

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KITINET: KINETICS THEORY INSPIRED NETWORK AR- CHITECTURES WITH PDE SIMULATION APPROACHES

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite the widely recognized success of residual connections in modern neural networks, their design principles remain largely heuristic. This paper introduces KITINet (KInetics Theory Inspired Network), a way that reinterprets feature propagation through the lens of non-equilibrium particle dynamics and partial differential equation (PDE) simulation. We propose a new residual module that models feature updates as the stochastic evolution of a particle system, numerically simulated via a discretized solver for the Boltzmann transport equation (BTE). This formulation mimics particle collisions, enabling additional neuron-wise information propagation via physical interactions. Additionally, we reveal that this mechanism is an implicit regularization approach that induces network parameter condensation during training, where parameters progressively concentrate into a sparse subset of dominant channels. Experiments on large language modeling, image classification, scientific computation, and text classification show consistent improvements over classic network baselines, without additional inference cost.

1 INTRODUCTION

Residual connections have become a cornerstone of modern networks, enabling the training of exceptionally deep nets by alleviating vanishing gradients and stabilizing feature propagation. From ResNets [15] in vision to Transformers [43] in texts, residual mechanisms underpin state-of-the-art architectures. Recent advances have further explored residual learning through dynamical systems [7; 3], where iterative updates are analogized to differential equations. Concurrently, physics-inspired neural networks have gained traction, with frameworks such as PDE networks [26; 27] and Hamiltonian networks [42; 14] demonstrating that embedding physical principles into architectures can enhance physical interpretability and generalization. However, while these works highlight the potential of interdisciplinary design, the fusion of kinetic theory, particularly particle dynamics and collisional processes, with residual learning remains largely unexplored.

Despite their empirical success, existing residual modules are mostly designed heuristically. E.g., standard skip connections propagate features via simple additive operations, neglecting the rich dynamics of stochastical multi-particle interactions or energy exchange in non-equilibrium systems. As established in [40], the entropy-increasing behavior of feature representations is pervasive in architectures exhibiting information bottlenecks, such as GPT and ResNet. From a physical standpoint, particle collisions enhance macroscopic viscosity [12], easing the network’s burden to produce external forces and yielding smoother force fields and more condense parameterization. From a mathematical perspective, stochastic collisions can be regarded as a source of implicit regularization.

However, existing dynamical systems perspectives reinterpret residual networks as discretized ODEs [7; 35; 34], failing to account for stochastic, collision-driven interactions that govern particle systems. This gap leaves critical questions unanswered: Can residual learning be reimaged through the lens of kinetic theory? How might collisional dynamics, as modeled by BTE, inform adaptive feature refinement? Prior physics-inspired architectures [39; 45] have not rigorously bridged particle-based simulation with parameter sparsity mechanisms, nor uncovered the phenomenon of network parameter condensation [46] i.e. training concentrates parameters into a sparse subset of channels, via a physics-grounded framework.

This paper introduces KITINet, a kinetics theory inspired network architecture that reformulates residual learning as a stochastic particle simulation governed by the BTE. We propose a novel residual module where feature updates emulate the collisional evolution of a multi-particle system: each

054 channel acts as a "particle" whose interactions are simulated via a discretized PDE solver, and adaptively redistributes information through physics-informed collision operators. This approach not only
 055 aligns feature propagation with non-equilibrium thermodynamics but also induces network parameter
 056 condensation, a phenomenon where gradients during training progressively sparsify parameters into
 057 dominant channels. Extensive experiments on language model pre-training, image classification, PDE
 058 operator learning, and text classification validate KITINet's efficacy, outperforming GPT2, ResNet,
 059 and BERT. By unifying kinetic theory with deep learning, it establishes a new paradigm for designing
 060 interpretable, physics-grounded architectures. **The highlights of the paper are:**
 061

- 062 This paper proposes a novel residual connection module to replace only the residual addition, which
 063 formulates the feature updating process as the evolution of a kinetic particle system and implements
 064 the module by simulating random particle collisions using a numerical algorithm of the BTE.
- 065 It physically and mathematically promotes the recently heated phenomenon called network parameter
 066 condensation in training [46].
- 067 Experimental results demonstrate that the proposed module achieves performance improvements
 068 over baseline models on language model pre-training, image and text and PDE tasks.
- 069 It introduces a principled way to selectively embedding PDE structures into neural architectures.

071 2 PRELIMINARIES

072 2.1 KINETIC THEORY AND NUMERICAL ALGORITHM

073 The kinetic molecular theory of ideal gases is given as four postulates [25]:

- 074 1. A gas consists of particles called molecules, which are all alike in a given type of gas.
- 075 2. The molecules are in motion, and Newton's laws of motion may presumably be applied.
- 076 3. The molecules behave as elastic spheres with small diameters. Therefore, the space they occupy
 077 may be disregarded, and the collisions between them are energy-conservative.
- 078 4. No appreciable forces of attraction or repulsion are exerted by the molecules on each other.

079 When the particle system becomes too dense, it becomes necessary to describe the particle dynamics
 080 using distributions rather than trajectories. In kinetic theory, interaction sparsity is governed not by
 081 the absolute number of particles (e.g., the Avogadro constant), but by the ratio of the mean free path
 082 λ to the characteristic system length L . This ratio—known as the Knudsen number $\text{Kn} = \lambda/L$. As
 083 detailed in Equation (4) later in the text, the effective mean free path is normalized to $\lambda = 1$, as defined
 084 in the collision modulation term $(U_r)_{i,j} = e^{-(X_r)_{i,j}}$. Due to commonly used normalization schemes
 085 (e.g., BatchNorm), the typical feature-space distance is approximately $L \approx 3.29$, corresponding to
 086 the 90th percentile of data spread. This yields a Knudsen number of $\text{Kn} = \lambda/L \approx 0.30$, which lies
 087 well within the valid kinetic regime for the BTE (commonly $0.01 < \text{Kn} < 10$).

088 The density function f in the 7-dim phase space is defined as $dN = f(\mathbf{x}, \mathbf{p}, t) d^3\mathbf{x} d^3\mathbf{p}$. Assuming the
 089 displacement and momentum \mathbf{x}, \mathbf{p} satisfy the Hamiltonian equations, and external force represented
 090 as F_{ex} , then f satisfies the **Boltzmann transport equation (BTE)** [5]:
 091

$$092 \frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla_{\mathbf{x}} f + F_{ex} \cdot \nabla_{\mathbf{p}} f = \left(\frac{\partial f}{\partial t} \right)_{coll} \quad (1)$$

093 where the right-hand side term describes the changes in the distribution due to particle collisions,
 094 which can only be approximated by an empirical formula. The BTE is a partial differential equation
 095 (PDE) that describes the evolution of the distribution function f over time. There are various
 096 numerical methods to solve the BTE, such as the Direct Simulation Monte Carlo (DSMC) method [4]
 097 and the lattice Boltzmann method [21].
 098

100 2.2 DIRECT SIMULATION MONTE CARLO (DSMC)

101 The DSMC [4] is a stochastic method that simulates the particle motion to solve BTE for dilute gas.
 102 Unlike molecular dynamics, each particle here represents F_N molecules in the physical system. It
 103 divides the space into small cells and evolves the position and velocity of particles in each cell. The
 104 evolution consists of three steps: 1) Drift, 2) Wall Collision, 3) Particle Collision.
 105

106 The first two steps are deterministic. The drift step moves the particles by assuming they move in
 107 straight lines without collision. The wall collision step checks if the particles collide with the wall
 108 and resets their velocity according to the boundary conditions.

108

Algorithm 1 KITINet (with training and inference).

```

109
110 1: Input: Input  $\mathbf{x} \in \mathbb{R}^D$ , residual  $\mathbf{v} \in \mathbb{R}^D$ , hyper-parameters: dt, n_divide, coll_coef;
111 2: Output: Output  $\mathbf{x}' \in \mathbb{R}^D$ .
112 3: If model is in the inference mode, Return  $\mathbf{x} + dt * \mathbf{v}$ ;
113 4: Reshape  $\mathbf{x}, \mathbf{v}$  to  $\text{collision\_heads} \times N$  matrices  $\mathbf{X}, \mathbf{V}$ , where  $N = D/\text{collision\_heads}$ ;
114 5: Calculate relative properties  $X_r, V_r$  and center-of-mass properties  $\mathbf{X}_{cm}, \mathbf{V}_{cm}$  by Equation (2).
115 6: Calculate the full velocity change  $\Delta \mathbf{V}$  by Equation (3);
116 7: Select collision pairs by Equation (4);
117 8: Apply velocity and position change by Equation (5), get new position  $\mathbf{X}'$ ;
118 9: Return  $\mathbf{x}'$  flattened from  $\mathbf{X}'$ ;
119

```

120

The last step is stochastic. The particles are sorted into spatial cells, and only particle pairs in the same cell are selected to collide. The collision probability depends on the molecular interaction model. For a more detailed information about DSMC, please refer to Section C.

121

2.3 NETWORK PARAMETER CONDENSATION

122

Condensation of a neural network [50] describes the phenomenon where neurons in the same layer gradually form clusters with similar outputs during training. This process leads to the alignment or grouping of neurons that respond to related patterns in the input data. For evaluating parameter condensation, the cosine similarity is used as a natural and effective measure: $D(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u}^\top \mathbf{v}}{(\mathbf{u}^\top \mathbf{u})^{1/2} (\mathbf{v}^\top \mathbf{v})^{1/2}}$.

123

Extensive prior experimental phenomena and theoretical studies [48; 8] have established that the condensation phenomenon indicates when keeping the parameter within the same order of magnitude, the condensation phenomenon shows improvements in model generalization performance.

124

3 METHODOLOGY: THE KITINET ARCHITECTURE

125

As Figure 1 shows, we consider the network as the external force F_{ex} , and the hidden layer input is the position distribution of the particles f in Equation (1). Each layer provides the velocity of the particle. During training, the DSMC-inspire module KITINet takes the residual connections \mathbf{x} and residuals \mathbf{v} as inputs, modeling the the remaining dynamics of Equation (1). It simulates the particle motion with collisions, permits particles to interact through pairwise encounters and to change their velocities, and outputs the position after a time step. In contrast, the structure in inference is the same as the vanilla network with KITINet turned off, simulating the particle motion without collisions and permitting particles to cross through each other without interacting or altering their velocities.

126

127

128

129

130

131

132

For a layer with input $\mathbf{x} \in \mathbb{R}^D$ and output $\mathbf{v} \in \mathbb{R}^D$, instead of regarding it as one particle in D -dim space leads to no collision or D particles in one-dim space collisions without stochastic direction changes, we introduce a hyper-parameter collision_heads , reshaping \mathbf{x}, \mathbf{v} to $\text{collision_heads} \times N$ matrices \mathbf{X}, \mathbf{V} , and there are $N = \frac{D}{\text{collision_heads}}$ particles colliding in collision_heads -dimensional space. $\mathbf{x}_i, \mathbf{v}_i \in \mathbb{R}^{\text{collision_heads}}$, the i -th row of \mathbf{X}, \mathbf{V} , are initial position and velocity of particle i .

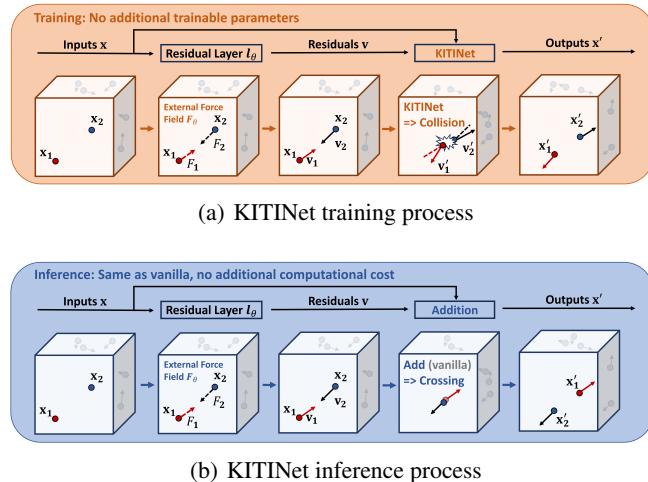


Figure 1: In our design, only the residual addition is replaced by a trainable-parameter-free KITINet module during training, leaving inference unchanged. It gives a physical meaning: inputs \mathbf{x} act as particle positions, residual layers as external forces inducing velocities \mathbf{v} ; particles collide in training but simply cross in inference. It is worth noting that the only trainable component is θ , which governs both the residual layer and the associated external force field.

