
The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Ghada Sokar 1 2 Rishabh Agarwal 3 4 Pablo Samuel Castro 3 * Utku Evci 3 *

Abstract
In this work we identify the dormant neuron phe-
nomenon in deep reinforcement learning, where
an agent’s network suffers from an increasing
number of inactive neurons, thereby affecting
network expressivity. We demonstrate the pres-
ence of this phenomenon across a variety of algo-
rithms and environments, and highlight its effect
on learning. To address this issue, we propose a
simple and effective method (ReDo) that Recycles
Dormant neurons throughout training. Our ex-
periments demonstrate that ReDo maintains the
expressive power of networks by reducing the
number of dormant neurons and results in im-
proved performance.

1. Introduction
The use of deep neural networks as function approximators
for value-based reinforcement learning (RL) has been one
of the core elements that has enabled scaling RL to complex
decision-making problems (Mnih et al., 2015; Silver et al.,
2016; Bellemare et al., 2020). However, their use can lead
to training difficulties that are not present in traditional RL
settings. Numerous improvements have been integrated with
RL methods to address training instability, such as the use
of target networks, prioritized experience replay, multi-step
targets, among others (Hessel et al., 2018). In parallel, there
have been recent efforts devoted to better understanding
the behavior of deep neural networks under the learning
dynamics of RL (van Hasselt et al., 2018; Fu et al., 2019;
Kumar et al., 2021a; Bengio et al., 2020; Lyle et al., 2021;
Araújo et al., 2021).

Recent work in so-called “scaling laws” for supervised learn-
ing problems suggest that, in these settings, there is a pos-

*Equal advising 1Eindhoven University of Technology, The
Netherlands 2Work done while the author was intern at Google
DeepMind 3Google DeepMind 4Mila. Correspondence to: Ghada
Sokar <g.a.z.n.sokar@tue.nl>, Rishabh Agarwal < rishabhagar-
wal@google.com>, Pablo Samuel Castro <psc@google.com>,
Utku Evci <evci@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2 4 6 8 10
Number of Frames (in millions)

0.0

0.2

0.4

0.6

IQ
M

 N
or

m
al

ize
d

Sc
or

e DQN
DQN + ReDo
DQN + Reset
DQN + WD

Figure 1. Sample efficiency curves for DQN, with a replay ratio
of 1, when using network resets (Nikishin et al., 2022), weight de-
cay (WD), and our proposed ReDo. Shaded regions show 95% CIs.
The figure shows interquartile mean (IQM) human-normalized
scores over the course of training, aggregated across 17 Atari
games and 5 runs per game. Among all algorithms, DQN+ReDo
performs the best.

itive correlation between performance and the number of
parameters (Hestness et al., 2017; Kaplan et al., 2020; Zhai
et al., 2022). In RL, however, there is evidence that the
networks lose their expressivity and ability to fit new targets
over time, despite being over-parameterized (Kumar et al.,
2021a; Lyle et al., 2021); this issue has been partly mitigated
by perturbing the learned parameters. Igl et al. (2020) and
Nikishin et al. (2022) periodically reset some, or all, of the
layers of an agent’s neural networks, leading to improved
performance. These approaches, however, are somewhat
drastic: reinitializing the weights can cause the network
to “forget” previously learned knowledge and require many
gradient updates to recover.

In this work, we seek to understand the underlying reasons
behind the loss of expressivity during the training of RL
agents. The observed decrease in the learning ability over
time raises the following question: Do RL agents use neural
network parameters to their full potential? To answer this,
we analyze neuron activity throughout training and track dor-
mant neurons: neurons that have become practically inactive
through low activations. Our analyses reveal that the num-
ber of dormant neurons increases as training progresses, an
effect we coin the “dormant neuron phenomenon”. Specif-
ically, we find that while agents start the training with a

1

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

small number of dormant neurons, this number increases as
training progresses. The effect is exacerbated by the number
of gradient updates taken per data collection step. This is
in contrast with supervised learning, where the number of
dormant neurons remains low throughout training.

We demonstrate the presence of the dormant neuron phe-
nomenon across different algorithms and domains: in two
value-based algorithms on the Arcade Learning Environ-
ment (Bellemare et al., 2013) (DQN (Mnih et al., 2015)
and DrQ(ε) (Yarats et al., 2021; Agarwal et al., 2021)), and
with an actor-critic method (SAC (Haarnoja et al., 2018))
evaluated on the MuJoCo suite (Todorov et al., 2012). To
address this issue, we propose Recycling Dormant neu-
rons (ReDo), a simple and effective method to avoid network
under-utilization during training without sacrificing previ-
ously learned knowledge: we explicitly limit the spread
of dormant neurons by “recycling” them to an active state.
ReDo consistently maintains the capacity of the network
throughout training and improves the agent’s performance
(see Figure 1). Our contributions in this work can be sum-
marized as follows:

• We demonstrate the existence of the dormant neuron
phenomenon in deep RL.

• We investigate the underlying causes of this phe-
nomenon and show its negative effect on the learning
ability of deep RL agents.

• We propose Recycling Dormant neurons (ReDo), a sim-
ple method to reduce the number of dormant neurons
and maintain network expressivity during training.

• We demonstrate the effectiveness of ReDo in maximiz-
ing network utilization and improving performance.

2. Background
We consider a Markov decision process (Puterman, 2014),
M = 〈S,A,R,P, γ〉, defined by a state space S , an action
space A, a reward function R : S × A → R, a transition
probability distribution P(s′|s, a) indicating the probability
of transitioning to state s′ after taking action a from state s,
and a discounting factor γ ∈ [0, 1). An agent’s behaviour
is formalized as a policy π : S → Dist(A); given any
state s ∈ S and action a ∈ A, the value of choosing a
from s and following π afterwards is given by Qπ(s, a) =
E[
∑∞
t=0 γ

tR(st, at)]. The goal in RL is to find a policy π∗

that maximizes this value: for any π, Qπ
∗
:= Q∗ ≥ Qπ .

In deep reinforcement learning, the Q-function is repre-
sented using a neural networkQθ with parameters θ. During
training, an agent interacts with the environment and col-
lects trajectories of the form (s, a, r, s′) ∈ S ×A× R× S .
These samples are typically stored in a replay buffer (Lin,

1992), from which batches are sampled to update the pa-
rameters of Qθ using gradient descent. The optimization
performed aims to minimize the temporal difference loss
(Sutton, 1988): L = Qθ(s, a) − QTθ (s, a); here, QTθ (s, a)
is the bootstrap target [R(s, a)+γmaxa′∈AQθ̃(s

′, a′)] and
Qθ̃ is a delayed version of Qθ that is known as the target
network.

The number of gradient updates performed per environment
step is known as the replay ratio. This is a key design choice
that has a substantial impact on performance (Van Hasselt
et al., 2019; Fedus et al., 2020; Kumar et al., 2021b; Nikishin
et al., 2022). Increasing the replay ratio can increase the
sample-efficiency of RL agents as more parameter updates
per sampled trajectory are performed. However, prior works
have shown that training agents with a high replay ratio can
cause training instabilities, ultimately resulting in decreased
agent performance (Nikishin et al., 2022).

One important aspect of reinforcement learning, when con-
trasted with supervised learning, is that RL agents train on
highly non-stationary data, where the non-stationarity is
coming in a few forms (Igl et al., 2020), but we focus on
two of the most salient ones.
Input data non-stationarity: The data the agent trains on
is collected in an online manner by interacting with the en-
vironment using its current policy π; this data is then used
to update the policy, which affects the distribution of future
samples.
Target non-stationarity: The learning target used by RL
agents is based on its own estimate Qθ̃, which is changing
as learning progresses.

3. The Dormant Neuron Phenomenon
Prior work has highlighted the fact that networks used in
online RL tend to lose their expressive ability; in this section
we demonstrate that dormant neurons play an important role
in this finding.

Definition 3.1. Given an input distribution D, let h`i(x)
denote the activation of neuron i in layer ` under input
x ∈ D and H` be the number of neurons in layer `. We
define the score of a neuron i (in layer `) via the normalized
average of its activation as follows:

s`i =
Ex∈D|h`i(x)|

1
H`

∑
k∈h Ex∈D|h`k(x)|

(1)

We say a neuron i in layer ` is τ -dormant if s`i ≤ τ .

