
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KITINET: KINETICS THEORY INSPIRED NETWORK AR-
CHITECTURES WITH PDE SIMULATION APPROACHES

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the widely recognized success of residual connections in modern neural
networks, their design principles remain largely heuristic. This paper introduces
KITINet (KInetics Theory Inspired Network), a way that reinterprets feature propa-
gation through the lens of non-equilibrium particle dynamics and partial differential
equation (PDE) simulation. We propose a new residual module that models feature
updates as the stochastic evolution of a particle system, numerically simulated via
a discretized solver for the Boltzmann transport equation (BTE). This formulation
mimics particle collisions, enabling additional neuron-wise information propa-
gation via physical interactions. Additionally, we reveal that this mechanism is
an implicit regularization approach that induces network parameter condensation
during training, where parameters progressively concentrate into a sparse subset of
dominant channels. Experiments on large language modeling, image classification,
scientific computation, and text classification show consistent improvements over
classic network baselines, without additional inference cost.

1 INTRODUCTION
Residual connections have become a cornerstone of modern networks, enabling the training of
exceptionally deep nets by alleviating vanishing gradients and stabilizing feature propagation. From
ResNets [15] in vision to Transformers [43] in texts, residual mechanisms underpin state-of-the-art
architectures. Recent advances have further explored residual learning through dynamical systems
[7; 3], where iterative updates are analogized to differential equations. Concurrently, physics-
inspired neural networks have gained traction, with frameworks such as PDE networks [26; 27] and
Hamiltonian networks [42; 14] demonstrating that embedding physical principles into architectures
can enhance physical interpretability and generalization. However, while these works highlight the
potential of interdisciplinary design, the fusion of kinetic theory, particularly particle dynamics and
collisional processes, with residual learning remains largely unexplored.

Despite their empirical success, existing residual modules are mostly designed heuristically. E.g.,
standard skip connections propagate features via simple additive operations, neglecting the rich
dynamics of stochastical multi-particle interactions or energy exchange in non-equilibrium systems.
As established in [40], the entropy-increasing behavior of feature representations is pervasive in
architectures exhibiting information bottlenecks, such as GPT and ResNet. From a physical standpoint,
particle collisions enhance macroscopic viscosity [12], easing the network’s burden to produce
external forces and yielding smoother force fields and more condense parameterization. From a
mathematical perspective, stochastic collisions can be regarded as a source of implicit regularization.

However, existing dynamical systems perspectives reinterpret residual networks as discretized ODEs
[7; 35; 34], failing to account for stochastic, collision-driven interactions that govern particle systems.
This gap leaves critical questions unanswered: Can residual learning be reimagined through the
lens of kinetic theory? How might collisional dynamics, as modeled by BTE, inform adaptive
feature refinement? Prior physics-inspired architectures [39; 45] have not rigorously bridged particle-
based simulation with parameter sparsity mechanisms, nor uncovered the phenomenon of network
parameter condensation [46] i.e. training concentrates parameters into a sparse subset of channels,
via a physics-grounded framework.

This paper introduces KITINet, a kinetics theory inspired network architecture that reformulates
residual learning as a stochastic particle simulation governed by the BTE. We propose a novel residual
module where feature updates emulate the collisional evolution of a multi-particle system: each

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

channel acts as a "particle" whose interactions are simulated via a discretized PDE solver, and adap-
tively redistributes information through physics-informed collision operators. This approach not only
aligns feature propagation with non-equilibrium thermodynamics but also induces network parameter
condensation, a phenomenon where gradients during training progressively sparsify parameters into
dominant channels. Extensive experiments on language model pre-training, image classification, PDE
operator learning, and text classification validate KITINet’s efficacy, outperforming GPT2, ResNet,
and BERT. By unifying kinetic theory with deep learning, it establishes a new paradigm for designing
interpretable, physics-grounded architectures. The highlights of the paper are:

• This paper proposes a novel residual connection module to replace only the residual addition, which
formulates the feature updating process as the evolution of a kinetic particle system and implements
the module by simulating random particle collisions using a numerical algorithm of the BTE.

• It physically and mathematically promotes the recently heated phenomenon called network param-
eter condensation in training [46].

• Experimental results demonstrate that the proposed module achieves performance improvements
over baseline models on language model pre-training, image and text and PDE tasks.

• It introduces a principled way to selectively embedding PDE structures into neural architectures.

2 PRELIMINARIES

2.1 KINETIC THEORY AND NUMERICAL ALGORITHM

The kinetic molecular theory of ideal gases is given as four postulates [25]:

1. A gas consists of particles called molecules, which are all alike in a given type of gas.
2. The molecules are in motion, and Newton’s laws of motion may presumably be applied.
3. The molecules behave as elastic spheres with small diameters. Therefore, the space they occupy

may be disregarded, and the collisions between them are energy-conservative.
4. No appreciable forces of attraction or repulsion are exerted by the molecules on each other.

When the particle system becomes too dense, it becomes necessary to describe the particle dynamics
using distributions rather than trajectories. In kinetic theory, interaction sparsity is governed not by
the absolute number of particles (e.g., the Avogadro constant), but by the ratio of the mean free path
λ to the characteristic system length L. This ratio—known as the Knudsen number Kn = λ/L. As
detailed in Equation (4) later in the text, the effective mean free path is normalized to λ = 1, as defined
in the collision modulation term (Ur)i,j = e−(Xr)i,j . Due to commonly used normalization schemes
(e.g., BatchNorm), the typical feature-space distance is approximately L ≈ 3.29, corresponding to
the 90th percentile of data spread. This yields a Knudsen number of Kn = λ/L ≈ 0.30, which lies
well within the valid kinetic regime for the BTE (commonly 0.01 < Kn < 10).

The density function f in the 7-dim phase space is defined as dN = f(x,p, t) d3x d3p. Assuming the
displacement and momentum x,p satisfy the Hamiltonian equations, and external force represented
as Fex, then f satisfies the Boltzmann transport equation (BTE) [5]:

∂f

∂t
+

p

m
· ∇xf + Fex · ∇pf =

(
∂f

∂t

)
coll

(1)

where the right-hand side term describes the changes in the distribution due to particle collisions,
which can only be approximated by an empirical formula. The BTE is a partial differential equation
(PDE) that describes the evolution of the distribution function f over time. There are various
numerical methods to solve the BTE, such as the Direct Simulation Monte Carlo (DSMC) method [4]
and the lattice Boltzmann method [21].

2.2 DIRECT SIMULATION MONTE CARLO (DSMC)
The DSMC [4] is a stochastic method that simulates the particle motion to solve BTE for dilute gas.
Unlike molecular dynamics, each particle here represents FN molecules in the physical system. It
divides the space into small cells and evolves the position and velocity of particles in each cell. The
evolution consists of three steps: 1) Drift, 2) Wall Collision, 3) Particle Collision.

The first two steps are deterministic. The drift step moves the particles by assuming they move in
straight lines without collision. The wall collision step checks if the particles collide with the wall
and resets their velocity according to the boundary conditions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 KITINet (with training and inference).

1: Input: Input x ∈ RD, residual v ∈ RD, hyper-parameters: dt, n_ divide, coll_coef;
2: Output: Output x′ ∈ RD.
3: If model is in the inference mode, Return x+ dt ∗ v;
4: Reshape x, v to collision_heads ×N matrices X,V , where N = D/collision_heads;
5: Calculate relative properties Xr, Vr and center-of-mass properties Xcm,Vcm by Equation (2).
6: Calculate the full velocity change ∆V by Equation (3);
7: Select collision pairs by Equation (4);
8: Apply velocity and position change by Equation (5), get new position X′;
9: Return x′ flattened from X′;

The last step is stochastic. The particles are sorted into spatial cells, and only particle pairs in the
same cell are selected to collide. The collision probability depends on the molecular interaction
model. For a more detailed information about DSMC, please refer to Section C.

2.3 NETWORK PARAMETER CONDENSATION

Condensation of a neural network [50] describes the phenomenon where neurons in the same layer
gradually form clusters with similar outputs during training. This process leads to the alignment or
grouping of neurons that respond to related patterns in the input data. For evaluating parameter conden-
sation, the cosine similarity is used as a natural and effective measure: D(u,v) = u⊤v

(u⊤u)1/2(v⊤v)1/2
.

Extensive prior experimental phenomena and theoretical studies [48; 8] have established that the
condensation phenomenon indicates when keeping the parameter within the same order of magnitude,
the condensation phenomenon shows improvements in model generalization performance.

3 METHODOLOGY: THE KITINET ARCHITECTURE

(a) KITINet training process

(b) KITINet inference process
Figure 1: In our design, only the residual addition is replaced
by a trainable-parameter-free KITINet module during training,
leaving inference unchanged. It gives a physical meaning: inputs
x act as particle positions, residual layers as external forces
inducing velocities v; particles collide in training but simply
cross in inference. It is worth noting that the only trainable
component is θ, which governs both the residual layer and the
associated external force field.

