋆(x))]

= L(h)− L(ĥ⋆) + 2E[(h⋆(x)− ĥ⋆(x))(h(x)− ĥ⋆(x))]

(since L(h1)− L(h2) = E[(h1(x)− h⋆(x))2]− E[(h2(x)− h⋆(x))2] for any h1, h2)

≤ L(h)− L(ĥ⋆) + 2

√
E[(h⋆(x)− ĥ⋆(x))2]

√
E[(h(x)− ĥ⋆(x))2]

(from the Cauchy-Schwarz inequality)

= L(h)− L(ĥ⋆) + 2

√
γ(h⋆, ĥ⋆)

√
γ(h, ĥ⋆) .

Solving for γ(h, ĥ⋆), and setting for brevity ∆L = L(h)− L(ĥ⋆), this implies

γ(h, ĥ⋆) ≤ ∆L+ 2γ(ĥ⋆, h⋆) + 2

√
γ2(ĥ⋆, h⋆) + γ(ĥ⋆, h⋆)∆L

Using the inequality
√
a+ b ≤

√
a+ b/(2

√
a), with a = γ2(ĥ⋆, h⋆) we then have

γ(h, ĥ⋆) ≤ 4γ(ĥ⋆, h⋆) + 2∆L .

Combined with (11) this gives, for any h ∈ H,

E
[(

ℓc(h, zj)− ℓc(ĥ⋆, zj)
)2]

= O

((
γ(ĥ⋆, h⋆) + L(h)− L(ĥ⋆)

)
log

1

θ
+ k2θ

)
. (12)

Finally, because of the explicit clipping, we also have, deterministically,

|ℓc(h1, zj)− ℓc(h2, zj)| ≤ 8 log
2

θ
+ 1 . (13)

Consider now the difference of bag-level clipped losses

ℓc(h, ĥ⋆; zj) = ℓc(h, zj)− ℓc(ĥ⋆, zj) ,

and define the empirical measure

ℓ̂c(h, ĥ⋆;S) =
1

m

m∑
j=1

ℓc(h, ĥ⋆; zj) =
1

m

m∑
j=1

ℓc(h, zj)−
1

m

m∑
j=1

ℓc(ĥ⋆, zj)

and the ERM estimator

ĥ = ĥ(S) = argmin
h∈H

1

m

m∑
j=1

ℓc(h, ĥ⋆; zj) = argmin
h∈H

1

m

m∑
j=1

ℓc(h, zj) .

Recall that we denote by Hβ the set of β-suboptimal hypotheses

Hβ =
{
h ∈ H : L(h) ≥ L(ĥ⋆) + β

}
.

We introduce the shorthands

∆Lc
B(h, ĥ

⋆) = Lc
B(h)− Lc

B(ĥ
⋆) , ∆LB(h, ĥ

⋆) = LB(h)− LB(ĥ
⋆) ,

where, we recall, Lc
B(h) = Ezj [ℓ

c(h, zj)], and LB(h) = Ezj [ℓ(h, zj)].
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Also recall that LB(h) = L(h). We can write{
ĥ ∈ Hβ

}
≤
{
∃h ∈ Hβ : ℓ̂c(h, ĥ⋆;S) ≤ ℓ̂c(ĥ⋆, ĥ⋆;S)

}
=
{
∃h ∈ Hβ : ℓ̂c(h, ĥ⋆;S)−∆Lc

B(h, ĥ
⋆) ≤ ℓ̂c(ĥ⋆, ĥ⋆;S)−∆Lc

B(h, ĥ
⋆)
}

≤
{
∃h ∈ Hβ : ∆Lc

B(h, ĥ
⋆)− ℓ̂c(h, ĥ⋆;S) ≥ ∆LB(h, ĥ

⋆)− 8kθ
}

(14)

(since ℓ̂c(ĥ⋆, ĥ⋆;S) = 0 and, because of (10), ∆Lc
B(h, ĥ

⋆) ≥ ∆LB(h, ĥ
⋆)− 8kθ).

Since we assumed |H| < ∞, from (14) we can write{
ĥ ∈ Hβ

}
≤
∑

h∈Hβ

{
∆Lc

B(h, ĥ
⋆)− ℓ̂c(h, ĥ⋆;S) ≥ ∆LB(h, ĥ

⋆)− 8kθ
}
.

