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ABSTRACT

Despite the widely recognized success of residual connections in modern neural
networks, their design principles remain largely heuristic. This paper introduces
KITINet (KInetics Theory Inspired Network), a way that reinterprets feature propa-
gation through the lens of non-equilibrium particle dynamics and partial differential
equation (PDE) simulation. We propose a new residual module that models feature
updates as the stochastic evolution of a particle system, numerically simulated via
a discretized solver for the Boltzmann transport equation (BTE). This formulation
mimics particle collisions, enabling additional neuron-wise information propa-
gation via physical interactions. Additionally, we reveal that this mechanism is
an implicit regularization approach that induces network parameter condensation
during training, where parameters progressively concentrate into a sparse subset of
dominant channels. Experiments on large language modeling, image classification,
scientific computation, and text classification show consistent improvements over
classic network baselines, without additional inference cost.

1 INTRODUCTION
Residual connections have become a cornerstone of modern networks, enabling the training of
exceptionally deep nets by alleviating vanishing gradients and stabilizing feature propagation. From
ResNets [15] in vision to Transformers [43] in texts, residual mechanisms underpin state-of-the-art
architectures. Recent advances have further explored residual learning through dynamical systems
[7; 3], where iterative updates are analogized to differential equations. Concurrently, physics-
inspired neural networks have gained traction, with frameworks such as PDE networks [26; 27] and
Hamiltonian networks [42; 14] demonstrating that embedding physical principles into architectures
can enhance physical interpretability and generalization. However, while these works highlight the
potential of interdisciplinary design, the fusion of kinetic theory, particularly particle dynamics and
collisional processes, with residual learning remains largely unexplored.

Despite their empirical success, existing residual modules are mostly designed heuristically. E.g.,
standard skip connections propagate features via simple additive operations, neglecting the rich
dynamics of stochastical multi-particle interactions or energy exchange in non-equilibrium systems.
As established in [40], the entropy-increasing behavior of feature representations is pervasive in
architectures exhibiting information bottlenecks, such as GPT and ResNet. From a physical standpoint,
particle collisions enhance macroscopic viscosity [12], easing the network’s burden to produce
external forces and yielding smoother force fields and more condense parameterization. From a
mathematical perspective, stochastic collisions can be regarded as a source of implicit regularization.

However, existing dynamical systems perspectives reinterpret residual networks as discretized ODEs
[7; 35; 34], failing to account for stochastic, collision-driven interactions that govern particle systems.
This gap leaves critical questions unanswered: Can residual learning be reimagined through the
lens of kinetic theory? How might collisional dynamics, as modeled by BTE, inform adaptive
feature refinement? Prior physics-inspired architectures [39; 45] have not rigorously bridged particle-
based simulation with parameter sparsity mechanisms, nor uncovered the phenomenon of network
parameter condensation [46] i.e. training concentrates parameters into a sparse subset of channels,
via a physics-grounded framework.

This paper introduces KITINet, a kinetics theory inspired network architecture that reformulates
residual learning as a stochastic particle simulation governed by the BTE. We propose a novel residual
module where feature updates emulate the collisional evolution of a multi-particle system: each

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

channel acts as a "particle" whose interactions are simulated via a discretized PDE solver, and adap-
tively redistributes information through physics-informed collision operators. This approach not only
aligns feature propagation with non-equilibrium thermodynamics but also induces network parameter
condensation, a phenomenon where gradients during training progressively sparsify parameters into
dominant channels. Extensive experiments on language model pre-training, image classification, PDE
operator learning, and text classification validate KITINet’s efficacy, outperforming GPT2, ResNet,
and BERT. By unifying kinetic theory with deep learning, it establishes a new paradigm for designing
interpretable, physics-grounded architectures. The highlights of the paper are:

• This paper proposes a novel residual connection module to replace only the residual addition, which
formulates the feature updating process as the evolution of a kinetic particle system and implements
the module by simulating random particle collisions using a numerical algorithm of the BTE.

• It physically and mathematically promotes the recently heated phenomenon called network param-
eter condensation in training [46].

• Experimental results demonstrate that the proposed module achieves performance improvements
over baseline models on language model pre-training, image and text and PDE tasks.

• It introduces a principled way to selectively embedding PDE structures into neural architectures.

2 PRELIMINARIES

2.1 KINETIC THEORY AND NUMERICAL ALGORITHM

The kinetic molecular theory of ideal gases is given as four postulates [25]:

1. A gas consists of particles called molecules, which are all alike in a given type of gas.
2. The molecules are in motion, and Newton’s laws of motion may presumably be applied.
3. The molecules behave as elastic spheres with small diameters. Therefore, the space they occupy

may be disregarded, and the collisions between them are energy-conservative.
4. No appreciable forces of attraction or repulsion are exerted by the molecules on each other.

When the particle system becomes too dense, it becomes necessary to describe the particle dynamics
using distributions rather than trajectories. In kinetic theory, interaction sparsity is governed not by
the absolute number of particles (e.g., the Avogadro constant), but by the ratio of the mean free path
λ to the characteristic system length L. This ratio—known as the Knudsen number Kn = λ/L. As
detailed in Equation (4) later in the text, the effective mean free path is normalized to λ = 1, as defined
in the collision modulation term (Ur)i,j = e−(Xr)i,j . Due to commonly used normalization schemes
(e.g., BatchNorm), the typical feature-space distance is approximately L ≈ 3.29, corresponding to
the 90th percentile of data spread. This yields a Knudsen number of Kn = λ/L ≈ 0.30, which lies
well within the valid kinetic regime for the BTE (commonly 0.01 < Kn < 10).

The density function f in the 7-dim phase space is defined as dN = f(x,p, t) d3x d3p. Assuming the
displacement and momentum x,p satisfy the Hamiltonian equations, and external force represented
as Fex, then f satisfies the Boltzmann transport equation (BTE) [5]:

∂f

∂t
+

p

m
· ∇xf + Fex · ∇pf =

(
∂f

∂t

)
coll

(1)

where the right-hand side term describes the changes in the distribution due to particle collisions,
which can only be approximated by an empirical formula. The BTE is a partial differential equation
(PDE) that describes the evolution of the distribution function f over time. There are various
numerical methods to solve the BTE, such as the Direct Simulation Monte Carlo (DSMC) method [4]
and the lattice Boltzmann method [21].

2.2 DIRECT SIMULATION MONTE CARLO (DSMC)
The DSMC [4] is a stochastic method that simulates the particle motion to solve BTE for dilute gas.
Unlike molecular dynamics, each particle here represents FN molecules in the physical system. It
divides the space into small cells and evolves the position and velocity of particles in each cell. The
evolution consists of three steps: 1) Drift, 2) Wall Collision, 3) Particle Collision.

The first two steps are deterministic. The drift step moves the particles by assuming they move in
straight lines without collision. The wall collision step checks if the particles collide with the wall
and resets their velocity according to the boundary conditions.
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Algorithm 1 KITINet (with training and inference).

1: Input: Input x ∈ RD, residual v ∈ RD, hyper-parameters: dt, n_ divide, coll_coef;
2: Output: Output x′ ∈ RD.
3: If model is in the inference mode, Return x+ dt ∗ v;
4: Reshape x, v to collision_heads ×N matrices X,V , where N = D/collision_heads;
5: Calculate relative properties Xr, Vr and center-of-mass properties Xcm,Vcm by Equation (2).
6: Calculate the full velocity change ∆V by Equation (3);
7: Select collision pairs by Equation (4);
8: Apply velocity and position change by Equation (5), get new position X′;
9: Return x′ flattened from X′;

The last step is stochastic. The particles are sorted into spatial cells, and only particle pairs in the
same cell are selected to collide. The collision probability depends on the molecular interaction
model. For a more detailed information about DSMC, please refer to Section C.

2.3 NETWORK PARAMETER CONDENSATION

Condensation of a neural network [50] describes the phenomenon where neurons in the same layer
gradually form clusters with similar outputs during training. This process leads to the alignment or
grouping of neurons that respond to related patterns in the input data. For evaluating parameter conden-
sation, the cosine similarity is used as a natural and effective measure: D(u,v) = u⊤v

(u⊤u)1/2(v⊤v)1/2
.