As Figure 1 shows, we consider
the network as the external force
Fex, and the hidden layer input
is the position distribution of the
particles f in Equation (1). Each
layer provides the velocity of the
particle. During training, the
DSMC-inspire module KITINet
takes the residual connections x
and residuals v as inputs, model-
ing the the remaining dynamics of
Equation (1). It simulates the par-
ticle motion with collisions, per-
mits particles to interact through
pairwise encounters and to change
their velocities, and outputs the
position after a time step. In con-
trast, the structure in inference is
the same as the vanilla network
with KITINet turned off, simulat-
ing the particle motion without
collisions and permitting particles
to cross through each other with-
out interacting or altering their ve-
locities.

For a layer with input x ∈ RD and output v ∈ RD, instead of regarding it as one particle in D-dim
space leads to no collision or D particles in one-dim space collisions without stochastic direction
changes, we introduce a hyper-parameter collision_heads, reshaping x, v to collision_heads × N
matrices X,V , and there are N = D

collision_heads particles colliding in collision_heads-dimensional
space. xi,vi ∈ Rcollision_heads, the i-th row of X,V , are initial position and velocity of particle i.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Similar to multi-head attention in Transformers that uses multiple heads to capture different aspects
of feature relationships, our collision_heads mechanism controls the dimensional structure of the
collision space where particles interact. However, unlike Transformers which partition the feature
space into multiple independent representation subspaces, our approach consolidates all particles
within one single collision_heads-dimensional space where inter-particle collisions occur collectively.

Specifically, our KITINet simulates the collisions by imitating the DSMC method:

1. Calculate the relative distance, the relative velocity, the center-of-mass position, and the center-of-
mass velocity between N particles:

(Xr)i,j = |xi − xj |, (Vr)i,j = |vi − vj |

(Xcm)i,j =
1

2
(xi + xj), (Vcm)i,j =

1

2
(vi + vj).

(2)

Note that each element in Xr and Vr is a scalar, while in Xcm and Vcm is a vector.
2. Simulate the change of velocity ∆V :

(∆V)i,j = (Vcm)i,j +
1

2
(Vr)i,jni,j − vi, (∆V)j,i = (Vcm)j,i +

1

2
(Vr)j,inj,i − vj , (3)

where ni,j is a random vector distributed uniformly on the collision_heads-dim unit sphere, and
nj,i = −ni,j . This expression builds on Equation (16). (Vr)i,jni,j and (Vr)j,inj,i are adapted
from Equation (15) and are employed to compute the relative receding velocity after collision in
the center-of-mass system.

3. We introduce a hyper-parameter coll_coef. For each pair i, j, accept the collision if
(Vr)i,j · (Ur)i,j

vmax
r

> 1− coll_coef, (4)

where (Ur)i,j = e−(Xr)i,j , vmax
r = max(Vr). This equation is based on Equation (14). Unlike

the DSMC method, which divides space into cells and only permits collisions inside the cells,
our approach permits collisions between any pair of particles. We introduce Ur, interpreted as
the collision probability distribution under a unit mean free path. As (Xr)i,j increases, (Ur)i,j
decreases, reducing the probability of the collision between pair i, j; conversely, as (Xr)i,j
decreases, (Ur)i,j increases, making the collision more likely.

4. Update the velocity and position of the particles by the collision model x′
i = x∗

i + dt ∗ v′
i where:

v′
i = vi +

∑
j in accepted pair i,j

(∆V)i,j , x∗
i =

1

1 + k

xi +
∑

j in accepted pair i,j

(Xcm)i,j

 , (5)

where k is the number of accepted collisions of the i-th particle. (Xcm)i,j is the approximate
collision position of pair i, j. x∗

i is the average of all collision positions of the i-th particle and its
initial position. It is used to simulate the position change of particles i during dt time, which is
negligible in DSMC. The necessity for position update and x∗

i will be discussed in Section 5.6.

The algorithm is summarized in Algorithm 1, as designed to be efficient and can be easily integrated
into existing deep learning frameworks. Meanwhile, this algorithm still satisfies the assumptions of:
homogeneous gas, particle symmetry, each pair of particles has an average collision probability of

2
N(N−1) , molecular chaos and elastic collisions with no loss of energy or momentum. According to
[18; 33; 2], it can still well approximate the behavior of the BTE process under these conditions.

The time complexity is O(N2 · collision_heads) = O(D2

collision_heads). As D, the size of the feature
vector, is a fixed parameter, introducing collision_heads may reduce the complexity of the KITINet
module.

4 MECHNISTIC INSIGHTS OF KITINET COLLISION
A natural question arise: What benefits does the introduction of KITINet collision bring to neural
networks? To address this question, we first demonstrate in Section 4.1 and Section 4.2 that KITINet
collision induces parameter condensation, a phenomenon recognized as an indicator of strong model
generalization capability [47; 49; 46]. Our analysis draws on the perspective of entropy in physics
(Section 4.1) and a theoretical examination of a simplified case (Section 4.2). Furthermore, synthetic
and real-world experiments in Section 5.7 provide empirical validation for this phenomenon. Finally,
in Section 4.3, we clarify the distinction between KITINet and the dropout technique [41].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.1 PHYSICS ANALYSIS
In statistical mechanics and fluid dynamics, the viscosity coefficient η is computed using the Green-
Kubo relations [13; 20]

η =
1

V kT

∫ ∞

0

⟨J(t)J(0)⟩ . (6)

Just as macroscopic temperature is related to the microscopic kinetic energy of particles, Equation (6)
establishes a bridge between the macroscopic viscosity coefficient η and the microscopic particle
stress flux J . When the interactions between particles consist solely of hard-sphere collisions, J can
be expressed as [44]:

J(t) = m

N∑
i=1

v2i (t) +
1

2

N∑
i=1

N∑
j=1

|Fcoll,ij × (xi − xj)|, (7)

where xi and vi denote the position and velocity of the i-th particle, and Fcoll,ij represents the force
exerted on particle i during a hard-sphere collision with particle j. Substituting Equation (7) into
Equation (6) yields η = ηK + ηK×C + ηC . As reported in [12], in DSMC the cross term ηK×C = 0:

η = ηK + ηC , (8)

where the kinetic contribution ηK is precisely the Chapman-Enskog viscosity and ηC corresponds to
the collision-induced correction.

Thus, collisions effectively increase the macroscopic viscosity coefficient of the underlying particle
system, thereby supplying an additional viscous force that promotes entropy production. By delegat-
ing part of the redistribution and relaxation dynamics to particle collisions, the network is relieved
from the necessity of generating highly fluctuating external forces. Consequently, the external force
field becomes smoother and exhibits reduced variability. Such smoothness in the external force field
implies that the underlying input–output mapping can be captured without resorting to abrupt or
irregular parameter adjustments, thereby yielding a more condense parameterization of the network.

4.2 ON THE THEORY OF CONDENSATION
In Section J, we provide detailed theoretical analysis under the simplified condition of a two-layer
overparameterized linear network solving a regression problem, in order to compare the performance
with and without KITINet. To make the analysis on KITINet tractable, we assume a thermal
equilibrium, an ideal physical state with constant temperature and retain the following Theorem 4.1.
Theorem 4.1. Under the setting in Section J.1 and assume KITINet is under thermal equilibrium,
the introduction of KITINet collisions changes the rapid convergence process to a two-phase process:
(1) The norm of neuron first decays to a small scale, inducing rapid reorientation in the low weight
regime. (2) The model converges to a sparse solution through a condensation-like dynamics.

Proof Sketch of Theorem 4.1. In the circumstance without KITINet collision, Theorem J.1 proves
that the model converge in exponential rate. In contrast, in the circumstance with KITINet collision,
we first show that the iterative process in this simplified scenario is a Markov process. Subsequently,
Theorem J.5 proves that at each step, the model’s weights gradually decay in expectation until they
eventually converge to a sparse solution, which completes the proof.
Insights from Theorem 4.1. Our results show that under our simplified condition, the introduction
of KITINet collisions changes the convergence process, transitioning from direct rapid convergence
to a distinct two-phase process. Compared to the network without collision that rapidly converges
to a complex solution, our KITINet converges to a sparser solution in this simplified circumstance,
thereby leading to improved generalization.

4.3 COMPARISON BETWEEN KITINET AND DROPOUT
In physics, collisions between particles cause their spatial distribution to become more dispersed.
When applied to neural networks, a similar "collision mechanism" in the feature layer induces
sparsity across feature dimensions, functioning similar to dropout regularization. Notably, unlike
dropout which discards information directly, KITINet preserves all information while promoting
sparsity by incorporating stochastic collision dynamics. For CV or NLP tasks where the precision
requirements are relatively low, dropout can achieve satisfactory results. However, for PDE tasks that
demand high precision, employing dropout would amplify computational errors. In contrast, KITINet
effectively preserves computational information, which can help minimize the numerical errors. The
performance comparison of the PDE -solving tasks is presented in Section 5.4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 LARGE LANGUAGE MODEL (LLM) PRE-TRAINING FROM SCRATCH

Dataset & models. We pre-train the GPT-2 series from 0.1B to 1.5B parameter models with the
standard next token prediction loss. We replace the residual connection after the attention module
with a KITINet layer, obtaining a new series of models named KITINet-GPT-2. Our training
corpus is a 30B token high-quality composition of web text (FineWeb-edu lozhkov2024fineweb-edu),
mathematics (MegaMath zhou2025megamath), and code (OpenCoder Huang2024OpenCoderTO),
which reflects current state-of-the-art data curation practices. The evaluation of GPT-2 and KITINet-
GPT-2 is based on a diverse set of challenging downstream benchmarks, including knowledge-
intensive tasks (MMLU hendryckstest2021, ARC allenaiarc) and commonsense reasoning tasks
(HellaSwag zellers2019hellaswag, WinoGrande ai2winogrande).