Our setting

θ =
β

16k2

implies
∆LB(h, ĥ

⋆)− 8kθ ≥ ∆LB(h, ĥ
⋆)− β/(2k) ≥ ∆LB(h, ĥ

⋆)/2 ,

and k2θ = O(β) = O(∆LB(h, ĥ
⋆)) in the variance bound (12), in both cases using the fact that h ∈ Hβ . Moreover, in (13),

|ℓc(h, ĥ⋆; zj)| = O

(
log

k

β

)
. (15)

From (12) and (15), using the standard Bernstein inequality to each individual h ∈ Hβ , and setting for brevity µ = µ(h) =

∆LB(h, ĥ
⋆), we can write

P
(
ĥ ∈ Hβ

)
≤
∑

h∈Hβ

P
(
∆Lc

B(h, ĥ
⋆)− ℓ̂c(h, ĥ⋆;S) ≥ µ/2

)

≤
∑

h∈Hβ

exp

− m2µ2/8

mO
((

γ(ĥ⋆, h⋆) + µ
)
log k

β

)
+mO

(
µ log k

β

)


=
∑

h∈Hβ

exp

− mµ2/8

O
((

γ(ĥ⋆, h⋆) + µ
)
log k

β

)
 .

Since the function µ → µ2

γ+µ is increasing in µ ≥ 0 for any γ ≥ 0, and in our case µ ≥ β for any h ∈ Hβ , a lower bound on
the fraction in the exponential is simply obtained by replacing µ with β. This yields

P
(
ĥ ∈ Hβ

)
≤ |Hβ | exp

− mβ2/8

O
((

γ(ĥ⋆, h⋆) + β
)
log k

β

)
 .

If we want the right-hand side to be less than δ it then suffices to have

m = O

((
γ(ĥ⋆, h⋆) + β

)
log k

β

β2
log

|Hβ |
δ

)
.

In particular, in the realizable case, we have γ(ĥ⋆, h⋆) = 0, yielding the bound

m = O

(
log k

β

β
log

|Hβ |
δ

)
.

This concludes the proof.
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B.2. Proof of Theorem 4.1: Unknown p and E[h(x)]

When p and E[h(x)] are unknown, we simply split the m bags into m1 +m2 bags, and hence the dataset into two parts:

S = ((x1,1, . . . , x1,k), α1), . . . , ((xm1,1, . . . , xm1,k), αm1)︸ ︷︷ ︸
S1

,

((xm1+1,1, . . . , xm1+1,k), αm1+1), . . . , ((xm1+m2,1, . . . , xm1+m2,k), αm1+m2)︸ ︷︷ ︸
S2

,

then estimate p and E[h(x)] on the second half S2. Specifically,

p̂ =
1

m2

m1+m2∑
j=m1+1

αj

and

Ê[h(x)] =
1

m2k

m1+m2∑
j=m1+1

k∑
i=1

h(xj,i) .

Then, for j ∈ [m1], set

Ej(h) =

k∑
i=1

h(xj,i) , Ẽj(h) = Ej(h)− kÊ[h(x)] , α̃j = αj − p̂

and re-define the clipped bag-level square loss as

ℓc(h, zj) =
1

k

(
kα̃j − Ẽj(h)

)2
︸ ︷︷ ︸

X̂j(h)

Gj(h) +
(
Ê[h(x)]− p̂

)2
︸ ︷︷ ︸

â(h)

,

where now

Gj(h) =

{
|kα̃j − Ẽj(h)| ≤

√
18k log

6

θ

}
,

for some value of parameter θ > 0 that will be determined later on.

Note that

|kα̃j − Ẽj(h)| = |kαj − kp̂− Ej(h) + kÊ[h(x)]|

= |k(αj − p) + k(p− p̂) + kE[h(x)]− Ej(h) + k(Ê[h(x)]− E[h(x)])|

≤ k|αj − p+ kE[h(x)]− Ej(h)|+ k|p− p̂|+ k|Ê[h(x)]− E[h(x)]| .

Hence, for all t ≥ 0, and any fixed h ∈ H, and j ∈ [m1],{
|kα̃j − Ẽj(h)| ≥ t

}
≤
{
k|αj − p+ kE[h(x)]− Ej(h)| ≥ t1

}
+
{
k|p− p̂| ≥ t2

}
+
{
k|Ê[h(x)]− E[h(x)]| ≥ t3

}
,

where t1 + t2 + t3 = t. We set

t1 =

√
8k log

6

θ
, t2 = t3 =

√
k

2m2
log

6

θ

to conclude from the standard Hoeffding’s inequality that, for fixed j ∈ [m1],

E
[{

k|αj − p+ kE[h(x)]− Ej(h)| ≥ t1

}]
≤ θ

3

and, taking expectation over the generation of S2,

E
[{

k|p− p̂| ≥ t2

}]
≤ θ

3
, E

[{
k|Ê[h(x)]− E[h(x)]| ≥ t3

}]
≤ θ

3
.
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Since t1 + t2 + t3 ≤
√
18k log 6

θ , this implies
E[Gj(h)] ≤ θ .

for each individual h ∈ H, and j ∈ [m1].