Extensive prior experimental phenomena and theoretical studies [48; 8] have established that the
condensation phenomenon indicates when keeping the parameter within the same order of magnitude,
the condensation phenomenon shows improvements in model generalization performance.

3 METHODOLOGY: THE KITINET ARCHITECTURE

(a) KITINet training process

(b) KITINet inference process
Figure 1: In our design, only the residual addition is replaced
by a trainable-parameter-free KITINet module during training,
leaving inference unchanged. It gives a physical meaning: inputs
x act as particle positions, residual layers as external forces
inducing velocities v; particles collide in training but simply
cross in inference. It is worth noting that the only trainable
component is θ, which governs both the residual layer and the
associated external force field.

As Figure 1 shows, we consider
the network as the external force
Fex, and the hidden layer input
is the position distribution of the
particles f in Equation (1). Each
layer provides the velocity of the
particle. During training, the
DSMC-inspire module KITINet
takes the residual connections x
and residuals v as inputs, model-
ing the the remaining dynamics of
Equation (1). It simulates the par-
ticle motion with collisions, per-
mits particles to interact through
pairwise encounters and to change
their velocities, and outputs the
position after a time step. In con-
trast, the structure in inference is
the same as the vanilla network
with KITINet turned off, simulat-
ing the particle motion without
collisions and permitting particles
to cross through each other with-
out interacting or altering their ve-
locities.

For a layer with input x ∈ RD and output v ∈ RD, instead of regarding it as one particle in D-dim
space leads to no collision or D particles in one-dim space collisions without stochastic direction
changes, we introduce a hyper-parameter collision_heads, reshaping x, v to collision_heads × N
matrices X,V , and there are N = D

collision_heads particles colliding in collision_heads-dimensional
space. xi,vi ∈ Rcollision_heads, the i-th row of X,V , are initial position and velocity of particle i.

3
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Similar to multi-head attention in Transformers that uses multiple heads to capture different aspects
of feature relationships, our collision_heads mechanism controls the dimensional structure of the
collision space where particles interact. However, unlike Transformers which partition the feature
space into multiple independent representation subspaces, our approach consolidates all particles
within one single collision_heads-dimensional space where inter-particle collisions occur collectively.

Specifically, our KITINet simulates the collisions by imitating the DSMC method:

1. Calculate the relative distance, the relative velocity, the center-of-mass position, and the center-of-
mass velocity between N particles:

(Xr)i,j = |xi − xj |, (Vr)i,j = |vi − vj |

(Xcm)i,j =
1

2
(xi + xj), (Vcm)i,j =

1

2
(vi + vj).

(2)

Note that each element in Xr and Vr is a scalar, while in Xcm and Vcm is a vector.
2. Simulate the change of velocity ∆V :

(∆V )i,j = (Vcm)i,j +
1

2
(Vr)i,jni,j − vi, (∆V )j,i = (Vcm)j,i +

1

2
(Vr)j,inj,i − vj , (3)

where ni,j is a random vector distributed uniformly on the collision_heads-dim unit sphere, and
nj,i = −ni,j . This expression builds on Equation (16). (Vr)i,jni,j and (Vr)j,inj,i are adapted
from Equation (15) and are employed to compute the relative receding velocity after collision in
the center-of-mass system.

3. We introduce a hyper-parameter coll_coef. For each pair i, j, accept the collision if
(Vr)i,j · (Ur)i,j

vmax
r

> 1− coll_coef, (4)

where (Ur)i,j = e−(Xr)i,j , vmax
r = max(Vr). This equation is based on Equation (14). Unlike

the DSMC method, which divides space into cells and only permits collisions inside the cells,
our approach permits collisions between any pair of particles. We introduce Ur, interpreted as
the collision probability distribution under a unit mean free path. As (Xr)i,j increases, (Ur)i,j
decreases, reducing the probability of the collision between pair i, j; conversely, as (Xr)i,j
decreases, (Ur)i,j increases, making the collision more likely.

4. Update the velocity and position of the particles by the collision model x′
i = x∗

i + dt ∗ v′
i where:

v′
i = vi +

∑
j in accepted pair i,j

(∆V )i,j , x∗
i =

1

1 + k

xi +
∑

j in accepted pair i,j

(Xcm)i,j

 , (5)

where k is the number of accepted collisions of the i-th particle. (Xcm)i,j is the approximate
collision position of pair i, j. x∗

i is the average of all collision positions of the i-th particle and its
initial position. It is used to simulate the position change of particles i during dt time, which is
negligible in DSMC. The necessity for position update and x∗

i will be discussed in Section 5.6.

The algorithm is summarized in Algorithm 1, as designed to be efficient and can be easily integrated
into existing deep learning frameworks. Meanwhile, this algorithm still satisfies the assumptions of:
homogeneous gas, particle symmetry, each pair of particles has an average collision probability of

2
N(N−1) , molecular chaos and elastic collisions with no loss of energy or momentum. According to
[18; 33; 2], it can still well approximate the behavior of the BTE process under these conditions.

The time complexity is O(N2 · collision_heads) = O( D2

collision_heads ). As D, the size of the feature
vector, is a fixed parameter, introducing collision_heads may reduce the complexity of the KITINet
module.

4 MECHNISTIC INSIGHTS OF KITINET COLLISION
A natural question arise: What benefits does the introduction of KITINet collision bring to neural
networks? To address this question, we first demonstrate in Section 4.1 and Section 4.2 that KITINet
collision induces parameter condensation, a phenomenon recognized as an indicator of strong model
generalization capability [47; 49; 46]. Our analysis draws on the perspective of entropy in physics
(Section 4.1) and a theoretical examination of a simplified case (Section 4.2). Furthermore, synthetic
and real-world experiments in Section 5.7 provide empirical validation for this phenomenon. Finally,
in Section 4.3, we clarify the distinction between KITINet and the dropout technique [41].
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4.1 PHYSICS ANALYSIS
In statistical mechanics and fluid dynamics, the viscosity coefficient η is computed using the Green-
Kubo relations [13; 20]

η =
1

V kT

∫ ∞

0

⟨J(t)J(0)⟩ . (6)

Just as macroscopic temperature is related to the microscopic kinetic energy of particles, Equation (6)
establishes a bridge between the macroscopic viscosity coefficient η and the microscopic particle
stress flux J . When the interactions between particles consist solely of hard-sphere collisions, J can
be expressed as [44]:

J(t) = m

N∑
i=1

v2i (t) +
1

2

N∑
i=1

N∑
j=1

|Fcoll,ij × (xi − xj)|, (7)

where xi and vi denote the position and velocity of the i-th particle, and Fcoll,ij represents the force
exerted on particle i during a hard-sphere collision with particle j. Substituting Equation (7) into
Equation (6) yields η = ηK + ηK×C + ηC . As reported in [12], in DSMC the cross term ηK×C = 0:

η = ηK + ηC , (8)

where the kinetic contribution ηK is precisely the Chapman-Enskog viscosity and ηC corresponds to
the collision-induced correction.

Thus, collisions effectively increase the macroscopic viscosity coefficient of the underlying particle
system, thereby supplying an additional viscous force that promotes entropy production. By delegat-
ing part of the redistribution and relaxation dynamics to particle collisions, the network is relieved
from the necessity of generating highly fluctuating external forces. Consequently, the external force
field becomes smoother and exhibits reduced variability. Such smoothness in the external force field
implies that the underlying input–output mapping can be captured without resorting to abrupt or
irregular parameter adjustments, thereby yielding a more condense parameterization of the network.

4.2 ON THE THEORY OF CONDENSATION
In Section J, we provide detailed theoretical analysis under the simplified condition of a two-layer
overparameterized linear network solving a regression problem, in order to compare the performance
with and without KITINet. To make the analysis on KITINet tractable, we assume a thermal
equilibrium, an ideal physical state with constant temperature and retain the following Theorem 4.1.
Theorem 4.1. Under the setting in Section J.1 and assume KITINet is under thermal equilibrium,
the introduction of KITINet collisions changes the rapid convergence process to a two-phase process:
(1) The norm of neuron first decays to a small scale, inducing rapid reorientation in the low weight
regime. (2) The model converges to a sparse solution through a condensation-like dynamics.