Table 1: Accuracy ↑ of vanilla and with KITINet-plugin GPT2 models.
Model MMLU ARC_C ARC_E HellaSwag WinoGrande

GPT2 [37] 24.9 (0.35) 21.8 (1.11) 43.3 (1.01) 38.4 (0.49) 50.9 (1.41)
KITI-GPT2 25.1 (0.35) 22.6 (1.11) 43.5 (1.02) 38.8 (0.48) 51.2 (1.40)

GPT2-medium [37] 27.0 (0.37) 26.5 (1.12) 52.3 (1.02) 46.0 (0.49) 53.4 (1.40)
KITI-GPT2-med 26.2 (0.36) 27.6 (1.13) 52.5 (1.02) 46.3 (0.50) 53.8 (1.40)

GPT2-large [37] 25.9 (0.35) 28.5 (1.29) 57.5 (1.02) 46.7 (0.50) 55.2 (1.39)
KITI-GPT2-large 26.1 (0.36) 28.6 (1.30) 57.7 (1.01) 47.2 (0.50) 55.7 (1.40)

GPT2-xl [37] 26.6 (0.36) 31.8 (1.31) 62.2 (0.99) 50.6 (0.51) 58.2 (1.38)
KITI-GPT2-xl 27.2 (0.37) 31.9 (1.32) 62.9 (0.99) 51.0 (0.51) 58.5 (1.39)

Results. The Table 1
summarizes the accuracy
on testing benchmarks
with standard error. The
results demonstrate that
KITINet provides consis-
tent performance gains
over the baseline model
in the majority of evalu-
ation scenarios. A key
finding from our analy-
sis of the training dynamics is the enhanced training efficiency: KITINet consistently reaches target
accuracy levels with approximately 20% fewer training steps than the baseline, which covers the
overheads of its additional computation during training. This provides evidence for the practical
advantages of our proposed KITINet architecture.

5.2 LLM CONTINUED PRE-TRAINING

Table 2: Perplexity ↓ of vanilla and with KITINet GPT2.

Model GSM8K MATH MATHQA OCW

GPT2 [37] 17.34 12.35 31.24 7.34
KITI-GPT2 17.29 12.18 30.39 7.21
GPT2-medium [37] 13.72 11.18 23.68 6.35
KITI-GPT2-med 13.82 11.02 23.05 6.21
GPT2-large [37] 11.59 10.27 19.56 5.53
KITI-GPT2-large 11.20 10.06 18.81 5.40
GPT2-xl [37] 10.59 9.78 17.48 5.23
KITI-GPT2-xl 10.42 9.63 16.99 5.10

We conducted additional experiments
for LLM involving mathematical rea-
soning, i.e. continued pre-training of
GPT-2 on the Open-Web-Math dataset
paster2023openwebmath. Initialized
with official OpenAI GPT-2 weights,
we continued training with two config-
urations: GPT-2 with and without an
additional KITINet layer. Both mod-
els were trained for 30 billion tokens,
after which we assessed their perfor-
mance on standard mathematical eval-
uation benchmarks, including GSM8K cobbe2021gsm8k, MATH hendrycksmath2021, MATH_QA
amini-etal-2019-mathqa and OCW lewkowycz2022solving. The evaluation metric is perplexity
of correct answers. The results are displayed in the Table 2, where lower values indicate better
performance. Our results demonstrate that the KITINet version consistently achieves substantial
perplexity improvements over the baseline across most evaluation scenarios, with gains approximately
equivalent to those obtained by training for 20% additional tokens.

5.3 IMAGE CLASSIFICATION ON CIFAR
Dataset and models. We conduct our evaluations on CIFAR with 50K training images and 10K test
images. Our training setup follows [15], including models in different configurations, e.g., ResNet-34,
ResNet-50, ResNet-101, and ResNet-152. To balance performance and cost, we selectively integrate
our module in the last stage of the ResNet architecture.

Settings. The models are trained by SGD with batch size 128, momentum coefficient 0.9, and
weight decay 5× 10−4. The learning rate is initialized to 1 for quadratic integration matrix in the
implementation of Dit-ResNet [24] and 0.1 for all other parameters and decayed by a factor of ten at
the 80th and 120th epochs, completing training after 160 epochs. We apply standard augmentation
to the images in training: padding with 4 pixels on each side, followed by a random 32× 32 crop,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and random horizontal flipping. For evaluation, we use the original 32 × 32 resolution without
augmentation. Following [24], we incorporate quadratic neurons specifically into the same layer.

Table 3: Accuracy of KITINet and ResNet-based models.
Model CIFAR10 CIFAR100 MFLOPs

ResNet-34 [15] 94.48 77.97 (0.12) 73.5
Dit-ResNet-34 [24] 94.45 78.14 (0.07) 73.5
KITI-ResNet-34 95.04 78.67 (0.10) 73.6

ResNet-50 [15] 94.75 78.27 (0.09) 83.7
Dit-ResNet-50 [24] 94.53 78.61 (0.05) 83.7
KITI-ResNet-50 95.18 78.75 (0.04) 85.9

ResNet-101 [15] 94.71 78.39 (0.08) 159.2
Dit-ResNet-101 [24] 94.98 78.88 (0.05) 159.2
KITI-ResNet-101 95.01 79.09 (0.03) 161.3

ResNet-152 [15] 94.67 78.41 (0.07) 234.7
Dit-ResNet-152 [24] 95.21 78.84 (0.04) 234.7
KITI-ResNet-152 95.67 79.48 (0.03) 236.8

Results. Table 3 compares perfor-
mance on CIFAR between KITINet
and the vanilla ResNet model [15],
as well as one biologically plausi-
ble adaptation by [24], which mim-
ics the nonlinear dendritic computa-
tions observed in cortical neurons. All
models are independently trained in
identical settings for fairness, with re-
ported metrics w.r.t. optimal valida-
tion performance. Our experiments
show that KITINet achieves improve-
ments on both CIFAR-10 and CIFAR-
100 without introducing additional
trainable parameters. KITI-ResNet-
34 matches the accuracy of ResNet-
152 on CIFAR-100 (78.67% vs. 78.41%), suggesting that it enables more efficient feature learning
compared to simply increasing network depth (KITI-ResNet-34 introduces only a 0.18% increase in
FLOPs compared to ResNet-34). Furthermore, it outperforms other biologically-inspired architectures
on the test sets, indicating good generalization ability.

5.4 LEARNING NEURAL OPERATOR FOR PDE-SOLVING
Dataset and models. For PDE, we consider benchmark equation families with varying discretizations
to assess resolution generalization. Our datasets are generated following the procedure in Section F.
The Fourier Neural Operator (FNO) [23] and Operator Transformer (OFormer) [22] are selected as
the neural solvers. For a more detailed description, refer to Section E.

Table 4: Performance comparison between
vanilla and with KITINet models on PDE-
solving tasks.

Problem Model MSE ↓

Burgers’ Equ. FNO [23] 0.00217
KITI-FNO 0.00166

NS Equation FNO [23] 0.12023
KITI-FNO 0.11346

Heat Equation FNO [23] 0.07054
KITI-FNO 0.05113

Airfoil* OFormer [22] 16.39461
KITI-OFormer 15.49034

* Airfoil problem uses Root MSE measurement.

Settings. FNOs are trained using Adam with an
initial learning rate of 10−3, batch size 20 and a
total training epoch 1K. OFormers are trained using
Adam with an initial learning rate of 1×10−3, batch
size 16 and 50K epochs.

Results. Table 4 compares vanilla and KITINet
on PDE. Across a diverse set of challenging PDE
benchmarks and an airfoil flow simulation, KITINet
enhances both FNO and OFormer. When integrated
into FNO, it reduces the Burgers’ equation error
by approximately 23.50% and the Navier-Stokes
error by about 5.63%, while on the heat equation it
yields a 27.52% improvement. Similarly, OFormer
augmented with KITINet achieves a 5.52% decrease
in RMSE on the airfoil problem. Figure 5 shows vanilla FNO and FNO with KITINet applied.

5.5 TEXT CLASSIFICATION ON IMDB AND SNLI
Table 5: Accuracy comparisons.

Model IMDb SNLI

Bert-cased [9] 91.45% 89.28%
KITI-Bert-cased 92.96% 90.26%
Bert-uncased [9] 93.42% 89.02%
KITI-Bert-uncased 94.53% 90.56%

Dataset & models. For text classification, we use on two
benchmark datasets: 1) IMDb [30] for sentiment classifica-
tion, testing the model’s natural language understanding ca-
pability; 2) SNLI [6] for natural language inference, assess-
ing its ability to reason over sentence pairs. Both datasets are
widely adopted for evaluating model performance in NLP
tasks. BERT [9] is a pre-trained language model based on
the transformer architecture, achieving good performance on
a wide range of NLP tasks. We adopt BERT as our baseline and enhance it by integrating our KITINet
architecture into BERT’s final transformer layer. The resulting hybrid model, termed KITI-BERT,
demonstrates improved effectiveness over the original framework.

