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ABSTRACT

Machine learning in clinical settings must balance predictive accuracy, inter-
pretability, and privacy. While models like logistic regression (LR) are valued
for transparency, they remain vulnerable to privacy attacks that expose training
data. We empirically assess these risks by designing attacks that identify which
public datasets were used to train a model under varying levels of adversarial ac-
cess, applying them to LORIS, a publicly available LR model for immunotherapy
response prediction. Our findings show that LORIS leaks significant training-set
information, especially under white-box access, and that common practices such
as cross-validation exacerbate these risks. Even black-box access via the public
web interface allows training data identification. To mitigate these vulnerabili-
ties, we propose a quantum-inspired defense using tensor train (TT) models. Ten-
sorizing LR obfuscates parameters while preserving accuracy, reducing white-box
attacks to random guessing and degrading black-box attacks comparably to Differ-
ential Privacy. TT models retain LR interpretability and extend it through efficient
computation of marginal and conditional distributions. Although demonstrated on
LORIS, our approach generalizes broadly, positioning TT models as a practical
foundation for private, interpretable, and effective clinical prediction.

1 INTRODUCTION

Machine learning (ML) is increasingly used for clinical prediction but poses critical privacy risks, as
models trained on sensitive medical data can inadvertently leak individual information (Fredrikson
et al., 2014; Sweeney, 2015). In domains where interpretability is essential, intuitive models like
logistic regression (LR) are often preferred, yet they are particularly vulnerable to such attacks.

In this work, we propose a quantum-inspired approach to privacy protection based on tensor network
(TN) models, focusing on tensor trains (TT). Building on recent methods for tensorizing pre-trained
ML models into TT form (Pareja Monturiol et al., 2025), we obfuscate them to enhance privacy
while preserving accuracy and interpretability.

To assess the privacy risks of clinical models and the protection offered by TTs, we attack LORIS
(Chang et al., 2024), a publicly available LR model for immunotherapy response prediction hosted
on a U.S. government website. We design a membership inference attack under both black-box (BB)
and white-box (WB) access, using a shadow model approach that trains multiple models with varied
hyperparameters and datasets, followed by an adversarial meta-classifier to predict which public
datasets were included in the training set.

Our results show that tensorizing LORIS degrades attack performance across all access levels, re-
ducing WB attacks to random guessing. We argue that this method achieves privacy protection
comparable to Differential Privacy (DP), while maintaining similar levels of predictive accuracy.
Additionally, we show that common practices like cross-validation, when used to deploy averaged
models as in LORIS, can severely compromise privacy, enabling accurate training-set identifica-
tion even from BB access via the public web interface. TT approximations preserve key properties
of LORIS, such as response monotonicity, while enhancing interpretability through efficient com-
putation of marginals and conditionals. This supports feature-sensitivity analysis and enables the
construction of cancer-type-specific models without retraining.
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These findings underscore how easily training data can be extracted with minimal knowledge of a
model and its training procedure. Although our attack targets LORIS, the methodology generalizes
to a broad range of models and settings. We therefore advocate for the routine use of tensorization
as a practical strategy for privacy-preserving, interpretable, and efficient ML, especially in clinical
domains handling sensitive data.

The remainder of this paper is structured as follows. Section 2 reviews related work and preliminar-
ies. Section 3 outlines our setting, attack, and defenses, and presents the results. Section 4 analyzes
the interpretability of TT models in comparison to LORIS. Finally, Section 5 discusses conclusions
and future directions.

2 RELATED WORK AND PRELIMINARIES

The widespread adoption of ML systems increases the risk of leaking sensitive personal data. Prior
work has extensively examined these vulnerabilities and proposed various defenses.

2.1 PRIVACY ATTACKS

A wide range of attacks exploit privacy vulnerabilities in ML, leveraging either BB or WB access.
Key examples include model inversion (Fredrikson et al., 2014), model classification (Ateniese et al.,
2015), and membership inference (Shokri et al., 2017), which vary in scope from extracting indi-
vidual samples to uncovering global patterns. In this work, we adopt the membership inference
approach to identify groups of samples present in the training set.

More recently, reconstruction attacks have aimed to recover exact training samples. Some rely on
shadow-model training (Balle et al., 2022), while others exploit optimization properties of models
trained with Stochastic Gradient Descent (SGD) (Haim et al., 2022; Oz et al., 2024). Notably, for
LR, such attacks can yield closed-form solutions (Balle et al., 2022), underscoring the vulnerability
of simple, widely used models.

2.2 DEFENSE MECHANISMS

Given the diversity of privacy-related attacks, various defense mechanisms have been proposed.
Among these, Differential Privacy (Dwork, 2006b) stands out for its rigorous framework. DP quan-
tifies the likelihood that an attacker can infer whether a specific user’s data was included in a statis-
tical process. A randomized algorithm A is ε-DP if, for any set of outcomes S in the range of A, it
satisfies:

log

(
P[A(D) ∈ S]
P[A(D′) ∈ S]

)
≤ ε, (1)

where D and D′ differ by a single element. This metric guides the addition of calibrated noise to
achieve a target ε, based on the sensitivity of the function being protected (Dwork, 2006a; Dwork
& Roth, 2014). However, the noise required for strong privacy guarantees often degrades model
performance and may exacerbate group disparities (Bagdasaryan et al., 2019; Hansen et al., 2024).
As a result, there is no consensus on how to set ε meaningfully (Garfinkel et al., 2018); while
small values are theoretically ideal, larger values may still prevent reconstruction attacks in practice
without significantly harming accuracy (Ziller et al., 2024).