Proof Sketch of Theorem 4.1. In the circumstance without KITINet collision, Theorem J.1 proves
that the model converge in exponential rate. In contrast, in the circumstance with KITINet collision,
we first show that the iterative process in this simplified scenario is a Markov process. Subsequently,
Theorem J.5 proves that at each step, the model’s weights gradually decay in expectation until they
eventually converge to a sparse solution, which completes the proof.
Insights from Theorem 4.1. Our results show that under our simplified condition, the introduction
of KITINet collisions changes the convergence process, transitioning from direct rapid convergence
to a distinct two-phase process. Compared to the network without collision that rapidly converges
to a complex solution, our KITINet converges to a sparser solution in this simplified circumstance,
thereby leading to improved generalization.

4.3 COMPARISON BETWEEN KITINET AND DROPOUT
In physics, collisions between particles cause their spatial distribution to become more dispersed.
When applied to neural networks, a similar "collision mechanism" in the feature layer induces
sparsity across feature dimensions, functioning similar to dropout regularization. Notably, unlike
dropout which discards information directly, KITINet preserves all information while promoting
sparsity by incorporating stochastic collision dynamics. For CV or NLP tasks where the precision
requirements are relatively low, dropout can achieve satisfactory results. However, for PDE tasks that
demand high precision, employing dropout would amplify computational errors. In contrast, KITINet
effectively preserves computational information, which can help minimize the numerical errors. The
performance comparison of the PDE -solving tasks is presented in Section 5.4.
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5 EXPERIMENTS

5.1 LARGE LANGUAGE MODEL (LLM) PRE-TRAINING FROM SCRATCH

Dataset & models. We pre-train the GPT-2 series from 0.1B to 1.5B parameter models with the
standard next token prediction loss. We replace the residual connection after the attention module
with a KITINet layer, obtaining a new series of models named KITINet-GPT-2. Our training
corpus is a 30B token high-quality composition of web text (FineWeb-edu lozhkov2024fineweb-edu),
mathematics (MegaMath zhou2025megamath), and code (OpenCoder Huang2024OpenCoderTO),
which reflects current state-of-the-art data curation practices. The evaluation of GPT-2 and KITINet-
GPT-2 is based on a diverse set of challenging downstream benchmarks, including knowledge-
intensive tasks (MMLU hendryckstest2021, ARC allenaiarc) and commonsense reasoning tasks
(HellaSwag zellers2019hellaswag, WinoGrande ai2winogrande).

Table 1: Accuracy ↑ of vanilla and with KITINet-plugin GPT2 models.
Model MMLU ARC_C ARC_E HellaSwag WinoGrande

GPT2 [37] 24.9 (0.35) 21.8 (1.11) 43.3 (1.01) 38.4 (0.49) 50.9 (1.41)
KITI-GPT2 25.1 (0.35) 22.6 (1.11) 43.5 (1.02) 38.8 (0.48) 51.2 (1.40)

GPT2-medium [37] 27.0 (0.37) 26.5 (1.12) 52.3 (1.02) 46.0 (0.49) 53.4 (1.40)
KITI-GPT2-med 26.2 (0.36) 27.6 (1.13) 52.5 (1.02) 46.3 (0.50) 53.8 (1.40)

GPT2-large [37] 25.9 (0.35) 28.5 (1.29) 57.5 (1.02) 46.7 (0.50) 55.2 (1.39)
KITI-GPT2-large 26.1 (0.36) 28.6 (1.30) 57.7 (1.01) 47.2 (0.50) 55.7 (1.40)

GPT2-xl [37] 26.6 (0.36) 31.8 (1.31) 62.2 (0.99) 50.6 (0.51) 58.2 (1.38)
KITI-GPT2-xl 27.2 (0.37) 31.9 (1.32) 62.9 (0.99) 51.0 (0.51) 58.5 (1.39)

Results. The Table 1
summarizes the accuracy
on testing benchmarks
with standard error. The
results demonstrate that
KITINet provides consis-
tent performance gains
over the baseline model
in the majority of evalu-
ation scenarios. A key
finding from our analy-
sis of the training dynamics is the enhanced training efficiency: KITINet consistently reaches target
accuracy levels with approximately 20% fewer training steps than the baseline, which covers the
overheads of its additional computation during training. This provides evidence for the practical
advantages of our proposed KITINet architecture.

5.2 LLM CONTINUED PRE-TRAINING

Table 2: Perplexity ↓ of vanilla and with KITINet GPT2.

Model GSM8K MATH MATHQA OCW

GPT2 [37] 17.34 12.35 31.24 7.34
KITI-GPT2 17.29 12.18 30.39 7.21
GPT2-medium [37] 13.72 11.18 23.68 6.35
KITI-GPT2-med 13.82 11.02 23.05 6.21
GPT2-large [37] 11.59 10.27 19.56 5.53
KITI-GPT2-large 11.20 10.06 18.81 5.40
GPT2-xl [37] 10.59 9.78 17.48 5.23
KITI-GPT2-xl 10.42 9.63 16.99 5.10

We conducted additional experiments
for LLM involving mathematical rea-
soning, i.e. continued pre-training of
GPT-2 on the Open-Web-Math dataset
paster2023openwebmath. Initialized
with official OpenAI GPT-2 weights,
we continued training with two config-
urations: GPT-2 with and without an
additional KITINet layer. Both mod-
els were trained for 30 billion tokens,
after which we assessed their perfor-
mance on standard mathematical eval-
uation benchmarks, including GSM8K cobbe2021gsm8k, MATH hendrycksmath2021, MATH_QA
amini-etal-2019-mathqa and OCW lewkowycz2022solving. The evaluation metric is perplexity
of correct answers. The results are displayed in the Table 2, where lower values indicate better
performance. Our results demonstrate that the KITINet version consistently achieves substantial
perplexity improvements over the baseline across most evaluation scenarios, with gains approximately
equivalent to those obtained by training for 20% additional tokens.

5.3 IMAGE CLASSIFICATION ON CIFAR
Dataset and models. We conduct our evaluations on CIFAR with 50K training images and 10K test
images. Our training setup follows [15], including models in different configurations, e.g., ResNet-34,
ResNet-50, ResNet-101, and ResNet-152. To balance performance and cost, we selectively integrate
our module in the last stage of the ResNet architecture.

Settings. The models are trained by SGD with batch size 128, momentum coefficient 0.9, and
weight decay 5× 10−4. The learning rate is initialized to 1 for quadratic integration matrix in the
implementation of Dit-ResNet [24] and 0.1 for all other parameters and decayed by a factor of ten at
the 80th and 120th epochs, completing training after 160 epochs. We apply standard augmentation
to the images in training: padding with 4 pixels on each side, followed by a random 32× 32 crop,
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and random horizontal flipping. For evaluation, we use the original 32 × 32 resolution without
augmentation. Following [24], we incorporate quadratic neurons specifically into the same layer.