Settings. We do experiments with two pre-trained model variants, including bert-base-cased and
bert-base-uncased. We set the tokenizer corresponding to the pre-trained model to process input

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tokens. Both KITI-Bert and Bert are trained by Adam with a batch size of 32 with the same random
seed. We set the learning rate to 2× 10−5 and the total fine-tuning training epochs to 40.

Results. In Table 5, KITI-Bert shows improvements on both IMDb and SNLI, i.e. 1.65% and 1.10%
using the pre-trained parameters of bert-base-cased, and 1.18% and 1.73% using the pre-trained
parameters of bert-base-uncased. With the same number of parameters, KITINet outperforms.

5.6 HYPER-PARAMETER ANALYSIS

(a) Burgers’ Equation

(b) Heat Equation

Figure 2: KITINet-FNO w/ different hyper-
parameters n_divide and coll_coef on Burg-
ers’ equation and Heat equation. The red and
blue dashed lines show the performance of
vanilla FNO as baselines.

In DSMC, the change in position x in a single time
step dt is typically small and negligible. Conse-
quently, x is treated as fixed while the velocity v is
updated via collisions. Yet to ensure KITINet can be
reduced to a ResNet-like architecture, we set dt = 1,
making the change in position in a time step non-
negligible. Thus, an explicit update to the position
x∗
i for particle i is introduced.

For FNO, we do ablation for position updates, keep-
ing all other settings identical. Table 6 consistently
shows that position updates outperform the non-
updating variant across all equations, highlighting
the effectiveness of this position update mechanism.

We analyze the impact of two additional hyper-
parameters collision_heads and coll_coef. For hyper-
parameter collision_heads, we evaluate values rang-
ing from 1 to 210 on the FNO model for the Burgers’
equation, while holding all other settings constant.
Figure 2(a) shows that collision_heads exerts a sub-
stantial influence on performance: well-chosen val-
ues of collision_heads lead to marked improvements
on both the training and test sets, while poorly chosen
values degrade accuracy.

For hyper-parameter coll_coef, we evaluate values
from 0.1 to 0.9 on the FNO model for the NS equa-
tion and Heat equation, while holding all other settings constant. Figure 2(b) and Figure 6 show that
coll_coef has a notable impact, and the best choice of coll_coef may vary greatly over tasks.

5.7 FURTHER STUDY ON MODEL BEHAVIOR
Table 6: Comparing update and non-update
mechanism FNO with KITINet on equations.

Equation Mechanism MSE

Burgers’ non-update 0.00173
update 0.00166

NS non-update 0.11429
update 0.11346

Heat non-update 0.05466
update 0.05113

In this section, we experimentally demonstrate the
condensation phenomenon within KITINet, a phe-
nomenon that is likely a key factor contributing to its
superior performance and promising generalization
ability. We first conduct analyses using a three-layer
fully connected network and a six-layer skip-chain
structured network. Furthermore, subsequent valida-
tion on both ResNet-18 and FNO consistently con-
firms this condensation effect.

Synthesis experiments setup. We consider the neu-
ral network with dinput input and dout output dimensions. The dimension of the hidden neuron is set
to the same value m. For both fully-connected and skip structures, they are initialized with all the
parameters by a Gaussian N(0, σ), where σ = 1

mγ . The size of the data is n. We construct the dataset
from

∑5
i=1 3.5 sin(5xi +1), where x = (x1, x2, x3, x4, x5) ∈ R5 and xi ∈ [−4, 2]. dinput = 5 and

doutput = 1. We fit the size of the training set n = 80 and γ = 4. This setting is used in [50] to
analyze the condensation principle. For its generalizability, we use multiple activation functions i.e.
ReLU, LeakyReLU, Sigmoid, and Tanh.

Results on fully-connected network. We employ a three-layer fully connected network with
architecture dinput-m-doutput as our baseline, where the second linear layer is replaced with our
KITINet structure. As illustrated in Figure 3(a), KITINet significantly improves the condensation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

extent of the model parameters. Other results are shown in Figure 7. Across all four common
activation functions, KITINet consistently shows favorable behavior: maintaining robust parameter
condensation or further enhancing the condensation effect compared to the original architecture.
Furthermore, we compare the decrease in loss with different activation functions. On the training
loss, KITINet performs slightly better (though the difference was minimal). On the test loss, KITINet
achieves reductions of 6.8%, 7.5%, and 4.5% respectively compared to the baseline when using ReLU,
LeakyReLU, and Tanh activation functions, demonstrating its superior generalization capability.

(a) 3 layer + ReLU (b) 6 layer skip connection + LeakyReLU

Step 1 Step 10 Step 50 Step 100

(II)

(I)

(III)

Figure 3: Results of parameter condensation across network
configurations on synthetic data. (a) Top: Condensation
patterns in 3-layer FC-ReLU networks; Bottom: Enhanced
condensation after replacing the final layer with KITINet
architecture. (b) Evolution of parameter condensation on a
Six-layer skip-connected Network with LeakyReLU activa-
tion function. (Row I) without applying KITINet. (Row II)
applying KITINet architecture on the last layer. (Row III)
applying KITINet architecture on the last two layers. We
choose the evolutionary trajectories at four critical check-
points (t ∈ {1, 10, 50, 100}) to characterize the phase tran-
sitions and train 100 epochs. Our observation demonstrates
that the KITINet structure facilitates faster and more effec-
tive parameter condensation.

Results on skip-connection neural
network. Skip connections have be-
come a core design in modern deep
neural networks [15; 22; 9]. We
design a six-layer baseline network
where each layer incorporates skip
connections. To systematically evalu-
ate KITINet’s effectiveness, we con-
duct comparative experiments by re-
placing: (1) only the last layer and (2)
the last two layers with our KITINet
structure. Our results suggest two key
findings: First, KITINet consistently
accelerates parameter condensation
over conventional skip-connections.
Second, replacing the last two layers
with KITINet yields faster condensa-
tion by modifying only the final layer
(see Figure 3(b)). This hierarchical
improvement suggests that KITINet’s
benefits are cumulative when applied
across multiple network layers. We
also show more experimental results
about evolution of the parameter con-
densation effect in Section H.

Table 7: Condensation degree ρ of the Navier-Stokes Equa-
tion between Vanilla and KITINet.

layer conv0 conv1 conv2 linear0 linear1 linear2

FNO 0.113 0.089 0.092 0.188 0.175 0.182

KITI-FNO 0.102 0.164 0.130 0.206 0.192 0.191

Results on Real-world Experiments.
For real-world tasks, KITINet also
promotes consolidation. We employ
the same experimental setting as de-
scribed in Section 5 and utilize the
average absolute cosine similarity to
measure the degree of condensation
denoted by ρ in a convolutional layer or a fully connected layer. This metric was adopted in [17] and
the formal definition is provided in Section I. The results are promising. In the PDE task of solving
naiver-stokes equation, as shown in Table 7, we observed that after adopting KITINet approach, the
degree of condensation increased among most layers. In the image classification task, we observed
the degree of condensation across different convolutional layers of ResNet18 and KITINet 18 trained
on CIFAR-100. After applying KITINet, the first conv layer (conv1, transforming RGB to features)
shows a notable improvement in condensation degree (from 0.235 to 0.248, improved by 5.3%),
while the changes in condensation degree for the remaining layers are minimal. The results show that
KITINet facilitates condensation, which may contribute to its enhanced generalization capability.

6 CONCLUSION AND LIMITATION FOR FUTURE WORK

We have introduced KITINet, leveraging the principles of kinetic theory to enhance the performance
of neural networks. By simulating particle dynamics and incorporating collision-like interactions,
KITINet is designed to achieve improved generalization capabilities and parameter condensation.
Our experimental results demonstrate its effectiveness across various tasks. We also provide a
mechanistic analysis to elucidate the underlying principles responsible for its superior performance.
When ideal computing resources are available, future work will focus on further optimizing KITINet
and exploring its applications in other domains, as well as more scaled benchmarks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Takashi Abe. Generalized scheme of the no-time-counter scheme for the dsmc in rarefied gas
flow analysis. Computers & fluids, 22(2-3):253–257, 1993.

[2] Hans Babovsky. On a simulation scheme for the boltzmann equation. Mathematical Methods in
the Applied Sciences, 8(3):223–233, 1986. doi: 10.1002/mma.1670080114.

[3] Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
Günnemann. Neural flows: Efficient alternative to neural odes. Advances in neural information
processing systems, 34:21325–21337, 2021.

[4] GA Bird. Approach to translational equilibrium in a rigid sphere gas. Phys. fluids, 6:1518–1519,
1963.

[5] Ludwig Boltzmann. On the relationship between the second fundamental theorem of the
mechanical theory of heat and probability calculations regarding the conditions for thermal
equilibrium. Entropy, 17(4):1971–2009, 2015.

[6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
annotated corpus for learning natural language inference. In Lluís Màrquez, Chris Callison-
Burch, and Jian Su (eds.), Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 632–642, Lisbon, Portugal, September 2015. Association for
Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https://aclanthology.
org/D15-1075.