We now need to proceed with a bias-variance tradeoff, which is similar to, but a bit more involved than the one contained in
Section B.1.

We still define the unclipped version of the loss at the bag level as in Section B.1, but now we need to factor in the extra bias
coming from the estimators from S2. In particular, for any pair h1, h2 ∈ H, we have

Lc
B(h1)− Lc

B(h2) = Ezj

[
X̂j(h1)Gj(h1)− X̂j(h2)Gj(h2) + â(h1)− â(h2)

]
= Ezj

[
X̂j(h1)− X̂j(h2) + â(h1)− â(h2)− X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

]
= Ezj

[
X̂j(h1)−Xj(h1) +Xj(h1)−Xj(h2) +Xj(h2)− X̂j(h2)

+ â(h1)− a(h1) + a(h1)− a(h2) + a(h2)− â(h2)− X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

]
= Ezj

[
ℓ(h1, zj)− ℓ(h2, zj)− X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

]
+ Ezj

[
X̂j(h1)−Xj(h1) +Xj(h2)− X̂j(h2) + â(h1)− a(h1) + a(h2)− â(h2)

]
= L(h1)− L(h2) + Ezj

[
−X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

]
+ Ezj

[
∆X̂j(h1, h2)−∆Xj(h1, h2) + ∆â(h1, h2)−∆a(h1, h2)

]
,

where we set for brevity

∆X̂j(h1, h2) = X̂j(h1)− X̂j(h2) , ∆Xj(h1, h2) = Xj(h1)− X̂j(h2) ,

∆â(h1, h2) = â(h1)− â(h2) , ∆a(h1, h2) = a(h1)− a(h2) .

Thus

|Lc
B(h1)− Lc

B(h2)− (L(h1)− L(h2))|

≤Ezj

[
|X̂j(h1)|Gj(h1) + |X̂j(h2)|Gj(h2)

]
+ Ezj

[
|∆X̂j(h1, h2)−∆Xj(h1, h2)|

]
+Ezj

[
|∆â(h1, h2)−∆a(h1, h2)|

]
. (16)

Now, as in Section B.1,
Ezj

[
|X̂j(h1)|Gj(h1) + |X̂j(h2)|Gj(h2)

]
≤ 8kθ . (17)

Moreover, for any h1, h2,

∆X̂j(h1, h2) =
1

k

(
Ej(h2)− Ej(h1)

)(
2kαj − 2kp̂− Ej(h1)− Ej(h2) + kÊ[h1(x)] + kÊ[h2(x)]

)
∆Xj(h1, h2) =

1

k

(
Ej(h2)− Ej(h1)

)(
2kαj − 2kp− Ej(h1)− Ej(h2) + kE[h1(x)] + kE[h2(x)]

)
,

so that

∆X̂j(h1, h2)−∆Xj(h1, h2)

=
1

k

(
Ej(h2)− Ej(h1)

)(
2k(p− p̂) + k(Ê[h1(x)]− E[h1(x)]) + k(Ê[h2(x)]− E[h2(x)])

)
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and

|∆X̂j(h1, h2)−∆Xj(h1, h2)|

≤
∣∣∣Ej(h2)− Ej(h1)

∣∣∣(2∣∣p− p̂
∣∣+∣∣Ê[h1(x)]− E[h1(x)]

∣∣+∣∣Ê[h2(x)]− E[h2(x)]
∣∣) . (18)

From Hoeffding’s inequality we know that the sum of the three absolute values in the second factor is overall bounded by√
8

m2k
log

6

δ

with probability ≥ 1− δ over the random draw of S2. On the other hand, by convexity,

Ezj

[∣∣∣Ej(h2)− Ej(h1)
∣∣∣]≤√Ezj

[(
Ej(h2)− Ej(h1)

)2]
=
√

kγ(h1, h2) .