We normalize the scores such that they sum to 1 within a
layer. This makes the comparison of neurons in different
layers possible. The threshold τ allows us to detect neurons
with low activations. Even though these low activation
neurons could, in theory, impact the learned functions when

2

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 1 2 3 4 5 6
Gradient steps (x106)

0
5

10
15
20
25
30

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

0 1 2 3 4 5 6
Gradient steps (x106)

5
10
15
20
25
30

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

Figure 2. The percentage of dormant neurons increases throughout
training for DQN agents.

recycled, their impact is expected to be less than the neurons
with high activations.

Definition 3.2. An algorithm exhibits the dormant neuron
phenomenon if the number of τ -dormant neurons in its
neural network increases steadily throughout training.

An algorithm exhibiting the dormant neuron phenomenon
is not using its network’s capacity to its full potential, and
this under-utilization worsens over time.

The remainder of this section focuses first on demonstrat-
ing that RL agents suffer from the dormant neuron phe-
nomenon, and then on understanding the underlying causes
for it. Specifically, we analyze DQN (Mnih et al., 2015),
a foundational agent on which most modern value-based
agents are based. To do so, we run our evaluations on the
Arcade Learning Environment (Bellemare et al., 2013) us-
ing 5 independent seeds for each experiment, and reporting
95% confidence intervals. For clarity, we focus our analyses
on two representative games (DemonAttack and Asterix),
but include others in the appendix. In these initial analyses
we focus solely on τ = 0 dormancy, but loosen this thresh-
old when benchmarking our algorithm in sections 4 and 5.
Additionally, we present analyses on an actor-critic method
(SAC (Haarnoja et al., 2018)) and a modern sample-efficient
agent (DrQ(ε) (Yarats et al., 2021)) in Appendix B.

The dormant neuron phenomenon is present in deep RL
agents. We begin our analyses by tracking the number of
dormant neurons during DQN training. In Figure 2, we
observe that the percentage of dormant neurons steadily
increases throughout training. This observation is consistent
across different algorithms and environments, as can be seen
in Appendix B.

Target non-stationarity exacerbates dormant neurons.
We hypothesize that the non-stationarity of training deep
RL agents is one of the causes for the dormant neuron phe-
nomenon. To evaluate this hypothesis, we consider two
supervised learning scenarios using the standard CIFAR-10
dataset (Krizhevsky et al., 2009): (1) training a network with
fixed targets, and (2) training a network with non-stationary

0 20 40 60 80 100
Epochs

0

10

20

30

40

50

Do
rm

an
t n

eu
ro

ns
 [%

]

Fixed targets
Non-stationary targets

Figure 3. Percentage of dormant neurons when training on CIFAR-
10 with fixed and non-stationary targets. Averaged over 3 indepen-
dent seeds with shaded areas reporting 95% confidence intervals.
The percentage of dormant neurons increases with non-stationary
targets.

0 1 2 3 4 5 6
Gradient steps (×106)

5
10
15
20
25
30
35

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

Fixed Targets
Non-Stationary Targets

0 1 2 3 4 5 6
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

Figure 4. Offline RL. Dormant neurons throughout training with
standard moving targets and fixed (random) targets. The phe-
nomenon is still present in offline RL, where the training data is
fixed.

targets, where the labels are shuffled throughout training
(see Appendix A for details). As Figure 3 shows, the number
of dormant neurons decreases over time with fixed targets,
but increases over time with non-stationary targets. Indeed,
the sharp increases in the figure correspond to the points in
training when the labels are shuffled. These findings sug-
gest that the continuously changing targets in deep RL are a
significant factor for the presence of the phenomenon.

Input non-stationarity does not appear to be a major
factor. To investigate whether the non-stationarity due
to online data collection plays a role in exacerbating the
phenomenon, we measure the number of dormant neurons
in the offline RL setting, where an agent is trained on a
fixed dataset (we used the dataset provided by Agarwal et al.
(2020)). In Figure 4 we can see that the phenomenon re-
mains in this setting, suggesting that input non-stationary
is not one of the primary contributing factors. To further
analyze the source of dormant neurons in this setting, we
train RL agents with fixed random targets (ablating the non-
stationarity in inputs and targets). The decrease in the num-

3

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 1 2 3 4 5 6
Gradient steps (×106)

20
30
40
50
60
70

Ov
er

la
p

co
ef

fic
ie

nt
 [%

] DemonAttack

0 1 2 3 4 5 6
Gradient steps (×106)

30
40
50
60
70
80

Ov
er

la
p

co
ef

fic
ie

nt
 [%

] Asterix

Figure 5. The overlap coefficient of dormant neurons throughout
training. There is an increase in the number of dormant neurons
that remain dormant.

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

DemonAttack

Standard
Pruning

0 10 20 30 40
Number of Frames (x106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

Asterix

Standard
Pruning

Figure 6. Pruning dormant neurons during training does not affect
the performance of an agent.

ber of dormant neurons observed in this case (Figure 4)
supports our hypothesis that target non-stationarity in RL
training is the primary source of the dormant neuron phe-
nomenon.

Dormant neurons remain dormant. To investigate
whether dormant neurons “reactivate” as training progresses,
we track the overlap in the set of dormant neurons. Figure 5
plots the overlap coefficient between the set of dormant neu-
rons in the penultimate layer at the current iteration, and
the historical set of dormant neurons.1 The increase shown
in the figure strongly suggests that once a neuron becomes
dormant, it remains that way for the rest of training. To fur-
ther investigate this, we explicitly prune any neuron found
dormant throughout training, to check whether their removal
affects the agent’s overall performance. As Figure 6 shows,
their removal does not affect the agent’s performance, fur-
ther confirming that dormant neurons remain dormant.

More gradient updates leads to more dormant neurons.
Although an increase in replay ratio can seem appealing
from a data-efficiency point of view (as more gradient up-
dates per environment step are taken), it has been shown to
cause overfitting and performance collapse (Kumar et al.,
2021a; Nikishin et al., 2022). In Figure 7 we measure neu-

1The overlap coefficient between two sets X and Y is defined
as overlap(X,Y) = |X∩Y |

min(|X|,|Y |) .

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack
RR=0.25
RR=0.5
RR=1
RR=2

0 10 20 30 40
Number of Frames (x106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack

Figure 7. The rate of increase in dormant neurons with varying
replay ratio (RR) (left). As the replay ratio increases, the number
of dormant neurons also increases. The higher percentage of
dormant neurons correlates with the performance drop that occurs
when the replay ratio is increased (right).

0 100 200 300 400 500
Gradient Steps (×100)

10 1

100

Lo
ss

DemonAttack
Random
Pretrained (RR=1)

0 100 200 300 400 500
Gradient Steps (×100)

20

40

60

80

100

Do
rm

an
t n

eu
ro

ns
 [%

]

DemonAttack

Figure 8. A pretrained network that exhibits dormant neurons has
less ability than a randomly initialized network to fit a fixed target.
Results are averaged over 5 seeds.

ron dormancy while varying the replay ratio, and observe
a strong correlation between replay ratio and the fraction
of neurons turning dormant. Although difficult to assert
conclusively, this finding could account for the difficulty in
training RL agents with higher replay ratios; indeed, we will
demonstrate in Section 5 that recycling dormant neurons
and activating them can mitigate this instability, leading to
better results.

Dormant neurons make learning new tasks more diffi-
cult. We directly examine the effect of dormant neurons
on an RL network’s ability to learn new tasks. To do so,
we train a DQN agent with a replay ratio of 1 (this agent
exhibits a high level of dormant neurons as observed in
Figure 7). Next we fine-tune this network by distilling it
towards a well performing DQN agent’s network, using a
traditional regression loss and compare this with a randomly
initialized agent trained using the same loss. In Figure 8 we
see that the pre-trained network, which starts with a high
level of dormant neurons, shows degrading performance
throughout training; in contrast, the randomly initialized
baseline is able to continuously improve. Further, while
the baseline network maintains a stable level of dormant
neurons, the number of dormant neurons in the pre-trained

4

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (x106)

0
5

10
15
20
25
30
35

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

DQN
DQN + ReDo

0 10 20 30 40
Number of Frames (x106)

0

2000

4000

6000

8000

Av
er

ag
e

re
tu

rn

DemonAttack

Figure 9. Evaluation of ReDo’s effectiveness (with τ = 0.025)
in reducing dormant neurons (left) and improving performance
(right) on DQN (with RR = 0.25).

network continues to increase throughout training.