[7] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[8] Tianyi Chen and Zhi-Qin John Xu. Efficient and flexible method for reducing moderate-size
deep neural networks with condensation. Entropy, 26(7):567, 2024.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the As-
sociation for Computational Linguistics, 2019. URL https://api.semanticscholar.
org/CorpusID:52967399.

[10] Thomas D. Economon, Francisco Palacios, Sean R. Copeland, Trent W. Lukaczyk, and Juan J.
Alonso. SU2: An Open-Source Suite for Multiphysics Simulation and Design. AIAA Journal,
54(3):828–846, December 2015. doi: 10.2514/1.J053813. URL https://doi.org/10.
2514/1.J053813.

[11] Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph neural
networks motivated by partial differential equations. Advances in neural information processing
systems, 34:3836–3849, 2021.

[12] Alejandro L. Garcia. Dsmc: A statistical mechanics perspective. arXiv preprint
arXiv:2501.07785, 2025. URL https://arxiv.org/abs/2501.07785.

[13] Melville S. Green. Markoff random processes and the statistical mechanics of time-dependent
phenomena. ii. irreversible processes in fluids. The Journal of Chemical Physics, 22(3):398–413,
03 1954. ISSN 0021-9606. doi: 10.1063/1.1740082. URL https://doi.org/10.1063/
1.1740082.

[14] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[16] Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron, 99(6):
1129–1143, 2018.

10

https://aclanthology.org/D15-1075
https://aclanthology.org/D15-1075
https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/1.J053813
https://arxiv.org/abs/2501.07785
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[17] Gao Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. How
does weight correlation affect the generalisation ability of deep neural networks. ArXiv,
abs/2010.05983, 2020. URL https://api.semanticscholar.org/CorpusID:
222310564.

[18] Hasan Karabulut. Direct simulation for a homogeneous gas. American Journal of Physics, 75
(1):62–66, January 2007. ISSN 1943-2909. doi: 10.1119/1.2366735. URL http://dx.doi.
org/10.1119/1.2366735.

[19] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in neural information processing systems, 33:
6696–6707, 2020.

[20] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory and
simple applications to magnetic and conduction problems. Journal of the Physical Society
of Japan, 12(6):570–586, 1957. doi: 10.1143/JPSJ.12.570. URL https://doi.org/10.
1143/JPSJ.12.570.

[21] P Lallemand and LS Luo. Theory of the lattice boltzmann method: Dispersion, dissipation,
isotropy, galilean invariance, and stability. Physical review E, 61(6):6546, 2000.

[22] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential
equations’ operator learning, 2023. URL https://arxiv.org/abs/2205.13671.

[23] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations, 2021. URL https://arxiv.org/abs/2010.08895.

[24] Chongming Liu, Jingyang Ma, Songting Li, and Douglas Dongzhuo Zhou. Dendritic integration
inspired artificial neural networks capture data correlation. Advances in Neural Information
Processing Systems, 37:79325–79349, 2024.

[25] Leonard B Loeb. The kinetic theory of gases. Courier Corporation, 2004.

[26] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018.

[27] Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

[28] Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer
nets: Margin maximization and simplicity bias. ArXiv, abs/2110.13905, 2021. URL https:
//api.semanticscholar.org/CorpusID:239885353.

[29] Jianhao Ma and Salar Fattahi. Convergence of gradient descent with small initialization
for unregularized matrix completion. ArXiv, abs/2402.06756, 2024. URL https://api.
semanticscholar.org/CorpusID:267627789.

[30] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–
150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P11-1015.

[31] Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relu network
features. ArXiv, abs/1803.08367, 2018. URL https://api.semanticscholar.org/
CorpusID:4050418.

[32] Hancheng Min, René Vidal, and Enrique Mallada. Early neuron alignment in two-layer relu
networks with small initialization. ArXiv, abs/2307.12851, 2023. URL https://api.
semanticscholar.org/CorpusID:260125817.

11

https://api.semanticscholar.org/CorpusID:222310564
https://api.semanticscholar.org/CorpusID:222310564
http://dx.doi.org/10.1119/1.2366735
http://dx.doi.org/10.1119/1.2366735
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://arxiv.org/abs/2205.13671
https://arxiv.org/abs/2010.08895
https://api.semanticscholar.org/CorpusID:239885353
https://api.semanticscholar.org/CorpusID:239885353
https://api.semanticscholar.org/CorpusID:267627789
https://api.semanticscholar.org/CorpusID:267627789
http://www.aclweb.org/anthology/P11-1015
https://api.semanticscholar.org/CorpusID:4050418
https://api.semanticscholar.org/CorpusID:4050418
https://api.semanticscholar.org/CorpusID:260125817
https://api.semanticscholar.org/CorpusID:260125817

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[33] Kenichi Nanbu. Direct simulation scheme derived from the boltzmann equation. i. mono-
component gases. Journal of the Physical Society of Japan, 49(5):2042–2049, 1980. doi:
10.1143/JPSJ.49.2042. URL https://doi.org/10.1143/JPSJ.49.2042.

[34] A Norcliffe, C Bodnar, B Day, J Moss, P Lio, et al. Neural ode processes. In International
Conference on Learning Representations, 2021.

[35] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
order behaviour in augmented neural odes. Advances in neural information processing systems,
33:5911–5921, 2020.

[36] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks, 2021. URL https://arxiv.org/abs/
2010.03409.

[37] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019. URL https://
openai.com/blog/better-language-models/.

[38] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[39] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
with physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[40] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In
Proceedings of the 42nd International Conference on Machine Learning (ICML 2025), 2025.
URL https://arxiv.org/abs/2502.02013. Oral paper.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

[42] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev,
and Irina Higgins. Hamiltonian generative networks. arXiv preprint arXiv:1909.13789, 2019.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[44] T. Wainwright. Calculation of hard-sphere viscosity by means of correlation functions. The
Journal of Chemical Physics, 40:2932–2937, 1964.

[45] Tangjun Wang, Chenglong Bao, and Zuoqiang Shi. Convection-diffusion equation: a theoret-
ically certified framework for neural networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2025.

[46] Zhi-Qin John Xu, Yaoyu Zhang, and Zhangchen Zhou. An overview of condensation phe-
nomenon in deep learning. arXiv preprint arXiv:2504.09484, 2025.

[47] Yaoyu Zhang, Zhongwang Zhang, Tao Luo, and Zhi-Qin John Xu. Embedding principle of loss
landscape of deep neural networks. In Neural Information Processing Systems, 2021. URL
https://api.semanticscholar.org/CorpusID:235254308.

[48] Yaoyu Zhang, Zhongwang Zhang, Tao Luo, and Zhiqin J Xu. Embedding principle of loss
landscape of deep neural networks. Advances in Neural Information Processing Systems, 34:
14848–14859, 2021.

[49] Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, and Zhi-Qin John Xu. Towards understand-
ing the condensation of neural networks at initial training. In Neural Information Processing Sys-
tems, 2021. URL https://api.semanticscholar.org/CorpusID:244400573.

12

https://doi.org/10.1143/JPSJ.49.2042
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2010.03409
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
https://arxiv.org/abs/2502.02013
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://api.semanticscholar.org/CorpusID:235254308
https://api.semanticscholar.org/CorpusID:244400573

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[50] Hanxu Zhou, Zhou Qixuan, Tao Luo, Yaoyu Zhang, and Zhi-Qin Xu. Towards understanding the
condensation of neural networks at initial training. Advances in Neural Information Processing
Systems, 35:2184–2196, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

Residual Learning and Dynamical Systems. ResNet [15] introduced residual connections to
mitigate vanishing gradients in deep networks. Subsequent studies reinterpreted residual networks
through dynamical systems theory, with neural ODEs [7] modeling continuous-depth networks as
ordinary differential equations (ODEs). ODE-RNN [38] simulates continuous dynamics of hidden
states in RNNs. Neural controlled differential equations [19] extend this framework to incorporate
control mechanisms, enabling adaptive feature propagation. Other extensions include second-order
residuals [35] and flow models [3]. While these works provide valuable insights into the dynamics
of residual learning, they primarily focus on deterministic, collision-free dynamics, neglecting the
stochastic interactions and energy dissipation mechanisms inherent in real-world particle systems.

Physics-Inspired Network Architectures Recent efforts integrate physical principles into neural
architectures to enhance interpretability and data efficiency. Hamiltonian networks [14] preserve
energy conservation laws, and Lagrangian networks [42] derive updates from variational principles.
PDE-inspired models, such as PDE-GCN [11] and PDE-Net [26], parameterize spatial-temporal
evolution via partial differential equations. Closest to our work, [45] proposed a convection-diffusion
network (COIN), which incorporates diffusion layers after the ResNet architecture. But their formu-
lation lacks explicit ties to residual learning or parameter condensation. Critically, while the above
frameworks borrow mathematical structures from physics, they do not simulate collisional processes
or exploit thermodynamic relaxation for network sparsity.