Similar to multi-head attention in Transformers that uses multiple heads to capture different aspects of feature relationships, our collision_heads mechanism controls the dimensional structure of the collision space where particles interact. However, unlike Transformers which partition the feature space into multiple independent representation subspaces, our approach consolidates all particles within one single collision_heads-dimensional space where inter-particle collisions occur collectively.

Specifically, our KITINet simulates the collisions by imitating the DSMC method:

1. Calculate the relative distance, the relative velocity, the center-of-mass position, and the center-of-mass velocity between N particles:

$$\begin{aligned} (X_r)_{i,j} &= |\mathbf{x}_i - \mathbf{x}_j|, \quad (V_r)_{i,j} = |\mathbf{v}_i - \mathbf{v}_j| \\ (\mathbf{X}_{cm})_{i,j} &= \frac{1}{2}(\mathbf{x}_i + \mathbf{x}_j), \quad (\mathbf{V}_{cm})_{i,j} = \frac{1}{2}(\mathbf{v}_i + \mathbf{v}_j). \end{aligned} \quad (2)$$

Note that each element in X_r and V_r is a scalar, while in \mathbf{X}_{cm} and \mathbf{V}_{cm} is a vector.

2. Simulate the change of velocity $\Delta \mathbf{V}$:

$$(\Delta \mathbf{V})_{i,j} = (\mathbf{V}_{cm})_{i,j} + \frac{1}{2}(V_r)_{i,j} \mathbf{n}_{i,j} - \mathbf{v}_i, \quad (\Delta \mathbf{V})_{j,i} = (\mathbf{V}_{cm})_{j,i} + \frac{1}{2}(V_r)_{j,i} \mathbf{n}_{j,i} - \mathbf{v}_j, \quad (3)$$

where $\mathbf{n}_{i,j}$ is a random vector distributed uniformly on the collision_heads-dim unit sphere, and $\mathbf{n}_{j,i} = -\mathbf{n}_{i,j}$. This expression builds on Equation (16). $(V_r)_{i,j} \mathbf{n}_{i,j}$ and $(V_r)_{j,i} \mathbf{n}_{j,i}$ are adapted from Equation (15) and are employed to compute the relative receding velocity after collision in the center-of-mass system.

3. We introduce a hyper-parameter coll_coef. For each pair i, j , accept the collision if

$$\frac{(V_r)_{i,j} \cdot (U_r)_{i,j}}{v_r^{max}} > 1 - \text{coll_coef}, \quad (4)$$

where $(U_r)_{i,j} = e^{-(X_r)_{i,j}}$, $v_r^{max} = \max(V_r)$. This equation is based on Equation (14). Unlike the DSMC method, which divides space into cells and only permits collisions inside the cells, our approach permits collisions between any pair of particles. We introduce U_r , interpreted as the collision probability distribution under a unit mean free path. As $(X_r)_{i,j}$ increases, $(U_r)_{i,j}$ decreases, reducing the probability of the collision between pair i, j ; conversely, as $(X_r)_{i,j}$ decreases, $(U_r)_{i,j}$ increases, making the collision more likely.

4. Update the velocity and position of the particles by the collision model $\mathbf{x}'_i = \mathbf{x}_i^* + dt * \mathbf{v}'_i$ where:

$$\mathbf{v}'_i = \mathbf{v}_i + \sum_{j \text{ in accepted pair } i,j} (\Delta \mathbf{V})_{i,j}, \quad \mathbf{x}_i^* = \frac{1}{1+k} \left(\mathbf{x}_i + \sum_{j \text{ in accepted pair } i,j} (\mathbf{X}_{cm})_{i,j} \right), \quad (5)$$

where k is the number of accepted collisions of the i -th particle. $(\mathbf{X}_{cm})_{i,j}$ is the approximate collision position of pair i, j . \mathbf{x}_i^* is the average of all collision positions of the i -th particle and its initial position. It is used to simulate the position change of particles i during dt time, which is negligible in DSMC. The necessity for position update and \mathbf{x}_i^* will be discussed in Section 5.6.

The algorithm is summarized in Algorithm 1, as designed to be efficient and can be easily integrated into existing deep learning frameworks. Meanwhile, this algorithm still satisfies the assumptions of: homogeneous gas, particle symmetry, each pair of particles has an average collision probability of $\frac{2}{N(N-1)}$, molecular chaos and elastic collisions with no loss of energy or momentum. According to [18; 33; 2], it can still well approximate the behavior of the BTE process under these conditions.

The time complexity is $O(N^2 \cdot \text{collision_heads}) = O(\frac{D^2}{\text{collision_heads}})$. As D , the size of the feature vector, is a fixed parameter, introducing collision_heads may reduce the complexity of the KITINet module.

4 MECHNISTIC INSIGHTS OF KITINET COLLISION

A natural question arise: *What benefits does the introduction of KITINet collision bring to neural networks?* To address this question, we first demonstrate in Section 4.1 and Section 4.2 that KITINet collision induces parameter condensation, a phenomenon recognized as an indicator of strong model generalization capability [47; 49; 46]. Our analysis draws on the perspective of entropy in physics (Section 4.1) and a theoretical examination of a simplified case (Section 4.2). Furthermore, synthetic and real-world experiments in Section 5.7 provide empirical validation for this phenomenon. Finally, in Section 4.3, we clarify the distinction between KITINet and the dropout technique [41].

216 4.1 PHYSICS ANALYSIS

217 In statistical mechanics and fluid dynamics, the viscosity coefficient η is computed using the Green-
218 Kubo relations [13; 20]

$$219 \quad 220 \quad 221 \quad 222 \quad 223 \quad 224 \quad 225 \quad 226 \quad 227 \quad 228 \quad \eta = \frac{1}{V k T} \int_0^\infty \langle J(t) J(0) \rangle. \quad (6)$$

Just as macroscopic temperature is related to the microscopic kinetic energy of particles, Equation (6) establishes a bridge between the macroscopic viscosity coefficient η and the microscopic particle stress flux J . When the interactions between particles consist solely of hard-sphere collisions, J can be expressed as [44]:

$$226 \quad 227 \quad 228 \quad J(t) = m \sum_{i=1}^N v_i^2(t) + \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N |\mathbf{F}_{coll,ij} \times (\mathbf{x}_i - \mathbf{x}_j)|, \quad (7)$$

229 where \mathbf{x}_i and \mathbf{v}_i denote the position and velocity of the i -th particle, and $\mathbf{F}_{coll,ij}$ represents the force
230 exerted on particle i during a hard-sphere collision with particle j . Substituting Equation (7) into
231 Equation (6) yields $\eta = \eta^K + \eta^{K \times C} + \eta^C$. As reported in [12], in DSMC the cross term $\eta^{K \times C} = 0$:

$$232 \quad 233 \quad 234 \quad 235 \quad \eta = \eta^K + \eta^C, \quad (8)$$

where the kinetic contribution η^K is precisely the Chapman-Enskog viscosity and η^C corresponds to the collision-induced correction.

Thus, collisions effectively increase the macroscopic viscosity coefficient of the underlying particle system, thereby supplying an additional viscous force that promotes entropy production. By delegating part of the redistribution and relaxation dynamics to particle collisions, the network is relieved from the necessity of generating highly fluctuating external forces. Consequently, the external force field becomes smoother and exhibits reduced variability. Such smoothness in the external force field implies that the underlying input-output mapping can be captured without resorting to abrupt or irregular parameter adjustments, thereby yielding a more condense parameterization of the network.

236 4.2 ON THE THEORY OF CONDENSATION

237 In Section J, we provide detailed theoretical analysis under the simplified condition of a two-layer
238 overparameterized linear network solving a regression problem, in order to compare the performance
239 with and without KITINet. To make the analysis on KITINet tractable, we assume a thermal
240 equilibrium, an ideal physical state with constant temperature and retain the following Theorem 4.1.

Theorem 4.1. *Under the setting in Section J.1 and assume KITINet is under thermal equilibrium, the introduction of KITINet collisions changes the rapid convergence process to a two-phase process: (1) The norm of neuron first decays to a small scale, inducing rapid reorientation in the low weight regime. (2) The model converges to a sparse solution through a condensation-like dynamics.*

Proof Sketch of Theorem 4.1. In the circumstance without KITINet collision, Theorem J.1 proves that the model converge in exponential rate. In contrast, in the circumstance with KITINet collision, we first show that the iterative process in this simplified scenario is a Markov process. Subsequently, Theorem J.5 proves that at each step, the model's weights gradually decay in expectation until they eventually converge to a sparse solution, which completes the proof.

Insights from Theorem 4.1. Our results show that under our simplified condition, the introduction of KITINet collisions changes the convergence process, transitioning from direct rapid convergence to a distinct two-phase process. Compared to the network without collision that rapidly converges to a complex solution, our KITINet converges to a sparser solution in this simplified circumstance, thereby leading to improved generalization.

262 4.3 COMPARISON BETWEEN KITINET AND DROPOUT

263 In physics, collisions between particles cause their spatial distribution to become more dispersed.
264 When applied to neural networks, a similar "collision mechanism" in the feature layer induces
265 sparsity across feature dimensions, functioning similar to dropout regularization. Notably, unlike
266 dropout which discards information directly, KITINet preserves all information while promoting
267 sparsity by incorporating stochastic collision dynamics. For CV or NLP tasks where the precision
268 requirements are relatively low, dropout can achieve satisfactory results. However, for PDE tasks that
269 demand high precision, employing dropout would amplify computational errors. In contrast, KITINet
effectively preserves computational information, which can help minimize the numerical errors. The
performance comparison of the PDE -solving tasks is presented in Section 5.4.

270

5 EXPERIMENTS

271

5.1 LARGE LANGUAGE MODEL (LLM) PRE-TRAINING FROM SCRATCH

272 **Dataset & models.** We pre-train the GPT-2 series from 0.1B to 1.5B parameter models with the
 273 standard next token prediction loss. We replace the residual connection after the attention module
 274 with a KITINet layer, obtaining a new series of models named KITINet-GPT-2. Our training
 275 corpus is a 30B token high-quality composition of web text (FineWeb-edu lozhkov2024fineweb-edu),
 276 mathematics (MegaMath zhou2025megamath), and code (OpenCoder Huang2024OpenCoderTO),
 277 which reflects current state-of-the-art data curation practices. The evaluation of GPT-2 and KITINet-
 278 GPT-2 is based on a diverse set of challenging downstream benchmarks, including knowledge-
 279 intensive tasks (MMLU hendryckstest2021, ARC allenaiarc) and commonsense reasoning tasks
 280 (HellaSwag zellers2019hellaswag, WinoGrande ai2winogrande).
 281

282 **Results.** The Table 1
 283 summarizes the accuracy
 284 on testing benchmarks
 285 with standard error. The
 286 results demonstrate that
 287 KITINet provides consist-
 288 ent performance gains
 289 over the baseline model
 290 in the majority of eval-
 291 uation scenarios. A key
 292 finding from our analy-
 293 sis of the training dynamics is the enhanced training efficiency: KITINet consistently reaches target
 294 accuracy levels with approximately 20% fewer training steps than the baseline, which covers the
 295 overheads of its additional computation during training. This provides evidence for the practical
 296 advantages of our proposed KITINet architecture.
 297

Table 1: Accuracy \uparrow of vanilla and with KITINet-plugin GPT2 models.

Model	MMLU	ARC_C	ARC_E	HellaSwag	WinoGrande
GPT2 [37]	24.9 (0.35)	21.8 (1.11)	43.3 (1.01)	38.4 (0.49)	50.9 (1.41)
KITI-GPT2	25.1 (0.35)	22.6 (1.11)	43.5 (1.02)	38.8 (0.48)	51.2 (1.40)
GPT2-medium [37]	27.0 (0.37)	26.5 (1.12)	52.3 (1.02)	46.0 (0.49)	53.4 (1.40)
KITI-GPT2-med	26.2 (0.36)	27.6 (1.13)	52.5 (1.02)	46.3 (0.50)	53.8 (1.40)
GPT2-large [37]	25.9 (0.35)	28.5 (1.29)	57.5 (1.02)	46.7 (0.50)	55.2 (1.39)
KITI-GPT2-large	26.1 (0.36)	28.6 (1.30)	57.7 (1.01)	47.2 (0.50)	55.7 (1.40)
GPT2-xl [37]	26.6 (0.36)	31.8 (1.31)	62.2 (0.99)	50.6 (0.51)	58.2 (1.38)
KITI-GPT2-xl	27.2 (0.37)	31.9 (1.32)	62.9 (0.99)	51.0 (0.51)	58.5 (1.39)

Table 2: Perplexity \downarrow of vanilla and with KITINet GPT2.

