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ABSTRACT

Canonical correlation analysis (CCA) provides a framework to map multimodal-
ity data into a maximally correlated latent space. The deep version of CCA has
replaced linear maps with deep transformations to enable more flexible correlated
data representations; however, optimization for the CCA target requires calcula-
tion on sufficiently large sample batches. Here, we present a deep, adversarial
approach to CCA, adCCA, that can be efficiently solved by standard mini-batch
training. We reformulate CCA under the assumption that the different modali-
ties are embedded with identical latent distributions, derive a tractable deep CCA
target. We implement the new target and distribution constraint with an adver-
sarial framework to efficiently learn the canonical representations. adCCA learns
maximally correlated representations across multimodalities meanwhile preserves
class information within individual modalities. Further, adCCA removes the need
for feature transformation and normalization and can be directly applied to diverse
modalities and feature encodings. Numerical studies show that the performance
of adCCA is robust to data transformations, binary encodings, and corruptions.
Together, adCCA provides a scalable approach to align data across modalities
without compromising sample class information within each modality.

1 INTRODUCTION

Data samples can be measured with different modalities (e.g., image or text), encoded in different
formats, and modeled by different distributions. Integrative analysis of multimodality data provides
the opportunity in many machine learning tasks to combine partial information from each modality
and achieve better performance than any single modality alone (Ngiam et al. (2011); Srivastava
& Salakhutdinov (2012)). Canonical correlation analysis (CCA) (Thompson (1984)) is one of the
most classical and general approaches for multimodality data integration. It learns linear mappings
between data modalities that achieve maximal cross-modality correlations.

Replacing the linear mappings in CCA with deep functions can achieve non-linear and flexible
transformations and provide better correlated representations. However, learning the deep CCA
target function requires optimization over all data samples (Andrew et al. (2013)) or a sufficiently
large data batch (Wang et al. (2015)), which is incompatible with standard batch-based learning
strategies widely used in deep learning and limits its power on large-scale datasets. Therefore, many
recent deep CCA approaches (Wang et al. (2016); Dutton (2020); Karami & Schuurmans (2021))
sidestep the original CCA formulation and rather focus on learning a joint representation for the
paired modalities using approaches that are compatible with mini-batch training (Appendix A).

Here, we propose a multimodal adversarial learning framework for deep CCA learning: adCCA.
Mathematical analysis provides an optimization target for CCA amenable to mini-batch training un-
der the requirement that the different modality distributions are identical in latent space. adCCA
formulates this requirement as a penalty function that, during optimization, brings the two latent
distributions into alignment. As the latent space representations converge (distribution-wise), max-
imizing the optimization target leads to highly correlated latent representations (sample-wise) for
the two modalities, as illustrated with numerical experiments. Thus, adCCA is derived from a deep
CCA framework that follows the original correlation target of CCA, yet can be directly optimized
by mini-batch training.
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In more detail, adCCA learns representations in multiple steps. First, initial latent representations
are provided using modality-specific autoencoders (AEs). Second, the Wasserstein distance is used
to measure overall differences between the two latent distributions, and an inner product is used
to measure sample-wise similarities. Then, adCCA uses an adversarial framework to minimize la-
tent space distribution differences and maximize sample-wise similarity (Goodfellow et al. (2014)).
Together, the final output representation from each modality is expected to have similar latent dis-
tributions (from the Wasserstein distance terms), high cross-modality sample similarity (from the
inner product term) while still maintaining a faithful representation of the original features (from the
AE).

The design of adCCA framework has several advantages. One major advantage is flexibility in in-
put features. Often in multimodal analysis, the total loss is composed of loss terms from different
modalities (Wan et al. (2021); Andrew et al. (2013); Ngiam et al. (2011); Jain et al. (2005)). If
features from diverse modalities have different distributions or data formats, the joint optimization
can be biased towards a certain modality. In the adCCA framework, each modality representation
is generated from a modality-specific encoder, and the two latent representations are only related
indirectly through the adversarial network. Another major advantage is the ability to learn corre-
lation without losing information in the original features. In particular, deep CCA approaches use
deep transformations to learn canonical representations with high correlation; however, in doing so
these representations may lose class information contained in the original feature space. This point
is typically not considered in deep CCA frameworks. In adCCA, the use of AE in learning forces
the latent representation to retain a faithful reconstruction of the original data.

We benchmark adCCA against 10 different methods, using both synthetic and real datasets. In the
evaluation, we focused on two aspects. Cross-modality consistency: Correlation of sample points
in the latent space for both modalities (Appendix Fig D.1B). And, Class preservation: Ability of
the latent representation to retain the original class information (Appendix Fig D.1C). The ideal
method should provide embedding that are both correlated per sample and retain class structure
across both modalities (Appendix Fig D.1D). We show representations from adCCA both achieve
high cross-modality consistency in the joint latent space and preserve class information from the
original feature distributions. We demonstrate that adCCA can maintain stable performances across
features of different modality types, feature distributions, and degradation levels.

The major contributions of this work are: (1) A reformulation of CCA with deep transformations
into a target that can be optimized through standard mini-batch training. (2) An adversarial learn-
ing framework for efficient canonical representation learning and an optimization strategy for the
stable adversarial training between two latent representations. (3) An expanded approach for evalu-
ating the performance of CCA approaches for both cross-modality consistency and single-modality
information preservation. (4) An extensive test and demonstration of adCCA’s performance.

2 ADVERSARIAL REPRESENTATION LEARNING FOR CCA

2.1 PRELIMINARY

Here, we consider a general framework for CCA. (An overview of existing CCA variants is provided
in Appendix A.) Given a pair of feature vectors from two modalities, x ∈ Rp and y ∈ Rq , CCA
tries to learn two mapping functions f1 and f2 that maximize the correlation after mapping:

max corr(zx, zy)

s.t. zx = f1(x), zy = f2(y),
(1)

where zx ∈ R and zx ∈ R are the corresponding canonical variables. Transformation functions
f1 and f2 can be linear mappings (in the original CCA), implicit kernel functions (in kernel CCA)
or deep transformations (in deep CCA). These functions are learned through optimization over the
entire dataset (Andrew et al., Appendix B.1), and mini-batch training strategies cannot be leveraged.

Here, we aim to reformulate the CCA learning target to a form that enables optimization through
general deep-learning optimizers. To this end, we relax the CCA learning target with an additional
identical latent distribution assumption:
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Theorem 1. Assuming latent representations from modality x and y follow the same distribution π
with the mean µ and variance σ2, the optimization target of CCA (Eq. 1) can be rewritten as:

maxE(x,y)∼pdata
[zxzy]

s.t. zx = f1(x), zy = f2(y),

zx ∼ π(µ, σ2), zy ∼ π(µ, σ2),

(2)

where (x,y) ∼ pdata indicates paired modal features x and y drawn from the data.