Beyond DP, recent work has explored whether standard ML practices can improve privacy. Pruning,
for example, introduces small errors that resemble DP-like protection (Huang et al., 2020), while
knowledge transfer reduces dependence on specific training data (Shejwalkar & Houmansadr, 2020).
Our approach draws on these ideas: rather than enforcing DP, we approximate pre-trained models
in TT form, achieving both BB protection and strong WB obfuscation.

2.3 TENSOR TRAIN MODELS

Tensor networks are low-rank decompositions of high-dimensional tensors with roots in quantum
many-body physics. They offer compact, interpretable representations of quantum states (Pérez-
Garcı́a et al., 2007; Orús, 2014; Cirac et al., 2021) and have recently been adapted to machine learn-
ing (Stoudenmire & Schwab, 2016; Novikov et al., 2018). TNs have been applied to neural network
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(NN) compression (Novikov et al., 2015; Tomut et al., 2024), explainable AI (Tangpanitanon et al.,
2022; Aizpurua et al., 2024), and anomaly detection (Wang et al., 2020). Importantly, TNs offer
formal WB privacy guarantees: due to gauge freedom, multiple parameterizations can represent the
same model, effectively obfuscating all but its BB behavior (Pozas-Kerstjens et al., 2024).

Throughout this work, we focus on one-dimensional TNs, specifically tensor trains (Oseledets,
2011). An order-N tensor T ∈ RdN

admits a TT representation with ranks rn if it can be writ-
ten as

T (i1, . . . , iN ) = G1(i1) · · ·GN (iN ), (2)

where the cores Gn are rn−1×rn matrices and r0 = rN = 1. This structure also supports continuous
functions of the form

f(x1, . . . , xN ) =
∑

i1,...,iN

W(i1, . . . , iN )ϕ1(i1, x1) · · ·ϕN (iN , xN ), (3)

where W is a TT-format coefficient tensor and ϕn(in, xn) are vector-valued embedding functions
indexed by in. To ensure non-negative probability scores, it is standard to define distributions via
the Born rule: p(x) = |f(x)|2. Further details on TTs, including efficient marginalization and
conditioning, are provided in Appendix A.

TTs can be trained using SGD or physics-inspired variants (Stoudenmire & Schwab, 2016). Al-
ternatively, TT representations can be constructed via low-rank decompositions, bypassing high-
dimensional optimization. Recent techniques based on sketching (Hur et al., 2023) and cross in-
terpolation (Fernández et al., 2025) achieve this using only function evaluations; i.e., BB access,
to approximate continuous functions in TT form. A recent method, TT-RSS, extends this idea to
tensorize pre-trained NNs using a small evaluation dataset (Pareja Monturiol et al., 2025). We adopt
this approach to tensorize LR models.

3 PRIVACY ANALYSIS

To evaluate the privacy risks of clinical prediction models and compare defense strategies, we design
a membership inference attack based on shadow-model training. Assuming an adversary with access
to multiple public datasets, the attack seeks to determine which of them were included in a model’s
training set under varying levels of adversarial access. As a case study, we target LORIS, a publicly
available model introduced by Chang et al. (2024) for immunotherapy response prediction. Below
we define the setting, describe the adversarial assumptions and attack, and present the experimental
setup, with results reported at the end of the section.

3.1 SETTING AND NOTATION

Let D = {D1, . . . , DM} be the set of public datasets, and define D∪ = {⋃ C | C ∈ P(D) \ {∅}},
where P(D) is the power set. A training set D∪ ∈ D∪ is the union of one or more Dm ∈ D.
Using the indicator vector 1(D∪), we represent D∪ as a multi-hot vector with entries 1 for datasets
Dm ⊂ D∪ and 0 otherwise.

We define the training algorithm as follows: given a model architecture Φ, hyperparameters HΦ ∈
HΦ, and a training set D∪ ∈ D∪, the training mechanism TΦ : HΦ ×D∪ → Θ outputs parameters
θ ∈ Θ such that Φθ(·) is a trained model. In practice, TΦ is stochastic due to factors such as random
initialization or mini-batch selection in SGD, so for fixed HΦ and D∪ we interpret TΦ(HΦ, D∪) as
sampling from a model distribution. In addition, since training data are typically standardized for
stability, yielding coefficients defined on standardized inputs, we assume that TΦ returns rescaled
parameters that operate on raw input data. Details of the standardization and rescaling procedures
are provided in Appendix B.

To mitigate bias and overfitting, it is standard to use K-fold cross-validation, which partitions D∪
into K folds and trains K models, each on K − 1 folds. We denote by T J,K

Φ : HΦ ×D∪ → Θ the
procedure that applies TΦ with fixed HΦ, performs J repetitions of K-fold cross-validation, corrects
for feature standardization, and averages the resulting parameters into a final model.

3
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3.2 DESCRIPTION OF THE ATTACK

The adversary knows the model architecture Φ, the public datasets D, and a finite set of hyperparam-
eters HΦ. They also know the training mechanisms TΦ, T J,K

Φ , and have sufficient resources to train
shadow models and meta-classifiers. Access to the target model is limited to restricted information
h(Φθ), which we categorize into three independent access levels:

• b-Weak black-box (b-WBB): Access to outputs discretized into b bins, e.g., b = 2 gives
binary outputs. Values < 0.5 map to the lower bin limit, and > 0.5 to the upper.

• Strong black-box (SBB): Access to raw continuous scores. As b grows to machine preci-
sion, b-WBB converges to SBB.

• White-box (WB): Access to model parameters. Although parameters allow computing out-
puts, we treat BB and WB separately to assess each source of information, while stronger
attacks may combine both.