Table 3: Accuracy of KITINet and ResNet-based models.
Model CIFAR10 CIFAR100 MFLOPs

ResNet-34 [15] 94.48 77.97 (0.12) 73.5
Dit-ResNet-34 [24] 94.45 78.14 (0.07) 73.5
KITI-ResNet-34 95.04 78.67 (0.10) 73.6

ResNet-50 [15] 94.75 78.27 (0.09) 83.7
Dit-ResNet-50 [24] 94.53 78.61 (0.05) 83.7
KITI-ResNet-50 95.18 78.75 (0.04) 85.9

ResNet-101 [15] 94.71 78.39 (0.08) 159.2
Dit-ResNet-101 [24] 94.98 78.88 (0.05) 159.2
KITI-ResNet-101 95.01 79.09 (0.03) 161.3

ResNet-152 [15] 94.67 78.41 (0.07) 234.7
Dit-ResNet-152 [24] 95.21 78.84 (0.04) 234.7
KITI-ResNet-152 95.67 79.48 (0.03) 236.8

Results. Table 3 compares perfor-
mance on CIFAR between KITINet
and the vanilla ResNet model [15],
as well as one biologically plausi-
ble adaptation by [24], which mim-
ics the nonlinear dendritic computa-
tions observed in cortical neurons. All
models are independently trained in
identical settings for fairness, with re-
ported metrics w.r.t. optimal valida-
tion performance. Our experiments
show that KITINet achieves improve-
ments on both CIFAR-10 and CIFAR-
100 without introducing additional
trainable parameters. KITI-ResNet-
34 matches the accuracy of ResNet-
152 on CIFAR-100 (78.67% vs. 78.41%), suggesting that it enables more efficient feature learning
compared to simply increasing network depth (KITI-ResNet-34 introduces only a 0.18% increase in
FLOPs compared to ResNet-34). Furthermore, it outperforms other biologically-inspired architectures
on the test sets, indicating good generalization ability.

5.4 LEARNING NEURAL OPERATOR FOR PDE-SOLVING
Dataset and models. For PDE, we consider benchmark equation families with varying discretizations
to assess resolution generalization. Our datasets are generated following the procedure in Section F.
The Fourier Neural Operator (FNO) [23] and Operator Transformer (OFormer) [22] are selected as
the neural solvers. For a more detailed description, refer to Section E.

Table 4: Performance comparison between
vanilla and with KITINet models on PDE-
solving tasks.

Problem Model MSE ↓

Burgers’ Equ. FNO [23] 0.00217
KITI-FNO 0.00166

NS Equation FNO [23] 0.12023
KITI-FNO 0.11346

Heat Equation FNO [23] 0.07054
KITI-FNO 0.05113

Airfoil* OFormer [22] 16.39461
KITI-OFormer 15.49034

* Airfoil problem uses Root MSE measurement.

Settings. FNOs are trained using Adam with an
initial learning rate of 10−3, batch size 20 and a
total training epoch 1K. OFormers are trained using
Adam with an initial learning rate of 1×10−3, batch
size 16 and 50K epochs.

Results. Table 4 compares vanilla and KITINet
on PDE. Across a diverse set of challenging PDE
benchmarks and an airfoil flow simulation, KITINet
enhances both FNO and OFormer. When integrated
into FNO, it reduces the Burgers’ equation error
by approximately 23.50% and the Navier-Stokes
error by about 5.63%, while on the heat equation it
yields a 27.52% improvement. Similarly, OFormer
augmented with KITINet achieves a 5.52% decrease
in RMSE on the airfoil problem. Figure 5 shows vanilla FNO and FNO with KITINet applied.

5.5 TEXT CLASSIFICATION ON IMDB AND SNLI
Table 5: Accuracy comparisons.

Model IMDb SNLI

Bert-cased [9] 91.45% 89.28%
KITI-Bert-cased 92.96% 90.26%
Bert-uncased [9] 93.42% 89.02%
KITI-Bert-uncased 94.53% 90.56%

Dataset & models. For text classification, we use on two
benchmark datasets: 1) IMDb [30] for sentiment classifica-
tion, testing the model’s natural language understanding ca-
pability; 2) SNLI [6] for natural language inference, assess-
ing its ability to reason over sentence pairs. Both datasets are
widely adopted for evaluating model performance in NLP
tasks. BERT [9] is a pre-trained language model based on
the transformer architecture, achieving good performance on
a wide range of NLP tasks. We adopt BERT as our baseline and enhance it by integrating our KITINet
architecture into BERT’s final transformer layer. The resulting hybrid model, termed KITI-BERT,
demonstrates improved effectiveness over the original framework.

Settings. We do experiments with two pre-trained model variants, including bert-base-cased and
bert-base-uncased. We set the tokenizer corresponding to the pre-trained model to process input
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tokens. Both KITI-Bert and Bert are trained by Adam with a batch size of 32 with the same random
seed. We set the learning rate to 2× 10−5 and the total fine-tuning training epochs to 40.

Results. In Table 5, KITI-Bert shows improvements on both IMDb and SNLI, i.e. 1.65% and 1.10%
using the pre-trained parameters of bert-base-cased, and 1.18% and 1.73% using the pre-trained
parameters of bert-base-uncased. With the same number of parameters, KITINet outperforms.

5.6 HYPER-PARAMETER ANALYSIS

(a) Burgers’ Equation

(b) Heat Equation

Figure 2: KITINet-FNO w/ different hyper-
parameters n_divide and coll_coef on Burg-
ers’ equation and Heat equation. The red and
blue dashed lines show the performance of
vanilla FNO as baselines.

In DSMC, the change in position x in a single time
step dt is typically small and negligible. Conse-
quently, x is treated as fixed while the velocity v is
updated via collisions. Yet to ensure KITINet can be
reduced to a ResNet-like architecture, we set dt = 1,
making the change in position in a time step non-
negligible. Thus, an explicit update to the position
x∗
i for particle i is introduced.

For FNO, we do ablation for position updates, keep-
ing all other settings identical. Table 6 consistently
shows that position updates outperform the non-
updating variant across all equations, highlighting
the effectiveness of this position update mechanism.

We analyze the impact of two additional hyper-
parameters collision_heads and coll_coef. For hyper-
parameter collision_heads, we evaluate values rang-
ing from 1 to 210 on the FNO model for the Burgers’
equation, while holding all other settings constant.
Figure 2(a) shows that collision_heads exerts a sub-
stantial influence on performance: well-chosen val-
ues of collision_heads lead to marked improvements
on both the training and test sets, while poorly chosen
values degrade accuracy.

For hyper-parameter coll_coef, we evaluate values
from 0.1 to 0.9 on the FNO model for the NS equa-
tion and Heat equation, while holding all other settings constant. Figure 2(b) and Figure 6 show that
coll_coef has a notable impact, and the best choice of coll_coef may vary greatly over tasks.

5.7 FURTHER STUDY ON MODEL BEHAVIOR
Table 6: Comparing update and non-update
mechanism FNO with KITINet on equations.

Equation Mechanism MSE

Burgers’ non-update 0.00173
update 0.00166

NS non-update 0.11429
update 0.11346

Heat non-update 0.05466
update 0.05113

In this section, we experimentally demonstrate the
condensation phenomenon within KITINet, a phe-
nomenon that is likely a key factor contributing to its
superior performance and promising generalization
ability. We first conduct analyses using a three-layer
fully connected network and a six-layer skip-chain
structured network. Furthermore, subsequent valida-
tion on both ResNet-18 and FNO consistently con-
firms this condensation effect.

Synthesis experiments setup. We consider the neu-
ral network with dinput input and dout output dimensions. The dimension of the hidden neuron is set
to the same value m. For both fully-connected and skip structures, they are initialized with all the
parameters by a Gaussian N(0, σ), where σ = 1

mγ . The size of the data is n. We construct the dataset
from

∑5
i=1 3.5 sin(5xi +1), where x = (x1, x2, x3, x4, x5) ∈ R5 and xi ∈ [−4, 2]. dinput = 5 and

doutput = 1. We fit the size of the training set n = 80 and γ = 4. This setting is used in [50] to
analyze the condensation principle. For its generalizability, we use multiple activation functions i.e.
ReLU, LeakyReLU, Sigmoid, and Tanh.

Results on fully-connected network. We employ a three-layer fully connected network with
architecture dinput-m-doutput as our baseline, where the second linear layer is replaced with our
KITINet structure. As illustrated in Figure 3(a), KITINet significantly improves the condensation
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extent of the model parameters. Other results are shown in Figure 7. Across all four common
activation functions, KITINet consistently shows favorable behavior: maintaining robust parameter
condensation or further enhancing the condensation effect compared to the original architecture.
Furthermore, we compare the decrease in loss with different activation functions. On the training
loss, KITINet performs slightly better (though the difference was minimal). On the test loss, KITINet
achieves reductions of 6.8%, 7.5%, and 4.5% respectively compared to the baseline when using ReLU,
LeakyReLU, and Tanh activation functions, demonstrating its superior generalization capability.