Proof. Refer to Appendix B.2.

The latent distributions are assumed to be the same with the same fixed µ and σ2, and the new
target function can be expressed simply as the average of the product of canonical variables. This
formulation avoids noted problems with mini-batch optimization in CCA where µ and σ2 are not
fixed.

We next extend the optimization target to learn k canonical variables simultaneously. Deep CCA
(Appendix B.1) employs Singular Value Decomposition (SVD) to output canonical variables that
are orthogonal to each other. This step requires the use of large data batch sizes. To achieve more
efficient optimization, we forgo the requirement for orthogonality. Instead, we use two independent
autoencoders to generate canonical representations. We add the autoencoders as constraint terms
and extend Theorem 1 to a multi-variable form:

Corollary 1. Multidimensional canonical representations zx ∈ Rk and zy ∈ Rk are learned from
two individual autoencoders with encoders f1(x) and f2(y) and decoders g1(zx) and g2(zy). Un-
der the assumption that each entry of the two latent representations z(j)x , z(j)y follow the same latent
distribution with mean µ and variance σ2, the optimization target of CCA can be re-formulated as:

maxE(x,y)∼pdata
[zTx zy]

s.t. zx = f1(x), zy = f2(y),

∥x− g1(zx)∥22 = 0, ∥y − g2(zy)∥22 = 0

z(j)x , z(j)y ∼ π(µ, σ2) for j = 1 : k

(3)

Proof. Refer to Appendix B.3.

2.2 MODEL FORMULATION
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Overall distribution

Wasserstein distance
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Figure 1: adCCA framework and loss function de-
sign.

Based on Corollary 1, the new target function
for CCA has three requirements: 1) maximiz-
ing the inner product between latent represen-
tations of the two modalities; 2) requiring the
two latent distributions from two modalities to
be the same; and 3) fixing the mean and vari-
ance of each latent dimension to be constant.

These requirements can be easily satisfied us-
ing existing deep-learning paradigms. For (1),
the inner product is a general term to measure
sample similarities and is widely used in deep-
learning approaches, such as simCLR (Chen
et al. (2020)); for (2), distribution differences
can be measured by the Wasserstein distance
(Arjovsky et al. (2017)) or by other types of di-
vergences used in machine learning tasks, such as image generation (Makhzani et al. (2015)); for
(3), constant mean and variance can be achieved through batch normalization.
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Next, we describe the adCCA framework (Fig. 1; Appendix C). Here, we consider paired modality
features x and y collected from the same sample. First, we employ an autoencoder (AE) for each
modality to learn the initial latent representations zx and zy:

min
φx,θx

Ex∼px
∥r(x)φx

[g
(x)
θx

(x)]− x∥22,

min
φy,θy

Ey∼py
∥r(y)φy

[g
(y)
θy

(y)]− y∥22,
(4)

where g
(x)
θx

and r
(x)
φx are the encoder and decoder for modality x with network parameter sets θx

and φx (Resp. g
(y)
θy

and r
(y)
φy for modality y); px and py are data distributions for x and y. The

latent representations are given from the modality-specific encoders by zx = g
(x)
θx

(x) and zy =

g
(y)
θy

(y). The reconstruction loss encourages the AE bottleneck layer to faithfully encode information
contained in the original feature space.

Second, a Wasserstein distance is used to measure the distance between the latent distributions of
the two modalities:

W (pzx
, pzy

) = inf
γz∈Π(pzx ,pzy )

E(zx,zy)∼γz
[∥zx − zy∥]

= inf
γ∈Π(px,py)

E(x,y)∼γ [∥zx − zy∥]

s.t. zx = g
(x)
θx

(x), zy = g
(y)
θy

(y),

(5)

where pzx
, pzy

are distributions for zx and zy , and Π(pzx
, pzy

) represents the space of joint dis-
tributions for zx and zy with marginal distributions pzx and pzy . The same notation also applies
to Π(px, py). As previously shown (Arjovsky et al. (2017)), the least upper bound of Wasserstein
distance can also be formulated in terms of a 1-Lipschitz function fw:

W (pzx , pzy ) = sup
∥fw∥L≤1

(
Ex∼px [fw(zx)]− Ey∼py [fw(zy)]

)
. (6)

Following the Wasserstein GAN structure (Arjovsky et al. (2017)), we minimize this distance in an
adversarial paradigm:

max
w

min
θx,θy

(
Ex∼px

[fw(zx)]− Ey∼py
[fw(zy)]

)
s.t. zx = g

(x)
θx

(x), zy = g
(y)
θy

(y).
(7)

Here, the AE encoders g
(x)
θx

and g
(y)
θy

from above are reused as generative networks. fw is mod-
eled by a discriminator network with parameter set w. Maximizing the function by optimizing the
discriminator parameter w increases the difference between two representations zx and zy , while
minimizing the function by tuning generator parameters decreases the distance by finding better
encoder representations.

Third, we add the inner product to Eq. 7 and formulate the learning target used by adCCA:

max
w

min
θx,θy

−E(x,y)∼pdata
[zTx zy] + λ

[
Ex∼px

[fw(zx)]− Ey∼py
[fw(zy)]

]
,

s.t. zx = g
(x)
θx

(x), zy = g
(y)
θy

(y),
(8)

where λ > 0 is a multiplier used to balance the distribution penalty (given by the Wasserstein dis-
tance) with the sample pairwise-similarity term (given by the inner product of latent representations).
Taken together, the overall adCCA model requires the optimization of Eqs. 4 and 8.
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We note that the two latent representations are provided from two modality-specific AEs and are
not linked directly in the model. Thus, there is no requirement to process raw features x and y for
balanced learning and the two AEs can be replaced with modality specific structure (e.g.,. one AE
can be a convolutional network for images and the other an attention model for language).

2.3 INTUITIVE INTERPRETATION OF THE ADCCA LOSS FUNCTION

In this section, we provide intuition for how the formulated loss function can provide correlated
embeddings from multimodal data. In Eq. 8, the first two Wasserstein distance terms force the two
latent representations, zx and zy , to share similar distribution shapes. However, this overall distribu-
tion penalty does not align different modality features from the same sample. The last inner product
term explicitly encourages representations generated from paired modality features corresponding
to the same samples to maximize their similarities. Together, adCCA encourages similarity across
modalities in the latent space representations at both distribution (Wasserstein distance) and sample
(feature correlation) scales.