Similarly, if we set for short

∆Ê = Ê[h2(x)]− Ê[h1(x)] , ∆E = E[h2(x)]− E[h1(x)]

we can write

∆â(h1, h2) = (∆Ê−∆E)
(
2p̂− Ê[h1(x)]− Ê[h2(x)]

)
+∆E

(
2p̂− Ê[h1(x)]− Ê[h2(x)]

)
∆a(h1, h2) = ∆E

(
2p̂− E[h1(x)]− E[h2(x)]

)
Hence

∆â(h1, h2)−∆a(h1, h2)

= (∆Ê−∆E)
(
2p̂− Ê[h1(x)]− Ê[h2(x)]

)
+∆E

(
2(p̂− p) + (E[h1(x)]− Ê[h1(x)]) + (E[h2(x)]− Ê[h2(x)])

)
which implies

|∆â(h1, h2)−∆a(h1, h2)|

≤ |∆Ê−∆E |
∣∣∣2p̂− Ê[h1(x)]− Ê[h2(x)]

∣∣∣︸ ︷︷ ︸
≤2

+|∆E |
(
2|p̂− p|+ |E[h1(x)]− Ê[h1(x)]|+ |E[h2(x)]− Ê[h2(x)]|

)

≤ 2|∆Ê−∆E |+
√

γ(h1, h2)
(
2|p̂− p|+ |E[h1(x)]− Ê[h1(x)]|+ |E[h2(x)]− Ê[h2(x)]|

)
, (19)

where in the last step we used the fact that

|∆E | ≤ E[|h1(x)− h2(x)|] ≤
√
γ(h1, h2) .

As before, Hoeffding’s inequality allows us to see that the sum of the three absolute values in the second term is overall
bounded by √

8

m2 k
log

6

δ

with probability ≥ 1 − δ over the random draw of S2. Moreover, since Var
(
h2(x) − h1(x)

)
≤ γ(h1, h2), Bernstein’s

inequality shows that with the same probability we also have

|∆Ê−∆E | ≤

√
2γ(h1, h2)

m2 k
log

1

δ
+

2

3m2 k
log

1

δ
.

We piece together as in (16), and take a union bound over h1, h2 ∈ H. We conclude that with probability ≥ 1− δ over S2,

|Lc
B(h1)− Lc

B(h2)− (L(h1)− L(h2))| ≤ 8kθ +O

(√
γ(h1, h2)

m2
log

|H|
δ

+
1

m2 k
log

|H|
δ

)
, (20)
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which is the counterpart of (10).

As in Section B.1, we continue by bounding the second moment. We have

(
ℓc(h1, zj)− ℓc(h2, zj)

)2
=
(
X̂j(h1)Gj(h1)− X̂j(h2)Gj(h2) + â(h1)− â(h2)

)2
=

(
X̂j(h1)−Xj(h1) +Xj(h1)−Xj(h2) +Xj(h2)− X̂j(h2)

+ â(h1)− a(h1) + a(h1)− a(h2) + a(h2)− â(h2)− X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

)2

=

(
Xj(h1) + a(h1)−Xj(h2)− a(h2) + ∆X̂j(h1, h2)−∆Xj(h1, h2) + ∆â(h1, h2)−∆a(h1, h2)

− X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

)2

≤ 4

(
Xj(h1) + a(h1)−Xj(h2)− a(h2)

)2

︸ ︷︷ ︸
(I)

+4

(
∆X̂j(h1, h2)−∆Xj(h1, h2)

)2

︸ ︷︷ ︸
(II)

+4

(
∆â(h1, h2)−∆a(h1, h2)

)2

︸ ︷︷ ︸
(III)

+ 4

(
X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

)2

︸ ︷︷ ︸
(IV )

(using (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2)) .

At this point, we take expectation w.r.t. zj , and use past calculations. In particular, from (11)

Ezj [(I)] ≤ 144 γ(h1, h2) log
2

θ
+ 128k2θ .

Moreover, from the arguments surrounding Eq. (18), with probability at least 1− δ over S2,

Ezj [(II)] ≤
8γ(h1, h2)

m2
log

6

δ
.

Likewise, from the arguments surrounding Eq. (19), with probability at least 1− δ over S2,

Ezj [(III)] ≤
16γ(h1, h2)

m2 k
log

1

δ
+ 2

(
2

3m2 k
log

1

δ

)2

+
16γ(h1, h2)

m2 k
log

6

δ

= O

(
γ(h1, h2)

m2 k
log

1

δ
+

(
1

m2 k
log

1

δ

)2
)

,

where we repeatedly used the upper bound (a+ b)2 ≤ 2(a2 + b2).