(a) 3 layer + ReLU (b) 6 layer skip connection + LeakyReLU

Step 1 Step 10 Step 50 Step 100

(II)

(I)

(III)

Figure 3: Results of parameter condensation across network
configurations on synthetic data. (a) Top: Condensation
patterns in 3-layer FC-ReLU networks; Bottom: Enhanced
condensation after replacing the final layer with KITINet
architecture. (b) Evolution of parameter condensation on a
Six-layer skip-connected Network with LeakyReLU activa-
tion function. (Row I) without applying KITINet. (Row II)
applying KITINet architecture on the last layer. (Row III)
applying KITINet architecture on the last two layers. We
choose the evolutionary trajectories at four critical check-
points (t ∈ {1, 10, 50, 100}) to characterize the phase tran-
sitions and train 100 epochs. Our observation demonstrates
that the KITINet structure facilitates faster and more effec-
tive parameter condensation.

Results on skip-connection neural
network. Skip connections have be-
come a core design in modern deep
neural networks [15; 22; 9]. We
design a six-layer baseline network
where each layer incorporates skip
connections. To systematically evalu-
ate KITINet’s effectiveness, we con-
duct comparative experiments by re-
placing: (1) only the last layer and (2)
the last two layers with our KITINet
structure. Our results suggest two key
findings: First, KITINet consistently
accelerates parameter condensation
over conventional skip-connections.
Second, replacing the last two layers
with KITINet yields faster condensa-
tion by modifying only the final layer
(see Figure 3(b)). This hierarchical
improvement suggests that KITINet’s
benefits are cumulative when applied
across multiple network layers. We
also show more experimental results
about evolution of the parameter con-
densation effect in Section H.

Table 7: Condensation degree ρ of the Navier-Stokes Equa-
tion between Vanilla and KITINet.

layer conv0 conv1 conv2 linear0 linear1 linear2

FNO 0.113 0.089 0.092 0.188 0.175 0.182

KITI-FNO 0.102 0.164 0.130 0.206 0.192 0.191

Results on Real-world Experiments.
For real-world tasks, KITINet also
promotes consolidation. We employ
the same experimental setting as de-
scribed in Section 5 and utilize the
average absolute cosine similarity to
measure the degree of condensation
denoted by ρ in a convolutional layer or a fully connected layer. This metric was adopted in [17] and
the formal definition is provided in Section I. The results are promising. In the PDE task of solving
naiver-stokes equation, as shown in Table 7, we observed that after adopting KITINet approach, the
degree of condensation increased among most layers. In the image classification task, we observed
the degree of condensation across different convolutional layers of ResNet18 and KITINet 18 trained
on CIFAR-100. After applying KITINet, the first conv layer (conv1, transforming RGB to features)
shows a notable improvement in condensation degree (from 0.235 to 0.248, improved by 5.3%),
while the changes in condensation degree for the remaining layers are minimal. The results show that
KITINet facilitates condensation, which may contribute to its enhanced generalization capability.

6 CONCLUSION AND LIMITATION FOR FUTURE WORK

We have introduced KITINet, leveraging the principles of kinetic theory to enhance the performance
of neural networks. By simulating particle dynamics and incorporating collision-like interactions,
KITINet is designed to achieve improved generalization capabilities and parameter condensation.
Our experimental results demonstrate its effectiveness across various tasks. We also provide a
mechanistic analysis to elucidate the underlying principles responsible for its superior performance.
When ideal computing resources are available, future work will focus on further optimizing KITINet
and exploring its applications in other domains, as well as more scaled benchmarks.
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A RELATED WORK

Residual Learning and Dynamical Systems. ResNet [15] introduced residual connections to
mitigate vanishing gradients in deep networks. Subsequent studies reinterpreted residual networks
through dynamical systems theory, with neural ODEs [7] modeling continuous-depth networks as
ordinary differential equations (ODEs). ODE-RNN [38] simulates continuous dynamics of hidden
states in RNNs. Neural controlled differential equations [19] extend this framework to incorporate
control mechanisms, enabling adaptive feature propagation. Other extensions include second-order
residuals [35] and flow models [3]. While these works provide valuable insights into the dynamics
of residual learning, they primarily focus on deterministic, collision-free dynamics, neglecting the
stochastic interactions and energy dissipation mechanisms inherent in real-world particle systems.

Physics-Inspired Network Architectures Recent efforts integrate physical principles into neural
architectures to enhance interpretability and data efficiency. Hamiltonian networks [14] preserve
energy conservation laws, and Lagrangian networks [42] derive updates from variational principles.
PDE-inspired models, such as PDE-GCN [11] and PDE-Net [26], parameterize spatial-temporal
evolution via partial differential equations. Closest to our work, [45] proposed a convection-diffusion
network (COIN), which incorporates diffusion layers after the ResNet architecture. But their formu-
lation lacks explicit ties to residual learning or parameter condensation. Critically, while the above
frameworks borrow mathematical structures from physics, they do not simulate collisional processes
or exploit thermodynamic relaxation for network sparsity.

B MOLECULE DYNAMICS AND NEURAL ODE

Molecular dynamics (MD) [16] is a numerical method that simulates the motion of molecular or
atomic systems at a microscopic level. Considering N particles in one-dimensional space 1, .., N ,
where the mass of the i-th particle is mi, and its position is xi. The potential energy is V (x1, ..., xN ).
According to Newton’s second law, we can write a second-order ordinary differential equation (ODE)

mi
d2xi

dt2
= Fi = −∇xiV (9)

where Fi represents the net external force acting on particle i, including weak interaction forces (van
der Waals forces), electromagnetic forces (Coulomb forces, chemical bonds), etc. Specifically, the
expression for Neural ODE (NODE) [7] involves a first-order ODE:

dx

dt
= v(x(t), t, θ) (10)

where x ∈ RD represents the hidden layer output; t ∈ R+ represents the network depth, while v
represents the neural network with parameters θ. This can be analogized to N particles moving with
velocity v. For NODE, its corresponding Newtonian equation can be written as:

d2x

dt2
=

Dv

Dt
= (∇xv)v +

∂v

∂t
:= F/m (11)

It can be regarded as a neural molecular dynamics system, where the hidden layer output x is particle
position, and velocity v is the derivative of the position parameterized by learnable parameters.

The NODE is a continuous model, implemented by discrete numerical methods, e.g., the Euler
method, the Runge-Kutta method. The NODE can be trained by backpropagation through the adjoint
method. It can be used to solve the problem of vanishing gradient and exploding gradient, and has
wide applications in the field of machine learning, e.g., image generation, time series prediction, etc.

C DIRECT SIMULATION MONTE CARLO (DSMC)

In DSMC, we consider the hard sphere model, where the collision probability is proportional to the
relative velocity of the particle pairs:

Pcoll[i, j] =
|vi − vj |∑Nc

m=1

∑m−1
n=1 |vm − vn|

, (12)
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where Nc is the number of particles in the cell; the velocity v is proportional to the momentum p
if assuming the particle mass is constant. The denominator is expensive to compute, so the DSMC
method uses a rejection sampling method to approximate the collision probability:

1. Estimate the number of candidate collision pairs Mcand by the no-time-counter method [1]:

Mcand =
Nc(Nc − 1)FNπd2vmax

r τ

2Vc
, (13)

where d is the particle diameter, the vmax
r is the estimated maximum relative velocity, the τ is the

time step, the Vc is the cell volume.
2. Random select Mcand pairs of particles. For each pair i, j, generate a random number ℜ1 from

the uniform distribution U(0, 1), and accept the collision if

|vi − vj |/vmax
r > ℜ1. (14)

3. If the collision is accepted, update the velocity of the particles according to the collision model,
with position unchanged.