Model	GSM8K	MATH	MATHQA	OCW
GPT2 [37]	17.34	12.35	31.24	7.34
KITI-GPT2	17.29	12.18	30.39	7.21
GPT2-medium [37]	13.72	11.18	23.68	6.35
KITI-GPT2-med	13.82	11.02	23.05	6.21
GPT2-large [37]	11.59	10.27	19.56	5.53
KITI-GPT2-large	11.20	10.06	18.81	5.40
GPT2-xl [37]	10.59	9.78	17.48	5.23
KITI-GPT2-xl	10.42	9.63	16.99	5.10

298

5.2 LLM CONTINUED PRE-TRAINING

299 We conducted additional experiments
 300 for LLM involving mathematical rea-
 301 soning, i.e. continued pre-training of
 302 GPT-2 on the Open-Web-Math dataset
 303 paster2023openwebmath. Initialized
 304 with official OpenAI GPT-2 weights,
 305 we continued training with two config-
 306 urations: GPT-2 with and without an
 307 additional KITINet layer. Both mod-
 308 els were trained for 30 billion tokens,
 309 after which we assessed their per-
 310 formance on standard mathematical eval-
 311 uation benchmarks, including GSM8K cobbe2021gsm8k, MATH hendrycksmath2021, MATH_QA
 312 amini-etal-2019-mathqa and OCW lewkowycz2022solving. The evaluation metric is perplexity
 313 of correct answers. The results are displayed in the Table 2, where lower values indicate better
 314 performance. Our results demonstrate that the KITINet version consistently achieves substantial
 315 perplexity improvements over the baseline across most evaluation scenarios, with gains approxi-
 316 mately equivalent to those obtained by training for 20% additional tokens.
 317

318

5.3 IMAGE CLASSIFICATION ON CIFAR

319 **Dataset and models.** We conduct our evaluations on CIFAR with 50K training images and 10K test
 320 images. Our training setup follows [15], including models in different configurations, e.g., ResNet-34,
 321 ResNet-50, ResNet-101, and ResNet-152. To balance performance and cost, we selectively integrate
 322 our module in the last stage of the ResNet architecture.
 323

324 **Settings.** The models are trained by SGD with batch size 128, momentum coefficient 0.9, and
 325 weight decay 5×10^{-4} . The learning rate is initialized to 1 for quadratic integration matrix in the
 326 implementation of Dit-ResNet [24] and 0.1 for all other parameters and decayed by a factor of ten at
 327 the 80th and 120th epochs, completing training after 160 epochs. We apply standard augmentation
 328 to the images in training: padding with 4 pixels on each side, followed by a random 32×32 crop,
 329

324 and random horizontal flipping. For evaluation, we use the original 32×32 resolution without
 325 augmentation. Following [24], we incorporate quadratic neurons specifically into the same layer.
 326

327 **Results.** Table 3 compares performance on CIFAR between KITINet
 328 and the vanilla ResNet model [15],
 329 as well as one biologically plausible
 330 adaptation by [24], which mimics
 331 the nonlinear dendritic computations
 332 observed in cortical neurons. All
 333 models are independently trained in
 334 identical settings for fairness, with re-
 335 ported metrics w.r.t. optimal valida-
 336 tion performance. Our experiments
 337 show that KITINet achieves improve-
 338 ments on both CIFAR-10 and CIFAR-
 339 100 without introducing additional
 340 trainable parameters. KITI-ResNet-
 341 34 matches the accuracy of ResNet-
 342 152 on CIFAR-100 (78.67% vs. 78.41%),
 343 suggesting that it enables more efficient feature learning
 344 compared to simply increasing network depth (KITI-ResNet-34 introduces only a 0.18% increase in
 345 FLOPs compared to ResNet-34). Furthermore, it outperforms other biologically-inspired architectures
 346 on the test sets, indicating good generalization ability.

347 5.4 LEARNING NEURAL OPERATOR FOR PDE-SOLVING

348 **Dataset and models.** For PDE, we consider benchmark equation families with varying discretizations
 349 to assess resolution generalization. Our datasets are generated following the procedure in Section F.
 350 The Fourier Neural Operator (FNO) [23] and Operator Transformer (OFormer) [22] are selected as
 351 the neural solvers. For a more detailed description, refer to Section E.

352 **Settings.** FNOs are trained using Adam with an
 353 initial learning rate of 10^{-3} , batch size 20 and a
 354 total training epoch 1K. OFormers are trained using
 355 Adam with an initial learning rate of 1×10^{-3} , batch
 356 size 16 and 50K epochs.

357 **Results.** Table 4 compares vanilla and KITINet
 358 on PDE. Across a diverse set of challenging PDE
 359 benchmarks and an airfoil flow simulation, KITINet
 360 enhances both FNO and OFormer. When integrated
 361 into FNO, it reduces the Burgers' equation error
 362 by approximately 23.50% and the Navier-Stokes
 363 error by about 5.63%, while on the heat equation it
 364 yields a 27.52% improvement. Similarly, OFormer
 365 augmented with KITINet achieves a 5.52% decrease
 366 in RMSE on the airfoil problem. Figure 5 shows vanilla FNO and FNO with KITINet applied.

367 5.5 TEXT CLASSIFICATION ON IMDB AND SNLI

368 **Dataset & models.** For text classification, we use on two
 369 benchmark datasets: 1) IMdb [30] for sentiment classifi-
 370 cation, testing the model's natural language understanding ca-
 371 pability; 2) SNLI [6] for natural language inference, assess-
 372 ing its ability to reason over sentence pairs. Both datasets are
 373 widely adopted for evaluating model performance in NLP
 374 tasks. BERT [9] is a pre-trained language model based on
 375 the transformer architecture, achieving good performance on
 376 a wide range of NLP tasks. We adopt BERT as our baseline and enhance it by integrating our KITINet
 377 architecture into BERT's final transformer layer. The resulting hybrid model, termed KITI-BERT,
 378 demonstrates improved effectiveness over the original framework.

379 **Settings.** We do experiments with two pre-trained model variants, including bert-base-cased and
 380 bert-base-uncased. We set the tokenizer corresponding to the pre-trained model to process input

381 **Table 3: Accuracy of KITINet and ResNet-based models.**

Model	CIFAR10	CIFAR100	MFLOPs
ResNet-34 [15]	94.48	77.97 (0.12)	73.5
Dit-ResNet-34 [24]	94.45	78.14 (0.07)	73.5
KITI-ResNet-34	95.04	78.67 (0.10)	73.6
ResNet-50 [15]	94.75	78.27 (0.09)	83.7
Dit-ResNet-50 [24]	94.53	78.61 (0.05)	83.7
KITI-ResNet-50	95.18	78.75 (0.04)	85.9
ResNet-101 [15]	94.71	78.39 (0.08)	159.2
Dit-ResNet-101 [24]	94.98	78.88 (0.05)	159.2
KITI-ResNet-101	95.01	79.09 (0.03)	161.3
ResNet-152 [15]	94.67	78.41 (0.07)	234.7
Dit-ResNet-152 [24]	95.21	78.84 (0.04)	234.7
KITI-ResNet-152	95.67	79.48 (0.03)	236.8

382

383 **Table 4: Performance comparison between**
 384 **vanilla and with KITINet models on PDE-**
 385 **solving tasks.**

Problem	Model	MSE \downarrow
Burgers' Equ.	FNO [23]	0.00217
	KITI-FNO	0.00166
NS Equation	FNO [23]	0.12023
	KITI-FNO	0.11346
Heat Equation	FNO [23]	0.07054
	KITI-FNO	0.05113
Airfoil*	OFormer [22]	16.39461
	KITI-OFormer	15.49034

386 * Airfoil problem uses Root MSE measurement.

387 **Table 5: Accuracy comparisons.**

Model	IMDb	SNLI
Bert-cased [9]	91.45%	89.28%
KITI-Bert-cased	92.96%	90.26%
Bert-uncased [9]	93.42%	89.02%
KITI-Bert-uncased	94.53%	90.56%

378 tokens. Both KITI-Bert and Bert are trained by Adam with a batch size of 32 with the same random
 379 seed. We set the learning rate to 2×10^{-5} and the total fine-tuning training epochs to 40.
 380

381 **Results.** In Table 5, KITI-Bert shows improvements on both IMDb and SNLI, i.e. 1.65% and 1.10%
 382 using the pre-trained parameters of bert-base-cased, and 1.18% and 1.73% using the pre-trained
 383 parameters of bert-base-uncased. With the same number of parameters, KITINet outperforms.

384 5.6 HYPER-PARAMETER ANALYSIS

385 In DSMC, the change in position x in a single time
 386 step dt is typically small and negligible. Consequently,
 387 x is treated as fixed while the velocity v is
 388 updated via collisions. Yet to ensure KITINet can be
 389 reduced to a ResNet-like architecture, we set $dt = 1$,
 390 making the change in position in a time step non-
 391 negligible. Thus, an explicit update to the position
 392 x_i^* for particle i is introduced.

393 For FNO, we do ablation for position updates, keeping
 394 all other settings identical. Table 6 consistently
 395 shows that position updates outperform the non-
 396 updating variant across all equations, highlighting
 397 the effectiveness of this position update mechanism.

398 We analyze the impact of two additional hyper-
 399 parameters `collision_heads` and `coll_coef`. For hyper-
 400 parameter `collision_heads`, we evaluate values rang-
 401 ing from 1 to 2^{10} on the FNO model for the Burgers'
 402 equation, while holding all other settings constant.
 403 Figure 2(a) shows that `collision_heads` exerts a sub-
 404 stantial influence on performance: well-chosen val-
 405 ues of `collision_heads` lead to marked improvements
 406 on both the training and test sets, while poorly chosen
 407 values degrade accuracy.

408 For hyper-parameter `coll_coef`, we evaluate values
 409 from 0.1 to 0.9 on the FNO model for the NS
 410 equation and Heat equation, while holding all other settings constant. Figure 2(b) and Figure 6 show that
 411 `coll_coef` has a notable impact, and the best choice of `coll_coef` may vary greatly over tasks.

412 5.7 FURTHER STUDY ON MODEL BEHAVIOR

413 In this section, we experimentally demonstrate the
 414 condensation phenomenon within KITINet, a phe-
 415 nomenon that is likely a key factor contributing to its
 416 superior performance and promising generalization
 417 ability. We first conduct analyses using a three-layer
 418 fully connected network and a six-layer skip-chain
 419 structured network. Furthermore, subsequent valida-
 420 tion on both ResNet-18 and FNO consistently con-
 421 firms this condensation effect.

422 **Synthesis experiments setup.** We consider the neu-
 423 ral network with d_{input} input and d_{out} output dimensions. The dimension of the hidden neuron is set
 424 to the same value m . For both fully-connected and skip structures, they are initialized with all the
 425 parameters by a Gaussian $N(0, \sigma)$, where $\sigma = \frac{1}{m^\gamma}$. The size of the data is n . We construct the dataset
 426 from $\sum_{i=1}^5 3.5 \sin(5x_i + 1)$, where $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ and $x_i \in [-4, 2]$. $d_{input} = 5$ and
 427 $d_{output} = 1$. We fit the size of the training set $n = 80$ and $\gamma = 4$. This setting is used in [50] to
 428 analyze the condensation principle. For its generalizability, we use multiple activation functions i.e.
 429 ReLU, LeakyReLU, Sigmoid, and Tanh.

430 **Results on fully-connected network.** We employ a three-layer fully connected network with
 431 architecture d_{input} - m - d_{output} as our baseline, where the second linear layer is replaced with our
 432 KITINet structure. As illustrated in Figure 3(a), KITINet significantly improves the condensation

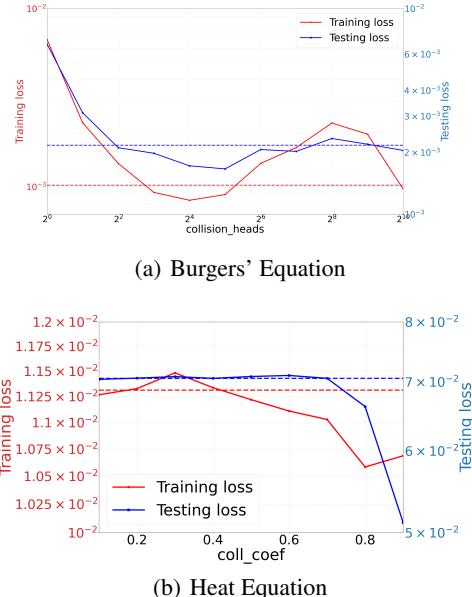


Figure 2: KITINet-FNO w/ different hyper-
 parameters `n_divide` and `coll_coef` on Burgers'
 equation and Heat equation. The red and
 blue dashed lines show the performance of
 vanilla FNO as baselines.