Finally, from the same argument as in (17),

Ezj [(IV )] ≤ Ezj

(X̂j(h1)Gj(h1) + X̂j(h2)Gj(h2)

)2


≤ 2Ezj

[(
X̂j(h1)

)2
Gj(h1) +

(
X̂j(h2)

)2
Gj(h2)

]
≤ 64k2θ .
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Combining the above terms, and taking a union bound over h1, h2 ∈ H, we have shown that, with probability at least 1− δ
over S2,

Ezj

[(
ℓc(h1, zj)− ℓc(h2, zj)

)2]
= O

(
γ(h1, h2) log

1

θ
+ k2θ +

γ(h1, h2)

m2 k
log

1

δ
+

(
1

m2 k
log

1

δ

)2
)

,

which is the counterpart of (11).

As for the counterpart of (13), we also have deterministically

|ℓc(h1, zj)− ℓc(h2, zj)| ≤ 18 log
6

θ
+ 1 .

From this point on, we follow the proof of Section B.1 by setting h1 = ĥ, and h2 = ĥ⋆. Recall that for all h ∈ Hβ , the
quantity γ(h, ĥ⋆) can be upper bounded as

γ(h, ĥ⋆) ≤ 4γ∗ + 2∆L(h, ĥ⋆) ,

where γ∗ = γ(ĥ⋆, h⋆), and ∆L(h, ĥ⋆) = L(h)− L(ĥ⋆). We then set

θ =
β

16k2

as in Section B.1. This implies

|Lc
B(h)− Lc

B(ĥ
⋆)− (L(h)− L(ĥ⋆))| ≤ β

2k
+O

(√
γ∗ +∆L(h, ĥ⋆)

m2
log

|H|
δ

+
1

m2 k
log

|H|
δ

)
,

and

Ezj

[(
ℓc(h1, zj)− ℓc(h2, zj)

)2]
= O

(
(γ∗ +∆L(h, ĥ⋆)) log

k

β
+

(γ∗ +∆L(h, ĥ⋆))

m2 k
log

1

δ
+

(
1

m2 k
log

1

δ

)2
)

,

and

|ℓc(h1, zj)− ℓc(h2, zj)| = O

(
log

k

β

)
,

holding with probability ≥ 1− δ over the generation of S2. Now if, for all h ∈ Hβ ,

m2 = Ω

(
γ∗ +∆L(h, ĥ⋆)

(∆L(h, ĥ⋆))2
log

|H|
δ

)

for appropriate constants hidden in the Ω-notation, we see that the bias bound satisfies

β

2k
+O

(√
γ∗ +∆L(h, ĥ⋆)

m2
log

|H|
δ

+
1

m2 k
log

|H|
δ

)
≤ β

2
+

∆L(h, ĥ⋆)

4
≤ 3

4
∆L(h, ĥ⋆) ,

so that, when h ∈ Hβ ,

∆LB(h, ĥ
⋆)− β

2k
+O

(√
γ∗ +∆L(h, ĥ⋆)

m2
log

|H|
δ

+
1

m2 k
log

|H|
δ

)
≥ 1

4
∆LB(h, ĥ

⋆) =
1

4

(
L(h)− L(ĥ⋆)

)
.

Moreover, under the same condition on m2,

Ezj

[(
ℓc(h1, zj)− ℓc(h2, zj)

)2]
= O

(
(γ∗ +∆LB(h, ĥ

⋆)) log
k

β
+ (∆L(h, ĥ⋆))2

)
.
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We proceed as in Section B.1 with an application of Bernstein’s inequality on the generation of S1. We set for brevity
µ = µ(h) = ∆LB(h, ĥ

⋆). We can write

P
(
ĥ ∈ Hβ

)
≤
∑

h∈Hβ

P
(
∆Lc

B(h, ĥ
⋆)− ℓ̂c(h, ĥ⋆;S) ≥ µ/4

)

≤
∑

h∈Hβ

exp

− m2
1 µ

2/32

m1 O
((

γ∗ + µ
)
log k

β + µ2
)
+m1 O

(
µ log k

β

)


=
∑

h∈Hβ

exp

− m1 µ
2/32

O
((

γ∗ + µ
)
log k

β + µ2
)
 .

This time we use the fact that the function µ → µ2

γA+µA+µ2 is increasing in µ ≥ 0 for any A, γ ≥ 0. Since µ ≥ β, this gives

P
(
ĥ ∈ Hβ

)
≤ |Hβ | exp

− m1 β
2/32

O
((

γ∗ + β
)
log k

β + β2
)
 = |Hβ | exp

− m1 β
2/32

O
((

γ∗ + β
)
log k

β

)
 .