The AEs in Eq. 4 encourage zx and zy to preserve information from each modality. This allows
adCCA to avoid the adversarial network converging to trivial solutions. For example, zx and zy
could converge to zero vectors, which satisfy both the distribution and similarity requirements, but
do not carry any information from the original data. By using both Eqs. 4 and 8, multimodal
representations can be learned that both preserve the original information and achieve high cross-
modality correlations.

2.4 MODEL OPTIMIZATION

Algorithm 1: adCCA optimization
Data: {(x,y)}n ∼ pdata,x ∈ Rp,y ∈ Rq

Result: {(zx, zy)}n, zx ∈ Rk, zy ∈ Rk

# Initialize zx and zy with autoencoders

for i← 1 : epoch(AE) do
φx, θx ← minEx∼px∥r

(x)
φx [g

(x)
θx

(x)]− x∥22;

φy, θy ← minEy∼py∥r
(y)
φy [g

(y)
θy

(y)]− y∥22;
end
zx = g

(x)
θx

(x), zy = g
(y)
θy

(y);
# Optimize zx and zy iteratively

for i← 1 : epoch(AD) do
# y-step: fix zx and optimize zy

φy, θy ← minEy∼py∥r
(y)
φy [g

(y)
θy

(y)]− y∥22;
w ← maxEx∼px [fw(zx)]− Ey∼py [fw(zy)];
θy ← min−Ey∼py [fw(zy)]− λE(x,y)∼pdata [z

T
x zy];

# x-step: fix zy and optimize zx

φx, θx ← minEx∼px∥r
(x)
φx [g

(x)
θx

(x)]− x∥22
w ← maxEx∼px [fw(zx)]− Ey∼py [fw(zy)];
θx ← minEx∼px [fw(zx)]− λE(x,y)∼pdata [z

T
x zy];

end
return zx = g

(x)
θx

(x), zy = g
(y)
θy

(y)

In the standard generative adversar-
ial network framework (Goodfellow
et al. (2014); Arjovsky et al. (2017)),
we only need to optimize one genera-
tor and discriminate its output against
real samples. However, in adCCA,
we need to optimize two genera-
tive networks and match the distri-
butions between both latent represen-
tations. During training, these two
latent space representations change
epoch by epoch, which creates a chal-
lenge for a stable optimization.

Here, we propose a multi-step train-
ing process for stable adCCA opti-
mization in Algorithm 1 (illustrated
in Appendix Fig. D.2). First, au-
toencoders are trained independently
for each modality to provide an initial
embedding. This enables adCCA to
work with raw input feature data from
different modalities and different dis-
tributions (see Section 3.1.2). Next,
we fix the representation for modality
x and optimize the generative network for modality y through the adversarial learning step (y-step).
During this y-step, we optimize the autoencoder, discriminator and generator. The discriminator
identifies distributional differences, which are then minimized by ”moving” the latent distribution
of y towards the latent distribution of x. Meanwhile, the autoencoder ensures that the latent repre-
sentation faithfully reflects information in the original data. Then, we fix the representation of y and
optimize the generator for x (x-step). The x-step and y-step are performed iteratively.

3 EXPERIMENTS

In this section, we show the results of experiments using simulated and real data. We compared the
proposed adCCA with other CCA approaches as well as multimodal learning frameworks that can
complete the same task.
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Specifically, we compared adCCA to two different classes of existing approaches. The first class (in-
dividual representation learning methods) provides an individual representation for each modality.
This class contains 6 approaches: classical CCA, kernel CCA (radial basis function and polyno-
mial kernel) (Perry et al. (2021)), CCA with deep transformations (DCCA) (Andrew et al. (2013)),
simCLR (Chen et al. (2020)) that employs the same encoder to learn similar representations from
multimodal inputs, and contrastive autoencoders (contrast AE) that uses a contrastive loss to con-
strain the similarities in the latent space (which can be viewed as adCCA without the distribution
penalty). The second class (joint representation learning methods) provided a combined representa-
tion for both modalities. This class contained 4 approaches: CCA with the latent distribution con-
straint under variational framework (VCCA and VCCA-p with private latents) (Wang et al. (2016))
or adversarial framework (ACCA) (Dutton (2020)), and deep probabilistic CCA (DPCCA) (Karami
& Schuurmans (2021)). Detailed configurations were provided in Appendix E.1.

3.1 EXPERIMENTS WITH SYNTHETIC DATA

We first performed simulations studies by generating synthetic multimodal features with known
sample labels. Here, we considered 10 ground truth classes existing in the data and generated
synthetic features using multi-layer perception networks with random mapping matrices for the two
modalities (Appendix E.2). Then, we used multimodal approaches to learn representations in latent
spaces of 10 dimensions.

3.1.1 BASELINE COMPARISONS

We set high feature drop-out rates for features in modality x (90% feature missing ratio and 0.1 noise
variance) and high noise levels for modality y (10% feature missing ratio and 0.5 noise variance).
We observed, based on visualization of the raw feature spaces using Umap (Becht et al. (2019))
(Fig. 2, left), that the high drop-out rates in x had more significant effects on degrading the data
class information than the high noise levels in y. We then tested the ability to map both modalities
to the same latent space.

CCAModality x

Modality y

KCCA -poly KCCA -RBF DCCA

simCLR Contrast AE adCCA

Modality x

Modality y

Figure 2: Evaluation of cross-modality consistency. Left: visualization of raw features from two
modalities using Umap (Becht et al. (2019)). Color indicates the sample classes. Right: joint visu-
alization of two modalities in the same latent space. Color indicates the modality that representation
was learned from. KCCA-poly: CCA with polynomial kernel; KCCA-RBF: CCA with radial basis
function kernel.

First, we evaluated the degree of correlation between the latent representations of the two modalities
across different methods. We co-embedded the two modal representations using Umap. (We note
that ACCA, VCCA(-p) and DPCCA can only output a joint representation and were not evaluated for
this comparison.) For most approaches, representations from different modalities were mixed in the
latent space (Fig. 2, right). Quantitative assessment in 10-dimension latent spaces using correlation
coefficients and entropy of mixing (Appendix E.3) showed that CCA, DCCA and the proposed
adCCA had reasonable performance for combining representations from different modalities (Table
1). Kernel CCA also achieved good performance with appropriate kernel choices (RBF kernel in
this case).

Second, we evaluated whether the representations of the two modalities in the latent space reflected
sample clusters present in the original data. It was evident from 2D representation embeddings
with the original class labels (Fig. 3) that DCCA and adCCA were best suited to preserve cluster
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Method Correlation coefficient Entropy of mixing
CCA 0.976 ± 0.002 0.682 ± 0.002

KCCA-poly 0.732 ± 0.009 0.512 ± 0.158
KCCA-RBF 0.978 ± 0.001 0.693 ± 0.001

DCCA 0.985 ± 0.009 0.689 ± 0.005
simCLR 0.335 ± 0.102 0.688 ± 0.007

Contrast AE -0.074 ± 0.396 0.185 ± 0.234
adCCA 0.987 ± 0.011 0.690 ± 0.004

Table 1: Evaluation of cross-modality
consistency for latent representations
learned from two modalities. Corre-
lation coefficients were calculated on
each latent dimension and their mean
and standard deviation were reported.