Table 6: Comparing update and non-update
 mechanism FNO with KITINet on equations.

Equation	Mechanism	MSE
Burgers'	non-update	0.00173
	update	0.00166
NS	non-update	0.11429
	update	0.11346
Heat	non-update	0.05466
	update	0.05113

extent of the model parameters. Other results are shown in Figure 7. Across all four common activation functions, KITINet consistently shows favorable behavior: maintaining robust parameter condensation or further enhancing the condensation effect compared to the original architecture. Furthermore, we compare the decrease in loss with different activation functions. On the training loss, KITINet performs slightly better (though the difference was minimal). On the test loss, KITINet achieves reductions of 6.8%, 7.5%, and 4.5% respectively compared to the baseline when using ReLU, LeakyReLU, and Tanh activation functions, demonstrating its superior generalization capability.

Results on skip-connection neural network. Skip connections have become a core design in modern deep neural networks [15; 22; 9]. We design a six-layer baseline network where each layer incorporates skip connections. To systematically evaluate KITINet’s effectiveness, we conduct comparative experiments by replacing: (1) only the last layer and (2) the last two layers with our KITINet structure. Our results suggest two key findings: First, KITINet consistently accelerates parameter condensation over conventional skip-connections. Second, replacing the last two layers with KITINet yields faster condensation by modifying only the final layer (see Figure 3(b)). This hierarchical improvement suggests that KITINet’s benefits are cumulative when applied across multiple network layers. We also show more experimental results about evolution of the parameter condensation effect in Section H.

Results on Real-world Experiments.

For real-world tasks, KITINet also promotes consolidation. We employ the same experimental setting as described in Section 5 and utilize the average absolute cosine similarity to measure the degree of condensation denoted by ρ in a convolutional layer or a fully connected layer. This metric was adopted in [17] and the formal definition is provided in Section I. The results are promising. In the PDE task of solving naiver-stokes equation, as shown in Table 7, we observed that after adopting KITINet approach, the degree of condensation increased among most layers. In the image classification task, we observed the degree of condensation across different convolutional layers of ResNet18 and KITINet 18 trained on CIFAR-100. After applying KITINet, the first conv layer (conv1, transforming RGB to features) shows a notable improvement in condensation degree (from 0.235 to 0.248, improved by 5.3%), while the changes in condensation degree for the remaining layers are minimal. The results show that KITINet facilitates condensation, which may contribute to its enhanced generalization capability.

6 CONCLUSION AND LIMITATION FOR FUTURE WORK

We have introduced KITINet, leveraging the principles of kinetic theory to enhance the performance of neural networks. By simulating particle dynamics and incorporating collision-like interactions, KITINet is designed to achieve improved generalization capabilities and parameter condensation. Our experimental results demonstrate its effectiveness across various tasks. We also provide a mechanistic analysis to elucidate the underlying principles responsible for its superior performance. When ideal computing resources are available, future work will focus on further optimizing KITINet and exploring its applications in other domains, as well as more scaled benchmarks.

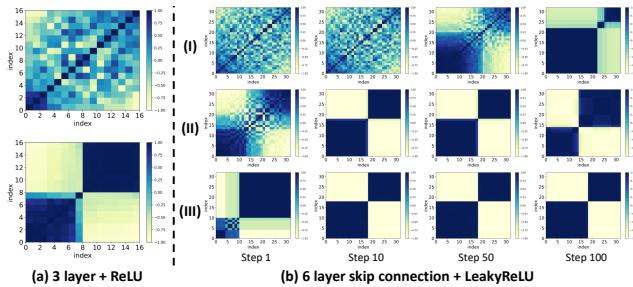


Figure 3: Results of parameter condensation across network configurations on synthetic data. (a) Top: Condensation patterns in 3-layer FC-ReLU networks; Bottom: Enhanced condensation after replacing the final layer with KITINet architecture. (b) Evolution of parameter condensation on a Six-layer skip-connected Network with LeakyReLU activation function. (Row I) without applying KITINet. (Row II) applying KITINet architecture on the last layer. (Row III) applying KITINet architecture on the last two layers. We choose the evolutionary trajectories at four critical checkpoints ($t \in \{1, 10, 50, 100\}$) to characterize the phase transitions and train 100 epochs. Our observation demonstrates that the KITINet structure facilitates faster and more effective parameter condensation.

Table 7: Condensation degree ρ of the Navier-Stokes Equation between Vanilla and KITINet.

layer	conv0	conv1	conv2	linear0	linear1	linear2
FNO	0.113	0.089	0.092	0.188	0.175	0.182
KITI-FNO	0.102	0.164	0.130	0.206	0.192	0.191

486 REFERENCES
487

488 [1] Takashi Abe. Generalized scheme of the no-time-counter scheme for the dsmc in rarefied gas
489 flow analysis. *Computers & fluids*, 22(2-3):253–257, 1993.

490 [2] Hans Babovsky. On a simulation scheme for the boltzmann equation. *Mathematical Methods in*
491 *the Applied Sciences*, 8(3):223–233, 1986. doi: 10.1002/mma.1670080114.

492 [3] Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan
493 Günnemann. Neural flows: Efficient alternative to neural odes. *Advances in neural information*
494 *processing systems*, 34:21325–21337, 2021.

495 [4] GA Bird. Approach to translational equilibrium in a rigid sphere gas. *Phys. fluids*, 6:1518–1519,
496 1963.

497 [5] Ludwig Boltzmann. On the relationship between the second fundamental theorem of the
498 mechanical theory of heat and probability calculations regarding the conditions for thermal
499 equilibrium. *Entropy*, 17(4):1971–2009, 2015.

500 [6] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large
501 annotated corpus for learning natural language inference. In Lluís Márquez, Chris Callison-
502 Burch, and Jian Su (eds.), *Proceedings of the 2015 Conference on Empirical Methods in*
503 *Natural Language Processing*, pp. 632–642, Lisbon, Portugal, September 2015. Association for
504 Computational Linguistics. doi: 10.18653/v1/D15-1075. URL <https://aclanthology.org/D15-1075>.

505 [7] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
506 differential equations. *Advances in neural information processing systems*, 31, 2018.

507 [8] Tianyi Chen and Zhi-Qin John Xu. Efficient and flexible method for reducing moderate-size
508 deep neural networks with condensation. *Entropy*, 26(7):567, 2024.

509 [9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
510 bidirectional transformers for language understanding. In *North American Chapter of the As-
511 sociation for Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:52967399>.

512 [10] Thomas D. Economon, Francisco Palacios, Sean R. Copeland, Trent W. Lukaczyk, and Juan J.
513 Alonso. SU2: An Open-Source Suite for Multiphysics Simulation and Design. *AIAA Journal*,
514 54(3):828–846, December 2015. doi: 10.2514/1.J053813. URL <https://doi.org/10.2514/1.J053813>.

515 [11] Moshe Eliasof, Eldad Haber, and Eran Treister. Pde-gcn: Novel architectures for graph neural
516 networks motivated by partial differential equations. *Advances in neural information processing*
517 *systems*, 34:3836–3849, 2021.

518 [12] Alejandro L. Garcia. Dsmc: A statistical mechanics perspective. *arXiv preprint*
519 *arXiv:2501.07785*, 2025. URL <https://arxiv.org/abs/2501.07785>.

520 [13] Melville S. Green. Markoff random processes and the statistical mechanics of time-dependent
521 phenomena. ii. irreversible processes in fluids. *The Journal of Chemical Physics*, 22(3):398–413,
522 03 1954. ISSN 0021-9606. doi: 10.1063/1.1740082. URL <https://doi.org/10.1063/1.1740082>.

523 [14] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. *Advances*
524 *in neural information processing systems*, 32, 2019.

525 [15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
526 recognition. In *Computer Vision and Pattern Recognition*, pp. 770–778, 2016.

527 [16] Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. *Neuron*, 99(6):
528 1129–1143, 2018.

540 [17] Gao Jin, Xinping Yi, Liang Zhang, Lijun Zhang, Sven Schewe, and Xiaowei Huang. How
 541 does weight correlation affect the generalisation ability of deep neural networks. *ArXiv*,
 542 abs/2010.05983, 2020. URL <https://api.semanticscholar.org/CorpusID:222310564>.

543 [18] Hasan Karabulut. Direct simulation for a homogeneous gas. *American Journal of Physics*, 75
 544 (1):62–66, January 2007. ISSN 1943-2909. doi: 10.1119/1.2366735. URL <http://dx.doi.org/10.1119/1.2366735>.

545 [19] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
 546 equations for irregular time series. *Advances in neural information processing systems*, 33:
 547 6696–6707, 2020.

548 [20] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory and
 549 simple applications to magnetic and conduction problems. *Journal of the Physical Society
 550 of Japan*, 12(6):570–586, 1957. doi: 10.1143/JPSJ.12.570. URL <https://doi.org/10.1143/JPSJ.12.570>.

551 [21] P Lallemand and LS Luo. Theory of the lattice boltzmann method: Dispersion, dissipation,
 552 isotropy, galilean invariance, and stability. *Physical review E*, 61(6):6546, 2000.

553 [22] Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential
 554 equations’ operator learning, 2023. URL <https://arxiv.org/abs/2205.13671>.

555 [23] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
 556 Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
 557 tial equations, 2021. URL <https://arxiv.org/abs/2010.08895>.

558 [24] Chongming Liu, Jingyang Ma, Songting Li, and Douglas Dongzhuo Zhou. Dendritic integration
 559 inspired artificial neural networks capture data correlation. *Advances in Neural Information
 560 Processing Systems*, 37:79325–79349, 2024.

561 [25] Leonard B Loeb. *The kinetic theory of gases*. Courier Corporation, 2004.

562 [26] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
 563 *International conference on machine learning*, pp. 3208–3216. PMLR, 2018.

564 [27] Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
 565 symbolic hybrid deep network. *Journal of Computational Physics*, 399:108925, 2019.

566 [28] Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer
 567 nets: Margin maximization and simplicity bias. *ArXiv*, abs/2110.13905, 2021. URL <https://api.semanticscholar.org/CorpusID:239885353>.

568 [29] Jianhao Ma and Salar Fattah. Convergence of gradient descent with small initialization
 569 for unregularized matrix completion. *ArXiv*, abs/2402.06756, 2024. URL <https://api.semanticscholar.org/CorpusID:267627789>.

570 [30] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
 571 Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting
 572 of the Association for Computational Linguistics: Human Language Technologies*, pp. 142–
 573 150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL
 574 <http://www.aclweb.org/anthology/P11-1015>.

575 [31] Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relu network
 576 features. *ArXiv*, abs/1803.08367, 2018. URL <https://api.semanticscholar.org/CorpusID:4050418>.

577 [32] Hancheng Min, René Vidal, and Enrique Mallada. Early neuron alignment in two-layer relu
 578 networks with small initialization. *ArXiv*, abs/2307.12851, 2023. URL <https://api.semanticscholar.org/CorpusID:260125817>.

594 [33] Kenichi Nanbu. Direct simulation scheme derived from the boltzmann equation. i. mono-
 595 component gases. *Journal of the Physical Society of Japan*, 49(5):2042–2049, 1980. doi:
 596 10.1143/JPSJ.49.2042. URL <https://doi.org/10.1143/JPSJ.49.2042>.

597 [34] A Norcliffe, C Bodnar, B Day, J Moss, P Lio, et al. Neural ode processes. In *International
 598 Conference on Learning Representations*, 2021.

600 [35] Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
 601 order behaviour in augmented neural odes. *Advances in neural information processing systems*,
 602 33:5911–5921, 2020.

603 [36] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
 604 mesh-based simulation with graph networks, 2021. URL <https://arxiv.org/abs/2010.03409>.

607 [37] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 608 models are unsupervised multitask learners. *OpenAI Blog*, 1(8):9, 2019. URL <https://openai.com/blog/better-language-models/>.

610 [38] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
 611 for irregularly-sampled time series. *Advances in neural information processing systems*, 32,
 612 2019.

614 [39] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization
 615 with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.

616 [40] Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
 617 Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. In
 618 *Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)*, 2025.
 619 URL <https://arxiv.org/abs/2502.02013>. Oral paper.

621 [41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 622 Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine
 623 Learning Research*, 15(56):1929–1958, 2014. URL <http://jmlr.org/papers/v15/srivastava14a.html>.

625 [42] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev,
 626 and Irina Higgins. Hamiltonian generative networks. *arXiv preprint arXiv:1909.13789*, 2019.