4. Recycling Dormant Neurons (ReDo)
Our analyses in Section 3, which demonstrates the existence
of the dormant neuron phenomenon in online RL, suggests
these dormant neurons may have a role to play in the dimin-
ished expressivity highlighted by Kumar et al. (2021a) and
Lyle et al. (2021). To account for this, we propose to recycle
dormant neurons periodically during training (ReDo).

The main idea of ReDo, outlined in Algorithm 1, is rather
simple: during regular training, periodically check in all
layers whether any neurons are τ -dormant; for these, reini-
tialize their incoming weights and zero out the outgoing
weights. The incoming weights are initialized using the
original weight distribution. Note that if τ is 0, we are effec-
tively leaving the network’s output unchanged; if τ is small,
the output of the network is only slightly changed.

Figure 9 showcases the effectiveness of ReDo in dramati-
cally reducing the number of dormant neurons, which also
results in improved agent performance. Before diving into a
deeper empirical evaluation of our method in Section 5, we
discuss some algorithmic alternatives we considered when
designing ReDo.

Alternate recycling strategies. We considered other re-
cycling strategies, such as scaling the incoming connections
using the mean of the norm of non-dormant neurons. How-
ever, this strategy performed similarly to using initial weight
distribution. Similarly, alternative initialization strategies
like initializing outgoing connections randomly resulted in
similar or worse returns. Results of these investigations are
shared in Appendix C.2.

Are ReLUs to blame? RL networks typically use ReLU
activations, which can saturate at zero outputs, and hence
zero gradients. To investigate whether the issue is specific to
the use of ReLUs, in Appendix C.1 we measured the number
of dormant neurons and resulting performance when using
a different activation function. We observed that there is a

Algorithm 1 ReDo
Input: Network parameters θ, threshold τ , training steps
T , frequency F
for t = 1 to to T do

Update θ with regular RL loss
if t mod F == 0 then

for each neuron i do
if s`i ≤ τ then

Reinitialize input weights of neuron i
Set outgoing weights of neuron i to 0

end if
end for

end if
end for

mild decrease in the number of dormant neurons, but the
phenomenon is still present.

5. Empirical Evaluations
Agents, architectures, and environments. We evaluate
DQN on 17 games from the Arcade Learning Environment
(Bellemare et al., 2013) (as used in (Kumar et al., 2021a;b)
to study the loss of network expressivity). We study two
different architectures: the default CNN used by Mnih et al.
(2015), and the ResNet architecture used by the IMPALA
agent (Espeholt et al., 2018).

Additionally, we evaluate DrQ(ε) (Yarats et al., 2021; Agar-
wal et al., 2021) on the 26 games used in the Atari 100K
benchmark (Kaiser et al., 2019), and SAC (Haarnoja et al.,
2018) on four MuJoCo environments (Todorov et al., 2012).

Implementation details. All our experiments and imple-
mentations were conducted using the Dopamine framework
(Castro et al., 2018)2. For agents trained with ReDo, we use
a threshold of τ = 0.1, unless otherwise noted, as we found
this gave a better performance than using a threshold of 0
or 0.025. When aggregating results across multiple games,
we report the Interquantile Mean (IQM), recommended by
Agarwal et al. (2021) as a more statistically reliable alterna-
tive to median or mean, using 5 independent seeds for each
DQN experiment, 10 for the DrQ and SAC experiments,
and reporting 95% stratified bootstrap confidence intervals.

5.1. Consequences for Sample Efficiency

Motivated by our finding that higher replay ratios exacerbate
dormant neurons and lead to poor performance (Figure 7),
we investigate whether ReDo can help mitigate these. To

2Code is available at
https://github.com/google/dopamine/tree/
master/dopamine/labs/redo

5

https://github.com/google/dopamine/tree/master/dopamine/labs/redo
https://github.com/google/dopamine/tree/master/dopamine/labs/redo

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0.25 0.5 1 2
Replay ratio

0.1
0.2
0.3
0.4
0.5
0.6

IQ
M

DQN

DQN
DQN + ReDo

0.25 0.5 1 2
Replay ratio

0.3
0.4
0.5
0.6
0.7
0.8

IQ
M

DQN

0.25 0.5 1 2
Replay ratio

0.2
0.4
0.6
0.8
1.0

IQ
M

DQN (ResNet)

1 2 4 8
Replay ratio

0.35
0.40
0.45
0.50
0.55
0.60
0.65

IQ
M

DrQ()

Figure 10. Evaluating the effect of increased replay ratio with and without ReDo. From left to right: DQN with default settings, DQN
with n-step of 3, DQN with the ResNet architecture, and DrQ(ε). We report results using 5 seeds, while DrQ(ε) use 10 seeds; error bars
report 95% confidence intervals.

do so, we report the IQM for four replay ratio values: 0.25
(default for DQN), 0.5, 1, and 2 when training with and
without ReDo. Since increasing the replay ratio increases
the training time and cost, we train DQN for 10M frames,
as opposed to the regular 200M. As the leftmost plot in Fig-
ure 10 demonstrates, ReDo is able to avoid the performance
collapse when increasing replay ratios, and even to benefit
from the higher replay ratios when trained with ReDo.

Impact on multi-step learning. In the center-left plot of
Figure 10 we added n-step returns with a value of n = 3
(Sutton & Barto, 2018). While this change results in a
general improvement in DQN’s performance, it still suffers
from performance collapse with higher replay ratios; ReDo
mitigates this and improves performance across all values.

Varying architectures. To evaluate ReDo’s impact on dif-
ferent network architectures, in the center-right plot of Fig-
ure 10 we replace the default CNN architecture used by
DQN with the ResNet architecture used by the IMPALA
agent (Espeholt et al., 2018). We see a similar trend: ReDo
enables the agent to make better use of higher replay ratios,
resulting in improved performance.

Varying agents. We evaluate on a sample-efficient value-
based agent DrQ(ε) (Yarats et al., 2021; Agarwal et al.,
2021)) on the Atari 100K benchmark in the rightmost plot
of Figure 10. In this setting, we train for 400K steps, where
we can see the effect of dormant neurons on performance,
and study the following replay ratio values: 1 (default),
2, 4, 8. Once again, we observe ReDo’s effectiveness in
improving performance at higher replay ratios.

In the rest of this section, we do further analyses to under-
stand the improved performance of ReDo and how it fares
against related methods. We perform this study on a DQN
agent trained with a replay ratio of 1 using the default CNN
architecture.

5.2. Learning Rate Scaling

An important point to consider is that the default learning
rate may not be optimal for higher replay ratios. Intuitively,

Baseline
+ReDo

+Low-LR
0.0

0.2

0.4

0.6

IQ
M

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t [

%
] (

=
0.

1)

DemonAttack

Baseline
+ReDo
+Low-LR

Figure 11. Effect of reduced learning rate in high replay ratio set-
ting. Scaling learning rate helps, but does not solve the dormant
neuron problem. Aggregated results across 17 games (left) and the
percentage of dormant neurons during training on DemonAttack
(right).

performing more gradient updates would suggest a reduced
learning rate would be more beneficial. To evaluate this, we
decrease the learning rate by a factor of four when using a
replay ratio of 1 (four times the default value). Figure 11
confirms that a lower learning rate reduces the number of
dormant neurons and improves performance. However, per-
centage of dormant neurons is still high and using ReDo
with a high replay ratio and the default learning rate obtains
the best performance.

5.3. Is Over-parameterization Enough?

Lyle et al. (2021) and Fu et al. (2019) suggest sufficiently
over-parameterized networks can fit new targets over time;
this raises the question of whether over-parameterization
can help address the dormant neuron phenomenon. To in-
vestigate this, we increase the size of the DQN network
by doubling and quadrupling the width of its layers (both
the convolutional and fully connected). The left plot in
Figure 12 shows that larger networks have at most a mild
positive effect on the performance of DQN, and the result-
ing performance is still far inferior to that obtained when
using ReDo with the default width. Furthermore, training
with ReDo seems to improve as the network size increases,
suggesting that the agent is able to better exploit network
parameters, compared to when training without ReDo.

6

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

1 2 4
Width

0.3
0.4
0.5
0.6
0.7
0.8

IQ
M

DQN

DQN
DQN + ReDo

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t [

%
] (

=
0.

1)

DemonAttack

width
1
2
4

Figure 12. Performance of DQN trained with RR = 1 using dif-
ferent network width. Increasing the width of the network slightly
improves the performance. Yet, the performance gain does not
reach the gain obtained by ReDo. ReDo improves the performance
across different network sizes.