The attack proceeds by constructing a dataset of shadow models, each trained under different hyper-
parameter configurations and training sets. From each model, we collect the relevant information
together with the corresponding public datasets used for training. This forms the input to a multi-
label classifier, which learns to identify the presence of public datasets in the training sets. Formally,
the attack consists of the following steps:

1. For each HΦ ∈ HΦ and D∪ ∈ D∪, train R shadow models using TΦ or T J,K
Φ .

2. Build {(h(Φθi),1(Di
∪))}R|HΦ||D∪|

i=1 , where h(·) denotes available information: under BB
access it returns outputs on S samples, and under WB access it returns parameters θi.

3. Train an adversarial model minimizing independent cross-entropy losses for each Dm,
yielding A : Θ → [0, 1]M , where entry m gives the probability that Dm ⊂ D∪.

3.3 EXPERIMENTAL SETUP

We briefly describe the datasets, models, and implementation details. All experiments1 were run
on an Intel Xeon CPU E5-2620 v4 with 256 GB RAM and an NVIDIA GeForce RTX 3090, using
Scikit-Learn for LR models (Pedregosa et al., 2011), Diffprivlib for DP variants (Dwork, 2006b),
and TensorKrowch for TT models (Pareja Monturiol et al., 2024).

3.3.1 DATASETS

To build the public set D we use the cohorts employed to train and evaluate LORIS, which include
clinical, pathological, and genomic features with a binary treatment-response label. For details see
Chang et al. (2024); we list them here with shorthand identifiers and sample sizes: Cho1 (964) and
Cho2 (515), train and test partitions from Chowell et al. (2022); MSK1 (453) and MSK2 (104) from
Chang et al. (2024); Shim (198) from Shim et al. (2020); Kato (35) from Kato et al. (2020); Vang
(246) from Vanguri et al. (2022); Ravi (309) from Ravi et al. (2023); and Prad (57) from Pradat et al.
(2023). In all cases, response is imbalanced, with ∼30% of patients responding to treatment.

We use 6-feature models: Tumor Mutational Burden (TMB), Previous Systematic Therapy History
(PSTH), Albumin, Neutrophil-to-Lymphocyte Ratio (NLR), Age, and cancer type. Cancer type is
divided into 16 binary variables, yielding 21 input features in total.

3.3.2 TARGET MODELS

As target models, we consider several variants of LR. Following Chang et al. (2024), we train av-
eraged models via T J,K

Φ with J = 20 and K = 3. While LORIS used larger values of J and
K, we found this configuration sufficient to obtain comparable results. For comparison, we also
train vanilla LRs through a single run of TΦ on an 80% split of D∪. In both cases, the hyperpa-
rameters are solver = “saga”, penalty = “elasticnet”, class weight = “balanced”, max iter = 100,
l1 ratio ∈ {0, 0.5, 1}, and C ∈ {0.1, 1, 10}, forming the uncertainty set HΦ.

1The code is publicly available at: https://anonymous.4open.science/r/tts4privacy
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For each dataset D∪, hyperparameter configuration HΦ, and training method (vanilla or averaged),
the adversary trains R = 100 models. Each model is then tensorized via TT-RSS (Pareja Monturiol
et al., 2025), using 50 random samples from D∪ as pivots evaluated through b-WBB access to the
LR. While b = 2 maximizes privacy, it severely degrades performance; we therefore use b = 6 as a
trade-off. The resulting TTs have N = 22 cores (including one for the output), ranks rn = 2 for all
n, input dimensions d = 2, and use polynomial embeddings ϕn(·, x) = [1, x].

Due to the monotonicity of LR, model parameters can be exactly recovered from scores (see Ap-
pendix C), making SBB and WB access equivalent, although WB is typically easier to exploit. Since
tensorization approximates LR outputs with a TT representation, it is also possible to recover LR
coefficients from TT evaluations. To test whether these reconstructed coefficients leak more infor-
mation than TT parameters, we collect them for each TT and perform WB attacks; we refer to these
as LR-TT models.

Finally, for comparison with a standard privatization approach, we also train DP models (LR-DP)
from scratch. In this case, rather than privatizing pre-trained LRs, we train new LR-DP models
directly. Since DP training of LR is restricted to solver = “lbfgs” and penalty = “l2”, we fix max iter
= 100 and vary the privacy budget ε ∈ {10−2, 10−1, 100, 101, 102,∞}, where ε = ∞ corresponds
to the non-DP case. Only vanilla models are considered, as averaging would cancel the injected
noise and effectively increase ε.

3.3.3 ADVERSARIAL MODELS

To attack the models described above we use NN-based adversaries: MLP multi-label classifiers
with three hidden layers of sizes 32, 16 and 8, and an output layer of size 9 (one output per public
dataset). The input layer size depends on the access type. For BB attacks, each shadow model is
evaluated on S = 100 samples (the same S samples for all models), randomly drawn from

⋃D;
the resulting vector of raw or discretized outputs is the adversary input. For WB attacks we collect
full model parameters: for LR, 22 parameters (21 coefficients + intercept); for TT, all N = 22 cores
Gn vectorized and concatenated into a single 168-dimensional vector. All parameters are rescaled
to operate on raw inputs (see Appendix B). The MLPs are trained with activation = “relu”, solver
= “adam” and max iter = 100. Since WB attacks exhibited greater variability, we applied 5-fold
cross-validation with predictions averaged across folds; on top of this, to obtain robust statistics we
repeat 5-fold cross-validation five times for both WB and BB attacks.

3.4 RESULTS

To evaluate the overall performance of our attacks, Table 1 reports Hamming scores, i.e., the propor-
tion of correct label predictions across all public datasets and shadow-model instances. These results
yield three main observations. (i) Scores increase with deeper levels of access, with SBB and WB
achieving surprisingly high values. Although WB can theoretically be recovered from SBB in LR
models, in practice this may require evaluation at specific or additional samples (see Appendix C);
hence, SBB attacks sometimes underperform WB despite their theoretical equivalence. (ii) Av-
eraged models are consistently more vulnerable than vanilla ones, despite their similar predictive
performance (see Appendix D.1). The variance reduction from cross-validation, while mitigating
sample bias, amplifies differences across models and thus facilitates attacks. Notably, WB attacks
on averaged models achieve nearly perfect classification. (iii) Original LR models yield the highest
attack scores, underscoring their vulnerability when released without protection.