627 [43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 628 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information
 629 processing systems*, 30, 2017.

631 [44] T. Wainwright. Calculation of hard-sphere viscosity by means of correlation functions. *The
 632 Journal of Chemical Physics*, 40:2932–2937, 1964.

633 [45] Tangjun Wang, Chenglong Bao, and Zuoqiang Shi. Convection-diffusion equation: a theoreti-
 634 cally certified framework for neural networks. *IEEE Transactions on Pattern Analysis and
 635 Machine Intelligence*, 2025.

637 [46] Zhi-Qin John Xu, Yaoyu Zhang, and Zhangchen Zhou. An overview of condensation phe-
 638 nomenon in deep learning. *arXiv preprint arXiv:2504.09484*, 2025.

639 [47] Yaoyu Zhang, Zhongwang Zhang, Tao Luo, and Zhi-Qin John Xu. Embedding principle of loss
 640 landscape of deep neural networks. In *Neural Information Processing Systems*, 2021. URL
 641 <https://api.semanticscholar.org/CorpusID:235254308>.

642 [48] Yaoyu Zhang, Zhongwang Zhang, Tao Luo, and Zhiqin J Xu. Embedding principle of loss
 643 landscape of deep neural networks. *Advances in Neural Information Processing Systems*, 34:
 644 14848–14859, 2021.

646 [49] Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, and Zhi-Qin John Xu. Towards understand-
 647 ing the condensation of neural networks at initial training. In *Neural Information Processing Sys-
 648 tems*, 2021. URL <https://api.semanticscholar.org/CorpusID:244400573>.

648
649 [50] Hanxu Zhou, Zhou Qixuan, Tao Luo, Yaoyu Zhang, and Zhi-Qin Xu. Towards understanding the
650 condensation of neural networks at initial training. *Advances in Neural Information Processing*
651 Systems, 35:2184–2196, 2022.
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A RELATED WORK
703

704 **Residual Learning and Dynamical Systems.** ResNet [15] introduced residual connections to
705 mitigate vanishing gradients in deep networks. Subsequent studies reinterpreted residual networks
706 through dynamical systems theory, with neural ODEs [7] modeling continuous-depth networks as
707 ordinary differential equations (ODEs). ODE-RNN [38] simulates continuous dynamics of hidden
708 states in RNNs. Neural controlled differential equations [19] extend this framework to incorporate
709 control mechanisms, enabling adaptive feature propagation. Other extensions include second-order
710 residuals [35] and flow models [3]. While these works provide valuable insights into the dynamics
711 of residual learning, they primarily focus on deterministic, collision-free dynamics, neglecting the
712 stochastic interactions and energy dissipation mechanisms inherent in real-world particle systems.

713 **Physics-Inspired Network Architectures** Recent efforts integrate physical principles into neural
714 architectures to enhance interpretability and data efficiency. Hamiltonian networks [14] preserve
715 energy conservation laws, and Lagrangian networks [42] derive updates from variational principles.
716 PDE-inspired models, such as PDE-GCN [11] and PDE-Net [26], parameterize spatial-temporal
717 evolution via partial differential equations. Closest to our work, [45] proposed a convection-diffusion
718 network (COIN), which incorporates diffusion layers after the ResNet architecture. But their formu-
719 lation lacks explicit ties to residual learning or parameter condensation. Critically, while the above
720 frameworks borrow mathematical structures from physics, they do not simulate collisional processes
721 or exploit thermodynamic relaxation for network sparsity.

722 B MOLECULE DYNAMICS AND NEURAL ODE
723

724 Molecular dynamics (MD) [16] is a numerical method that simulates the motion of molecular or
725 atomic systems at a microscopic level. Considering N particles in one-dimensional space $1, \dots, N$,
726 where the mass of the i -th particle is m_i , and its position is x_i . The potential energy is $V(x_1, \dots, x_N)$.
727 According to Newton's second law, we can write a second-order ordinary differential equation (ODE)
728

$$729 \quad 730 \quad m_i \frac{d^2 x_i}{dt^2} = F_i = -\nabla_{x_i} V \quad (9)$$

731 where F_i represents the net external force acting on particle i , including weak interaction forces (van
732 der Waals forces), electromagnetic forces (Coulomb forces, chemical bonds), etc. Specifically, the
733 expression for Neural ODE (NODE) [7] involves a first-order ODE:

$$734 \quad 735 \quad \frac{d\mathbf{x}}{dt} = v(\mathbf{x}(t), t, \theta) \quad (10)$$

736 where $\mathbf{x} \in \mathbb{R}^D$ represents the hidden layer output; $t \in \mathbb{R}_+$ represents the network depth, while v
737 represents the neural network with parameters θ . This can be analogized to N particles moving with
738 velocity v . For NODE, its corresponding Newtonian equation can be written as:

$$739 \quad 740 \quad \frac{d^2 \mathbf{x}}{dt^2} = \frac{Dv}{Dt} = (\nabla_{\mathbf{x}} v)v + \frac{\partial v}{\partial t} := F/m \quad (11)$$

741 It can be regarded as a neural molecular dynamics system, where the hidden layer output \mathbf{x} is particle
742 position, and velocity v is the derivative of the position parameterized by learnable parameters.

743 The NODE is a continuous model, implemented by discrete numerical methods, e.g., the Euler
744 method, the Runge-Kutta method. The NODE can be trained by backpropagation through the adjoint
745 method. It can be used to solve the problem of vanishing gradient and exploding gradient, and has
746 wide applications in the field of machine learning, e.g., image generation, time series prediction, etc.

750 C DIRECT SIMULATION MONTE CARLO (DSMC)
751

752 In DSMC, we consider the hard sphere model, where the collision probability is proportional to the
753 relative velocity of the particle pairs:

$$754 \quad 755 \quad P_{\text{coll}}[i, j] = \frac{|\mathbf{v}_i - \mathbf{v}_j|}{\sum_{m=1}^{N_c} \sum_{n=1}^{m-1} |\mathbf{v}_m - \mathbf{v}_n|}, \quad (12)$$

756 where N_c is the number of particles in the cell; the velocity \mathbf{v} is proportional to the momentum \mathbf{p}
 757 if assuming the particle mass is constant. The denominator is expensive to compute, so the DSMC
 758 method uses a rejection sampling method to approximate the collision probability:

759 1. Estimate the number of candidate collision pairs M_{cand} by the no-time-counter method [1]:

$$760 \quad M_{\text{cand}} = \frac{N_c(N_c - 1)F_N \pi d^2 v_r^{\max} \tau}{2V_c}, \quad (13)$$

766 where d is the particle diameter, the v_r^{\max} is the estimated maximum relative velocity, the τ is the
 767 time step, the V_c is the cell volume.

768 2. Random select M_{cand} pairs of particles. For each pair i, j , generate a random number \mathfrak{R}_1 from
 769 the uniform distribution $U(0, 1)$, and accept the collision if

$$772 \quad |\mathbf{v}_i - \mathbf{v}_j|/v_r^{\max} > \mathfrak{R}_1. \quad (14)$$

775 3. If the collision is accepted, update the velocity of the particles according to the collision model,
 776 with position unchanged.

777 4. Repeat the above steps for all cells, then proceed to the next time step.

779 The hard sphere model is a hard-body collision. The particles conserve momentum and energy and
 780 scatter off in a random direction. Set post-collision relative velocity in a polar coordinate system:

$$783 \quad \mathbf{v}_r^* = v_r[(\sin \theta \cos \phi) \hat{\mathbf{x}} + (\sin \theta \sin \phi) \hat{\mathbf{y}} + \cos \theta \hat{\mathbf{z}}], \quad (15)$$

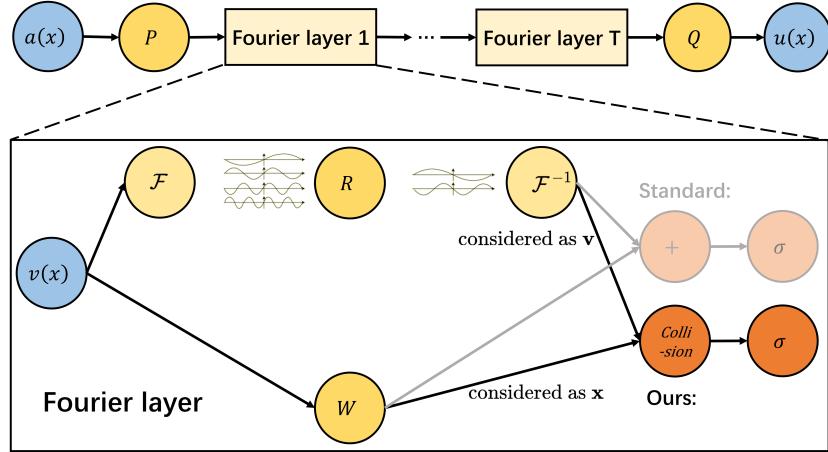
786 and the angle are set as $\phi = 2\pi \mathfrak{R}_2$ and $\theta = \cos^{-1}(2\mathfrak{R}_3 - 1)$, where \mathfrak{R}_2 and \mathfrak{R}_3 are random numbers
 787 from the uniform distribution $U(0, 1)$. Denote the center of mass velocity as $\mathbf{v}_{\text{cm}} = (\mathbf{v}_i + \mathbf{v}_j)/2$,
 788 then the post-collision velocity can be calculated as:

$$792 \quad \mathbf{v}'_i = \mathbf{v}_{\text{cm}} + \mathbf{v}_r^*/2, \quad \mathbf{v}'_j = \mathbf{v}_{\text{cm}} - \mathbf{v}_r^*/2, \quad (16)$$

797 D ALGORITHMS

799 Besides the KITINet architecture we have introduced, we also experimented with an alternative
 800 architecture of KITINet, a-edition KITINet. In physics, acceleration can exhibit abrupt changes due
 801 to external forces, whereas velocity should vary continuously. Therefore, a-edition KITINet considers
 802 residual connections as position \mathbf{x} and residuals as acceleration \mathbf{a} , requiring velocity \mathbf{v} from previous
 803 a-edition KITINet, and outputs \mathbf{x}' and \mathbf{v}' . For the first layer of a-edition KITINet, \mathbf{v} would be a
 804 random variable drawn from a Gaussian distribution, which satisfies the thermodynamic distribution.
 805 During the a-edition KITINet, the initial velocity for collision simulation would be $\mathbf{v} + dt * \mathbf{a}$, and
 806 the velocity after collision \mathbf{v}' is recorded for the next a-edition KITINet.

808 From a physics perspective, the a-edition KITINet more faithfully satisfies Newton's second law with
 809 Equation (9) and BTE with Equation (1); from a neural-network perspective, the variable \mathbf{v} within
 the network functions analogously to an RNN's hidden state, storing and propagating information.
 However, in experiments, the a-edition KITINet failed to deliver satisfactory results.

810 E PDE-SOLVER ARCHITECTURE
811827 Figure 4: The full architecture of Fourier Neural Operators (FNO) with and without KITINet applied.
828

829 E.1 FOURIER NEURAL OPERATOR (FNO)

830 FNO [23] is a neural operator that implements a resolution-invariant global convolution by FFT’ing
831 input features, applying a learnable linear transform to a truncated set of frequency modes, and
832 then inverse-FFT’ing back to the spatial domain. It efficiently captures long-range dependencies
833 and generalizes across discretizations. As Fig. 4 in the appendix shows, for each Fourier layer with
834 KITINet applied, the outputs of the Fourier convolution are considered as v , while the outputs of the
835 linear transformation are considered as x .

836 E.2 OPERATOR TRANSFORMER (OFORMER)

837 OFomer [22] embeds Fourier neural operator blocks into a Transformer-style sequence model,
838 applying FFTs to input tokens, learnable complex-valued multipliers on truncated frequency modes,
839 and inverse FFTs back to space, while its attention mechanism enables these spectral operations to
840 be conditioned on arbitrary, irregular input locations, making it directly applicable to non-uniform
841 and unstructured grids. In the Transformer architecture with KITINet applied, the outputs of the
842 self-attention and MLP layers are considered as v , while the residual connections are considered as
843 x .