DQN

DQN + ReDo

DQN + Reset

DQN + WD
0.0

0.2

0.4

0.6

IQ
M

0 2 4 6 8
Number of Frames (×106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack
DQN
DQN + ReDo
DQN + Reset
DQN + WD

Figure 13. Comparison of the performance for ReDo and two dif-
ferent regularization methods (Reset (Nikishin et al., 2022) and
weight decay (WD)) when integrated with training DQN agents.
Aggregated results across 17 games (left) and the learning curve
on DemonAttack (right).

An interesting finding in the right plot in Figure 12 is that
the percentage of dormant neurons is similar across the
varying widths. As expected, the use of ReDo dramatically
reduces this number for all values. This finding is somewhat
at odds with that from Sankararaman et al. (2020). They
demonstrated that, in supervised learning settings, increas-
ing the width decreases the gradient confusion and leads to
faster training. If this observation would also hold in RL,
we would expect to see the percentage of dormant neurons
decrease in larger models.

5.4. Comparison with Related Methods

Nikishin et al. (2022) also observed performance collapse
when increasing the replay ratio, but attributed this to overfit-
ting to early samples (an effect they refer to as the “primacy
bias”). To mitigate this, they proposed periodically resetting
the network, which can be seen as a form of regularization.
We compare the performance of ReDo against theirs, which
periodically resets only the penultimate layer for Atari en-
vironments. Additionally, we compare to adding weight
decay, as this is a simpler, but related, form of regulariza-
tion. It is worth highlighting that Nikishin et al. (2022)
also found high values of replay ratio to be more amenable

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Ant-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

Figure 14. Comparison of the performance of SAC agents with
ReDo and two different regularization methods (Reset (Nikishin
et al., 2022) and weight decay (WD)). See Figure 20 for other
environments.

to their method. As Figure 13 illustrates, weight decay is
comparable to periodic resets, but ReDo is superior to both.

We continue our comparison with resets and weight decay
on two MuJoCo environments with the SAC agent (Haarnoja
et al., 2018). As Figure 14 shows, ReDo is the only method
that does not suffer a performance degradation. The results
on other environments can be seen in Appendix B.

5.5. Neuron Selection Strategies

Finally, we compare our strategy for selecting the neurons
that will be recycled (Section 3) against two alternatives:
(1) Random: neurons are selected randomly, and (2) In-
verse ReDo: neurons with the highest scores according to
Equation 1 are selected. To ensure a fair comparison, the
number of recycled neurons is a fixed percentage for all
methods, occurring every 1000 steps. The percentage of
neurons to recycle follows a cosine schedule starting at 0.1
and ending at 0. As Figure 15 shows, recycling active or
random neurons hinders learning and causes performance
collapse.

6. Related Work
Function approximators in RL. The use of over-
parameterized neural networks as function approximators
was instrumental to some of the successes in RL, such as
achieving superhuman performance on Atari 2600 games
(Mnih et al., 2015) and continuous control (Lillicrap et al.,
2016). Recent works observe a change in the network’s ca-
pacity over the course of training, which affects the agent’s
performance. Kumar et al. (2021a;b) show that the ex-
pressivity of the network decreases gradually due to boot-
strapping. Gulcehre et al. (2022) investigate the sources
of expressivity loss in offline RL and observe that under-
paramterization emerges with prolonged training. Lyle et al.
(2021) demonstrate that RL agents lose their ability to fit
new target functions over time, due to the non-stationary
in the targets. Similar observations have been found, re-
ferred to as plasticity loss, in the continual learning setting

7

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 2 4 6 8
Number of Frames (×106)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack
ReDo
Random
Inverse ReDo

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

DQN - Asterix

Figure 15. Comparison of different strategies for selecting the neu-
rons that will be recycled. Recycling neurons with the highest score
(Inverse ReDo) or random neurons causes performance collapse.

where the data distribution is changing over time (Berariu
et al., 2021; Dohare et al., 2021). These observations call
for better understanding how RL learning dynamics affect
the capacity of their neural networks.

There is a recent line of work investigating network topolo-
gies by using sparse neural networks in online (Graesser
et al., 2022; Sokar et al., 2022; Tan et al., 2022) and of-
fline RL (Arnob et al., 2021). They show up to 90% of
the network’s weights can be removed with minimal loss in
performance. This suggests that RL agents are not using the
capacity of the network to its full potential.

Generalization in RL. RL agents are prone to overfitting,
whether it is to training environments, reducing their ability
to generalize to unseen environments (Kirk et al., 2021),
or to early training samples, which degrades later training
performance (Fu et al., 2019; Nikishin et al., 2022). Tech-
niques such as regularization (Hiraoka et al., 2021; Wang
et al., 2020), ensembles (Chen et al., 2020), or data augmen-
tation (Fan et al., 2021; Janner et al., 2019; Hansen et al.,
2021) have been adopted to account for overfitting.

Another line of work addresses generalization via re-
initializing a subset or all of the weights of a neural network
during training. This technique is mainly explored in super-
vised learning (Taha et al., 2021; Zhou et al., 2021; Alabdul-
mohsin et al., 2021; Zaidi et al., 2022), transfer learning (Li
et al., 2020), and online learning (Ash & Adams, 2020). A
few recent works have explored this for RL: Igl et al. (2020)
periodically reset an agent’s full network and then performs
distillation from the pre-reset network. Nikishin et al. (2022)
(already discussed in Figure 13) periodically resets the last
layers of an agent’s network. Despite its performance gains,
fully resetting some or all layers can lead to the agent “for-
getting” prior learned knowledge. The authors account for
this by using a sufficiently large replay buffer, so as to never
discard any observed experience; this, however, makes it
difficult to scale to environments with more environment in-
teractions. Further, recovering performance after each reset
requires many gradient updates. Similar to our approach,

Dohare et al. (2021) adapt the stochastic gradient descent by
resetting the smallest utility features for continual learning.
We compare their utility metric to the one used by ReDo in
Appendix C.4 and observe similar or worse performance.

Neural network growing. A related research direction is
to prune and grow the architecture of a neural network. On
the growing front, Evci et al. (2021) and Dai et al. (2019)
proposed gradient-based strategies to grow new neurons in
dense and sparse networks, respectively. Yoon et al. (2018)
and Wu et al. (2019) proposed methods to split existing
neurons. Zhou et al. (2012) adds new neurons and merges
similar features for online learning.

7. Discussion and Conclusion
In this work we identified the dormant neuron phenomenon
whereby, during training, an RL agent’s neural network
exhibits an increase in the number of neurons with little-
or-no activation. We demonstrated that this phenomenon
is present across a variety of algorithms and domains, and
provided evidence that it does result in reduced expressivity
and inability to adapt to new tasks.

Interestingly, studies in neuroscience have found similar
types of dormant neurons (precursors) in the adult brain of
several mammalian species, including humans (Benedetti
& Couillard-Despres, 2022), albeit with different dynamics.
Certain brain neurons start off as dormant during embryonic
development, and progressively awaken with age, eventually
becoming mature and functionally integrated as excitatory
neurons (Rotheneichner et al., 2018; Benedetti et al., 2020;
Benedetti & Couillard-Despres, 2022). Contrastingly, the
dormant neurons we investigate here emerge over time and
exacerbate with more gradient updates.

To overcome this issue, we proposed a simple method
(ReDo) to maintain network utilization throughout training
by periodic recycling of dormant neurons. The simplic-
ity of ReDo allows for easy integration with existing RL
algorithms. Our experiments suggest that this can lead to im-
proved performance. Indeed, the results in Figure 10 and 12
suggest that ReDo can be an important component in being
able to successfully scale RL networks in a sample-efficient
manner.

Limitations and future work. Although the simple ap-
proach of recycling neurons we introduced yielded good
results, it is possible that better approaches exist. For ex-
ample, ReDo reduces dormant neurons significantly but it
doesn’t completely eliminate them. Further research on
initialization and optimization of the recycled capacity can
address this and lead to improved performance. Addition-
ally, the dormancy threshold is a hyperparameter that re-
quires tuning; having an adaptive threshold over the course

8

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

of training could improve performance even further. Fi-
nally, further investigation into the relationship between
the task’s complexity, network capacity, and the dormant
neuron phenomenon would provide a more comprehensive
understanding.