TT models achieve the lowest attack scores among the non-DP cases (LR and LR-DP with ε =
∞), across all access types. Randomization of TT cores is particularly effective, reducing WB
attacks to near-random guessing. WB attacks on LR-TT coefficients perform better than attacks
on TT parameters, but remain close to 2-WBB results. These findings confirm that TTs effectively
restrict leakage to BB information. To contextualize these findings, we also evaluate shadow-model
performance. As shown in the tables of Appendix D.1, TT models maintain balanced accuracy in
nearly all datasets, with only minor drops (1–2% in a few cases), and achieve comparable AUC
scores, though with larger differences in the Kato dataset.

As expected, DP models exhibit attack scores that increase with ε. At ε = 100, performance is
nearly indistinguishable from the non-DP case (ε = ∞), offering negligible privacy gains. Perfor-
mance metrics in Appendix D.1 show that both settings achieve AUC scores similar to original LRs,

5
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Table 1: Hamming scores (mean ± std) of adversarial multi-label classifiers.

2-WBB SBB WB

LR
vanilla 0.7927 ± 0.0062 0.8798 ± 0.0217 0.8995 ± 0.0015

averaged 0.8730 ± 0.0113 0.9502 ± 0.0407 0.9974 ± 0.0032

TT
vanilla 0.7166 ± 0.0038 0.8180 ± 0.0137 0.5590 ± 0.0273

averaged 0.7404 ± 0.0028 0.8650 ± 0.0134 0.5770 ± 0.0176

LR-TT
vanilla

— —
0.7398 ± 0.0016

averaged 0.7803 ± 0.0022

LR-DP (ε = 10−2) vanilla 0.5412 ± 0.0032 0.5428 ± 0.0043 0.5258 ± 0.0343

LR-DP (ε = 10−1) vanilla 0.5408 ± 0.0028 0.5414 ± 0.0039 0.5307 ± 0.0365

LR-DP (ε = 100) vanilla 0.5792 ± 0.0029 0.5871 ± 0.0036 0.5359 ± 0.0359

LR-DP (ε = 101) vanilla 0.7055 ± 0.0039 0.7740 ± 0.0058 0.6379 ± 0.0141

LR-DP (ε = 102) vanilla 0.7610 ± 0.0071 0.8660 ± 0.0219 0.8636 ± 0.0083

LR-DP (ε = ∞) vanilla 0.7576 ± 0.0072 0.8739 ± 0.0240 0.8977 ± 0.0030

but with lower balanced accuracies, reflecting bias toward the majority class. A higher prediction
threshold could mitigate this imbalance. Since 2-WBB access binarizes outputs at threshold 0.5, this
effect likely impacts attack accuracy; indeed, SBB attacks reach accuracies similar to non-DP LRs
once ε ≥ 100. Among tested configurations, ε = 10 offers the best trade-off, matching the utility
and robustness of TT models, while ε < 10 causes substantial performance loss.

We also report per-dataset attack performances for LR and TT vanilla models in Appendix D.2,
which further support the conclusions of this analysis.

3.4.1 EXAMPLE: CHO1 VS. CHO1 + KATO

As an illustrative case, we consider the extreme task of distinguishing models trained only on Cho1
(964 samples) from those trained on Cho1 plus the small Kato cohort (35 samples). This simulates a
high-risk scenario where an adversary detects the inclusion of a very small subgroup. Table 2 shows
Hamming scores for the Kato label. As expected, 2-WBB attacks are nearly random. In contrast,
averaged LRs reach ∼75% detection under SBB and achieve almost perfect classification under WB.
Notably, even vanilla LRs under WB access attain ∼73% accuracy.

Table 2: Hamming scores (mean ± std) of adversarial classification of models trained on Cho1 or
Cho1+Kato, evaluated on the Kato label.

2-WBB SBB WB

LR
vanilla 0.5383 ± 0.0237 0.5410 ± 0.0449 0.7289 ± 0.0279

averaged 0.5278 ± 0.0362 0.7464 ± 0.2312 0.9989 ± 0.0022

TT
vanilla 0.5189 ± 0.0279 0.5261 ± 0.0243 0.4931 ± 0.0237

averaged 0.5282 ± 0.0334 0.5658 ± 0.0751 0.4961 ± 0.0226

LR-TT
vanilla

— —
0.5468 ± 0.0197

averaged 0.5677 ± 0.0286

For context, Appendix D.3 reports model performance on Cho1 and Kato separately. TT models
degrade somewhat on Kato, especially in AUC, but this alone does not explain the results: even LRs
with low balanced accuracy still enable highly accurate attacks.
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Overall, these results show that even a 35-sample cohort can be reliably identified within a large
dataset. Model averaging and WB access amplify leakage, while TT models remain robust and do
not reveal the presence of Kato under any access type.

3.4.2 ATTACKING PUBLICLY AVAILABLE MODELS

We illustrate the risk of WB attacks on publicly available LR coefficients from LORIS: (i) those
released in Chang et al. (2024), and (ii) coefficients we reconstructed from the online interface.2 Al-
though the interface returns rounded probabilities rather than exact scores, by approximately invert-
ing the monotonic mapping created for LORIS (Fig. 3) we obtain usable coefficients (Appendix C).