B MOLECULE DYNAMICS AND NEURAL ODE

Molecular dynamics (MD) [16] is a numerical method that simulates the motion of molecular or
atomic systems at a microscopic level. Considering N particles in one-dimensional space 1, .., N ,
where the mass of the i-th particle is mi, and its position is xi. The potential energy is V (x1, ..., xN).
According to Newton’s second law, we can write a second-order ordinary differential equation (ODE)

mi
d2xi

dt2
= Fi = −∇xiV (9)

where Fi represents the net external force acting on particle i, including weak interaction forces (van
der Waals forces), electromagnetic forces (Coulomb forces, chemical bonds), etc. Specifically, the
expression for Neural ODE (NODE) [7] involves a first-order ODE:

dx

dt
= v(x(t), t, θ) (10)

where x ∈ RD represents the hidden layer output; t ∈ R+ represents the network depth, while v
represents the neural network with parameters θ. This can be analogized to N particles moving with
velocity v. For NODE, its corresponding Newtonian equation can be written as:

d2x

dt2
=

Dv

Dt
= (∇xv)v +

∂v

∂t
:= F/m (11)

It can be regarded as a neural molecular dynamics system, where the hidden layer output x is particle
position, and velocity v is the derivative of the position parameterized by learnable parameters.

The NODE is a continuous model, implemented by discrete numerical methods, e.g., the Euler
method, the Runge-Kutta method. The NODE can be trained by backpropagation through the adjoint
method. It can be used to solve the problem of vanishing gradient and exploding gradient, and has
wide applications in the field of machine learning, e.g., image generation, time series prediction, etc.

C DIRECT SIMULATION MONTE CARLO (DSMC)

In DSMC, we consider the hard sphere model, where the collision probability is proportional to the
relative velocity of the particle pairs:

Pcoll[i, j] =
|vi − vj |∑Nc

m=1

∑m−1
n=1 |vm − vn|

, (12)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where Nc is the number of particles in the cell; the velocity v is proportional to the momentum p
if assuming the particle mass is constant. The denominator is expensive to compute, so the DSMC
method uses a rejection sampling method to approximate the collision probability:

1. Estimate the number of candidate collision pairs Mcand by the no-time-counter method [1]:

Mcand =
Nc(Nc − 1)FNπd2vmax

r τ

2Vc
, (13)

where d is the particle diameter, the vmax
r is the estimated maximum relative velocity, the τ is the

time step, the Vc is the cell volume.
2. Random select Mcand pairs of particles. For each pair i, j, generate a random number ℜ1 from

the uniform distribution U(0, 1), and accept the collision if

|vi − vj |/vmax
r > ℜ1. (14)

3. If the collision is accepted, update the velocity of the particles according to the collision model,
with position unchanged.

4. Repeat the above steps for all cells, then proceed to the next time step.

The hard sphere model is a hard-body collision. The particles conserve momentum and energy and
scatter off in a random direction. Set post-collision relative velocity in a polar coordinate system:

v∗
r = vr[(sin θ cosϕ)x̂+ (sin θ sinϕ)ŷ + cos θ ẑ], (15)

and the angle are set as ϕ = 2πℜ2 and θ = cos−1(2ℜ3 − 1), where ℜ2 and ℜ3 are random numbers
from the uniform distribution U(0, 1). Denote the center of mass velocity as vcm = (vi + vj)/2,
then the post-collision velocity can be calculated as:

v′
i = vcm + v∗

r /2,v
′
j = vcm − v∗

r /2, (16)

D ALGORITHMS

Besides the KITINet architecture we have introduced, we also experimented with an alternative
architecture of KITINet, a-edition KITINet. In physics, acceleration can exhibit abrupt changes due
to external forces, whereas velocity should vary continuously. Therefore, a-edition KITINet considers
residual connections as position x and residuals as acceleration a, requiring velocity v from previous
a-edition KITINet, and outputs x′ and v′. For the first layer of a-edition KITINet, v would be a
random variable drawn from a Gaussian distribution, which satisfies the thermodynamic distribution.
During the a-edition KITINet, the initial velocity for collision simulation would be v + dt ∗ a, and
the velocity after collision v′ is recorded for the next a-edition KITINet.

From a physics perspective, the a-edition KITINet more faithfully satisfies Newton’s second law with
Equation (9) and BTE with Equation (1); from a neural-network perspective, the variable v within
the network functions analogously to an RNN’s hidden state, storing and propagating information.
However, in experiments, the a-edition KITINet failed to deliver satisfactory results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E PDE-SOLVER ARCHITECTURE

Figure 4: The full architecture of Fourier Neural Operators (FNO) with and without KITINet applied.

E.1 FOURIER NEURAL OPERATOR (FNO)
FNO [23] is a neural operator that implements a resolution-invariant global convolution by FFT’ing
input features, applying a learnable linear transform to a truncated set of frequency modes, and
then inverse-FFT’ing back to the spatial domain. It efficiently captures long-range dependencies
and generalizes across discretizations. As Fig. 4 in the appendix shows, for each Fourier layer with
KITINet applied, the outputs of the Fourier convolution are considered as v, while the outputs of the
linear transformation are considered as x.

E.2 OPERATOR TRANSFORMER (OFORMER)
OFormer [22] embeds Fourier neural operator blocks into a Transformer-style sequence model,
applying FFTs to input tokens, learnable complex-valued multipliers on truncated frequency modes,
and inverse FFTs back to space, while its attention mechanism enables these spectral operations to
be conditioned on arbitrary, irregular input locations, making it directly applicable to non-uniform
and unstructured grids. In the Transformer architecture with KITINet applied, the outputs of the
self-attention and MLP layers are considered as v, while the residual connections are considered as
x.

F PDE DATSETS GENERATION

F.1 BURGERS’ EQUATION
The one-dimensional Burgers’ equation is a nonlinear PDE commonly used to describe viscous fluid
flow in a single spatial dimension. It takes the form (We use dataset from [23]):

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ (0, 1).

The initial condition u0(x) is generated according to u0 ∽ µ where µ = N (0, 625(−∆+ 25I)−2)
with periodic boundary conditions and the viscosity is set to ν = 0.1. Fourier Neural Operators are
chosen for solving this equation, learning the operator mapping the initial condition to the solution at
time one, G† : L2

per((0, 1);R) → Hr
per((0, 1);R) defined by u0 7→ u(·, 1) for any r > 0.

F.2 NAVIER-STOKES (NS) EQUATION
The two-dimensional NS equation for a viscous, incompressible fluid in vorticity form on the unit
torus takes the form:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, T],

ω(x, 0) = ω0(x), x ∈ (0, 1)2.

The initial condition ω0(x) is generated according to ω0 ∽ µ where µ = N (0, 73/2(−∆+49I)−2.5)
with periodic boundary conditions, the force f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2)))

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: FNOs’ performance on NS equation, both vanilla and with KITINet applied. Left two:
FNOs’ predictions at the final time step; Right two: their corresponding absolute error maps.

and the viscosity is set to ν = 1e−3. FNOs are chosen for this equation, learning the operator
mapping the vorticity up to time 10 to the solution up to T > 10, G† : C([0, 10];Hr

per((0, 1);R)) →
C([10, T];Hr

per((0, 1));R) defined by ω|(0,1)2×(0,10] 7→ ω|(0,1)2×(10,T] for any r > 0. All data are
generated on a 256 × 256 grid with a pseudospectral method and are downsampled to 32 × 32 or
64× 64. The resolution is fixed to 32× 32 for training and 64× 64 for testing.

F.3 HEAT EQUATION
The two-dimensional Heat equation for a heated square box form on the unit torus takes the form:

∂tu(x, t) = α∆u(x, t) + q(x), x ∈ (0, 1)2, t ∈ (0, T],

u(x, 0) = u0(x), x ∈ (0, 1)2.

The initial condition u0(x) is generated according to u0 ∽ µ where µ = N (0, 73/2(−∆+49I)−2.5)
with periodic boundary conditions, the heat source q|∂Ω = 0.1 and the thermal diffusivity is
set to α = 1e−4. Here Fourier Neural Operators are chosen for solving this equation, learning
the operator mapping the vorticity up to time 10 to the solution up to some later time T > 10,
G† : C([0, 10];Hr

per((0, 1);R)) → C([10, T];Hr
per((0, 1));R) defined by ω|(0,1)2×(0,10] 7→

ω|(0,1)2×(10,T] for any r > 0. All data are generated on a 256 × 256 grid with a pseudospec-
tral method and are downsampled to 32× 32 or 64× 64. The resolution is fixed to be 32× 32 for
training and 64× 64 for testing.

F.4 AIRFOIL
For this problem, we study the two-dimensional time-dependent compressible flow around the
cross-section of airfoils, with different inflow speeds (Mach numbers) and angles of attack, and
NS equation is also used to describe the problem. Here Operators Transformer are chosen for
this problem, learning the mapping the velocity up to time 0.576s to the solution up to T = 4.8s,
G† : u(·, t)|t∈[0,0.576] 7→ u(·, t)|t∈(0.576,4.800]. All data on irregular grids are generated by [36], with
conventional solver SU2 [10].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENT ABOUT HYPER-PARAMETER ANALYSIS

Figure 6: The performance of KITI-FNO with different hyper-parameter coll_coef on NS equation.
The red and blue dashed lines show the performance of vanilla FNO as baselines.

H ADDITIONAL EXPERIMENT ABOUT CONDENSATION

(a) Relu (b) LeakyRelu (c) Sigmoid (d) Tanh

Figure 7: Results of parameter condensation on Three-layer Fully-connected Network. (Row 1) linear
networks versus (Row 2) KITINet -incorporated networks. Systematic validation is performed across
four activation functions: ReLU, LeakyReLU, Sigmoid, and Tanh.