Method ARI Silloutte SVM kNN
CCA 0.019 -0.03 0.114 ± 0.017 0.370 ± 0.008

KCCA-poly 0.273 0.018 0.121 ±0.033 0.457 ± 0.174
KCCA-RBF 0.002 -0.020 0.107 ± 0.002 0.233 ± 0.018

DCCA 0.641 0.225 0.905 ± 0.007 0.902 ± 0.008
simCLR 0.012 -0.037 0.201 ± 0.059 0.128 ± 0.014

Contrast AE 0.034 -0.041 0.294 ± 0.032 0.318 ± 0.020
ACCA 0.462 0.113 0.408 ± 0.004 0.681 ± 0.028
VCCA 0.451 0.062 0.929 ± 0.011 0.793 ± 0.022

VCCA-p 0.014 -0.049 0.128 ± 0.023 0.149 ± 0.015
DPCCA 0.008 -0.080 0.127 ± 0.018 0.140 ± 0.007
adCCA 0.924 0.237 0.991 ± 0.003 0.975 ± 0.005

Table 2: Evaluation of pre-
serving class information in
the latent space. Classifica-
tion accuracy was based on
5-fold cross validations.

structure in the original data. We quantified the quality of the latent representations to reflect true
sample classes using three measures: 1) clustering the latent representations and comparing cluster
identities with the true class labels using the adjusted Rand index (ARI); 2) calculating between-
and within-class distances using the true labels and quantifying sample compactness using the Sil-
houette coefficient; and 3) constructing simple classifiers in the latent space using the true labels and
reporting classification accuracy. Details of these measures are provided in Appendix E.3.

CCA KCCA -poly KCCA -RBF DCCA

DPCCA adCCA

simCLR Contrast AE VCCA

ACCA

VCCA-p

Figure 3: Evaluation of preserving original data classes in
latent space. Umap embeddings of latent representations are
as in Fig. 2, with color annotations indicating the true sam-
ple labels.

The results of these evaluations (Ta-
ble 2) confirmed that DCCA and
adCCA performed well at retaining
class information from the original
data. While some of the other ap-
proaches could align multimodal rep-
resentations in the latent space (i.e.,
high correlation; Table 1), they did so
at the cost of losing spatial coherency
present in the original features (Fig.
3,Table 2). In general, higher cor-
relation need not lead to better class
predictions for classical approaches
as their only learning target is the
maximization of the correlation be-
tween two representations. To get a
high correlation, the feature informa-
tion from original data can be greatly
compromised (An illustration in Ap-
pendix Fig. D.1).

Overall, our experiments suggest that
the adCCA framework can achieve a balance between cross-modality consistency (encouraged by
the adversarial loss) and single-modality preservation (encouraged by the autoencoder loss). We
provide a 2D illustration of how adCCA gradually aligns the two modalities in the latent space
during training (Appendix D.3) as well as a systematic structure test to highlight the impact of
the different key components of the adCCA model architecture in achieving high correlation and
classification prediction (Appendix Table F.1).
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3.1.2 PERFORMANCE WITH INPUT TRANSFORMATIONS

A known challenge in the integrative analysis of multimodal data is balancing contributions from
different modalities, especially when data are encoded in different formats or the data distributions
are unknown. In the adCCA framework, to enable flexibility of input encoding, independent AEs are
used to construct latent encodings for each modality, then the representations are aligned indirectly
using an adversarial network.

To test the stability of performance, we considered two types of transformations to the raw features
y used in the previous experiments: 1) a feature distribution transformation, by applying two se-
quential log transformations on entry values; and 2) a feature encoding transformation, by mapping
features into binary codes with local sensitive hashing (Appendix E.2). We evaluated how these
transformations changed the consistency between the two modal representations (i.e., correlation)
as well as the preservation of original data classes (i.e., classification accuracy).

Correlation

Multiple log transformA B Binary hashing code

Correlation

S
V

M
 a

cc
ur

ac
y

S
V

M
 a

cc
ur

ac
y

SVM accuracy

ACCA

adCCA

DCCA

simCLR
KCCA-RBF

KCCA-poly

CCA

adCCA

DCCA

simCLR
KCCA-RBF

KCCA-poly

CCA

VCCA
VCCA-p
DPCCA

ACCA
VCCA
VCCA-p
DPCCA

SVM accuracy

Figure 4: Evaluation of perfor-
mance after (A) log or (B) bi-
nary hashing transform of the in-
put y. Top: Analysis of individ-
ual representation learning methods.
Axes: consistency (i.e., correlation)
and class prediction (i.e., accuracy).
Bottom: Analysis of joint represen-
tation learning methods. Axis: class
prediction. Colors: lighter or darker
colors represent results before or af-
ter transforms (resp.). Arrows: large
changes.

From Fig. 4, we observed that some methods had stable class prediction scores but unstable cor-
relation (e.g., DCCA), while others had unstable class prediction scores but stable correlation (e.g.,
KCCA-RBF). A few were stable under all tested measurements (e.g., adCCA, CCA, KCCA-poly,
VCCA-p). The joint representation learning approaches (ACCA, VCCA and DPCCA) showed
strong accuracy change under log transform, implying different distributions of multimodal features
can affect the effective information combination. Notably, adCCA was stable under both transforms
and performed well overall (Fig. 4, in upper right quadrants of top scatter plots). Full results were
provided in the Appendix Tables F.2, F.3, F.4 and F.5 .

3.2 EXPERIMENTS WITH REAL DATA

Next, we performed evaluations on real datasets with multimodal features. We considered a multi-
view MNIST data where two views of the digits were related through transformations and a CITE-
seq multimodal dataset on spleen and lymph node where gene and protein features were measured
directly from single cells.

3.2.1 MNIST: DIGITS WITH TWO TRANSFORMED VIEWS

For each digit, we applied random image transformations (rotation, translation, scaling, shearing
and random pixel corruption) to generate two views for the same digit image (Appendix E.4). We
then learned single or joint representations for the modalities. We benchmarked how representations
from the two views mixed in the latent space and how these representations reflected different digit
classes.