Applying our WB attack, Table 3 shows that Cho1 is correctly identified as the training dataset
in both cases, consistent with Chang et al. (2024). Recovered coefficients are noisier, assigning
some probability to Cho2 and MSK2, but Cho1 remains dominant. Since Cho1, Cho2, and MSK2
all originate from patients at Memorial Sloan Kettering Cancer Center (MSK), these spurious as-
signments likely reflect shared data characteristics. These results demonstrate that even with noisy
reconstructed coefficients, adversaries can still infer training data membership with high confidence,
highlighting the privacy risks of releasing or exposing LR parameters.

Table 3: WB attack scores for LORIS coefficients, using (i) the released parameters (Chang et al.,
2024) and (ii) coefficients reconstructed from the online interface.

Cho1 Cho2 MSK1 MSK2 Shim Kato Vang Ravi Prad

Released 0.9987 0.0313 0.0024 0.0398 0.0180 0.0093 0.2048 0.0240 0.0169

Reconstructed 0.8834 0.6535 0.0650 0.7296 0.0078 0.0154 0.0873 0.0112 0.4390

4 INTERPRETABILITY WITH TENSOR TRAINS

Beyond privacy guarantees, interpretability is essential in clinical prediction. The utility of LORIS
lies not only in its accuracy, but also in its interpretability, providing insights into relevant features
and producing scores monotonically correlated with response probability. Here we show that TT
models retain similar interpretability, leveraging efficient computation of marginal and conditional
distributions.

4.1 FEATURE SENSITIVITY

In LR, interpretability stems from coefficients, which quantify each feature’s contribution through
odds ratios. Since TTs approximate LRs, coefficients can in principle be recovered from TT outputs
(see LR-TT in Section 3), but TTs also enable richer interpretability beyond linear models. Unlike
LRs, where each feature has a constant effect, TT sensitivities may vary with other features due to
their non-linear structure. To emulate LR coefficients, we marginalize over all but one feature and
the response, and measure how the predicted score changes under a unit increment of the selected
feature. This procedure yields independent sensitivity scores that can be computed efficiently within
the TT structure (Appendix A).

To evaluate this approach, we tensorized a vanilla LR trained on Cho1 and compared TT sensitivity
scores with LR coefficients. As shown in Fig. 1, both align almost perfectly after normalization,
where scores are divided by the maximum absolute value to remove scale differences. This confirms
that TTs recover LR interpretability while offering a framework extendable to more complex black-
box models.

4.2 FEATURE SENSITIVITY BY CANCER TYPE

TTs also allow conditional analysis, enabling sensitivity computation for specific subgroups. Con-
ditioning on cancer type produces smaller TT models that capture type-specific behaviors. Unlike

2LORIS is available at: https://loris.ccr.cancer.gov/
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Figure 1: Feature sensitivity scores from LR and TT models. LR scores are coefficients, while TT
scores are obtained via marginalization. All values are normalized by the maximum absolute score.

the normalized comparison above, scores are directly comparable across cancer types since they are
computed with the same method.

Figure 2 shows feature sensitivities for colorectal, endometrial, esophageal, and pancreatic cancers.
While LR would provide identical scores across types, TTs reveal subtle variations. In particular,
pancreatic cancer yields uniformly small sensitivities. This occurs because all pancreatic cancer
patients in Cho1 are non-responders: the model achieves 100% accuracy simply by assigning very
low response probabilities to all samples, independently of their features. Consequently, no feature
appears relevant for prediction within this subgroup. These results highlight how TT interpretability
can reveal subgroup-specific effects not captured by linear models.
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Figure 2: Feature sensitivities from conditioned TT models. The legend indicates cancer type and
balanced accuracy of each conditioned TT on the corresponding data.

4.3 MONOTONICITY OF TT SCORES

A key property of LORIS scores, highlighted by Chang et al. (2024), is their monotonic relation
with response probability: although LR models are trained on binary labels, their scores align with
mean response probabilities across patients sharing a given score. We verify this via bootstrapping
to compute 95% confidence intervals for a vanilla LR model trained on Cho1. For comparison,
we construct the same mapping for two tensorized LR models, using b = 6 and b = 20 bins for
discretization.
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Figure 3: Monotonicity plots of LR and TT models with different bin sizes. Shaded regions indicate
participants with unlikely (gray, response probability < 10%) or likely (green, response probability
> 50%) treatment response. From left to right, the limits of these regions are (0.25, 0.71), (0.17,
0.77), and (0.24, 0.72).

Figure 3 shows the results. With b = 6, TT scores yield a lower slope, reflecting the discretization
described in Section 3.2, which pushes the model toward more extreme values. Increasing the bin
count improves the approximation, producing a mapping close to that of the LR model, though with
potentially weaker privacy guarantees.

5 CONCLUSIONS AND DISCUSSION

In this work, we proposed tensorizing ML models into quantum-inspired TT representations as
a mechanism to enhance privacy while preserving performance and interpretability. Through an
empirical study of LORIS, we showed that models trained on small and sensitive datasets are highly
vulnerable to training data leakage, underscoring the need for effective privatization. Our results
further indicate that, although cross-validation is useful for model selection, averaging models for
deployment should be avoided, as it greatly amplifies privacy risks. For linear models such as
LR, where WB access can be reconstructed from SBB, releasing raw outputs without protection
is particularly dangerous, as coefficients can be recovered to enable near-perfect identification of
training data.