Similarly to the findings of Graesser et al. (2022), this work
suggests there are important gains to be had by investigat-
ing the network architectures and topologies used for deep
reinforcement learning. Moreover, the observed network’s
behavior during training (i.e. the change in the network
capacity utilization), which differs from supervised learn-
ing, indicates a need to explore optimization techniques
specific to reinforcement learning due to its unique learning
dynamics.

Societal impact. Although the work presented here is
mostly of an academic nature, it aids in the development of
more capable autonomous agents. While our contributions
do not directly contribute to any negative societal impacts,
we urge the community to consider these when building on
our research.

Acknowledgements
We would like to thank Max Schwarzer, Karolina Dziu-
gaite, Marc G. Bellemare, Johan S. Obando-Ceron, Laura
Graesser, Sara Hooker and Evgenii Nikishin, as well as the
rest of the Brain Montreal team for their feedback on this
work. We would also like to thank the Python community
(Van Rossum & Drake Jr, 1995; Oliphant, 2007) for devel-
oping tools that enabled this work, including NumPy (Harris
et al., 2020), Matplotlib (Hunter, 2007) and JAX (Bradbury
et al., 2018).

References
Agarwal, R., Schuurmans, D., and Norouzi, M. An opti-

mistic perspective on offline reinforcement learning. In
International Conference on Machine Learning, pp. 104–
114. PMLR, 2020.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304–29320, 2021.

Alabdulmohsin, I., Maennel, H., and Keysers, D. The im-
pact of reinitialization on generalization in convolutional
neural networks. arXiv preprint arXiv:2109.00267, 2021.

Araújo, J. G. M., Ceron, J. S. O., and Castro, P. S. Lifting
the veil on hyper-parameters for value-based deep rein-
forcement learning. In Deep RL Workshop NeurIPS 2021,
2021. URL https://openreview.net/forum?
id=Ws4v7nSqqb.

Arnob, S. Y., Ohib, R., Plis, S., and Precup, D. Single-shot
pruning for offline reinforcement learning. arXiv preprint
arXiv:2112.15579, 2021.

Ash, J. and Adams, R. P. On warm-starting neural network
training. Advances in Neural Information Processing
Systems, 33:3884–3894, 2020.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J.,
Machado, M. C., Moitra, S., Ponda, S. S., and Wang, Z.
Autonomous navigation of stratospheric balloons using
reinforcement learning. Nature, 588(7836):77–82, 2020.

Benedetti, B. and Couillard-Despres, S. Why would the
brain need dormant neuronal precursors? Frontiers in
Neuroscience, 16, 2022.

Benedetti, B., Dannehl, D., König, R., Coviello, S.,
Kreutzer, C., Zaunmair, P., Jakubecova, D., Weiger, T. M.,
Aigner, L., Nacher, J., et al. Functional integration of
neuronal precursors in the adult murine piriform cortex.
Cerebral cortex, 30(3):1499–1515, 2020.

Bengio, E., Pineau, J., and Precup, D. Interference and
generalization in temporal difference learning. In Inter-
national Conference on Machine Learning, pp. 767–777.
PMLR, 2020.

Berariu, T., Czarnecki, W., De, S., Bornschein, J., Smith,
S. L., Pascanu, R., and Clopath, C. A study on the plas-
ticity of neural networks. CoRR, abs/2106.00042, 2021.
URL https://arxiv.org/abs/2106.00042.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., et al. Jax: composable transfor-
mations of python+ numpy programs. 2018.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for
Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Chen, X., Wang, C., Zhou, Z., and Ross, K. W. Randomized
ensembled double q-learning: Learning fast without a
model. In International Conference on Learning Repre-
sentations, 2020.

Dai, X., Yin, H., and Jha, N. K. Nest: A neural network syn-
thesis tool based on a grow-and-prune paradigm. IEEE
Transactions on Computers, 68(10):1487–1497, 2019.

9

https://openreview.net/forum?id=Ws4v7nSqqb
https://openreview.net/forum?id=Ws4v7nSqqb
https://arxiv.org/abs/2106.00042
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Dohare, S., Mahmood, A. R., and Sutton, R. S. Continual
backprop: Stochastic gradient descent with persistent
randomness. arXiv preprint arXiv:2108.06325, 2021.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
I., et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In Interna-
tional conference on machine learning, pp. 1407–1416.
PMLR, 2018.

Evci, U., van Merrienboer, B., Unterthiner, T., Pedregosa, F.,
and Vladymyrov, M. Gradmax: Growing neural networks
using gradient information. In International Conference
on Learning Representations, 2021.

Fan, L., Wang, G., Huang, D.-A., Yu, Z., Fei-Fei, L., Zhu,
Y., and Anandkumar, A. Secant: Self-expert cloning for
zero-shot generalization of visual policies. In Interna-
tional Conference on Machine Learning, pp. 3088–3099.
PMLR, 2021.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y.,
Larochelle, H., Rowland, M., and Dabney, W. Revisiting
fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR,
2020.

Fu, J., Kumar, A., Soh, M., and Levine, S. Diagnosing
bottlenecks in deep q-learning algorithms. In Interna-
tional Conference on Machine Learning, pp. 2021–2030.
PMLR, 2019.

Graesser, L., Evci, U., Elsen, E., and Castro, P. S. The
state of sparse training in deep reinforcement learning.
In International Conference on Machine Learning, pp.
7766–7792. PMLR, 2022.

Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P.,
Holly, E., Fishman, S., Wang, K., Gonina, E., Wu,
N., Kokiopoulou, E., Sbaiz, L., Smith, J., Bartók, G.,
Berent, J., Harris, C., Vanhoucke, V., and Brevdo, E.
TF-Agents: A library for reinforcement learning in
tensorflow. https://github.com/tensorflow/
agents, 2018. URL https://github.com/
tensorflow/agents. [Online; accessed 25-June-
2019].

Gulcehre, C., Srinivasan, S., Sygnowski, J., Ostrovski, G.,
Farajtabar, M., Hoffman, M., Pascanu, R., and Doucet,
A. An empirical study of implicit regularization in deep
offline rl. arXiv preprint arXiv:2207.02099, 2022.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hansen, N., Su, H., and Wang, X. Stabilizing deep
q-learning with convnets and vision transformers
under data augmentation. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 3680–3693. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
1e0f65eb20acbfb27ee05ddc000b50ec-Paper.
pdf.

Harris, C. R., Millman, K. J., Van Der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H.,
Kianinejad, H., Patwary, M., Ali, M., Yang, Y., and Zhou,
Y. Deep learning scaling is predictable, empirically. arXiv
preprint arXiv:1712.00409, 2017.

Hiraoka, T., Imagawa, T., Hashimoto, T., Onishi, T., and
Tsuruoka, Y. Dropout q-functions for doubly efficient
reinforcement learning. In International Conference on
Learning Representations, 2021.

Hunter, J. D. Matplotlib: A 2d graphics environment. Com-
puting in science & engineering, 9(03):90–95, 2007.

Igl, M., Farquhar, G., Luketina, J., Boehmer, W., and White-
son, S. Transient non-stationarity and generalisation in
deep reinforcement learning. In International Conference
on Learning Representations, 2020.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Kaiser, Ł., Babaeizadeh, M., Miłos, P., Osiński, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., Levine, S., et al. Model based reinforcement
learning for atari. In International Conference on Learn-
ing Representations, 2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),

10

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://proceedings.neurips.cc/paper/2021/file/1e0f65eb20acbfb27ee05ddc000b50ec-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/1e0f65eb20acbfb27ee05ddc000b50ec-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/1e0f65eb20acbfb27ee05ddc000b50ec-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/1e0f65eb20acbfb27ee05ddc000b50ec-Paper.pdf

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kirk, R., Zhang, A., Grefenstette, E., and Rocktäschel, T. A
survey of generalisation in deep reinforcement learning.
arXiv preprint arXiv:2111.09794, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kumar, A., Agarwal, R., Ghosh, D., and Levine, S. Im-
plicit under-parameterization inhibits data-efficient deep
reinforcement learning. In International Conference on
Learning Representations, 2021a.

Kumar, A., Agarwal, R., Ma, T., Courville, A., Tucker, G.,
and Levine, S. Dr3: Value-based deep reinforcement
learning requires explicit regularization. In International
Conference on Learning Representations, 2021b.