From the results (Fig. 5A), we found both the classical and kernel CCA approaches showed compro-
mised performance. DCCA and adCCA still maintained high consistency between the two views as
well as class information. Further, the runtime (Appendix Fig. D.4) showed adCCA was shower than
VCCA, DPCCA and simCLR due to its multiple step training, but faster than classical approaches
KCCA, DCCA. We selected these two top approaches and stress-tested them with expanded trans-
formation ranges of 2-fold or 3-fold (Appendix E.4). Under these increasing degradation levels,
adCCA exhibited the most robust performance with less loss in correlation and accuracy (Fig. 5b).
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Figure 5: Integrative analysis of two transformed views from MNIST dataset.
(a) Overall performance

Method Correlation Class prediction
CCA 0.544 ± 0.204 0.412 ± 0.000

KCCA-poly 0.412 ± 0.012 0.325 ± 0.004
KCCA-RBF 0.528 ± 0.073 0.409 ± 0.001

DCCA 0.991 ± 0.008 0.601 ± 0.002
simCLR 0.845 ± 0.064 0.462 ± 0.001

Contrast AE 0.432 ± 0.054 0.475 ± 0.032
ACCA - 0.505 ± 0.007
VCCA - 0.508 ± 0.006

VCCA-p - 0.409 ± 0.003
DPCCA - 0.523 ± 0.042
adCCA 0.970 ± 0.016 0.713 ± 0.002

(b) Increased data degradations

Correlation
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ur
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adCCA
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1-fold
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3.2.2 CITE-SEQ: CELLS WITH TWO MODALITY PROFILES

Finally, we tested performance on human spleen and lymph node cells measured by CITE-seq
(Gayoso et al. (2021)). This technology profiles genes and proteins simultaneously from the same
cells. After data preprocessing 9,264 cells (Appendix E.5), modality x includes 2,000 genes and
modality y include 112 proteins. It has been reported that the gene data follow a negative binomial
distributions, while the protein data follow a negative binomial mixture distribution (Gayoso et al.
(2021)). Transformations on raw data may reduce biological signals. Therefore, we evaluated how
well the different computational methods could directly integrate these two types of data.

Method Correlation SVM prediction
5 cell types 35 subtypes

CCA 0.877 ± 0.070 0.481 ± 0.001 0.295 ± 0.002
KCCA-poly 0.985 ± 0.007 0.413 ± 0.002 0.225 ± 0.003
KCCA-RBF 0.983 ± 0.000 0.523 ± 0.000 0.315 ± 0.002

DCCA 0.994 ± 0.004 0.819 ± 0.001 0.738 ± 0.003
simCLR - - -

Contrast AE 0.452 ± 0.003 0.643 ± 0.030 0.389 ± 0.012
ACCA - 0.917 ± 0.003 0.681 ± 0.005
VCCA - 0.919 ± 0.003 0.766 ± 0.006

VCCA-p - 0.601 ± 0.009 0.496 ± 0.004
DPCCA - 0.903 ± 0.005 0.653 ± 0.010
adCCA 0.988 ± 0.015 0.930 ± 0.001 0.781 ± 0.005

Table 3: Integrative analysis of
gene and protein modalities from
CITE-seq. Prediction results
were based on 5-fold cross val-
idation using linear SVM. We
note that simCLR could not be
evaluated because of the unequal
modal dimensions.

We benchmarked using correlations of multimodal representations as well as their prediction ac-
curacies on major classes (5) and subclasses (35) of cell types (Table 3). For correlation, most
CCA approaches showed reasonable performance in consistency of latent embeddings. However,
approaches outputting joint representations (ACCA and VCCA) had better prediction performance.
adCCA maintained both high correlation and prediction accuracy.

4 DISCUSSION AND FUTURE WORKS

In this work, we formulated the CCA task under the identical latent distribution assumption and
derived an adCCA framework that can be efficiently solved by standard mini-batch optimizers. The
training of adCCA includes both cross-modality consistency constraint and single-modality infor-
mation preservation. Analysis of both simulated and real datasets suggests that adCCA provides
an effective approach to learn correlated latent representations and maintain original class informa-
tion. Compared with the original CCA framework, adCCA has several limitations and directions
for future exploration. First, adCCA’s latent representations are output from independent encoders
and therefore cannot maintain orthogonality of representations. Second, adCCA’s latent representa-
tions are limited by the AE framework, though the AE can be replaced with more general (such as
attention-based model) or modality-specific representation learning frameworks to improve perfor-
mance. Third, adCCA training involves simultaneously optimization of the GAN and AE, which can
be time-consuming to reach to a balanced state. Finally, the use of inner products to constrain sim-
ilarities between modalities in adCCA may be replaced by error models (such as L2 or Huber loss)
to enforce stronger similarity constraints. Nevertheless, adCCA provides a starting for for scalable
alignment of data across modalities that preserves structure within each modality.
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Adam Gayoso, Zoë Steier, Romain Lopez, Jeffrey Regier, Kristopher L Nazor, Aaron Streets, and
Nir Yosef. Joint probabilistic modeling of single-cell multi-omic data with totalvi. Nature meth-
ods, 18(3):272–282, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

David R Hardoon, Sandor Szedmak, and John Shawe-Taylor. Canonical correlation analysis: An
overview with application to learning methods. Neural computation, 16(12):2639–2664, 2004.

Anil Jain, Karthik Nandakumar, and Arun Ross. Score normalization in multimodal biometric sys-
tems. Pattern recognition, 38(12):2270–2285, 2005.

Mahdi Karami and Dale Schuurmans. Deep probabilistic canonical correlation analysis. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(9):8055–8063, May 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Pei Ling Lai and Colin Fyfe. Kernel and nonlinear canonical correlation analysis. International
Journal of Neural Systems, 10(05):365–377, 2000.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Adversarial
autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multi-
modal deep learning. In ICML, 2011.

Ronan Perry, Gavin Mischler, Richard Guo, Theo Lee, Alexander Chang, Arman Koul, Cameron
Franz, Hugo Richard, Iain Carmichael, Pierre Ablin, et al. mvlearn: Multiview machine learning
in python. J. Mach. Learn. Res., 22:109–1, 2021.

Nitish Srivastava and Russ R Salakhutdinov. Multimodal learning with deep boltzmann machines.
Advances in neural information processing systems, 25, 2012.

Bruce Thompson. Canonical correlation analysis: Uses and interpretation. Number 47. Sage,
1984.

10



Under review as a conference paper at ICLR 2023

Zhibin Wan, Changqing Zhang, Pengfei Zhu, and Qinghua Hu. Multi-view information-bottleneck
representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 10085–10092, 2021.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On deep multi-view representation
learning. In International conference on machine learning, pp. 1083–1092. PMLR, 2015.