Regarding defense mechanisms, we highlight several findings. For DP, our results confirm prior
work (Ziller et al., 2024): only large ε values are practical, while meaningful ones severely degrade
accuracy. Tensorization, acting as a form of knowledge transfer, provides post-processing protection
at all access levels. WB privacy follows from Pozas-Kerstjens et al. (2024), while BB privacy arises
from tensorizing discretized rather than raw scores, which introduces additional degrees of freedom
consistent with the same 6-WBB access. Comparing TT and LR-DP, we observed similar privacy
and performance, particularly for ε = 10, suggesting that variability from discretization plays a
role analogous to noise injection. This resonates with results showing that pruning can enforce
DP guarantees in NNs (Huang et al., 2020), motivating future work on whether tensorization could
provide formal DP guarantees. Finally, the discretization parameter b plays a critical role: larger
values make TT scores closer to LR, improving accuracy while possibly weakening privacy. Hence,
b acts as a natural privacy–utility knob, potentially linkable to DP-style guarantees.

Beyond privacy, we showed that TTs recover LR interpretability while enabling richer analyses,
including subgroup-specific effects, and can therefore “open the box” of otherwise opaque models
such as NNs. Finally, although our study focused on LORIS and LR, the tensorization mechanism
only requires BB access and can be applied to arbitrary models. Even when privacy is not the
primary concern, tensorization provides a powerful framework for extracting insights from pre-
trained models, reinforcing its value as a broadly applicable tool for both privacy and interpretability.
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and Sergey I. Nikolaev. Integrative pan-cancer genomic and transcriptomic analyses of refractory
metastatic cancer. Cancer Discov., 13(5):1116–1143, 2023. doi: 10.1158/2159-8290.CD-22-
0966.
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Cesar Muñoz, Prabdeep Singh Bajaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David
Montero, Pablo Martin-Ramiro, Muhammad Ibrahim, Oussama Tahiri Alaoui, John Malcolm,
Samuel Mugel, and Roman Orus. Compactifai: Extreme compression of large language models
using quantum-inspired tensor networks, 2024. URL https://arxiv.org/abs/2401.
14109.

Rami S. Vanguri, Jia Luo, Andrew T. Aukerman, Jacklynn V. Egger, Christopher J. Fong, Natally
Horvat, Andrew Pagano, Jose de Arimateia Batista Araujo-Filho, Luke Geneslaw, Hira Rizvi,

12

https://arxiv.org/abs/2202.12319
https://arxiv.org/abs/quant-ph/0608197
https://arxiv.org/abs/1906.06589
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/1605.05775
https://techscience.org/a/2015092903/
https://arxiv.org/abs/2112.08628
https://arxiv.org/abs/2112.08628
https://arxiv.org/abs/2401.14109
https://arxiv.org/abs/2401.14109


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ramon Sosa, Kevin M. Boehm, Soo-Ryum Yang, Francis M. Bodd, Katia Ventura, Travis J. Holl-
mann, Michelle S. Ginsberg, Jianjiong Gao, MSK MIND Consortium, Matthew D. Hellmann,
Jennifer L. Sauter, and Sohrab P. Shah. Multimodal integration of radiology, pathology and ge-
nomics for prediction of response to pd-(l)1 blockade in patients with non-small cell lung cancer.
Nat. Cancer, 3(10):1151–1164, 2022. doi: 10.1038/s43018-022-00416-8.
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REPRODUCIBILITY STATEMENT

We provide code to reproduce all experiments at https://anonymous.4open.science/
r/tts4privacy. Our models are implemented with Scikit-Learn (Pedregosa et al., 2011), Diff-
privlib (Dwork, 2006b), and TensorKrowch (Pareja Monturiol et al., 2024). Details on datasets,
preprocessing, hyperparameters, and training procedures are included in Section 3.3 and the appen-
dices. All experiments were run on an Intel Xeon CPU E5-2620 v4 with 256 GB RAM and a single
NVIDIA GeForce RTX 3090 GPU.

LLM USAGE STATEMENT

The authors used ChatGPT solely to improve the readability and language of the manuscript. All
scientific content, including methods, results, and analysis, was developed by the authors. The
authors reviewed and edited the text after using this tool and take full responsibility for the published
content.

A EFFICIENT COMPUTATIONS WITH TTS

A major advantage of tensor networks is their ability to represent high-order tensors using only a
polynomial number of parameters. The TT representation of a tensor T is given by

T (i1, . . . , iN ) = G1(i1) · · ·GN (iN ), (4)

requiring only O(Ndr2) coefficients when all cores Gn are r × r matrices, as opposed to the dN

coefficients needed for a general tensor T ∈ RdN

. While compactness does not automatically imply
fast computation, TTs are efficient to evaluate: computing T (i1, . . . , iN ) scales polynomially in N ,
unlike higher-dimensional TNs where evaluation may require exponential time.

Beyond evaluating samples, TTs enable efficient marginalization. Suppose T encodes a probability
distribution via the Born rule, p(i1, . . . , iN ) = |T (i1, . . . , iN )|2. Computing the partition function,

Z =
∑

i1,...,iN

p(i1, . . . , iN ), (5)

is generally exponential in N , but in TT form it reduces to polynomial time by contracting each core
with itself:

Hn(αn−1, βn−1, αn, βn) =
∑
in

Gn(αn−1, in, αn)Gn(βn−1, in, βn), (6)

yielding r2 × r2 matrices Hn. Multiplying all Hn sequentially produces Z efficiently.

A similar procedure yields marginals by contracting only the cores of marginalized features. For
instance, for a 2-site TT

T (i, j) = G1(i)G2(j), (7)
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the marginal p(i) is

p(i) =
∑
α,β

G1(i, α)G1(i, β)H2(α, β), (8)

showing that marginals correspond to duplicate TTs with some cores contracted.

TT representations also enable efficient computation of conditional models without retraining. To
compute p(i1, . . . , in−1, in+1, . . . , iN | in = in), it suffices to absorb the fixed feature into its
neighbor:

G̃n−1(in−1) = Gn−1(in−1)Gn(in), (9)

which defines a reduced, conditioned TT

T̃ (i1, . . . , in−1, in+1, . . . , iN ) = G1(i1) · · · G̃n−1(in−1)Gn+1(in+1) · · ·GN (iN ). (10)

For further details on TTs and related tensor networks, see Cirac et al. (2021).