844 F PDE DATSETS GENERATION

845 F.1 BURGERS’ EQUATION

846 The one-dimensional Burgers’ equation is a nonlinear PDE commonly used to describe viscous fluid
847 flow in a single spatial dimension. It takes the form (We use dataset from [23]):
848

$$849 \partial_t u(x, t) + \partial_x(u^2(x, t)/2) = \nu \partial_{xx} u(x, t), \quad x \in (0, 1), t \in (0, 1], \\ 850 \quad u(x, 0) = u_0(x), \quad x \in (0, 1).$$

851 The initial condition $u_0(x)$ is generated according to $u_0 \sim \mu$ where $\mu = \mathcal{N}(0, 625(-\Delta + 25I)^{-2})$
852 with periodic boundary conditions and the viscosity is set to $\nu = 0.1$. Fourier Neural Operators are
853 chosen for solving this equation, learning the operator mapping the initial condition to the solution at
854 time one, $G^\dagger : L^2_{per}((0, 1); \mathbb{R}) \rightarrow H^r_{per}((0, 1); \mathbb{R})$ defined by $u_0 \mapsto u(\cdot, 1)$ for any $r > 0$.
855

856 F.2 NAVIER-STOKES (NS) EQUATION

857 The two-dimensional NS equation for a viscous, incompressible fluid in vorticity form on the unit
858 torus takes the form:
859

$$\partial_t \omega(x, t) + u(x, t) \cdot \nabla \omega(x, t) = \nu \Delta \omega(x, t) + f(x), \quad x \in (0, 1)^2, t \in (0, T], \\ 860 \quad \nabla \cdot u(x, t) = 0, \quad x \in (0, 1)^2, t \in (0, T], \\ 861 \quad \omega(x, 0) = \omega_0(x), \quad x \in (0, 1)^2.$$

862 The initial condition $\omega_0(x)$ is generated according to $\omega_0 \sim \mu$ where $\mu = \mathcal{N}(0, 7^{3/2}(-\Delta + 49I)^{-2.5})$
863 with periodic boundary conditions, the force $f(x) = 0.1(\sin(2\pi(x_1 + x_2)) + \cos(2\pi(x_1 + x_2)))$

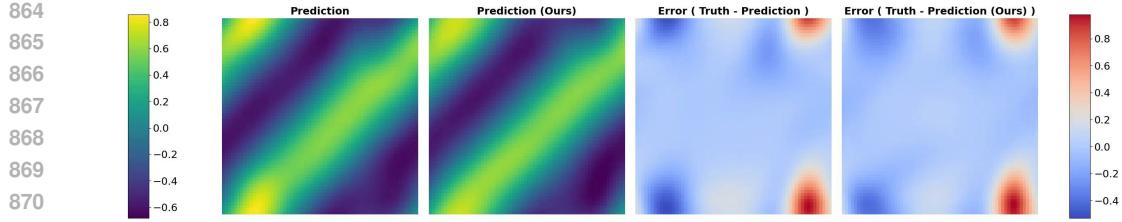


Figure 5: FNOs’ performance on NS equation, both vanilla and with KITINet applied. Left two: FNOs’ predictions at the final time step; Right two: their corresponding absolute error maps.

and the viscosity is set to $\nu = 1e-3$. FNOs are chosen for this equation, learning the operator mapping the vorticity up to time 10 to the solution up to $T > 10$, $G^\dagger : C([0, 10]; H_{per}^r((0, 1); \mathbb{R})) \rightarrow C([10, T]; H_{per}^r((0, 1)); \mathbb{R})$ defined by $\omega|_{(0,1)^2 \times (0,10]} \mapsto \omega|_{(0,1)^2 \times (10,T]}$ for any $r > 0$. All data are generated on a 256×256 grid with a pseudospectral method and are downsampled to 32×32 or 64×64 . The resolution is fixed to 32×32 for training and 64×64 for testing.

F.3 HEAT EQUATION

The two-dimensional Heat equation for a heated square box form on the unit torus takes the form:

$$\partial_t u(x, t) = \alpha \Delta u(x, t) + q(x), \quad x \in (0, 1)^2, t \in (0, T],$$

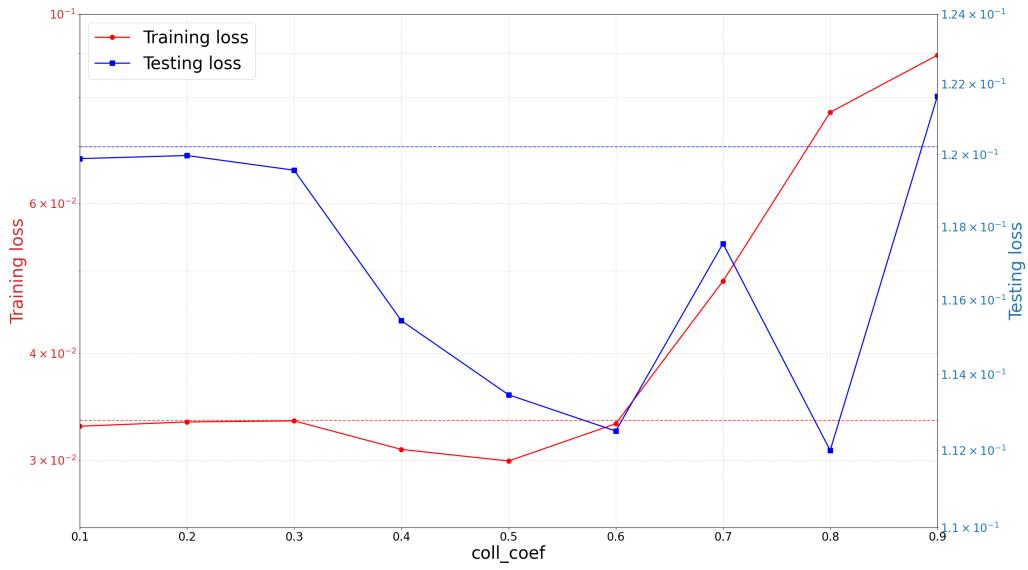
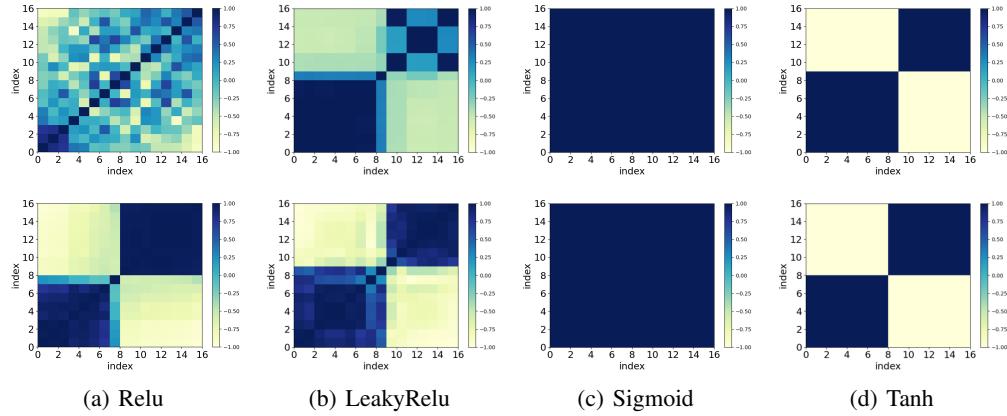
$$u(x, 0) = u_0(x), \quad x \in (0, 1)^2.$$

The initial condition $u_0(x)$ is generated according to $u_0 \sim \mu$ where $\mu = \mathcal{N}(0, 7^{3/2}(-\Delta + 49I)^{-2.5})$ with periodic boundary conditions, the heat source $q|_{\partial\Omega} = 0.1$ and the thermal diffusivity is set to $\alpha = 1e-4$. Here Fourier Neural Operators are chosen for solving this equation, learning the operator mapping the vorticity up to time 10 to the solution up to some later time $T > 10$, $G^\dagger : C([0, 10]; H_{per}^r((0, 1); \mathbb{R})) \rightarrow C([10, T]; H_{per}^r((0, 1)); \mathbb{R})$ defined by $\omega|_{(0,1)^2 \times (0,10]} \mapsto \omega|_{(0,1)^2 \times (10,T]}$ for any $r > 0$. All data are generated on a 256×256 grid with a pseudospectral method and are downsampled to 32×32 or 64×64 . The resolution is fixed to be 32×32 for training and 64×64 for testing.

F.4 AIRFOIL

For this problem, we study the two-dimensional time-dependent compressible flow around the cross-section of airfoils, with different inflow speeds (Mach numbers) and angles of attack, and NS equation is also used to describe the problem. Here Operators Transformer are chosen for this problem, learning the mapping the velocity up to time $0.576s$ to the solution up to $T = 4.8s$, $G^\dagger : u(\cdot, t)|_{t \in [0, 0.576]} \mapsto u(\cdot, t)|_{t \in (0.576, 4.800]}$. All data on irregular grids are generated by [36], with conventional solver SU2 [10].

900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **G ADDITIONAL EXPERIMENT ABOUT HYPER-PARAMETER ANALYSIS**
919939 Figure 6: The performance of KITI-FNO with different hyper-parameter coll_coef on NS equation.
940 The red and blue dashed lines show the performance of vanilla FNO as baselines.943 **H ADDITIONAL EXPERIMENT ABOUT CONDENSATION**
944959 Figure 7: Results of parameter condensation on Three-layer Fully-connected Network. (Row 1) linear
960 networks versus (Row 2) KITINet -incorporated networks. Systematic validation is performed across
961 four activation functions: ReLU, LeakyReLU, Sigmoid, and Tanh.963 **I THE FORMAL DEFINITION OF THE DEGREE OF CONDENSATION.**
964965 In this section, we provide the formal definitions of condensation for fully connected networks and
966 convolutional networks, which are given in Definition 3.1 and 3.2 .967 **Definition I.1** (Weight Correlation in FCN). Given weight matrix $w_l \in \mathbb{R}^{N_{l-1} \times N_l}$ of the l -th layer,
968 the average weight correlation is defined as

970
$$\rho(w_l) = \frac{1}{N_l(N_l - 1)} \sum_{\substack{i,j=1 \\ i \neq j}}^{N_l} \frac{|w_{li}^T w_{lj}|}{\|w_{li}\|_2 \|w_{lj}\|_2}, \quad (17)$$

971

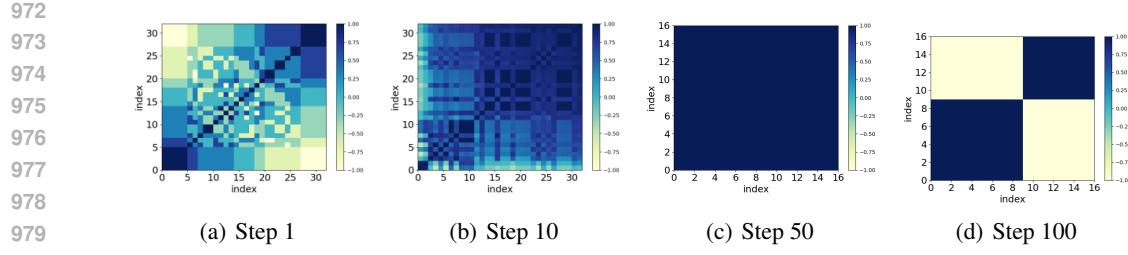


Figure 8: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network without applying KITINet architecture. The process of parameter condensation is relatively slow.

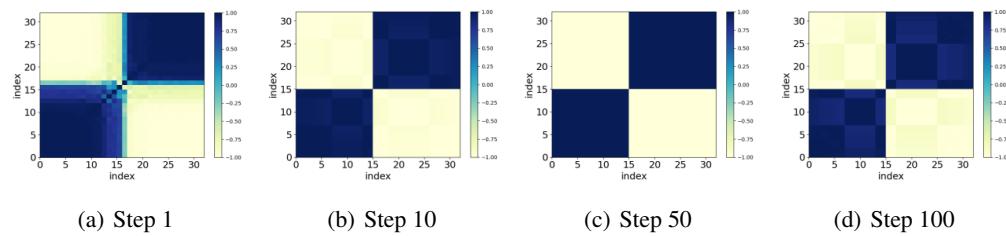


Figure 9: Evolution of parameter condensation effect on Six-layer ReLU skip-connected network applying KITINet architecture on the last layer. The process of parameter condensation is relatively faster.

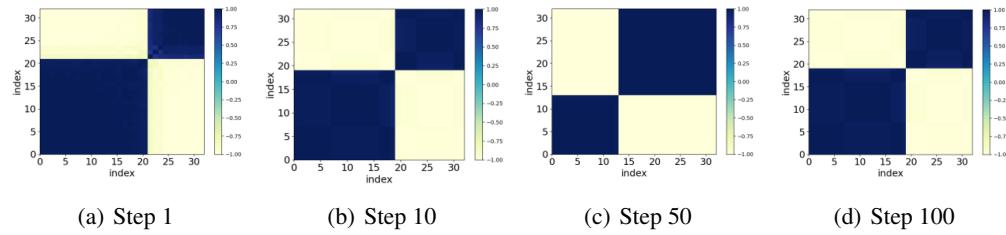


Figure 10: Evolution of parameter condensation on Six-layer skip-connected Network applying KITINet architecture on the last two layers. The process of parameter condensation is significantly much faster and stable.

where w_{li} and w_{lj} are i -th and j -th column of the matrix w_l , corresponding to the i -th and j -th neuron at l -th layer, respectively. Intuitively, $\rho(w_l)$ is the average cosine similarity between weight vectors of any two neurons at the l -th layer.