Weiran Wang, Xinchen Yan, Honglak Lee, and Karen Livescu. Deep variational canonical correla-
tion analysis. arXiv preprint arXiv:1610.03454, 2016.

Hok Shing Wong, Li Wang, Raymond Chan, and Tieyong Zeng. Deep tensor cca for multi-view
learning. IEEE Transactions on Big Data, pp. 1–1, 2021. doi: 10.1109/TBDATA.2021.3079234.

11



Under review as a conference paper at ICLR 2023

APPENDIX

A RELATED WORKS

In the development of CCA, early improvements (Lai & Fyfe (2000); Hardoon et al. (2004)) focused
on employing kernels to generalize the model to non-linear transformation. DCCA (Andrew et al.
(2013)) introduced deep learning to CCA and replaced the core matrix transformation with a multi-
layered neural network, and DTCCA (Wong et al. (2021)) further extended this to more than two
views. With progress in variational neural networks (Kingma & Welling (2013)), variational CCA
(VCCA) (Wang et al. (2016)) re-formulated CCA under a graph model and proposed variational
CCA using a generative framework. VCCA assumed multimodal data were generated from a shared
latent representation and solved it under the variational autoencoder framework. Similarly, deep
probabilistic CCA (DPCCA) (Karami & Schuurmans (2021)) took a probabilistic interpretation of
CCA and decomposed the multimodal features into a shared distribution and a modality-specific
distribution. We note VCCA and DPCCA are different from the original CCA and DCCA as they
combined all modalties into a joint representation instead of learning a unique transformation for
each modality. Our proposed adCCA is different from these approaches in that our model is strictly
formulated within the classical CCA framework.

The generative adversarial network (GAN) (Goodfellow et al. (2014)) framework was originally
proposed to learn generative processes underlying a data distribution. The adversarial autoencoder
(Makhzani et al. (2015)) was the first work to use adversarial loss to match autoencoder latent
representation to any prior distribution. A combination of CCA and GAN was used for ACCA
(Dutton (2020)), which can be viewed as an extension of the variational CCA. Instead of using a
Kullback–Leibler (KL) divergence to constrain the prior and posterior distributions in latent space,
ACCA used an adversarial loss to match the latent representation to arbitrary priors. DACCA (Fan
et al. (2020)) concatenates multiview generation and deep CCA for data generation and representa-
tion learning. Most adversarial learning frameworks focus on constraining the distributions between
generated and real samples, rather than between latent representations from different modalities.
Our proposed adCCA is different from existing approaches in that adCCA directly uses the adver-
sarial loss to constrain the latent distributions from multimodal features. We summarize the major
differencse in representation learning and training for CCA variants in Appendix Table F.6.

B MATHEMATICAL FORMULATIONS

B.1 OPTIMIZATION OF GENERAL CCA FRAMEWORK

Zx ∈ Rn×k and Zy ∈ Rn×k are mean-centered matrix form representations from two modalities
with functions f

(x)
wx (X) and f

(y)
wy (Y) parameterized by wx and wy , where X ∈ Rn×p and Y ∈

Rn×q . The correlation can be formulated as a matrix trace norm:

corr(Zx,Zy) = ∥S∥trace
S = Σ−1/2

xx ΣxyΣ
−1/2
yy ,

(B.1)

where Σxx = 1
n−1Z

T
xZx, Σyy = 1

n−1Z
T
y Zy , and Σxy = 1

n−1Z
T
xZy . Based on Andrew et al.

(2013), the optimization of wx and wy requires the gradient of correlation to be calculated:

∂corr(Zx,Zy)

∂wx
=

∂corr(Zx,Zy)

∂Zx
· ∂Zx

∂wx

=
1

n− 1
(2MxxZx +MxyZy) ·

∂f
(x)
wx

∂wx
,

(B.2)

where Mxy = Σ
−1/2
xx UVTΣ

−1/2
yy and Mxx = − 1

2Σ
−1/2
xx UDUTΣ

−1/2
yy . U and V are from the

Singular Value Decomposition (SVD) of S by S = UDVT . The term ∂corr(Zx,Zy)
∂wy

can be formu-
lated similarly.
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The calculation in Eq. B.2 requires the SVD decomposition on all samples for every training itera-
tion. Therefore, it is not tractable for standard mini-batch training.

B.2 PROOF OF THEOREM 1

Proof. x ∈ Rp and y ∈ Rq represent a pair of random variables with p and q dimensions in two
modalities. zx = f1(x) ∈ R and zy = f2(y) ∈ R maps modality features to a pair of canonical
variables with transformations f1 and f2. With that, a general optimization target for CCA can be
formulated as:

f∗
1 , f

∗
2 = argmax

f1,f2
corr(zx, zy)

= argmax
f1,f2

E[(zx − µx)(zy − µy)]

σxσy

= argmax
f1,f2

E(zxzy)− µxµy

σxσy
,

(B.3)

where µx and σx are mean and standard deviation for zx (Resp. µy and σy for zy). Here, zx and zy
are assumed to follow the same distribution π with shared mean and standard deviation µ and σ and
rewrite the target to:

f∗
1 , f

∗
2 = argmax

f1,f2

E(zxzy)− µxµy

σxσy
,

= argmax
f1,f2

E(zxzy)− µ2

σ2
,

=
µ,σ∈C

argmax
f1,f2

E(zxzy),

(B.4)

where C is the constant number set.

B.3 PROOF OF COROLLARY 1

Proof. x ∈ Rp and y ∈ Rq are random variables with p and q dimensions from two modalities. Two
canonical representation vectors zx and zy with k dimensions are learned from two autoencoders
and constrained by the correct reconstruction of original features. The jth entries of zx and zy
follow the latent distribution with fixed mean µ and variance σ2. Following the Theorem 1, the
learning target for CCA with multiple canonical variables can be generalized as:
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f∗
1 , f

∗
2 = argmax

f1,f2

k∑
j=1

corr(z(j)x z(j)y )

= argmax
f1,f2

k∑
j=1

E(z(j)x z(j)y )

= argmax
f1,f2

k∑
j=1

1

n

n∑
i=1

z(i,j)x z(i,j)y

= argmax
f1,f2

1

n

n∑
i=1

 k∑
j=1

z(i,j)x z(i,j)y


= argmax

f1,f2

1

n

n∑
i=1

z(i,:)Tx z(i,:)y

= argmax
f1,f2

E[zTx zy],

(B.5)

where z
(j)
x is the jth entry of the vector; z(i,j)x is the jth entry of the representation learned from

sample i; z(i,:)x is the whole representation vector from sample i (Resp. z
(j)
y , z(i,j)y and z

(i,:)
y for

modality y). We note compared with the SVD-based solution in Eq. B.2, different dimensions in
the latent representations are no long orthogonal to each other.