4. Repeat the above steps for all cells, then proceed to the next time step.

The hard sphere model is a hard-body collision. The particles conserve momentum and energy and
scatter off in a random direction. Set post-collision relative velocity in a polar coordinate system:

v∗
r = vr[(sin θ cosϕ)x̂+ (sin θ sinϕ)ŷ + cos θ ẑ], (15)

and the angle are set as ϕ = 2πℜ2 and θ = cos−1(2ℜ3 − 1), where ℜ2 and ℜ3 are random numbers
from the uniform distribution U(0, 1). Denote the center of mass velocity as vcm = (vi + vj)/2,
then the post-collision velocity can be calculated as:

v′
i = vcm + v∗

r /2,v
′
j = vcm − v∗

r /2, (16)

D ALGORITHMS

Besides the KITINet architecture we have introduced, we also experimented with an alternative
architecture of KITINet, a-edition KITINet. In physics, acceleration can exhibit abrupt changes due
to external forces, whereas velocity should vary continuously. Therefore, a-edition KITINet considers
residual connections as position x and residuals as acceleration a, requiring velocity v from previous
a-edition KITINet, and outputs x′ and v′. For the first layer of a-edition KITINet, v would be a
random variable drawn from a Gaussian distribution, which satisfies the thermodynamic distribution.
During the a-edition KITINet, the initial velocity for collision simulation would be v + dt ∗ a, and
the velocity after collision v′ is recorded for the next a-edition KITINet.

From a physics perspective, the a-edition KITINet more faithfully satisfies Newton’s second law with
Equation (9) and BTE with Equation (1); from a neural-network perspective, the variable v within
the network functions analogously to an RNN’s hidden state, storing and propagating information.
However, in experiments, the a-edition KITINet failed to deliver satisfactory results.
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E PDE-SOLVER ARCHITECTURE

Figure 4: The full architecture of Fourier Neural Operators (FNO) with and without KITINet applied.

E.1 FOURIER NEURAL OPERATOR (FNO)
FNO [23] is a neural operator that implements a resolution-invariant global convolution by FFT’ing
input features, applying a learnable linear transform to a truncated set of frequency modes, and
then inverse-FFT’ing back to the spatial domain. It efficiently captures long-range dependencies
and generalizes across discretizations. As Fig. 4 in the appendix shows, for each Fourier layer with
KITINet applied, the outputs of the Fourier convolution are considered as v, while the outputs of the
linear transformation are considered as x.

E.2 OPERATOR TRANSFORMER (OFORMER)
OFormer [22] embeds Fourier neural operator blocks into a Transformer-style sequence model,
applying FFTs to input tokens, learnable complex-valued multipliers on truncated frequency modes,
and inverse FFTs back to space, while its attention mechanism enables these spectral operations to
be conditioned on arbitrary, irregular input locations, making it directly applicable to non-uniform
and unstructured grids. In the Transformer architecture with KITINet applied, the outputs of the
self-attention and MLP layers are considered as v, while the residual connections are considered as
x.

F PDE DATSETS GENERATION

F.1 BURGERS’ EQUATION
The one-dimensional Burgers’ equation is a nonlinear PDE commonly used to describe viscous fluid
flow in a single spatial dimension. It takes the form (We use dataset from [23]):

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ (0, 1).

The initial condition u0(x) is generated according to u0 ∽ µ where µ = N (0, 625(−∆+ 25I)−2)
with periodic boundary conditions and the viscosity is set to ν = 0.1. Fourier Neural Operators are
chosen for solving this equation, learning the operator mapping the initial condition to the solution at
time one, G† : L2

per((0, 1);R) → Hr
per((0, 1);R) defined by u0 7→ u(·, 1) for any r > 0.

F.2 NAVIER-STOKES (NS) EQUATION
The two-dimensional NS equation for a viscous, incompressible fluid in vorticity form on the unit
torus takes the form:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, T ],

ω(x, 0) = ω0(x), x ∈ (0, 1)2.

The initial condition ω0(x) is generated according to ω0 ∽ µ where µ = N (0, 73/2(−∆+49I)−2.5)
with periodic boundary conditions, the force f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2)))
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Figure 5: FNOs’ performance on NS equation, both vanilla and with KITINet applied. Left two:
FNOs’ predictions at the final time step; Right two: their corresponding absolute error maps.

and the viscosity is set to ν = 1e−3. FNOs are chosen for this equation, learning the operator
mapping the vorticity up to time 10 to the solution up to T > 10, G† : C([0, 10];Hr

per((0, 1);R)) →
C([10, T ];Hr

per((0, 1));R) defined by ω|(0,1)2×(0,10] 7→ ω|(0,1)2×(10,T ] for any r > 0. All data are
generated on a 256 × 256 grid with a pseudospectral method and are downsampled to 32 × 32 or
64× 64. The resolution is fixed to 32× 32 for training and 64× 64 for testing.

F.3 HEAT EQUATION
The two-dimensional Heat equation for a heated square box form on the unit torus takes the form:

∂tu(x, t) = α∆u(x, t) + q(x), x ∈ (0, 1)2, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (0, 1)2.

The initial condition u0(x) is generated according to u0 ∽ µ where µ = N (0, 73/2(−∆+49I)−2.5)
with periodic boundary conditions, the heat source q|∂Ω = 0.1 and the thermal diffusivity is
set to α = 1e−4. Here Fourier Neural Operators are chosen for solving this equation, learning
the operator mapping the vorticity up to time 10 to the solution up to some later time T > 10,
G† : C([0, 10];Hr

per((0, 1);R)) → C([10, T ];Hr
per((0, 1));R) defined by ω|(0,1)2×(0,10] 7→

ω|(0,1)2×(10,T ] for any r > 0. All data are generated on a 256 × 256 grid with a pseudospec-
tral method and are downsampled to 32× 32 or 64× 64. The resolution is fixed to be 32× 32 for
training and 64× 64 for testing.

F.4 AIRFOIL
For this problem, we study the two-dimensional time-dependent compressible flow around the
cross-section of airfoils, with different inflow speeds (Mach numbers) and angles of attack, and
NS equation is also used to describe the problem. Here Operators Transformer are chosen for
this problem, learning the mapping the velocity up to time 0.576s to the solution up to T = 4.8s,
G† : u(·, t)|t∈[0,0.576] 7→ u(·, t)|t∈(0.576,4.800]. All data on irregular grids are generated by [36], with
conventional solver SU2 [10].
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G ADDITIONAL EXPERIMENT ABOUT HYPER-PARAMETER ANALYSIS

Figure 6: The performance of KITI-FNO with different hyper-parameter coll_coef on NS equation.
The red and blue dashed lines show the performance of vanilla FNO as baselines.

H ADDITIONAL EXPERIMENT ABOUT CONDENSATION

(a) Relu (b) LeakyRelu (c) Sigmoid (d) Tanh

Figure 7: Results of parameter condensation on Three-layer Fully-connected Network. (Row 1) linear
networks versus (Row 2) KITINet -incorporated networks. Systematic validation is performed across
four activation functions: ReLU, LeakyReLU, Sigmoid, and Tanh.

I THE FORMAL DEFINITION OF THE DEGREE OF CONDENSATION.

In this section, we provide the formal definitions of condensation for fully connected networks and
convolutional networks, which are given in Definition 3.1 and 3.2 .
Definition I.1 (Weight Correlation in FCN). Given weight matrix wl ∈ RNl−1×Nl of the l-th layer,
the average weight correlation is defined as

ρ(wl) =
1

Nl(Nl − 1)

Nl∑
i,j=1
i̸=j

|wT
liwlj |

||wli||2||wlj ||2
, (17)
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(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 8: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network
without applying KITINet architecture. The process of paramter condensation is relatively slow.

(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 9: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network
applying KITINet architecture on the last layer. The process of parameter condensation is relatively
faster.

(a) Step 1 (b) Step 10 (c) Step 50 (d) Step 100

Figure 10: Evolution of parameter condensation on Six-layer skip-connected Network applying
KITINet architecture on the last two layers. The process of parameter condensation is significantly
much faster and stable.

where wli and wlj are i-th and j-th column of the matrix wl, corresponding to the i-th and j-th neuron
at l-th layer, respectively. Intuitively, ρ(wl) is the average cosine similarity between weight vectors
of any two neurons at the l-th layer.