Making the right-hand side smaller than δ gives

m1 = O

((
γ∗ + β

)
log k

β

β2
log

|Hβ |
δ

)
.

Since the condition on m2 is satisfied for all h ∈ Hβ by selecting

m2 = O

(
γ∗ + β

β2
log

|H|
δ

)
,

the overall sample complexity is

m = m1 +m2 = O

((
γ∗ + β

)
log k

β

β2
log

|H|
δ

)
.

This concludes the proof.
Remark B.1. Despite not shown in the above proof, one can easily see that the dependence on |H| in m2 can be replaced by
a dependence on |Hβ |, thus the overall sample complexity m1 +m2 is indeed only depending on |Hβ |.

C. Proofs for Section 5
In this section we detail the proof of Theorem 5.1. For the analysis, we require the definition of a smooth function along
with some basic properties that we recall now. A function f : Rd → R is said to be ζ-smooth (with respect to the Euclidean
norm ∥ · ∥) if its gradient is ζ-Lipschitz, namely if

∀ x, y ∈ Rd : ∥∇f(x)−∇f(y)∥ ≤ ζ∥x− y∥.

For a twice continuously-differentiable convex function f , a sufficient condition for ζ-smoothness is that 0 ⪯ ∇2f(x) ⪯ ζI
for all x ∈ Rd. Finally, a smooth function satisfies the so-called descent lemma, from which it follows that

∀ x ∈ Rd : ∥∇f(x)∥2 ≤ f(x)− f(x∗) ,

where x∗ ∈ Rd is a global minimizer of f .

For the sake of this section, let us introduce some short-hand notation:

ℓ̃j = ℓ̃(·, zj)
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and

δ =
ρ2wρ

2
x

9km(ρwρx + ρy)2
.

We begin the analysis by establishing that the losses ℓ̃j underlying Algorithm 2 are indeed convex and smooth.

Lemma C.1. For all j, the loss ℓ̃j is convex, nonnegative and ζ-smooth, with ζ = (kθ2 + 1)ρ2x.

Proof. Convexity and nonnegativity are immediate. To see the claim about smoothness, note that ℓ̃j is either identically
zero if ∥x̄j − µx∥ > θρx, in which case it is smooth, or is identical to the function ℓ(·, zj) whenever ∥x̄j − µx∥ ≤ θρx. In
the latter case, the Hessian is

∇2ℓ̃j(w) = ∇2ℓ(w, zj) = k(x̄j − µx)(x̄j − µx)
T + µxµ

T
x ,

whose eigenvalues are upper bounded by k∥x̄j − µx∥2 + ∥µx∥2 ≤ (kθ2 + 1)ρ2x .

Next, we demonstrate that in expectation, the truncated losses ℓ̃j are nearly unbiased estimates of the population loss L. The
bias in this estimation is controlled by the truncation threshold θ.

Lemma C.2. Suppose θ ≥
√
8 log(1/δ)/k. Then for all j and w such that ∥w∥ ≤ ρw, one has

−9k(ρwρx + ρy)
2δ ≤ E[ℓ̃j(w)]− L(w) ≤ 0 .

Proof. First, we note that E[ℓj(w)] = L(w); this follows directly from Equation (3). Further, for all w such that ∥w∥ ≤ ρw
we have ℓj(w) ≤ 9k(ρwρx + ρy)

2, hence

E[ℓj(w)]− E[ℓ̃j(w)] = E
[
ℓj(w) · {∥x̄j − µx∥ > θρx}

]
≤ 9k(ρwρx + ρy)

2 P
(
∥x̄j − µx∥ > θρx

)
.

To bound the probability on the right-hand side, note that x̄j − µx is an average of k i.i.d. zero-mean random vectors
bounded by ρx; from a vector Hoeffding bound (e.g., Boucheron et al., 2013, Example 6.3) it is straightforward to derive
that for any ϵ ≥ 2ρx/

√
k ,

P
(
∥x̄j − µx∥ > ϵ

)
≤ exp

(
− kϵ2

8ρ2x

)
.

Thus, for any θ ≥
√

8 log(1/δ)/k,

P
(
∥x̄j − µx∥ > θρx

)
≤ exp

(
− 1

8kθ
2
)
≤ δ,

and therefore
E[ℓj(w)]− E[ℓ̃j(w)] ≤ 9k(ρwρx + ρy)

2δ,

which concludes the proof.