C BACKGROUND

C.1 AUTOENCODERS

Autoencoders are a general unsupervised representation learning framework. Given a sample feature
vector x ∈ Rp, an autoencoder tries to learn a compact feature z ∈ Rq from an encoder network that
can be faithfully reconstructed to the original feature by a decoder network. The whole framework
is optimized by minimizing the reconstruction error:

min
φ,θ

Ex∼px∥rφ[gθ(x)]− x∥22, (C.1)

where gθ and rφ are encoder and decoder networks parameterized by θ and φ, respectively; px is
the distribution of input. The representation is the output from the encoder z = gθ(x).

C.2 WASSERSTEIN GAN

The Wasserstein GAN is an improved GAN framework. It modifies the core classification network
by using the Wasserstein distance to measure the distribution difference between the generated and
realistic samples. Given a sample x and a prior distribution z ∼ pz , the Wasserstein GAN is learned
via a two-step minmax optimization:

min
θ

max
w

Ex∼px
fw(x)− Ez∼pz

fw[gθ(z)], (C.2)

where gθ and fw are generator and discriminator with parameter θ and w; px is the actual data
distribution and pz is the prior distribution to generate new samples.
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D SUPPLEMENTARY FIGURES
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Figure D.1: Cartoon illustration of different possible outcomes from canonical representation learn-
ing of two modalities. (A) Sample raw features from two modalities visualized in 2D. Color indicates
the class labels. (B-D) Three scenarios of canonical representations learned from two modalities.
(B) 2D embedding of canonical representations with high cross-modality correlation but low class
information. (C) 2D embedding of canonical representations with well separation between classes
but low correlation between modalities. (D) Ideal case that canonical representations from two
modalities and same classes are well mixed, meanwhile different classes are well separated.
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Figure D.2: Optimization steps for adCCA. Transparent structures represent modules not involved
in the optimization step.
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Figure D.3: Visualization of how two modalities were aligned in the latent space during adCCA
optimization. Latent representations were extracted during training and were mapped to 2D space
for visualization using Umap. Samples were annotated with classes (top row) or modalities (bottom
row).
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Figure D.4: Runtime of comparing approaches on MNIST dataset.
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Figure D.5: Network structure in adCCA experiments. Each block includes 1D batch normalization
and ReLU activation function.

E EXPERIMENT DETAILS

E.1 COMPARISON OF APPROACHES

Here we set the latent dimension to 10 for all approaches. For deep-learning based methods, we
used the same encoding network [1024, 512, 256, 10] to learn the latent representation.

CCA: we used the multiview CCA function in the mvlearn python package 1 (version 0.5.0) with
regulation paramter regs=0.5.

KCCA: kernel CCA is implemented from the in KMCCA function in mvlearn python package.
For Radial Basis Function (a.k.a) kernel, we set γ = 1,regs = 0.01, sval − thresh = 1e− 5. For
polynomial kernel, we set kernel parameter as degree = 2, coef0 = 0.1 and regs = 0.01.

DCCA: we used the DCCA function in mvlearn and set the training epoch to 500. Default values
are used for all other parameters.

1https://mvlearn.github.io
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simCLR: we made use of the NT Xent simCLR implementation2 and set the training epoch to 500.
The learning step is chosen by grid search from [1e− 2, 1e− 3, 1e− 4].

Contrast AE: the implementation is based on the adCCA framework. The adversarial learning
structure is removed and only the similarity constraint is used in learning. The parameter settings
and training strategy are the same as in adCCA.

ACCA: we used the implementation from the authors3. The latent representation is generated from
both modalities (q(z|x, y) mode by setting num z = 2). The L2 reconstruction loss is used.

VCCA and VCCA-p: we used the implementation from ACCA. We followed the original VCCA
framework and assume the joint latent representation is generated from single view.

DPCCA: we modified the model from the original paper4. Parameters were selected from a grid
search of learning steps [1e− 2, 1e− 3, 1e− 4] and epochs [500, 1000, 2000]. λ was set to 1, but we
empirically determined it has little effect on the final results.

adCCA: the model is implemented with the pyTorch package. The network structure used in
the experiment is presented in Apendix Fig. D.5. Each layer includes a BatchNorm1d and a
ReLU activation function. The Adam optimizer was used for both the AE and GAN networks.
β (coefficients for the running averages of the gradient and its square) was selected from a grid
search, giving [0.9, 0.99] for the discriminator and [0.5, 0.9] for the generator and AE. The hyper-
parameter λ balancing the inner product term and Wasserstein distance was set to 1. Each train-
ing step includes 500 epochs. The learning rate was set to 1e − 3. In each iteration, the dis-
criminator optimizer was repeated twice and the generator optimizer repeated 5 times for better
convergence in each step. In the GAN optimization, we used the wGAN with gradient penalty 5.
Source code and demonstration to run the code are provided in supplementary materials.

E.2 SIMULATION DESIGN

We first pre-determined the k classes existing in the data. To get raw features X ∈ Rn×p for
modality x, we use a multivariate normal distribution with randomly determined mean to generate
the latent code Zx ∈ Rn×d. Next, we projected the latent code to a new space with a multi-layer
neural network:

X(1) = σ(ZxW
(x)
1 )

X(2) = σ(X(1)W
(x)
2 ),

(E.1)

where σ(·) is the sigmoid function; W
(x)
1 ∈ Rd×m and W

(x)
2 ∈ Rm×p are random projection

matrices. Finally, we added random noise and random feature dropouts to obtain the final feature:

X = δ(x)(X(2) + ε; ξ), (E.2)

where δ(x)(·; ξ) indicates the random feature sampling at a probability ξ ∈ [0, 1]; ε is a Gaussian
noise matrix with the same shape as X(2). The X is the final input feature for modality x. Similarly,
we obtained input feature Y ∈ Rn×q for modality x for modality y using the same framework with
different random projection matrices and drop-out function.

In the experiment, we set k = 50, p = q = 1, 000, and noise variances to 0.1 and 0.9 for x and y,
respectively. Further, 90% and 10% of features are randomly missing for these two modalities.

In the experiment of feature transformations (Section 3.1.2), for the feature distribution transfor-
mation, we linearly shifted features with a minimal value 0 then employed two sequential log 1p

2https://github.com/Spijkervet/SimCLR/blob/master/simclr
3https://github.com/bcdutton/AdversarialCanonicalCorrelationAnalysis
4https://github.com/Karami-m/Deep-Probabilistic-Multi-View
5https://github.com/eriklindernoren/PyTorch-GAN/blob/master/

implementations/wgan_gp/wgan_gp.py
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transformations; for the feature encoding transformation, we used local sensitive hashing (LSH)
(Datar et al. (2004)) implemented from GitHub6 to encode features into 1, 000 bits.