Definition I.2 (Weight Correlation in CNN). Given the filter tensor wl ∈ Rf×f×Nl−1×Nl of the l-th
layer, where f × f is the size of the convolution kernel, wli ∈ Rf×f×Nl−1 and wlj ∈ Rf×f×Nl−1

are the i-th and j-th filter, respectively, of the filter tensor wl. By reshaping wli and wlj into w′li ∈
Rf2×Nl−1 and w′lj ∈ Rf2×Nl−1 , respectively, the weight correlation is defined as

ρ(wl) =
1

Nl(Nl − 1)Nl−1

Nl∑
i,j=1
i̸=j

Nl−1∑
z=1

|w′Tli,zw′lj,z|
||w′li,z||2||w′lj,z||2

, (18)

where w′li,z and w′lj,z are the z-th column of w′li and w′lj respectively. Intuitively, ρ(wl) is defined as
the cosine similarity between filter matrices.
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J A THEORY ANALYSIS OF CONDENSATION.

J.1 SETTING.

First, we present a formulation of the problem statement and establish the necessary notation that
will be used throughout our theoretical analysis. Consider a linear regression problem yi = kxi, i =
{1, 2, · · · , n}, where the training data xi ∈ Rd ∼ N(0, I), k ∈ R1×d. We use y = a⊤Wx to retain
the k. We set W is a m× d matrix and a is a 1×m matrix. We use W (t),a(t) to denote the value
of W ,a at step t.

Let W =


w⊤

1

w⊤
2
...

w⊤
m

, wi ∈ Rd×1, we assume that wi,j(t) ∼ N(0, σ1(t)) at step t for every i ∈

[m], j ∈ [d]. Let a = [a1 a2 · · · am]. we assume that ai(t) ∼ N(0, σ2(t)) at step t for every
i ∈ [m].

We consider MSE-loss as follow:

min
W ,a

L =
1

2n

n∑
i=1

(a⊤Wxi − yi)
2 (19)

Let θ(t) = a(t)⊤W (t) and θ∗ = k. We assume that the nueral network is over-parametrized, i.e.
m ≫ d. Let η denote the learning rate.

J.2 CASE 1: THE CIRCUMSTANCE WITHOUT COLLISION.

Theorem J.1. Under the setting in Section J.1, the convergence rate of the model parameters is
exponential.

Proof of Theorem J.1.

The gradient is

∂L

∂w⊤
l

= a⊤l · 1
n

n∑
i=1

(a⊤Wxi − yi) · x⊤
i (20)

∂L

∂a⊤l
= w⊤

l · 1
n

n∑
i=1

(a⊤Wxi − yi) · x⊤
i (21)

By using GD, we have

W (t+ 1) = W (t)− η · a(t)⊤ · 1
n

n∑
i=1

(a⊤(t)W (t)xi − yi) · x⊤
i (22)

a(t+ 1) = a(t)− η ·W (t)⊤ · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (23)

By multiplying the above two equations we get

θ(t+ 1) = θ(t)− η · a(t) · a(t)⊤ · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i

− η · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i ·W (t)⊤W (t) +O(η2)
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By Large Number Law, we have

a(t)a(t)⊤ =

m∑
i=1

ai(t)
2 ≈ σ2(t) ·m (24)

W (t)⊤W (t) =

m∑
i=1

wi(t)wi(t)
⊤ ≈

m∑
i=1

σ1(t) · I = m · σ1(t) · I (25)

Since yi = θ∗ · xi, we can approximately get

θ(t+ 1)− θ∗ ≈ θ(t)− θ∗ − η · (1 +m · (σ1(t) + σ2(t))) · (θ(t)− θ∗) · 1
n

n∑
i=1

xi · x⊤
i (26)

By large number theorem, when n is sufficiently large,

1

n

n∑
i=1

xi · x⊤
i ≈ E[xi · x⊤

i ] = I (27)

So finally we retain

θ(t+ 1)− θ∗ ≈ (1− η · (1 +m · (σ_1(t) + σ_2(t))))(θ(t)− θ∗) (28)

≈ (θ(0)− θ∗) ·
t∏

i=0

β(t) (29)

where β(t) = 1− η · (1 +m · (σ1(t) + σ2(t))).

Therefore, under collision-free conditions, the model can rapidly descend to convergence in exponen-
tial time as long as η is small and properly selected. □

J.3 CASE 2: THE CIRCUMSTANCE WITH COLLISION (KITINET).

Our key assumption here is that KITINet is under thermal equilibrium. In this idealized state, the
temperature is uniform and constant within the system, and all particles have the same velocity
distribution and same probability to collide. Here, we inject uniform constant noise into a as the
simulation for thermal equilibrium. While this simplification differs from the real collision dynamics,
it can provide valuable insights into how KITINet enhances model robustness.
Theorem J.2. Under the setting in Section J.1 and assume KITINet is under thermal equilibrium, the
introduction of KITINet collisions changes the convergence process to a two-phase process:
(1) The norm of neuron in W1 first decays to a small scale, inducing rapid reorientation in the low
weight regime.
(2) The model converges to a sparse solution through a condensation-like dynamics.

Proof of Theorem J.2.

The second phase that the convergence behavior under small-weight regimes has been extensively
studied [31; 28; 49; 32; 29], so we only provide the proof in the first phase.

The update rule to simulate the thermal equilibrium KITINet collision is modeled as follow: for every
neuron wi and ai at step t, we have

wi(t+ 1) = wi(t)− η · ai(t) ·
1

n

n∑
i=1

(a(t)⊤W (t)xi − yi) · xi (30)

ai(t+ 1) = ai(t) + δi(t) (31)

where

δi(t) =


− η0.25 if ai(t) = η0.25

η0.25 if ai(t) = −η0.25

∼ {−η0.25, η0.25} if ai(t) = 0

(32)
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Besides, we use a new initialization for a: for every i ∈ [m], we have

ai(0) =


− η0.25 with probability 1/4

η0.25 with probability 1/4
0 with probability 1/2

(33)

Notice that ai(0) follows the stationary distribution. Since the transition matrix of ai is

Q =

0 1 0
1
2 0 1

2
0 1 0


It is easy to verify that [1/4, 1/2, 1/4] = [1/4, 1/2, 1/4] ·Q.

Thus by large number law, we can approximate ∥a(t)∥2 by

∥a(t)∥2 =

m∑
i=1

|ai(t)|2 = m · E[|ai(t)|2] =
m · η0.5

2
(34)

Lemma J.3. Using algorithm 2, we have

E[θ(t)] = E[θ(0)] (35)

Proof. Notice that

W (t+ 1) = W (t+ 1)− η · a(t) · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (36)

a(t+ 1) = a(t) + δ(t)⊤ (37)

Where δ(t) = [δ1(t), δ2(t), · · · , δm(t)]⊤.

Notice that a(t+ 1)⊤ · a(t) = 0, then we have

θ(t+ 1) = a(t+ 1)⊤ ·W (t+ 1) (38)

= (a(t)⊤ + δ(t)) · (W (t)− η · a(t) · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i ) (39)

= θ(t) + δ(t) ·W (t)− (a(t+ 1)⊤ · a(t)) · η · 1
n

n∑
i=1

(a(t)⊤W (t)xi − yi) · x⊤
i (40)

= θ(t) + δ(t) ·W (t) (41)

Since E[δ(t)] = 0, we have

E[θ(t)] = E[θ(0)]

□

J.3.1 PROGRESSIVE DIMINISHING OF NORM USING ALGORITHM 2

Since xi ∼ N(0, I) i.i.d, by law of large numbers, 1
n

∑n
i=1 xi ·x⊤

i is approximately to E[xi ·x⊤
i ] = I .