Henceforth, we let ζ = (kθ2+1)ρ2x and fix θ =
√
8 log(1/δ)/k. Then by Lemma C.1, the losses ℓ̃j are convex, nonnegative

and ζ-smooth.

Lemma C.3. For 0 < η ≤ 1/(2ζ) and for any w∗ ∈ Rd,

m∑
j=1

ℓ̃j(wj)− ℓ̃j(w
∗) ≤ ∥w∗∥2

η
+ 2ζη

m∑
j=1

ℓ̃j(w
∗) .

Proof. Fix any w∗ ∈ Rd. By a standard regret bound for online gradient descent with convex losses ℓ̃j (e.g., Shalev-Shwartz
& Ben-David, 2014; Hazan et al., 2016), we have

m∑
j=1

(
ℓ̃j(wj)− ℓ̃j(w

∗)
)
≤ ∥w∗∥2

2η
+

η

2

m∑
j=1

∥∇ℓ̃j(wj)∥2 .
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Since ℓj is nonnegative and ζ-smooth, it follows that ∥∇ℓ̃j(wt)∥2 ≤ 2ζℓ̃j(wj). Thus,

m∑
j=1

(
ℓ̃j(wj)− ℓ̃j(w

∗)
)
≤ ∥w∗∥2

2η
+ ζη

m∑
j=1

(
ℓ̃j(wj)− ℓ̃j(w

∗)
)
+ ζη

m∑
j=1

ℓ̃j(w
∗).

Rearranging terms, we obtain

m∑
j=1

(
ℓ̃j(wj)− ℓ̃j(w

∗)
)
≤ ∥w∗∥2

2η(1− ζη)
+

ζη

1− ζη

m∑
j=1

ℓ̃j(w
∗) .

We conclude the proof by using ηζ ≤ 1
2 to upper bound the right-hand side.

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. From Lemma C.3 we have

m∑
j=1

E[ℓ̃j(wj)− ℓ̃j(w
∗)] ≤ ρ2w

η
+ 2ζη

m∑
j=1

E[ℓ̃j(w∗)].

On the other hand, from Lemma C.2, we know that

E[ℓ̃j(wj)] ≥ E[L(wj)]− 9k(ρwρx + ρy)
2δ

(since wj is independent of the j’th bag) and

E[ℓ̃j(w∗)] ≤ L(w∗) ≤ L⋆.

Putting together, dividing through by m, and using the convexity of L(·) we obtain

E[L(w̄m)]− L(w∗) ≤ E

 1

m

m∑
j=1

L(wj)− L(w∗)


≤ 9k(ρwρx + ρy)

2δ +
ρ2w
ηm

+ 2ζηL⋆.

Optimizing the bound with respect to η ∈ (0, 1
2ζ ], we can obtain

E[L(w̄m)]− L(w∗) ≤ 9k(ρwρx + ρy)
2δ +

4ζρ2w
m

+

√
8ζρ2wL

⋆

m
,

for a choice of stepsize η = min{ρw/
√
2ζmL⋆, 1/(2ζ)}. (This is shown by considering two cases, according to whether

L⋆ ≤ 2ζρ2w/m or not.) To conclude, recalling that θ =
√
8 log(1/δ)/k and

ζ = (kθ2 + 1)ρ2x = (8 log(1/δ) + 1)ρ2x ≤ 10ρ2x log(1/δ) ,

we have obtained the bound:

E[L(w̄m)]− L(w∗) ≤ 9k(ρwρx + ρy)
2δ +

40ρ2xρ
2
w log(1/δ)

m
+

√
80L⋆ρ2xρ

2
w log(1/δ)

m
.

Setting δ =
ρ2
wρ2

x

9km(ρwρx+ρy)2
, we obtain

E[L(w̄m)]− L(w∗) = Õ

(
ρ2xρ

2
w

m
+

√
L⋆ρ2xρ

2
w

m

)
.

Equating the right-hand side to β, and solving for m gives the claimed result.

31



Nearly Optimal Sample Complexity for LLP

D. Experiment details and additional results
We include here further details about our experiments that have been omitted from the main body of the paper.

Datasets. We use the following datasets:

MNIST Even vs Odd: MNIST is a digit classification dataset consisting of 60,000 training examples and 10,000 test examples.
Each image in the data is a 28× 28 grayscale image. We replace the original labels by the parity of the digit. That is, even
digits have label 0, while odd digits have label 1. No other processing is performed on MNIST.