E.3 EVALUATION METRIC

Entropy of mixing: we put latent representations from x and y together [zTx ; z
T
y ]

T . In the combined
data, we identify its 100 nearest neighbors for each sample and calculate the proportion of neighbors
from the same or different modality. The entropy of mixing is given by:

−[p log p+ (1− p) log(1− p)], (E.3)

where p is the proportion of neighbors belonging to modality x.

Classification analysis: we employed a 5-fold classification accuracy evaluation. In each data split,
we fit a linear support vector machine (SVM) or k−nearest-neighbor classifier (kNN) on training
set (80%) and calculated classification accuracies on the test set (20%). We used implementations
of both classifiers from sklearn. For kNN, we considered 10 nearest neighbors to build classifier.

Silhouette score: we use the implementation from sklearn. Given the true sample classes, da
is the average distance between samples in the same class, db is the average distance between one
sample and its nearest samples from different classes. The score is defined as:

db − da
max (da, db)

, (E.4)

a positive value indicates the inner-class-distance is smaller than between-class-distance.

E.4 MNIST EXPERIMENTS

We applied rotation (range [−10◦, 10◦]), translation (range [0,0.1]), scaling (range [0.9,1.1]), shear-
ing ([0,15]) and random pixel corruption (10%) to digit images. Each view was obtained through
this transformation sequence with randomly chosen transformation parameters. After the transfor-
mation, two views were input to approaches, and the results were compared with the original digit
labels.

In the experiments with increased corruption levels, we further increased the range of each transform
to 2 fold and 3 fold (e.g., the rotation angle range was broaded to 2*[−10◦, 10◦] and 3*[−10◦, 10◦])
and then tested accuracy.

E.5 CITESEQ EXPERIMENTS

The dataset was downloaded from a previous publication7. We used the DLN111-D1 batch, which
includes 9,264 cells from spleen and lymph node in total. Each cell includes genes (> 20,000
dimensions) and surface proteins (112 dimensions). For the gene modality, we selected the top
2,000 variable genes as input; for the protein modality, we input all proteins. Cells are classified to
5 major cell types and 35 cell subtypes.

F SUPPLEMENTARY TABLES

6http://ethen8181.github.io/machine-learning/recsys/content_based/lsh_
text.html

7https://github.com/YosefLab/totalVI_reproducibility/tree/master/data
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Table F.1: Model structure analysis of adCCA. Note: removing Wasserstein distance term is equiv-
alent to Contrast AE approach.

Method Correlation SVM
adCCA 0.987 ± 0.011 0.991 ± 0.003

Remove AE initialization 0.978 ± 0.006 0.310 ± 0.106
Remove Wasserstein distance -0.074 ± 0.396 0.294 ± 0.032

Remove inner product 0.282 ± 0.014 0.134 ± 0.023
Fix decoders 0.772 ± 0.045 0.327 ± 0.090

Table F.2: Consistency evaluation of log-transformed feature.
Method Correlation Entropy of Mixing

CCA 0.972 ± 0.002 0.692 ± 0.002
KCCA-poly 0.558 ± 0.029 0.403 ± 0.198
KCCA-RBF 0.993 ± 0.001 0.693 ± 0.000

DCCA 0.982 ± 0.010 0.690 ± 0.005
simCLR 0.323 ± 0.131 0.686 ± 0.012

Contrast AE NA NA
adCCA 0.998 ± 0.002 0.692 ± 0.002

Table F.3: Class of evaluation of log-transformed feature.
Method ARI Silhouette SVM kNN

CCA 0.032 -0.022 0.118 ± 0.026 0.365 ± 0.020
KCCA-poly 0.563 0.152 0.124 ± 0.040 0.721 ± 0.265
KCCA-RBF 0.000 -0.395 0.111 ± 0.010 0.967 ± 0.004

DCCA 0.515 0.148 0.717 ± 0.013 0.710 ± 0.013
simCLR 0.021 -0.038 0.223 ± 0.068 0.151 ± 0.033

Contrast AE NA NA NA NA
ACCA 0.014 -0.035 0.128 ± 0.025 0.155 ± 0.005
VCCA 0.000 -0.024 0.112 ± 0.017 0.105 ± 0.007

VCCA-p 0.013 -0.063 0.123 ± 0.017 0.131 ± 0.012
DPCCA 0.147 -0.047 0.354 ± 0.018 0.333 ± 0.017
adCCA 0.651 0.265 0.995 ± 0.002 0.993 ±0.002

Table F.4: Consistency evaluation of binary encoded features.
Method Correlation Entropy of Mixing

CCA 0.972 ± 0.003 0.692 ± 0.002
KCCA-poly 0.762 ± 0.008 0.517 ± 0.140
KCCA-RBF 0.998 ± 0.001 0.693 ± 0.000

DCCA 0.993 ± 0.004 0.691 ± 0.003
simCLR 0.274 ± 0.121 0.688 ± 0.006

Contrast AE NA NA
adCCA 0.995 ± 0.005 0.692 ± 0.002

Table F.5: Class of evaluation of binary encoded features.
Method ARI Silhouette SVM kNN

CCA 0.013 -0.029 0.111 ± 0.011 0.297 ± 0.003
KCCA-poly 0.050 -0.023 0.117 ± 0.025 0.276 ± 0.085
KCCA-RBF 0.002 -0.020 0.107 ± 0.002 0.178 ± 0.021

DCCA 0.332 0.052 0.611 ± 0.009 0.585 ± 0.011
simCLR 0.006 -0.033 0.151 ± 0.022 0.117 ± 0.007

Contrast AE NA NA NA NA
ACCA 0.475 0.116 0.493 ± 0.028 0.701 ± 0.016
VCCA 0.427 0.038 0.928 ± 0.017 0.817 ± 0.018

VCCA-pr 0.002 -0.043 0.130 ± 0.017 0.123 ± 0.014
DPCCA 0.003 -0.028 0.119 ± 0.021 0.102 ± 0.011
adCCA 0.530 0.100 0.943 ± 0.004 0.934 ± 0.010
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Table F.6: A summary of representation and training for CCA variants.
Method Representation type Training
CCA Modality-specific representation Large/full batch

KCCA-poly Modality-specific representation Large/full batch
KCCA-RBF Modality-specific representation Large/full batch

DCCA Modality-specific representation Large/full batch
ACCA Single joint representations Mini-batch
VCCA Single joint representations Mini-batch

VCCA-p Single joint representations Mini-batch
DPCCA Single joint representations Mini-batch
adCCA Modality-specific representation Mini-batch
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