I THE FORMAL DEFINITION OF THE DEGREE OF CONDENSATION.

In this section, we provide the formal definitions of condensation for fully connected networks and
convolutional networks, which are given in Definition 3.1 and 3.2 .
Definition I.1 (Weight Correlation in FCN). Given weight matrix wl ∈ RNl−1×Nl of the l-th layer,
the average weight correlation is defined as

ρ(wl) =
1

Nl(Nl − 1)

Nl∑
i,j=1
i̸=j

|wT
liwlj |

||wli||2||wlj ||2
, (17)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 8: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network
without applying KITINet architecture. The process of paramter condensation is relatively slow.

(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 9: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network
applying KITINet architecture on the last layer. The process of parameter condensation is relatively
faster.

(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 10: Evolution of parameter condensation on Six-layer skip-connected Network applying
KITINet architecture on the last two layers. The process of parameter condensation is significantly
much faster and stable.

where wli and wlj are i-th and j-th column of the matrix wl, corresponding to the i-th and j-th neuron
at l-th layer, respectively. Intuitively, ρ(wl) is the average cosine similarity between weight vectors
of any two neurons at the l-th layer.

Definition I.2 (Weight Correlation in CNN). Given the filter tensor wl ∈ Rf×f×Nl−1×Nl of the l-th
layer, where f × f is the size of the convolution kernel, wli ∈ Rf×f×Nl−1 and wlj ∈ Rf×f×Nl−1

are the i-th and j-th filter, respectively, of the filter tensor wl. By reshaping wli and wlj into w′li ∈
Rf2×Nl−1 and w′lj ∈ Rf2×Nl−1 , respectively, the weight correlation is defined as

ρ(wl) =
1

Nl(Nl − 1)Nl−1

Nl∑
i,j=1
i̸=j

Nl−1∑
z=1

|w′Tli,zw′lj,z|
||w′li,z||2||w′lj,z||2

, (18)

where w′li,z and w′lj,z are the z-th column of w′li and w′lj respectively. Intuitively, ρ(wl) is defined as
the cosine similarity between filter matrices.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

J A THEORY ANALYSIS OF CONDENSATION.

J.1 SETTING.

First, we present a formulation of the problem statement and establish the necessary notation that
will be used throughout our theoretical analysis. Consider a linear regression problem yi = kxi, i =
{1, 2, · · · , n}, where the training data xi ∈ Rd ∼ N(0, I), k ∈ R1×d. We use y = a⊤Wx to retain
the k. We set W is a m× d matrix and a is a 1×m matrix. We use W (t),a(t) to denote the value
of W ,a at step t.

Let W =


w⊤

1

w⊤
2
...

w⊤
m

, wi ∈ Rd×1, we assume that wi,j(t) ∼ N(0, σ1(t)) at step t for every i ∈

[m], j ∈ [d]. Let a = [a1 a2 · · · am]. we assume that ai(t) ∼ N(0, σ2(t)) at step t for every
i ∈ [m].

We consider MSE-loss as follow:

min
W ,a

L =
1

2n

n∑
i=1

(a⊤Wxi − yi)
2 (19)

Let θ(t) = a(t)⊤W (t) and θ∗ = k. We assume that the nueral network is over-parametrized, i.e.
m ≫ d. Let η denote the learning rate.

J.2 CASE 1: THE CIRCUMSTANCE WITHOUT COLLISION.

Theorem J.1. Under the setting in Section J.1, the convergence rate of the model parameters is
exponential.

Proof of Theorem J.1.

The gradient is

∂L

∂w⊤
l

= a⊤l · 1
n

n∑
i=1

(a⊤Wxi − yi) · x⊤
i (20)

∂L

∂a⊤l
= w⊤

l · 1
n

n∑
i=1

(a⊤Wxi − yi) · x⊤
i (21)

By using GD, we have

W (t+ 1) = W (t)− η · a(t)⊤ · 1
n

n∑
i=1

(a⊤(t)W (t)xi − yi) · x⊤
i (22)

a(t+ 1) = a(t)− η ·W (t)⊤ · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (23)

By multiplying the above two equations we get

θ(t+ 1) = θ(t)− η · a(t) · a(t)⊤ · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i

− η · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i ·W (t)⊤W (t) +O(η2)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By Large Number Law, we have

a(t)a(t)⊤ =

m∑
i=1

ai(t)
2 ≈ σ2(t) ·m (24)

W (t)⊤W (t) =

m∑
i=1

wi(t)wi(t)
⊤ ≈

m∑
i=1

σ1(t) · I = m · σ1(t) · I (25)

Since yi = θ∗ · xi, we can approximately get

θ(t+ 1)− θ∗ ≈ θ(t)− θ∗ − η · (1 +m · (σ1(t) + σ2(t))) · (θ(t)− θ∗) · 1
n

n∑
i=1

xi · x⊤
i (26)

By large number theorem, when n is sufficiently large,

1

n

n∑
i=1

xi · x⊤
i ≈ E[xi · x⊤

i] = I (27)

So finally we retain

θ(t+ 1)− θ∗ ≈ (1− η · (1 +m · (σ_1(t) + σ_2(t))))(θ(t)− θ∗) (28)

≈ (θ(0)− θ∗) ·
t∏

i=0

β(t) (29)

where β(t) = 1− η · (1 +m · (σ1(t) + σ2(t))).

Therefore, under collision-free conditions, the model can rapidly descend to convergence in exponen-
tial time as long as η is small and properly selected. □

J.3 CASE 2: THE CIRCUMSTANCE WITH COLLISION (KITINET).

Our key assumption here is that KITINet is under thermal equilibrium. In this idealized state, the
temperature is uniform and constant within the system, and all particles have the same velocity
distribution and same probability to collide. Here, we inject uniform constant noise into a as the
simulation for thermal equilibrium. While this simplification differs from the real collision dynamics,
it can provide valuable insights into how KITINet enhances model robustness.
Theorem J.2. Under the setting in Section J.1 and assume KITINet is under thermal equilibrium, the
introduction of KITINet collisions changes the convergence process to a two-phase process:
(1) The norm of neuron in W1 first decays to a small scale, inducing rapid reorientation in the low
weight regime.
(2) The model converges to a sparse solution through a condensation-like dynamics.

Proof of Theorem J.2.

The second phase that the convergence behavior under small-weight regimes has been extensively
studied [31; 28; 49; 32; 29], so we only provide the proof in the first phase.

The update rule to simulate the thermal equilibrium KITINet collision is modeled as follow: for every
neuron wi and ai at step t, we have

wi(t+ 1) = wi(t)− η · ai(t) ·
1

n

n∑
i=1

(a(t)⊤W (t)xi − yi) · xi (30)

ai(t+ 1) = ai(t) + δi(t) (31)

where

δi(t) =


− η0.25 if ai(t) = η0.25

η0.25 if ai(t) = −η0.25

∼ {−η0.25, η0.25} if ai(t) = 0

(32)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Besides, we use a new initialization for a: for every i ∈ [m], we have

ai(0) =


− η0.25 with probability 1/4

η0.25 with probability 1/4
0 with probability 1/2

(33)

Notice that ai(0) follows the stationary distribution. Since the transition matrix of ai is

Q =

0 1 0
1
2 0 1

2
0 1 0


It is easy to verify that [1/4, 1/2, 1/4] = [1/4, 1/2, 1/4] ·Q.

Thus by large number law, we can approximate ∥a(t)∥2 by

∥a(t)∥2 =

m∑
i=1

|ai(t)|2 = m · E[|ai(t)|2] =
m · η0.5

2
(34)

Lemma J.3. Using algorithm 2, we have

E[θ(t)] = E[θ(0)] (35)

Proof. Notice that

W (t+ 1) = W (t+ 1)− η · a(t) · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (36)

a(t+ 1) = a(t) + δ(t)⊤ (37)

Where δ(t) = [δ1(t), δ2(t), · · · , δm(t)]⊤.

Notice that a(t+ 1)⊤ · a(t) = 0, then we have

θ(t+ 1) = a(t+ 1)⊤ ·W (t+ 1) (38)

= (a(t)⊤ + δ(t)) · (W (t)− η · a(t) · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i) (39)

= θ(t) + δ(t) ·W (t)− (a(t+ 1)⊤ · a(t)) · η · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (40)

= θ(t) + δ(t) ·W (t) (41)

Since E[δ(t)] = 0, we have

E[θ(t)] = E[θ(0)]

□

J.3.1 PROGRESSIVE DIMINISHING OF NORM USING ALGORITHM 2

Since xi ∼ N(0, I) i.i.d, by law of large numbers, 1
n

∑n
i=1 xi ·x⊤

i is approximately to E[xi ·x⊤
i] = I .