CIFAR-10 Animal vs Machine: CIFAR-10 is a dataset where the goal is to classify images into one of 10 categories consisting
of 50,000 training examples and 10,000 test examples. Each image in the data is a 32× 32 three channel image. We replace
the original labels by whether they are an animal or machine. That is, the classes ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, and
‘horse‘ are all mapped to label 0, while classes ‘airplane‘, ‘automobile‘, ‘ship‘, and ‘truck‘ are mapped to label 1. No other
processing is performed on CIFAR-10.

Higgs: The Higgs dataset consists of Monte-Carlo simulated particle accelerator data, where the goal is to distinguish
between processes that create Higgs bosons and that do not. Each example has 28 features consisting of raw simulated
measurements and several human-designed higher level features. The Higgs dataset has 11,000,000 examples. We use the
first 10,000 examples as test data, and the remaining examples as training data.

Adult: The Adult dataset is derived from the US Census and the goal is to predict whether an individual’s annual income
exceeds $50k per year. The data contains 32,561 training examples and 16,281 test examples. Each example consists
of 14 features: numerical features ‘age’, ‘fnlwgt’, ‘education-num’, ‘capital-gain’, ‘captial-loss’, ‘hours-per-week‘ and
categorical features ‘workclass’, ‘education’, ‘marital-status’, ‘occupation’, ‘relationship’, ‘race’, ‘sex’, and ‘native-country’.
We one-hot encode each categorical feature and shift and rescale each numerical feature so that its values fall in the interval
[0, 1].

Models. We use the following models:

CNN for MNIST and CIFAR-10: For both MNIST and CIFAR-10, we use the following CNN architecture:

• A convolution layer with 32 filters, 3× 3 kernel, and ReLU activation.

• A max pooling layer with 2× 2 window and stride.

• A convolution layer with 64 filters, 3× 3 kernel, and ReLU activation.

• A max pooling layer with 2× 2 window and stride.

• A dropout layer with 50% drop rate.

• A fully connected layer with a single output value.

Higgs Model: We implement the same deep network model proposed by Baldi et al. (2014) (and also used by Busa-Fekete
et al. (2023)), which consists of four fully connected hidden layers each with 300 units and relu activations, followed by a
fully connected output layer with a single neuron.

Adult Model: We implement a simple neural network consisting of a single hidden layer with 32 neurons and a single output
neuron.

Aggregate Losses. Next we describe the aggregate losses used and several important implementation details.

Ours: We simply use the unclipped version of our proposed loss given in (2) together with the implementation details
described below for estimating E[h(x)] and p.

Li et al.: We use the loss

ℓLI(h,B, α) =
1

k

(
kα−

∑
x∈B

h(x)

)2

− (k − 1) · (E[h(x)]− p)2,
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together with the same implementation strategy for estimating E[h(x)] and p.

VanillaSQ and VanillaCE: For a bag B with label proportion α, let α̂ = 1
k

∑
x∈B h(x) denote the model’s average prediction

on B. Then VANILLASQ is (α̂−α)2, while VANILLACE is ℓce(α̂, α), where ℓce(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) is
the binary cross-entropy loss.

EasyLLP: Easy LLP corresponds to the loss

ℓEASYLLP(h,B, α) =
1

k

∑
x∈B

(w1 · ℓce(h(x), 1) + w0 · ℓce(h(x), 0)) ,

where w1 = kα− (k − 1)p and w0 = k(1− α)− (k − 1)(1− p). We estimate p in the same way as described below.

Implementation Details: The three aggregate losses OURS, LI ET AL., and EASYLLP all require access to p = E(x,y)∼D[y].
In all cases, we estimate p by taking the average label on the complete training data (which is equivalent to averaging the
bag label proportions). The losses OURS and LI ET AL. both involve the average prediction of the current model h, E[h(x)].
Given a minibatch that contains several bags, when computing the loss estimates on bag i, we estimate E[h(x)] to be the
model’s average prediction on the other bags. In particular, this provides an unbiased estimate of E[h(x)] that is uncorrelated
with the other terms in the loss definition, which is important since correlations could eliminate the variance reduction
achieved by the loss.

Additional Results. Figure 3 shows our results on all datasets, including Adult.
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Figure 3. Plots showing the final test accuracy of models trained on each dataset as a function of the LLP bag size and number of training
epochs. Error bars show one standard error in the mean over 10 repetitions. Each data point represents the accuracy achieved by a learning
rate tuned for that bag size and loss.
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