B DATA STANDARDIZATION AND PARAMETER RESCALING

Before training on each dataset D = {(xk
1 , . . . , x

k
n, y

k)}k, input features x1, . . . , xn are standard-
ized as

x̃k
j =

xk
j − µj

σj
, (11)

where µj and σj denote the mean and standard deviation of feature j, respectively.

LR models are trained on these standardized inputs, but their parameters must be corrected in order
to operate directly on raw features. Let θ̃ = (w̃, b̃) be the parameters obtained after training, defining

Φθ̃(x) = sigmoid(w̃⊺x+ b̃), where sigmoid(z) =
1

1 + e−z
. (12)

The corrected parameters are θ = (w, b) with

wj =
w̃j

σj
, b = b̃−

∑
j

w̃jµj

σj
. (13)

This transformation ensures that trained models can be applied directly to raw inputs without explicit
feature standardization.

An analogous rescaling applies to TT models. Consider a tensorized model with parameters W̃,

f̃(x1, . . . , xN ) =
∑

i1,...,iN

W̃(i1, . . . , iN )ϕ1(i1, x1) · · ·ϕN (iN , xN ), (14)

where ϕn(·, x) = [1, x] are polynomial embeddings (input dimension d = 2), and

W̃(i1, . . . , iN ) = G̃1(i1) · · · G̃N (iN ). (15)

To compensate for feature standardization, we define a new coefficient tensor W from corrected
cores Gn such that

Gn(1) = G̃n(1)−
µj

σj
G̃n(2),

Gn(2) =
1

σj
G̃n(2).

(16)

The resulting TT parameters are thus expressed in terms of raw input features, analogous to the LR
case.

14
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C RECOVERING LR COEFFICIENTS FROM SBB ACCESS

Since logistic regression is linear in the log-odds space,

logit(x) = log
p(y = 1 | x)
p(y = 0 | x) = w⊺x+ b, (17)

its parameters can be exactly recovered from model evaluations on carefully chosen inputs. If queries
to the zero vector and one-hot vectors ej are allowed, the intercept b is simply the logit at the zero
vector, and each coefficient wj is given by the difference between the logit at ej and the intercept.

More generally, when queries are restricted to inputs with all features strictly positive (as in Sec-
tion 3.4.2, when attacking LORIS through its web interface), wj can be recovered from two inputs
x,x′ that differ only in feature j:

wj =
logit(x)− logit(x′)

xj − x′
j

. (18)

Once the weights are obtained, the intercept can be recovered from

b = logit(x)−w⊺x (19)

for any input x.

D ADDITIONAL PRIVACY RESULTS

In this appendix we provide additional results supporting the conclusions of Section 3.4. Specifi-
cally, we report: (i) performance metrics of models trained on Cho1 (the largest dataset with 964
samples) and evaluated on all datasets; (ii) per-dataset attack accuracies for LR and TT models; (iii)
performance of models trained on Cho1 versus Cho1+Kato; and (iv) attack results on models trained
exclusively on individual public datasets.

D.1 PERFORMANCE OF MODELS TRAINED ON CHO1

As an illustrative case, Fig. 4 shows the overall performance of models trained exclusively on Cho1,
reporting balanced accuracies across all public datasets. Tensorization occasionally produces de-
generate models with accuracies near 50%, which, although rare, can distort mean values. For this
reason, we report median accuracies and AUC scores in the following tables, as they better cap-
ture typical behavior. Since the remaining distributions are approximately Gaussian and symmetric,
median and mean coincide, making median values representative.

The right panel of Fig. 4 further shows how the performance of DP models improves with increasing
ε, as the added noise decreases and the distribution converges to the narrow non-DP case.
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Figure 4: Balanced accuracy distributions of vanilla models trained on Cho1, evaluated on all sam-
ples from all datasets.
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Table 4 reports the median balanced accuracies across all datasets, and Table 5 presents the corre-
sponding AUC scores. Together, these results reinforce the conclusions discussed in Section 3.4.

Table 4: Median balanced accuracies of models trained on Cho1, evaluated on each dataset.

Cho1 Cho2 MSK1 MSK2 Shim Kato Vang Ravi Prad

LR
vanilla 0.67 0.68 0.66 0.59 0.58 0.53 0.61 0.64 0.58

averaged 0.67 0.68 0.67 0.59 0.57 0.43 0.61 0.64 0.59

TT
vanilla 0.65 0.66 0.66 0.59 0.58 0.52 0.61 0.64 0.57

averaged 0.66 0.66 0.66 0.59 0.58 0.47 0.61 0.64 0.57

LR-DP (ε = 10−2) vanilla 0.51 0.52 0.50 0.51 0.51 0.48 0.50 0.50 0.53

LR-DP (ε = 10−1) vanilla 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.51

LR-DP (ε = 100) vanilla 0.55 0.55 0.52 0.50 0.51 0.52 0.54 0.55 0.53

LR-DP (ε = 101) vanilla 0.61 0.62 0.57 0.50 0.53 0.50 0.54 0.57 0.50

LR-DP (ε = 102) vanilla 0.61 0.63 0.58 0.54 0.53 0.48 0.55 0.57 0.49

LR-DP (ε = ∞) vanilla 0.61 0.63 0.58 0.54 0.53 0.48 0.54 0.57 0.49

Table 5: Median AUC scores of models trained on Cho1, evaluated on each dataset.