So we have

wi(t+ 1) = wi(t)− η · ai(t) · (θ(t)− θ∗)⊤ (42)
ai(t+ 1) = ai(t) + δi(t) (43)

Square both sides of the equation and we have

∥wi(t+ 1)∥2 = ∥wi(t)∥2 − 2η · ai(t) · (θ(t)− θ∗)⊤ ·wi(t+ 1) + η2 · ai(t)2 · ∥θ(t)− θ∗∥2
(44)
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Since |ai(t)| ≤ η0.25, we have

1

m

m∑
i=1

∥wi(t+ 1)∥2 =
1

m

m∑
i=1

∥wi(t)∥2 − 2η · (θ(t)− θ∗)⊤ · 1

m

m∑
i=1

ai(t)wi(t) + η2 · 1

m

m∑
i=1

ai(t)
2∥θ(t)− θ∗∥2

(45)

=
1

m

m∑
i=1

∥wi(t)∥2 − 2η · 1

m
· (θ(t)− θ∗)⊤ · θ(t) + η2 · 1

m

m∑
i=1

ai(t)
2∥θ(t)− θ∗∥2

(46)

≤ 1

m

m∑
i=1

∥wi(t)∥2 − 2η · 1

m
· (θ(t)− θ∗)⊤ · θ(t) + η2 · (η0.25)2∥θ(t)− θ∗∥2

(47)

=
1

m

m∑
i=1

∥wi(t)∥2 − (
2η

m
− η2.5)∥(θ(t)− θ∗)∥2 − 2η

m
· (θ(t)− θ∗)⊤ · θ∗

(48)

Lemma J.4. If we set ai(0) to stationary distribution, then for any t, k ∈ N+, we have

E[δi(t) · δi(t+ k)] =

− η0.5

2
if k = 1

0 if k > 1

(49)

Proof. Without loss of generality, assume we know that δi(t) = η0.25, then the distribution changes
to (0, 1

2 ,
1
2 ). So we have

E[δi(t) · δi(t+ 1)] =
1

2
· η0.25 · (−η0.25) +

1

2
· 0 = −η0.5

2

Then just after that, the distribution changes from (0, 1
2 ,

1
2 ) to stationary distribution ( 14 ,

1
2 ,

1
4 ) again.

Thus for any k > 1 we have
E[δi(t) · δi(t+ k)] = 0

□

The following lemma reveals the process generated in Phase (1), thereby providing a proof for
Theorem J.2.
Lemma J.5 (Progressively diminishing under simulation setup). Under the setting in Section J.1 and
assume KITINet is under thermal equilibrium, there exists a step t0 ≤ 1

η2 such that

E[
1

m

m∑
i=1

∥wi(t0)∥2] ≤
√
η (50)

Proof. Firstly, we give a lower bound of E[∥θ(t)− θ∗∥2], which shows the decrease of each step.
According to Equation (41), we retain

θ(t)− θ∗ = θ(0)− θ∗ +

t−1∑
i=0

δ(i) ·W (i) (51)

And Since E[δ(i)] = 0, we have

E[(θ(0)− θ∗) ·
t−1∑
i=0

δ(i) ·W (i)] = E[δ(i)] · E[(θ(0)− θ∗) ·
t−1∑
i=0

W (i)] = 0 (52)

So we have

E[∥(θ(t)−θ∗)∥2] = E[∥(θ(0)−θ∗)∥2]+(η0.25)2·
t−1∑
i=0

E[∥W (i)∥2]+2

t−1∑
i=0

∑
j<i

E[(δ(i)W (i))·(δ(j)W (j))⊤]

(53)
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Notice that
E[(δ(i)W (i)) · (δ(i+ 1)W (i+ 1)⊤] = E[δ(i)(W (i)W (i+ 1)⊤)δ(i+ 1)⊤]

=
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) · (W (i)W (i+ 1)⊤)[l, r]]

=
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

Case 1: r ̸= l. In this case, δl are independent with δr. So we have

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

= E[δl(i)δr(i+ 1) ·wl(i)
⊤(wr(i)− η · ar(i) · (θ(i)− θ∗)⊤]

= E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i)]− E[δl(i)δr(i+ 1) ·wl(i)

⊤η · ar(i) · (θ(i)− θ∗)⊤]

= E[δl(i)] · E[δr(i+ 1) ·wl(i)
⊤wr(i)]− E[δl(i)] · E[δr(i+ 1) ·wl(i)

⊤η · ar(i) · (θ(i)− θ∗)⊤]

= 0

Case 2: r = l, by Lemma J.4, we have

E[δl(i)δl(i+ 1) ·wl(i)
⊤wl(i+ 1)]

= E[δl(i)δl(i+ 1) ·wl(i)
⊤(wl(i)− η · al(i) · (θ(i)− θ∗)⊤)]

= E[δl(i)δl(i+ 1) ·wl(i)
⊤wl(i)]− E[δl(i)δl(i+ 1) ·wl(i)

⊤η · al(i) · (θ(i)− θ∗)⊤]

= E[δl(i)δl(i+ 1)] · E[∥wl(i)∥2]− E[δl(i)δl(i+ 1) ·wl(i)
⊤η · al(i) · (θ(i)− θ∗)⊤]

= −η0.5

2
E[∥wl(i)∥2]− ηE[δl(i)δl(i+ 1) · al(i) · (θ(i)− θ∗)⊤ ·wl(i)]

= −η0.5

2
E[∥wl(i)∥2]−O(η1.75)

Thus we have

E[(δ(i)W (i)) · (δ(i+ 1)W (i+ 1))⊤] =
∑

1≤l,r≤m

E[δl(i)δr(i+ 1) ·wl(i)
⊤wr(i+ 1)]

=

m∑
l=1

E[δl(i)δl(i+ 1)] ·wl(i)
⊤wl(i+ 1))

= −η0.5

2

m∑
l=1

E[∥wl(i)∥2]−O(m · η1.75)

= −η0.5

2
E[∥W (i)∥2]−O(m · η1.75)

Then we retain

t−1∑
i=0

∑
j<i

E[(δ(i)W (i)) · (δ(j)W (j))⊤] =

t−2∑
i=0

E[(δ(i)W (i)) · (δ(i+ 1)Wi+1)
⊤] (54)

= −η0.5

2
·
t−2∑
i=0

E[∥W (i)∥2]−O(m · η1.75) (55)
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Combining Equation (53) and Equation (55), we have

E[∥(θ(t)− θ∗)∥2] = E[∥(θ(0)− θ∗)∥2]

+ η0.5 ·
t−1∑
i=0

E[∥W (i)∥2] + 2

t−1∑
i=0

∑
j<i

E[(δ(i)W (i)) · (δ(j)W (j))⊤] +O(m · η1.75)

= E[∥(θ(0)− θ∗)∥2] + η0.5 ·
t−1∑
i=0

E[∥W (i)∥2]− η0.5 ·
t−2∑
i=0

E[∥W (i)∥2] +O(m · η1.75)

= E[∥(θ(0)− θ∗)∥2] + η0.5E[∥W (t− 1)∥2]−O(m · η1.75)

≥ E[∥θ⋆∥2] + η0.5E[∥W (t− 1)∥2]

Then we give a proof of this theorem by contradiction. Assume for every step t ≤ 1
η2 , we have

E[
1

m

m∑
i=1

∥wi(T )∥2] ≥
√
η (56)

i.e.
E[∥W (t)∥2] ≥ m · √η (57)

When T =
1

η2
, according to Equation (48), sum up from 0 to T − 1 and we have

E[
1

m

m∑
i=1

∥wi(T )∥2] = E[
1

m

m∑
i=1

∥wi(0)∥2]− (
2η

m
− η2.5) ·

T−1∑
t=0

E[∥(θ(t)− θ∗)∥2]− 2η

m
·
T−1∑
t=0

E[(θ(t)− θ∗)⊤ · θ∗]

≤ E[
1

m

m∑
i=1

∥wi(0)∥2]− (
2η

m
− η2.5) · (T · E[∥θ∗∥2] + η0.5

T−1∑
t=0

E[∥Wt∥2]) +
T · 2η
m

· E[∥θ∗∥2]

≤ E[
1

m

m∑
i=1

∥wi(0)∥2]− 2η1.5 · T · √η +O(T · η2.5)

= 1− 2η1.5 · 1

η2
· √η +O(T · η2.5) = −1 +O(T · η2.5) < 0

Which is absolutely a contradiction! Therefore, we complete the proof. □
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