So we have

wi(t+ 1) = wi(t)− η · ai(t) · (θ(t)− θ∗)⊤ (42)
ai(t+ 1) = ai(t) + δi(t) (43)

Square both sides of the equation and we have

∥wi(t+ 1)∥2 = ∥wi(t)∥2 − 2η · ai(t) · (θ(t)− θ∗)⊤ ·wi(t+ 1) + η2 · ai(t)2 · ∥θ(t)− θ∗∥2
(44)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Since |ai(t)| ≤ η0.25, we have

1

m

m∑
i=1

∥wi(t+ 1)∥2 =
1

m

m∑
i=1

∥wi(t)∥2 − 2η · (θ(t)− θ∗)⊤ · 1

m

m∑
i=1

ai(t)wi(t) + η2 · 1

m

m∑
i=1

ai(t)
2∥θ(t)− θ∗∥2

(45)

=
1

m

m∑
i=1

∥wi(t)∥2 − 2η · 1

m
· (θ(t)− θ∗)⊤ · θ(t) + η2 · 1

m

m∑
i=1

ai(t)
2∥θ(t)− θ∗∥2

(46)

≤ 1

m

m∑
i=1

∥wi(t)∥2 − 2η · 1

m
· (θ(t)− θ∗)⊤ · θ(t) + η2 · (η0.25)2∥θ(t)− θ∗∥2

(47)

=
1

m

m∑
i=1

∥wi(t)∥2 − (
2η

m
− η2.5)∥(θ(t)− θ∗)∥2 − 2η

m
· (θ(t)− θ∗)⊤ · θ∗

(48)

Lemma J.4. If we set ai(0) to stationary distribution, then for any t, k ∈ N+, we have

E[δi(t) · δi(t+ k)] =

− η0.5

2
if k = 1

0 if k > 1

(49)

Proof. Without loss of generality, assume we know that δi(t) = η0.25, then the distribution changes
to (0, 1

2 ,
1
2). So we have

E[δi(t) · δi(t+ 1)] =
1

2
· η0.25 · (−η0.25) +

1

2
· 0 = −η0.5

2

Then just after that, the distribution changes from (0, 1
2 ,

1
2) to stationary distribution (14 ,

1
2 ,

1
4) again.

Thus for any k > 1 we have
E[δi(t) · δi(t+ k)] = 0

□

The following lemma reveals the process generated in Phase (1), thereby providing a proof for
Theorem J.2.
Lemma J.5 (Progressively diminishing under simulation setup). Under the setting in Section J.1 and
assume KITINet is under thermal equilibrium, there exists a step t0 ≤ 1

η2 such that

E[
1

m

m∑
i=1

∥wi(t0)∥2] ≤
√
η (50)

Proof. Firstly, we give a lower bound of E[∥θ(t)− θ∗∥2], which shows the decrease of each step.
According to Equation (41), we retain

θ(t)− θ∗ = θ(0)− θ∗ +

t−1∑
i=0

δ(i) ·W (i) (51)

And Since E[δ(i)] = 0, we have

E[(θ(0)− θ∗) ·
t−1∑
i=0

δ(i) ·W (i)] = E[δ(i)] · E[(θ(0)− θ∗) ·
t−1∑
i=0

W (i)] = 0 (52)

So we have

E[∥(θ(t)−θ∗)∥2] = E[∥(θ(0)−θ∗)∥2]+(η0.25)2·
t−1∑
i=0

E[∥W (i)∥2]+2

t−1∑
i=0

∑
j<i

E[(δ(i)W (i))·(δ(j)W (j))⊤]

(53)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Notice that
E[(δ(i)W (i)) · (δ(i+ 1)W (i+ 1)⊤] = E[δ(i)(W (i)W (i+ 1)⊤)δ(i+ 1)⊤]

=
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) · (W (i)W (i+ 1)⊤)[l, r]]

=
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

Case 1: r ̸= l. In this case, δl are independent with δr. So we have

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

= E[δl(i)δr(i+ 1) ·wl(i)
⊤(wr(i)− η · ar(i) · (θ(i)− θ∗)⊤]

= E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i)]− E[δl(i)δr(i+ 1) ·wl(i)

⊤η · ar(i) · (θ(i)− θ∗)⊤]

= E[δl(i)] · E[δr(i+ 1) ·wl(i)
⊤wr(i)]− E[δl(i)] · E[δr(i+ 1) ·wl(i)

⊤η · ar(i) · (θ(i)− θ∗)⊤]

= 0

Case 2: r = l, by Lemma J.4, we have

E[δl(i)δl(i+ 1) ·wl(i)
⊤wl(i+ 1)]

= E[δl(i)δl(i+ 1) ·wl(i)
⊤(wl(i)− η · al(i) · (θ(i)− θ∗)⊤)]

= E[δl(i)δl(i+ 1) ·wl(i)
⊤wl(i)]− E[δl(i)δl(i+ 1) ·wl(i)

⊤η · al(i) · (θ(i)− θ∗)⊤]

= E[δl(i)δl(i+ 1)] · E[∥wl(i)∥2]− E[δl(i)δl(i+ 1) ·wl(i)
⊤η · al(i) · (θ(i)− θ∗)⊤]

= −η0.5

2
E[∥wl(i)∥2]− ηE[δl(i)δl(i+ 1) · al(i) · (θ(i)− θ∗)⊤ ·wl(i)]

= −η0.5

2
E[∥wl(i)∥2]−O(η1.75)

Thus we have

E[(δ(i)W (i)) · (δ(i+ 1)W (i+ 1))⊤] =
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

=

m∑
l=1

E[δl(i)δl(i+ 1)] ·wl(i)
⊤wl(i+ 1))

= −η0.5

2

m∑
l=1

E[∥wl(i)∥2]−O(m · η1.75)

= −η0.5

2
E[∥W (i)∥2]−O(m · η1.75)

Then we retain

t−1∑
i=0

∑
j<i

E[(δ(i)W (i)) · (δ(j)W (j))⊤] =

t−2∑
i=0

E[(δ(i)W (i)) · (δ(i+ 1)Wi+1)
⊤] (54)

= −η0.5

2
·
t−2∑
i=0

E[∥W (i)∥2]−O(m · η1.75) (55)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Combining Equation (53) and Equation (55), we have

E[∥(θ(t)− θ∗)∥2] = E[∥(θ(0)− θ∗)∥2]

+ η0.5 ·
t−1∑
i=0

E[∥W (i)∥2] + 2

t−1∑
i=0

∑
j<i

E[(δ(i)W (i)) · (δ(j)W (j))⊤] +O(m · η1.75)

= E[∥(θ(0)− θ∗)∥2] + η0.5 ·
t−1∑
i=0

E[∥W (i)∥2]− η0.5 ·
t−2∑
i=0

E[∥W (i)∥2] +O(m · η1.75)

= E[∥(θ(0)− θ∗)∥2] + η0.5E[∥W (t− 1)∥2]−O(m · η1.75)

≥ E[∥θ⋆∥2] + η0.5E[∥W (t− 1)∥2]

Then we give a proof of this theorem by contradiction. Assume for every step t ≤ 1
η2 , we have

E[
1

m

m∑
i=1

∥wi(T)∥2] ≥
√
η (56)

i.e.
E[∥W (t)∥2] ≥ m · √η (57)

When T =
1

η2
, according to Equation (48), sum up from 0 to T − 1 and we have

E[
1

m

m∑
i=1

∥wi(T)∥2] = E[
1

m

m∑
i=1

∥wi(0)∥2]− (
2η

m
− η2.5) ·

T−1∑
t=0

E[∥(θ(t)− θ∗)∥2]− 2η

m
·
T−1∑
t=0

E[(θ(t)− θ∗)⊤ · θ∗]

≤ E[
1

m

m∑
i=1

∥wi(0)∥2]− (
2η

m
− η2.5) · (T · E[∥θ∗∥2] + η0.5

T−1∑
t=0

E[∥Wt∥2]) +
T · 2η
m

· E[∥θ∗∥2]

≤ E[
1

m

m∑
i=1

∥wi(0)∥2]− 2η1.5 · T · √η +O(T · η2.5)

= 1− 2η1.5 · 1

η2
· √η +O(T · η2.5) = −1 +O(T · η2.5) < 0

Which is absolutely a contradiction! Therefore, we complete the proof. □

25

	Introduction
	Preliminaries
	Kinetic Theory and Numerical Algorithm
	Direct Simulation Monte Carlo (DSMC)
	Network Parameter Condensation

	Methodology: the KITINet Architecture
	mechnistic insights of kitinet collision
	Physics analysis
	On the theory of condensation
	Comparison between KITINet and Dropout

	Experiments
	Large Language Model (LLM) Pre-training from scratch
	LLM Continued Pre-training
	Image Classification on CIFAR
	Learning Neural Operator for PDE-solving
	Text Classification on IMDb and SNLI
	Hyper-parameter Analysis
	Further Study on Model Behavior

	Conclusion and Limitation for Future Work
	Related Work
	Molecule Dynamics and Neural ODE
	Direct Simulation Monte Carlo (DSMC)
	Algorithms
	PDE-solver Architecture
	Fourier Neural Operator (FNO)
	Operator Transformer (OFormer)

	PDE Datsets Generation
	BURGERS' EQUATION
	NAVIER-STOKES (NS) EQUATION
	HEAT EQUATION
	AIRFOIL

	Additional Experiment about Hyper-parameter Analysis
	Additional Experiment about condensation
	The formal definition of the degree of condensation.
	A Theory Analysis of Condensation.
	Setting.
	Case 1: the circumstance without collision.
	Case 2: the circumstance with collision (KITINet).
	Progressive diminishing of norm using Algorithm 2