Cho1 Cho2 MSK1 MSK2 Shim Kato Vang Ravi Prad

LR
vanilla 0.74 0.75 0.70 0.63 0.60 0.75 0.66 0.73 0.72

averaged 0.74 0.75 0.70 0.63 0.60 0.71 0.66 0.73 0.72

TT
vanilla 0.72 0.72 0.69 0.63 0.60 0.65 0.66 0.72 0.68

averaged 0.72 0.72 0.69 0.63 0.60 0.63 0.66 0.73 0.68

LR-DP (ε = 10−2) vanilla 0.51 0.52 0.51 0.51 0.50 0.48 0.51 0.50 0.52

LR-DP (ε = 10−1) vanilla 0.52 0.52 0.51 0.50 0.49 0.48 0.52 0.49 0.50

LR-DP (ε = 100) vanilla 0.57 0.57 0.53 0.52 0.54 0.52 0.57 0.59 0.54

LR-DP (ε = 101) vanilla 0.72 0.73 0.68 0.62 0.60 0.67 0.66 0.72 0.68

LR-DP (ε = 102) vanilla 0.74 0.75 0.69 0.63 0.60 0.75 0.66 0.73 0.72

LR-DP (ε = ∞) vanilla 0.74 0.75 0.70 0.63 0.60 0.75 0.66 0.73 0.72
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D.2 PER-DATASET ATTACK ACCURACIES

Table 6 reports per-dataset Hamming scores for vanilla models, complementing the overall results
in Section 3.4.

Table 6: Hamming scores (mean) of adversarial classification of vanilla models, separated by
dataset.

Cho1 Cho2 MSK1 MSK2 Shim Kato Vang Ravi Prad

LR
2-WBB 0.9238 0.8942 0.8971 0.7086 0.7374 0.5822 0.7140 0.8492 0.8274

SBB 0.9936 0.9742 0.9588 0.9742 0.8324 0.5959 0.7128 0.9360 0.9405
WB 0.9982 0.9911 0.9728 0.9815 0.8630 0.7672 0.6331 0.9420 0.9468

TT
2-WBB 0.8546 0.8093 0.8135 0.6384 0.6671 0.5490 0.6408 0.7526 0.7240

SBB 0.9628 0.9072 0.9028 0.9500 0.7277 0.5566 0.6646 0.8545 0.8363
WB 0.6514 0.6623 0.5618 0.5391 0.5118 0.5183 0.5162 0.5213 0.5485

D.3 PERFORMANCE OF MODELS TRAINED ON CHO1 VS. CHO1+KATO

Table 7 reports the median balanced accuracies and AUC scores of models trained on Cho1 alone
or on Cho1+Kato, evaluated separately on each dataset. These findings support the results from
Section 3.4.1.

Table 7: Median balanced accuracies and AUC scores of models trained on Cho1 or Cho1+Kato,
evaluated separately on Cho1 and Kato.

LR TT

Cho1 Kato Cho1 Kato

Cho1
vanilla 0.6727 / 0.7411 0.5333 / 0.7533 0.6544 / 0.7171 0.5167 / 0.6533

averaged 0.6698 / 0.7437 0.4333 / 0.7133 0.6557 / 0.7190 0.4667 / 0.6267

Cho1 + Kato
vanilla 0.6744 / 0.7415 0.5667 / 0.7733 0.6589 / 0.7204 0.5333 / 0.6900

averaged 0.6744 / 0.7446 0.5333 / 0.7800 0.6598 / 0.7234 0.4833 / 0.7000
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D.4 ATTACKS ON MODELS TRAINED ON INDIVIDUAL DATASETS

We also report attack performance on models trained exclusively on a single public dataset. This
task is expected to be easier than identifying datasets within larger training sets.

Figure 5 compares accuracies in two scenarios. Rows indicate models trained on a given dataset (or
on a larger set containing it), while columns correspond to evaluation on that dataset. As expected,
accuracies are more uniform in the containment case (right), confirming that it is harder for the
attacker than distinguishing models trained on distinct datasets (left).
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Figure 5: Median balanced accuracies of models evaluated across all datasets. Left: models trained
on a single public dataset. Right: models trained on datasets containing each given public dataset.

Finally, Table 8 reports mean Hamming scores for attacks on models trained exclusively on indi-
vidual datasets. While the relative performance across models is consistent with Table 1, the higher
scores indicate that identifying training sets is even easier in this setting.

Table 8: Hamming scores (mean ± std) of attacks on models trained exclusively on a single dataset.

2-WBB SBB WB

LR
vanilla 0.9187 ± 0.0170 0.8990 ± 0.0419 0.9096 ± 0.0079

averaged 0.9606 ± 0.0173 0.9272 ± 0.0593 0.9923 ± 0.0075

TT
vanilla 0.8431 ± 0.0091 0.8657 ± 0.0283 0.5540 ± 0.1217

averaged 0.8721 ± 0.0142 0.8868 ± 0.0362 0.6083 ± 0.0915

LR-TT
vanilla

— —
0.7848 ± 0.0154

averaged 0.7889 ± 0.0306

LR-DP (ε = 10−2) vanilla 0.6117 ± 0.0241 0.6120 ± 0.0265 0.4337 ± 0.1577

LR-DP (ε = 10−1) vanilla 0.6212 ± 0.0261 0.6230 ± 0.0220 0.4111 ± 0.1960

LR-DP (ε = 100) vanilla 0.6580 ± 0.0308 0.6689 ± 0.0252 0.4446 ± 0.1910

LR-DP (ε = 101) vanilla 0.7305 ± 0.0231 0.7795 ± 0.0187 0.6662 ± 0.0371

LR-DP (ε = 102) vanilla 0.8127 ± 0.0220 0.8823 ± 0.0362 0.8196 ± 0.0246

LR-DP (ε = ∞) vanilla 0.8304 ± 0.0249 0.8758 ± 0.0450 0.8937 ± 0.0155
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