Definition I.2 (Weight Correlation in CNN). Given the filter tensor $w_l \in \mathbb{R}^{f \times f \times N_{l-1} \times N_l}$ of the l -th layer, where $f \times f$ is the size of the convolution kernel, $w_{li} \in \mathbb{R}^{f \times f \times N_{l-1}}$ and $w_{lj} \in \mathbb{R}^{f \times f \times N_{l-1}}$ are the i -th and j -th filter, respectively, of the filter tensor w_l . By reshaping w_{li} and w_{lj} into $w'_{li} \in \mathbb{R}^{f^2 \times N_{l-1}}$ and $w'_{lj} \in \mathbb{R}^{f^2 \times N_{l-1}}$, respectively, the weight correlation is defined as

$$\rho(\mathbf{w}_l) = \frac{1}{N_l(N_l-1)N_{l-1}} \sum_{\substack{i,j=1 \\ i \neq j}}^{N_l} \sum_{z=1}^{N_{l-1}} \frac{|\mathbf{w}'_{li,z} \mathbf{w}'_{lj,z}|}{\|\mathbf{w}'_{li,z}\|_2 \|\mathbf{w}'_{lj,z}\|_2}, \quad (18)$$

where $w'_{l_i, z}$ and $w'_{l_j, z}$ are the z -th column of w'_{l_i} and w'_{l_j} respectively. Intuitively, $\rho(w_l)$ is defined as the cosine similarity between filter matrices.

1026 **J A THEORY ANALYSIS OF CONDENSATION.**
10271028 **J.1 SETTING.**
10291030 First, we present a formulation of the problem statement and establish the necessary notation that
1031 will be used throughout our theoretical analysis. Consider a linear regression problem $y_i = \mathbf{k}\mathbf{x}_i$, $i =$
1032 $\{1, 2, \dots, n\}$, where the training data $\mathbf{x}_i \in \mathbb{R}^d \sim N(0, I)$, $\mathbf{k} \in \mathbb{R}^{1 \times d}$. We use $y = \mathbf{a}^\top \mathbf{W}\mathbf{x}$ to retain
1033 the \mathbf{k} . We set \mathbf{W} is a $m \times d$ matrix and \mathbf{a} is a $1 \times m$ matrix. We use $\mathbf{W}(t)$, $\mathbf{a}(t)$ to denote the value
1034 of \mathbf{W} , \mathbf{a} at step t .1035 Let $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1^\top \\ \mathbf{w}_2^\top \\ \vdots \\ \mathbf{w}_m^\top \end{bmatrix}$, $\mathbf{w}_i \in \mathbb{R}^{d \times 1}$, we assume that $w_{i,j}(t) \sim N(0, \sigma_1(t))$ at step t for every $i \in$
1036 $[m], j \in [d]$. Let $\mathbf{a} = [a_1 \ a_2 \ \dots \ a_m]$. we assume that $a_i(t) \sim N(0, \sigma_2(t))$ at step t for every
1037 $i \in [m]$.

1038 We consider MSE-loss as follow:

1039
$$\min_{\mathbf{W}, \mathbf{a}} L = \frac{1}{2n} \sum_{i=1}^n (\mathbf{a}^\top \mathbf{W}\mathbf{x}_i - y_i)^2 \quad (19)$$

1040 Let $\theta(t) = \mathbf{a}(t)^\top \mathbf{W}(t)$ and $\theta^* = \mathbf{k}$. We assume that the nueral network is over-parametrized, i.e.
1041 $m \gg d$. Let η denote the learning rate.1042 **J.2 CASE 1: THE CIRCUMSTANCE WITHOUT COLLISION.**
10431044 **Theorem J.1.** *Under the setting in Section J.1, the convergence rate of the model parameters is
1045 exponential.*1046 **Proof of Theorem J.1.**

1047 The gradient is

1048
$$\frac{\partial L}{\partial \mathbf{w}_l^\top} = a_l^\top \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}^\top \mathbf{W}\mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (20)$$

1049
$$\frac{\partial L}{\partial a_l^\top} = \mathbf{w}_l^\top \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}^\top \mathbf{W}\mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (21)$$

1050 By using GD, we have

1051
$$\mathbf{W}(t+1) = \mathbf{W}(t) - \eta \cdot \mathbf{a}(t)^\top \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}^\top(t) \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (22)$$

1052
$$\mathbf{a}(t+1) = \mathbf{a}(t) - \eta \cdot \mathbf{W}(t)^\top \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (23)$$

1053 By multiplying the above two equations we get
1054

1055
$$\begin{aligned} \theta(t+1) &= \theta(t) - \eta \cdot \mathbf{a}(t) \cdot \mathbf{a}(t)^\top \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \\ &\quad - \eta \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \cdot \mathbf{W}(t)^\top \mathbf{W}(t) + O(\eta^2) \end{aligned}$$

1080 By Large Number Law, we have
 1081

$$\mathbf{a}(t)\mathbf{a}(t)^\top = \sum_{i=1}^m a_i(t)^2 \approx \sigma_2(t) \cdot m \quad (24)$$

$$\mathbf{W}(t)^\top \mathbf{W}(t) = \sum_{i=1}^m \mathbf{w}_i(t) \mathbf{w}_i(t)^\top \approx \sum_{i=1}^m \sigma_1(t) \cdot I = m \cdot \sigma_1(t) \cdot I \quad (25)$$

1088 Since $y_i = \boldsymbol{\theta}^* \cdot \mathbf{x}_i$, we can approximately get
 1089

$$\boldsymbol{\theta}(t+1) - \boldsymbol{\theta}^* \approx \boldsymbol{\theta}(t) - \boldsymbol{\theta}^* - \eta \cdot (1 + m \cdot (\sigma_1(t) + \sigma_2(t))) \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*) \cdot \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \cdot \mathbf{x}_i^\top \quad (26)$$

1092 By large number theorem, when n is sufficiently large,
 1093

$$\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \cdot \mathbf{x}_i^\top \approx E[\mathbf{x}_i \cdot \mathbf{x}_i^\top] = I \quad (27)$$

1097 So finally we retain
 1098

$$\boldsymbol{\theta}(t+1) - \boldsymbol{\theta}^* \approx (1 - \eta \cdot (1 + m \cdot (\sigma_1(t) + \sigma_2(t))))(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*) \quad (28)$$

$$\approx (\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*) \cdot \prod_{i=0}^t \beta(i) \quad (29)$$

1103 where $\beta(t) = 1 - \eta \cdot (1 + m \cdot (\sigma_1(t) + \sigma_2(t)))$.
 1104

1105 Therefore, under collision-free conditions, the model can rapidly descend to convergence in exponential
 1106 time as long as η is small and properly selected. \square
 1107

1108 J.3 CASE 2: THE CIRCUMSTANCE WITH COLLISION (KITINET).

1109 Our key assumption here is that KITINet is under thermal equilibrium. In this idealized state, the
 1110 temperature is uniform and constant within the system, and all particles have the same velocity
 1111 distribution and same probability to collide. Here, we inject uniform constant noise into a as the
 1112 simulation for thermal equilibrium. While this simplification differs from the real collision dynamics,
 1113 it can provide valuable insights into how KITINet enhances model robustness.
 1114

1115 **Theorem J.2.** *Under the setting in Section J.1 and assume KITINet is under thermal equilibrium, the
 1116 introduction of KITINet collisions changes the convergence process to a two-phase process:*

1117 (1) *The norm of neuron in W_1 first decays to a small scale, inducing rapid reorientation in the low
 1118 weight regime.*
 1119 (2) *The model converges to a sparse solution through a condensation-like dynamics.*

1120 Proof of Theorem J.2.

1121 The second phase that the convergence behavior under small-weight regimes has been extensively
 1122 studied [31; 28; 49; 32; 29], so we only provide the proof in the first phase.
 1123

1124 The update rule to simulate the thermal equilibrium KITINet collision is modeled as follow: for every
 1125 neuron \mathbf{w}_i and a_i at step t , we have
 1126

$$\mathbf{w}_i(t+1) = \mathbf{w}_i(t) - \eta \cdot a_i(t) \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i \quad (30)$$

$$a_i(t+1) = a_i(t) + \delta_i(t) \quad (31)$$

1130 where
 1131

$$\delta_i(t) = \begin{cases} -\eta^{0.25} & \text{if } a_i(t) = \eta^{0.25} \\ \eta^{0.25} & \text{if } a_i(t) = -\eta^{0.25} \\ \sim \{-\eta^{0.25}, \eta^{0.25}\} & \text{if } a_i(t) = 0 \end{cases} \quad (32)$$

1134 Besides, we use a new initialization for \mathbf{a} : for every $i \in [m]$, we have
 1135

$$1136 \quad 1137 \quad 1138 \quad 1139 \quad a_i(0) = \begin{cases} -\eta^{0.25} & \text{with probability } 1/4 \\ \eta^{0.25} & \text{with probability } 1/4 \\ 0 & \text{with probability } 1/2 \end{cases} \quad (33)$$

1140 Notice that $a_i(0)$ follows the stationary distribution. Since the transition matrix of a_i is
 1141

$$1142 \quad 1143 \quad 1144 \quad Q = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \end{bmatrix}$$

1145 It is easy to verify that $[1/4, 1/2, 1/4] = [1/4, 1/2, 1/4] \cdot Q$.
 1146

1147 Thus by large number law, we can approximate $\|\mathbf{a}(t)\|^2$ by
 1148

$$1149 \quad \|\mathbf{a}(t)\|^2 = \sum_{i=1}^m |a_i(t)|^2 = m \cdot \mathbb{E}[|a_i(t)|^2] = \frac{m \cdot \eta^{0.5}}{2} \quad (34)$$

1150 **Lemma J.3.** *Using algorithm 2, we have*
 1151

$$1152 \quad \mathbb{E}[\boldsymbol{\theta}(t)] = \mathbb{E}[\boldsymbol{\theta}(0)] \quad (35)$$

1154 **Proof.** Notice that
 1155

$$1156 \quad \mathbf{W}(t+1) = \mathbf{W}(t+1) - \eta \cdot \mathbf{a}(t) \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (36)$$

$$1157 \quad \mathbf{a}(t+1) = \mathbf{a}(t) + \boldsymbol{\delta}(t)^\top \quad (37)$$

1161 Where $\boldsymbol{\delta}(t) = [\delta_1(t), \delta_2(t), \dots, \delta_m(t)]^\top$.
 1162

1163 Notice that $\mathbf{a}(t+1)^\top \cdot \mathbf{a}(t) = 0$, then we have
 1164

$$1165 \quad \boldsymbol{\theta}(t+1) = \mathbf{a}(t+1)^\top \cdot \mathbf{W}(t+1) \quad (38)$$

$$1166 \quad 1167 \quad 1168 \quad = (\mathbf{a}(t)^\top + \boldsymbol{\delta}(t)) \cdot (\mathbf{W}(t) - \eta \cdot \mathbf{a}(t) \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top) \quad (39)$$

$$1169 \quad 1170 \quad 1171 \quad = \boldsymbol{\theta}(t) + \boldsymbol{\delta}(t) \cdot \mathbf{W}(t) - (\mathbf{a}(t+1)^\top \cdot \mathbf{a}(t)) \cdot \eta \cdot \frac{1}{n} \sum_{i=1}^n (\mathbf{a}(t)^\top \mathbf{W}(t) \mathbf{x}_i - y_i) \cdot \mathbf{x}_i^\top \quad (40)$$

$$1172 \quad = \boldsymbol{\theta}(t) + \boldsymbol{\delta}(t) \cdot \mathbf{W}(t) \quad (41)$$

1173 Since $\mathbb{E}[\boldsymbol{\delta}(t)] = \mathbf{0}$, we have
 1174

$$1175 \quad \mathbb{E}[\boldsymbol{\theta}(t)] = \mathbb{E}[\boldsymbol{\theta}(0)]$$