Li, X., Xiong, H., An, H., Xu, C.-Z., and Dou, D. Ri-
fle: Backpropagation in depth for deep transfer learning
through re-initializing the fully-connected layer. In In-
ternational Conference on Machine Learning, pp. 6010–
6019. PMLR, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. In ICLR (Poster), 2016.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3):293–321, 1992.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
International Conference on Learning Representations,
2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 16828–16847. PMLR, 2022.

Oliphant, T. E. Python for scientific computing. Computing
in Science & Engineering, 9(3):10–20, 2007. doi: 10.
1109/MCSE.2007.58.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Rotheneichner, P., Belles, M., Benedetti, B., König, R.,
Dannehl, D., Kreutzer, C., Zaunmair, P., Engelhardt, M.,
Aigner, L., Nacher, J., et al. Cellular plasticity in the
adult murine piriform cortex: continuous maturation of
dormant precursors into excitatory neurons. Cerebral
Cortex, 28(7):2610–2621, 2018.

Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and
Goldstein, T. The impact of neural network overparame-
terization on gradient confusion and stochastic gradient
descent. In International conference on machine learning,
pp. 8469–8479. PMLR, 2020.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sokar, G., Mocanu, E., Mocanu, D. C., Pechenizkiy, M., and
Stone, P. Dynamic sparse training for deep reinforcement
learning. In International Joint Conference on Artificial
Intelligence, 2022.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9–44, 1988.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Taha, A., Shrivastava, A., and Davis, L. S. Knowledge evolu-
tion in neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12843–12852, 2021.

Tan, Y., Hu, P., Pan, L., and Huang, L. Rlx2: Training a
sparse deep reinforcement learning model from scratch.
arXiv preprint arXiv:2205.15043, 2022.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026–5033. IEEE, 2012.

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat,
N., and Modayil, J. Deep reinforcement learning and
the deadly triad. CoRR, abs/1812.02648, 2018. URL
http://arxiv.org/abs/1812.02648.

Van Hasselt, H. P., Hessel, M., and Aslanides, J. When to
use parametric models in reinforcement learning? Ad-
vances in Neural Information Processing Systems, 32,
2019.

Van Rossum, G. and Drake Jr, F. L. Python reference man-
ual. Centrum voor Wiskunde en Informatica Amsterdam,
1995.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1812.02648

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Wang, K., Kang, B., Shao, J., and Feng, J. Improv-
ing generalization in reinforcement learning with
mixture regularization. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 7968–7978. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
5a751d6a0b6ef05cfe51b86e5d1458e6-Paper.
pdf.

Wu, L., Wang, D., and Liu, Q. Splitting steepest descent
for growing neural architectures. Advances in neural
information processing systems, 32, 2019.

Yarats, D., Kostrikov, I., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=GY6-6sTvGaf.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. In Inter-
national Conference on Learning Representations, 2018.

Zaidi, S., Berariu, T., Kim, H., Bornschein, J., Clopath, C.,
Teh, Y. W., and Pascanu, R. When does re-initialization
work? arXiv preprint arXiv:2206.10011, 2022.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling
vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 12104–12113, 2022.

Zhou, G., Sohn, K., and Lee, H. Online incremental fea-
ture learning with denoising autoencoders. In Artificial
intelligence and statistics, pp. 1453–1461. PMLR, 2012.

Zhou, H., Vani, A., Larochelle, H., and Courville, A. For-
tuitous forgetting in connectionist networks. In Interna-
tional Conference on Learning Representations, 2021.

12

https://proceedings.neurips.cc/paper/2020/file/5a751d6a0b6ef05cfe51b86e5d1458e6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5a751d6a0b6ef05cfe51b86e5d1458e6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5a751d6a0b6ef05cfe51b86e5d1458e6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/5a751d6a0b6ef05cfe51b86e5d1458e6-Paper.pdf
https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Table 1. Common Hyper-parameters for DQN and DrQ(ε).

Parameter Value

Optimizer Adam (Kingma & Ba, 2015)
Optimizer: ε 1.5× 10−4

Training ε 0.01
Evaluation ε 0.001
Discount factor 0.99
Replay buffer size 106

Minibatch size 32
Q network: channels 32, 64, 64
Q-network: filter size 8 × 8, 4 × 4, 3 × 3
Q-network: stride 4, 2, 1
Q-network: hidden units 512
Recycling period 1000
τ -Dormant 0.025 for default setting, 0.1 otherwise
Minibatch size for estimating neurons score 64

Table 2. Hyper-parameters for DQN.

Parameter Value

Optimizer: Learning rate 6.25× 10−5

Initial collect steps 20000
n-step 1
Training iterations Default setting: 40, otherwise: 10
Training environment steps per iteration 250K
(Updates per environment step, Target network update period) (0.25, 8000)

(0.5, 4000)
(1, 2000)
(2, 1000)

Author Contributions
• Ghada: Led the work, worked on project direction and plan, participated in discussions, wrote most of the code, ran

most of the experiments, led the writing, and wrote the draft of the paper.

• Rishabh: Advised on project direction and participated in project discussions, ran an offline RL experiment, worked on
the plots and helped with paper writing.

• Pablo: Worked on project direction and plan, participated in discussions throughout the project, helped with reviewing
code, ran some experiments, worked substantially on paper writing, supervised Ghada.

• Utku: Proposed project direction and the initial project plan. Reviewed and open-sourced the code. Ran part of the
experiments, worked on the plots and helped with paper writing, supervised Ghada.

A. Experimental Details
Discrete control tasks. We evaluate DQN (Mnih et al., 2015) on 17 games from the Arcade Learning Environment
(Bellemare et al., 2013): Asterix, Demon Attack, Seaquest, Wizard of Wor, Bream Reader, Road Runner, James Bond,
Qbert, Breakout, Enduro, Space Invaders, Pong, Zaxxon, Yars’ Revenge, Ms. Pacman, Double Dunk, Ice Hockey. This set is
used by previous works (Kumar et al., 2021a;b) to study the implicit under-parameterization phenomenon in offline RL. For
hyper-parameter tuning, we used five games (Asterix, Demon Attack, Seaquest, Breakout, Beam Rider). We evaluate DrQ(ε)
on the 26 games of Atari 100K (Kaiser et al., 2019). We used the best hyper-parameters found for DQN in training DrQ(ε).

13

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Table 3. Hyper-parameters for DrQ(ε).

Parameter Value

Optimizer: Learning rate 1× 10−4

Initial collect steps 1600
n-step 10
Training iterations 40
Training environment steps per iteration 10K
Updates per environment step 1, 2, 4, 8

Table 4. Hyper-parameters for SAC.

Parameter Value

Initial collect steps 10000
Discount factor 0.99
Training environment steps 106

Replay buffer size 106

Updates per environment step (Replay Ratio) 1, 2, 4, 8
Target network update period 1
target smoothing coefficient τ 0.005
Optimizer Adam (Kingma & Ba, 2015)
Optimizer: Learning rate 3× 10−4

Minibatch size 256
Actor/Critic: Hidden layers 2
Actor/Critic: Hidden units 256
Recycling period 200000
τ -Dormant 0
Minibatch size for estimating neurons score 256

Continuous control tasks. We evaluate SAC (Haarnoja et al., 2018) on four environments from MuJoCo suite (Todorov
et al., 2012): HalfCheetah-v2, Hopper-v2, Walker2d-v2, Ant-v2.

Code. For discrete control tasks, we build on the implementation of DQN and DrQ provided in Dopamine (Castro et al.,
2018), including the architectures used for agents. The hyper-parameters are provided in Tables 1, 2, and 3. For continuous
control, we build on the SAC implementation in TF-Agents (Guadarrama et al., 2018) and the codebase of (Graesser et al.,
2022). The hyper-parameters are provided in Table 4.

Evaluation. We follow the recommendation from (Agarwal et al., 2021) to report reliable aggregated results across games
using the interquartile mean (IQM). IQM is the calculated mean after discarding the bottom and top 25% of normalized
scores aggregated from multiple runs and games.

Baselines. For weight decay, we searched over the grid [10−6, 10−5, 10−4, 10−3]. The best found value is 10−5. For reset
(Nikishin et al., 2022), we consider re-initializing the last layer for Atari games (same as the original paper). They use a reset
period of 2× 104 in for Atari 100k (Kaiser et al., 2019), which corresponds to having 5 restarts in a training run. Since we
run longer experiments, we searched over the grid [5× 104, 1× 105, 2.5× 105, 5× 105] gradient steps for the reset period
which corresponds to having 50, 25, 10 and 5 restarts per training (10M frames, replay ratio 1). The best found period is
1× 105. For SAC, we reset agent’s networks entirely every 2× 105 environment steps, following the original paper.