1176 \square
 1177

1178 J.3.1 PROGRESSIVE DIMINISHING OF NORM USING ALGORITHM 2

1179 Since $\mathbf{x}_i \sim N(0, I)$ i.i.d, by law of large numbers, $\frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \cdot \mathbf{x}_i^\top$ is approximately to $\mathbb{E}[\mathbf{x}_i \cdot \mathbf{x}_i^\top] = I$.
 1180 So we have
 1181

$$1182 \quad \mathbf{w}_i(t+1) = \mathbf{w}_i(t) - \eta \cdot a_i(t) \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \quad (42)$$

$$1183 \quad a_i(t+1) = a_i(t) + \delta_i(t) \quad (43)$$

1184 Square both sides of the equation and we have
 1185

$$1186 \quad 1187 \quad \|\mathbf{w}_i(t+1)\|^2 = \|\mathbf{w}_i(t)\|^2 - 2\eta \cdot a_i(t) \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \mathbf{w}_i(t+1) + \eta^2 \cdot a_i(t)^2 \cdot \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*\|^2 \quad (44)$$

Since $|a_i(t)| \leq \eta^{0.25}$, we have

$$\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(t+1)\|^2 = \frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(t)\|^2 - 2\eta \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \frac{1}{m} \sum_{i=1}^m a_i(t) \mathbf{w}_i(t) + \eta^2 \cdot \frac{1}{m} \sum_{i=1}^m a_i(t)^2 \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*\|^2 \quad (45)$$

$$= \frac{1}{m} \sum_{i=1}^m \|\boldsymbol{w}_i(t)\|^2 - 2\eta \cdot \frac{1}{m} \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \boldsymbol{\theta}(t) + \eta^2 \cdot \frac{1}{m} \sum_{i=1}^m a_i(t)^2 \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*\|^2 \quad (46)$$

$$\leq \frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(t)\|^2 - 2\eta \cdot \frac{1}{m} \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \boldsymbol{\theta}(t) + \eta^2 \cdot (\eta^{0.25})^2 \|\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*\|^2 \quad (47)$$

$$= \frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(t)\|^2 - \left(\frac{2\eta}{m} - \eta^{2.5}\right) \|(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)\|^2 - \frac{2\eta}{m} \cdot (\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \boldsymbol{\theta}^* \quad (48)$$

Lemma J.4. If we set $a_i(0)$ to stationary distribution, then for any $t, k \in \mathbb{N}^+$, we have

$$\mathbf{E}[\delta_i(t) \cdot \delta_i(t+k)] = \begin{cases} -\frac{\eta^{0.5}}{2} & \text{if } k = 1 \\ 0 & \text{if } k > 1 \end{cases} \quad (49)$$

Proof. Without loss of generality, assume we know that $\delta_i(t) = \eta^{0.25}$, then the distribution changes to $(0, \frac{1}{2}, \frac{1}{2})$. So we have

$$\mathbb{E}[\delta_i(t) \cdot \delta_i(t+1)] = \frac{1}{2} \cdot \eta^{0.25} \cdot (-\eta^{0.25}) + \frac{1}{2} \cdot 0 = -\frac{\eta^{0.5}}{2}$$

Then just after that, the distribution changes from $(0, \frac{1}{2}, \frac{1}{2})$ to stationary distribution $(\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ again. Thus for any $k \geq 1$ we have

$$\mathbb{E}[\delta_i(t) \cdot \delta_i(t+k)] = 0$$

The following lemma reveals the process generated in Phase (1), thereby providing a proof for Theorem J.2.

Lemma J.5 (Progressively diminishing under simulation setup). *Under the setting in Section J.1 and assume KITINet is under thermal equilibrium, there exists a step $t_0 \leq \frac{1}{n^2}$ such that*

$$\mathbb{E} \left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(t_0)\|^2 \right] \leq \sqrt{\eta} \quad (50)$$

Proof. Firstly, we give a lower bound of $\mathbb{E}[\|\theta(t) - \theta^*\|^2]$, which shows the decrease of each step. According to Equation (41), we retain

$$\theta(t) - \theta^* = \theta(0) - \theta^* + \sum_{i=0}^{t-1} \delta(i) \cdot W(i) \quad (51)$$

And Since $\mathbb{E}[\delta(i)] = 0$ we have

$$\mathbb{E}[(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*) \cdot \sum_{i=1}^{t-1} \boldsymbol{\delta}(i) \cdot \mathbf{W}(i)] = \mathbb{E}[\boldsymbol{\delta}(i)] \cdot \mathbb{E}[(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*) \cdot \sum_{i=1}^{t-1} \mathbf{W}(i)] = 0 \quad (52)$$

So we have

$$\mathbb{E}[\|(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)\|^2] = \mathbb{E}[\|(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*)\|^2] + (\eta^{0.25})^2 \cdot \sum_{i=0}^{t-1} \mathbb{E}[\|\mathbf{W}(i)\|^2] + 2 \sum_{i=0}^{t-1} \sum_{j < i} \mathbb{E}[(\boldsymbol{\delta}(i)\mathbf{W}(i)) \cdot (\boldsymbol{\delta}(j)\mathbf{W}(j))^\top] \quad (53)$$

1242

Notice that

1243

$$\begin{aligned}
\mathbb{E}[(\delta(i)\mathbf{W}(i)) \cdot (\delta(i+1)\mathbf{W}(i+1)^\top)] &= \mathbb{E}[\delta(i)(\mathbf{W}(i)\mathbf{W}(i+1)^\top)\delta(i+1)^\top] \\
&= \sum_{1 \leq l, r \leq m} \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot (\mathbf{W}(i)\mathbf{W}(i+1)^\top)[l, r]] \\
&= \sum_{1 \leq l, r \leq m} \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_r(i+1)]
\end{aligned}$$

1247

1248

1249

1250

Case 1: $r \neq l$. In this case, δ_l are independent with δ_r . So we have

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

$$\mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_r(i+1)]$$

$$= \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top (\mathbf{w}_r(i) - \eta \cdot a_r(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top]$$

$$= \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_r(i)] - \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \eta \cdot a_r(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top]$$

$$= \mathbb{E}[\delta_l(i)] \cdot \mathbb{E}[\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_r(i)] - \mathbb{E}[\delta_l(i)] \cdot \mathbb{E}[\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \eta \cdot a_r(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top]$$

$$= 0$$

1261

Case 2: $r = l$, by Lemma J.4, we have

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

$$\mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_l(i+1)]$$

$$= \mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot \mathbf{w}_l(i)^\top (\mathbf{w}_l(i) - \eta \cdot a_l(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top)]$$

$$= \mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_l(i)] - \mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot \mathbf{w}_l(i)^\top \eta \cdot a_l(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top]$$

$$= \mathbb{E}[\delta_l(i)\delta_l(i+1)] \cdot \mathbb{E}[\|\mathbf{w}_l(i)\|^2] - \mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot \mathbf{w}_l(i)^\top \eta \cdot a_l(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top]$$

$$= -\frac{\eta^{0.5}}{2} \mathbb{E}[\|\mathbf{w}_l(i)\|^2] - \eta \mathbb{E}[\delta_l(i)\delta_l(i+1) \cdot a_l(i) \cdot (\boldsymbol{\theta}(i) - \boldsymbol{\theta}^*)^\top \cdot \mathbf{w}_l(i)]$$

$$= -\frac{\eta^{0.5}}{2} \mathbb{E}[\|\mathbf{w}_l(i)\|^2] - O(\eta^{1.75})$$

1275

Thus we have

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

$$\mathbb{E}[(\delta(i)\mathbf{W}(i)) \cdot (\delta(i+1)\mathbf{W}(i+1)^\top)] = \sum_{1 \leq l, r \leq m} \mathbb{E}[\delta_l(i)\delta_r(i+1) \cdot \mathbf{w}_l(i)^\top \mathbf{w}_r(i+1)]$$

$$= \sum_{l=1}^m \mathbb{E}[\delta_l(i)\delta_l(i+1)] \cdot \mathbf{w}_l(i)^\top \mathbf{w}_l(i+1)$$

$$= -\frac{\eta^{0.5}}{2} \sum_{l=1}^m \mathbb{E}[\|\mathbf{w}_l(i)\|^2] - O(m \cdot \eta^{1.75})$$

$$= -\frac{\eta^{0.5}}{2} \mathbb{E}[\|\mathbf{W}(i)\|^2] - O(m \cdot \eta^{1.75})$$

1288

Then we retain

1289

1290

1291

1292

1293

1294

1295

$$\sum_{i=0}^{t-1} \sum_{j < i} \mathbb{E}[(\delta(i)\mathbf{W}(i)) \cdot (\delta(j)\mathbf{W}(j)^\top)] = \sum_{i=0}^{t-2} \mathbb{E}[(\delta(i)\mathbf{W}(i)) \cdot (\delta(i+1)\mathbf{W}_{i+1})^\top] \quad (54)$$

$$= -\frac{\eta^{0.5}}{2} \cdot \sum_{i=0}^{t-2} \mathbb{E}[\|\mathbf{W}(i)\|^2] - O(m \cdot \eta^{1.75}) \quad (55)$$

1296 Combining Equation (53) and Equation (55), we have
 1297
 1298

$$\begin{aligned}
 1299 \mathbb{E}[\|(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)\|^2] &= \mathbb{E}[\|(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*)\|^2] \\
 1300 &\quad + \eta^{0.5} \cdot \sum_{i=0}^{t-1} \mathbb{E}[\|\mathbf{W}(i)\|^2] + 2 \sum_{i=0}^{t-1} \sum_{j < i} \mathbb{E}[(\boldsymbol{\delta}(i)\mathbf{W}(i)) \cdot (\boldsymbol{\delta}(j)\mathbf{W}(j))^\top] + O(m \cdot \eta^{1.75}) \\
 1301 &= \mathbb{E}[\|(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*)\|^2] + \eta^{0.5} \cdot \sum_{i=0}^{t-1} \mathbb{E}[\|\mathbf{W}(i)\|^2] - \eta^{0.5} \cdot \sum_{i=0}^{t-2} \mathbb{E}[\|\mathbf{W}(i)\|^2] + O(m \cdot \eta^{1.75}) \\
 1302 &= \mathbb{E}[\|(\boldsymbol{\theta}(0) - \boldsymbol{\theta}^*)\|^2] + \eta^{0.5} \mathbb{E}[\|\mathbf{W}(t-1)\|^2] - O(m \cdot \eta^{1.75}) \\
 1303 &\geq \mathbb{E}[\|\boldsymbol{\theta}^*\|^2] + \eta^{0.5} \mathbb{E}[\|\mathbf{W}(t-1)\|^2]
 \end{aligned}$$

1304 Then we give a proof of this theorem by contradiction. Assume for every step $t \leq \frac{1}{\eta^2}$, we have
 1305
 1306

$$\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(T)\|^2\right] \geq \sqrt{\eta} \quad (56)$$

1307 i.e.

$$\mathbb{E}[\|\mathbf{W}(t)\|^2] \geq m \cdot \sqrt{\eta} \quad (57)$$

1308 When $T = \frac{1}{\eta^2}$, according to Equation (48), sum up from 0 to $T-1$ and we have
 1309

$$\begin{aligned}
 1310 \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(T)\|^2\right] &= \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(0)\|^2\right] - \left(\frac{2\eta}{m} - \eta^{2.5}\right) \cdot \sum_{t=0}^{T-1} \mathbb{E}[\|(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)\|^2] - \frac{2\eta}{m} \cdot \sum_{t=0}^{T-1} \mathbb{E}[(\boldsymbol{\theta}(t) - \boldsymbol{\theta}^*)^\top \cdot \boldsymbol{\theta}^*] \\
 1311 &\leq \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(0)\|^2\right] - \left(\frac{2\eta}{m} - \eta^{2.5}\right) \cdot (T \cdot \mathbb{E}[\|\boldsymbol{\theta}^*\|^2] + \eta^{0.5} \sum_{t=0}^{T-1} \mathbb{E}[\|\mathbf{W}_t\|^2]) + \frac{T \cdot 2\eta}{m} \cdot \mathbb{E}[\|\boldsymbol{\theta}^*\|^2] \\
 1312 &\leq \mathbb{E}\left[\frac{1}{m} \sum_{i=1}^m \|\mathbf{w}_i(0)\|^2\right] - 2\eta^{1.5} \cdot T \cdot \sqrt{\eta} + O(T \cdot \eta^{2.5}) \\
 1313 &= 1 - 2\eta^{1.5} \cdot \frac{1}{\eta^2} \cdot \sqrt{\eta} + O(T \cdot \eta^{2.5}) = -1 + O(T \cdot \eta^{2.5}) < 0
 \end{aligned}$$

1314 Which is absolutely a contradiction! Therefore, we complete the proof. \square
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349