Replay ratio. For DQN, we evaluate replay ratio values: {0.25 (default), 0.5, 1, 2}. Following (Van Hasselt et al., 2019),
we scale the target update period based on the value of the replay ratio as shown in Table 2. For DrQ(ε), we evaluate the
values: {1 (default), 2, 4, 8}.

14

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Table 5. Hyperparameters for CIFAR-10.

Parameter Value

Optimizer SGD
Minibatch size 256
Learning rate 0.01
Momentum 0.9
Architecture:
Layer (channels, kernel size, stride)
Convolution (32, 3, 1)
Convolution (64, 3, 1)
MaxPool (-, 2, 2)
Convolution (64, 3, 1)
MaxPool (-, 2, 2)
Dense (128, -, -)

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60
70

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix
RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60

Do
rm

an
t n

eu
ro

ns
 [%

] BeamRider

RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] Breakout

RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack
RR=0.25
RR=0.5
RR=1
RR=2

0 5 10 15 20 25 30 35 40
Number of Frames (x106)

0
10
20
30
40
50
60
70

Do
rm

an
t n

eu
ro

ns
 [%

] Seaquest

RR=0.25
RR=0.5
RR=1
RR=2

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Asterix

0 10 20 30 40
Number of Frames (x106)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

re
tu

rn

BeamRider

0 10 20 30 40
Number of Frames (x106)

0
25
50
75

100
125
150
175

Av
er

ag
e

re
tu

rn

Breakout

0 10 20 30 40
Number of Frames (x106)

0

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack

0 10 20 30 40
Number of Frames (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

Seaquest

Figure 16. Effect of replay ratio in the number of dormant neurons for DQN on Atari environments (experiments presented in Figure 7).

ReDo hyper-parameters. We did the hyper-parameter search for DQN trained with RR = 1 using the nature CNN
architecture. We searched over the grids [1000, 10000, 100000] and [0, 0.01, 0.1] for the recycling period and τ -dormant,
respectively. We apply the best values found to all other settings of DQN, including the ResNet architecture and DrQ(ε), as
reported in Table 1.

Dormant neurons in supervised learning. Here we provide the experimental details of the supervised learning analysis
illustrated in Section 3. We train a convolutional neural network on CIFAR-10 (Krizhevsky et al., 2009) using stochastic
gradient descent and cross-entropy loss. We select 10000 samples from the dataset to reduce the computational cost. We
analyze the dormant neurons in two supervised learning settings: (1) training a network with fixed targets, the standard
single-task supervised learning, where we train a network using the inputs and labels of CIFAR-10 for 100 epochs, and (2)
training a network with non-stationary targets, where we shuffle the labels every 20 epochs to generate new targets. Table 5
provides the details of the network architecture and training hyper-parameters.

Learning ability of networks with dormant neurons. Here we present the details of the regression experiment provided
in Section 3. Inputs and targets for regression come from a DQN agent trained on DemonAttack for 40M frames with the
default hyper-parameters. The pre-trained network was trained for 40M frames using a replay ratio of 1.

15

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Asterix

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

4
6
8

10
12
14
16
18

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - BeamRider

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

0
2
4
6
8

10

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Breakout

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2

4

6

8

10

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - DemonAttack

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (x106)

2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] DrQ() - Seaquest

Figure 17. The dormant neuron phenomenon becomes apparent as the number of training steps increases during the training of DrQ(ε)
with the default replay ratio on Atrai 100K.

B. The Dormant Neuron Phenomenon in Different Domains
In this appendix, we demonstrate the dormant neuron phenomenon on DrQ(ε) (Yarats et al., 2021) on the Atari 100K
benchmark (Kaiser et al., 2019) as well as on additional games from the Arcade Learning Environment on DQN. Additionally,
we show the phenomenon on continuous control tasks and analyze the role of dormant neurons in performance. We consider
SAC (Haarnoja et al., 2018) trained on MuJoCo environments (Todorov et al., 2012). Same as our analyses in Section 3, we
consider τ = 0 to illustrate the phenomenon.

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0
2
4
6
8

10
12

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Actor - Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Critic - Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

1
2
3
4
5
6
7
8

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Actor - HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Gradient steps (×106)

0
1
2
3
4
5

Do
rm

an
t n

eu
ro

ns
 [%

] SAC - Critic - HalfCheetah-v2

Figure 18. The number of dormant neurons increases over time during the training of SAC on MuJoCo environments.

Figure 16 shows that across games, the number of dormant neurons consistently increases with higher values for the replay
ratio on DQN. The increase in dormant neurons correlates with the performance drop observed in this regime. We then
investigate the phenomenon on a modern valued-based algorithm DrQ(ε). As we see in Figure 17, the phenomenon emerges
as the number of training steps increases.

Figure 18 shows that the phenomenon is also present in continuous control tasks. An agent exhibits an increasing number of
dormant neurons in the actor and critic networks during the training of SAC on MuJoco environments. To analyze the effect
of these neurons on performance, we prune dormant neurons every 200K steps. Figure 19 shows that the performance is
not affected by pruning these neurons; indicating their little contribution to the learning process. Next, we investigate the
effect of ReDo and the studied baselines (Reset (Nikishin et al., 2022) and weight decay (WD)) in this domain. Figure 20
shows that ReDo maintains the performance of the agents while other methods cause a performance drop in most cases. We
hypothesize that ReDo does not provide gains here as the state space is considerably low and the typically used network is
sufficiently over-parameterized.

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000
6000

Av
er

ag
e

re
tu

rn

Ant-v2

Standard
Pruning

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

Standard
Pruning

Figure 19. Pruning dormant neurons during the training of SAC on MuJoCo environments does not affect the performance.

16

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn
Ant-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
2000
4000
6000
8000

10000
12000

Av
er

ag
e

re
tu

rn

HalfCheetah-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
500

1000
1500
2000
2500
3000
3500

Av
er

ag
e

re
tu

rn

Hopper-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

0.0 0.2 0.4 0.6 0.8 1.0
Enviroment steps (x106)

0
1000
2000
3000
4000
5000

Av
er

ag
e

re
tu

rn

Walker2d-v2

SAC
SAC + ReDo
SAC + Reset
SAC + WD

Figure 20. Comparison of the performance of SAC agents with ReDo and two different regularization methods.

Table 6. Performance of SAC on Ant-v2 using using half and a quarter of the width of the actor and critic networks.

Width SAC SAC+ReDo

0.25 2016.18 ± 102 2114.52 ± 212
0.5 3964.04 ± 953 4471.61 ± 648

To investigate this, we decrease the size of the actor and critic networks by halving or quartering the width of their layers.
We performed these experiments on the complex environment Ant-v2 using 5 seeds. Table 6 shows the final average return
in each case. We observe that when the network size is smaller, there are some gains from recycling the dormant capacity.
Further analyses of the relation between task complexity and network capacity would provide a more comprehensive
understanding.

C. Recycling Dormant Neurons
Here we study different strategies for recycling dormant neurons and analyze the design choices of ReDo. We performed
these analyses on DQN agents trained with RR = 1 and τ = 0.1 on Atari games. Furthermore, we provide some additional
insights into the effect of recycling the dormant capacity on improving the sample efficiency and the expressivity of the
network.

C.1. Effect of Activation Function

In this section, we attempt to understand the effect of the activation function (ReLU) used in our experiments. The ReLU
activation function consists of a linear part (positive domain) with unit gradients and a constant zero part (negative domain)
with zero gradients. Once the distribution of pre-activations falls completely into the negative part, it would stay there since
the weights of the neuron would get zero gradients. This could be the explanation for the increased number of dormant
neurons in our neural networks. If this is the case, one might expect activations with non-zero gradients on the negative side,
such as leaky ReLU, to have significantly fewer dormant neurons.

0.0 0.5 1.0 1.5 2.0 2.5
Gradient steps (×106)

0
10
20
30
40
50

Do
rm

an
t n

eu
ro

ns
 [%

] DQN - DemonAttack

algorithm
Baseline
ReDo
act_type
ReLU
Leaky-ReLU

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DQN - DemonAttack
algorithm
Baseline
ReDo
act_type
ReLU
Leaky-ReLU

Figure 21. Training performance and dormant neuron characteristics of networks using leaky ReLU with a negative slope of 0.01 (default
value) compared to original networks with ReLU.

In Figure 21, we compare networks with leaky ReLU to original networks with ReLU activation. As we can see, using leaky

17

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

Asterix

Zero
Random

0 2 4 6 8
Number of Frames (×106)

1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

re
tu

rn

BeamRider

Zero
Random

0 2 4 6 8
Number of Frames (×106)

20
30
40
50
60

Av
er

ag
e

re
tu

rn

Breakout

Zero
Random

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack
Zero
Random

0 2 4 6 8
Number of Frames (×106)

500

1000

1500

2000

2500

Av
er

ag
e

re
tu

rn

Seaquest
Zero
Random

Figure 22. Comparison of performance with different strategies of reinitializing the outgoing connections of dormant neurons.

0 2 4 6 8
Number of Frames (×106)

500
1000
1500
2000
2500
3000

Av
er

ag
e

re
tu

rn

Asterix
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

1000
2000
3000
4000
5000
6000
7000

Av
er

ag
e

re
tu

rn

BeamRider
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

20
30
40
50
60
70

Av
er

ag
e

re
tu

rn

Breakout
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

1000

2000

3000

4000

5000

Av
er

ag
e

re
tu

rn

DemonAttack
Initial distribution
Norm of active neurons

0 2 4 6 8
Number of Frames (×106)

500
1000
1500
2000
2500

Av
er

ag
e

re
tu

rn

Seaquest
Initial distribution
Norm of active neurons

Figure 23. Comparison of performance with different strategies of reinitializing the incoming connections of dormant neurons.

ReLU slightly decreases the number of dormant neurons but does not mitigate the issue. ReDo overcomes the performance
drop that occurs during training in the two cases.

C.2. Recycling Strategies

Outgoing connections. We investigate the effect of using random weights to reinitialize the outgoing connections of
dormant neurons. We compare this strategy against the reinitialization strategy of ReDo (zero weights). Figure 22 shows
the performance of DQN on five Atari games. The random initialization of the outgoing connections leads to a lower
performance than the zero initialization. This is because the newly added random weights change the output of the network.

Incoming connections. Another possible strategy to reinitialize the incoming connections of dormant neurons is to scale
their weights with the average norm of non-dormant neurons in the same layer. We observe that this strategy has a similar
performance to the random weight initialization strategy, as shown in Figure 23.

C.3. Effect of Batch Size

The score of a neuron is calculated based on a given batch D of data (Section 3). Here we study the effect of the batch size
in determining the percentage of dormant neurons. We study four different values: {32, 64, 256, 1024}. Figure 24 shows
that the identified percentage of dormant neurons is approximately the same using different batch sizes.

C.4. Comparison with Continual Backprop

Similar to the experiments in Figure 15, we use a fixed recycling schedule to compare the activation-based metric used by
ReDo and the utility metric proposed by Continual Backprop (Dohare et al., 2021). Results shown in Figure 25 show that
both metrics achieve similar results. Note that the original Continual Backprop algorithm calculates neuron scores at every

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

20

30

40

50

Do
rm

an
t n

eu
ro

ns
 [%

] Asterix

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

15
20
25
30
35
40
45
50
55

Do
rm

an
t n

eu
ro

ns
 [%

] BeamRider

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

20
25
30
35
40
45
50

Do
rm

an
t n

eu
ro

ns
 [%

] Breakout

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

20
30
40
50
60

Do
rm

an
t n

eu
ro

ns
 [%

] DemonAttack

BS = 32
BS = 64
BS = 1024
BS = 256

0.0 0.5 1.0 1.5 2.0 2.5
Number of Gradients (x106)

35

40

45

50

55

Do
rm

an
t n

eu
ro

ns
 [%

] Seaquest

BS = 32
BS = 64
BS = 1024
BS = 256

Figure 24. Effect of the batch size used to detect dormant neurons.

18

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

iteration and uses a running average to obtain a better estimate of the neuron saliency. This approach requires additional
storage and computing compared to the fixed schedule used by our algorithm. Given the high dormancy threshold preferred
by our method (i.e., more neurons are recycled), we expect better saliency estimates to have a limited impact on the results
presented here. However, a more thorough analysis is needed to make general conclusions.

0 2 4 6 8
Number of Frames (×106)

0
500

1000
1500
2000
2500
3000
3500
4000

Av
er

ag
e

re
tu

rn
DQN - DemonAttack

ReDo
Continual BP

0 2 4 6 8
Number of Frames (×106)

500
750

1000
1250
1500
1750
2000
2250

Av
er

ag
e

re
tu

rn

DQN - Asterix

Figure 25. Comparison of different strategies for selecting the recycled neurons.

C.5. Effect of Recycling the Dormant Capacity

Figure 26. Comparison of agents with varying replay ratios, while keeping the number of gradient updates constant.

Improving Sample Efficiency. To examine the impact of recycling dormant neurons on enhancing the agents’ sample
efficiency, an alternative approach is to compare agents with varying replay ratios, while keeping the number of gradient
updates constant during training. Consequently, agents with a higher replay ratio will perform fewer interactions with the
environment.

We performed this analysis on DQN and the 17 Atari games. Agents with a replay ratio of 0.25 run for 10M frames, a replay
ratio of 0.5 run for 5M frames, and a replay ratio of 1 run for 2.5M frames. The number of gradient steps are fixed across all
agents. Figure 26 shows the aggregated results across all games. Interestingly the performance of ReDo with RR = 1 is
very close to RR = 0.25, while significantly reducing the number of environment steps by four. On the other hand, DQN
with RR = 1 suffers from a performance drop.

Improving Networks’ expressivity. Our results in the main paper show that recycling dormant neurons improves the
learning ability of agents measured by their performance. Here, we did some preliminary experiments to measure the effect
of neuron recycling on the learned representations. Following (Kumar et al., 2021a), we calculate the effective rank, a
measure of expressivity, of the feature learned in the penultimate layer of networks trained with and without ReDo. We
performed this analysis on agents trained for 10M frames on DemonAttack using DQN. The results are averaged over 5
seeds. The results in Table 7 suggest recycling dormant neurons improves the expressivity, shown by the increased rank
of the learned representations. Further investigation of expressivity metrics and analyses on other domains would be an
exciting future direction.

19

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Table 7. Effective rank (Kumar et al., 2021a) of the learned representations of agents trained on DemonAttack.

Agent Effective rank

DQN 449.2 ± 5.77
DQN + ReDo 470.8 ± 1.16

D. Performance Per Game
Here we share the training curves of DQN using the CNN architecture for each game in the high replay ratio regime
(RR = 1) (Figure 27) and the default setting (RR = 0.25) (Figure 28). Similarly, Figure 29 and 30 show the training curves
of DrQ(ε) for each game in the high replay ratio regime (RR = 4) and the default setting (RR = 1), respectively.

20

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

500

1000

1500

2000

2500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Seaquest

0

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DemonAttack

200

300

400

500

600

700

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

SpaceInvaders

1000

2000

3000

4000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Qbert

20

19

18

17

16

15

14

13

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DoubleDunk

1000

1500

2000

2500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

MsPacman

0

200

400

600

800

1000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Enduro

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

BeamRider

500

1000

1500

2000

2500

3000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

WizardOfWor

100

200

300

400

500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Jamesbond

0

10000

20000

30000

40000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

RoadRunner

500

1000

1500

2000

2500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Asterix

15

10

5

0

5

10

15

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Pong

0 2 4 6 8
0

2000

4000

6000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Zaxxon

0 2 4 6 8
2000

4000

6000

8000

10000

12000

14000

16000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

YarsRevenge

0 2 4 6 810

20

30

40

50

60

70
Ev

al
/A

ve
ra

ge
Re

tu
rn

s
Breakout

0 2 4 6 8

14

12

10

8

6

4

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

IceHockey

Number of Frames (x106)

algorithm

DQN
DQN + ReDo

Figure 27. Training curves for DQN with the nature CNN architecture (RR = 1).

21

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Seaquest

0

2000

4000

6000

8000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DemonAttack

250

500

750

1000

1250

1500

1750

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

SpaceInvaders

0

2000

4000

6000

8000

10000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Qbert

22

20

18

16

14

12

10

8

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

DoubleDunk

500

1000

1500

2000

2500

3000

3500

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

MsPacman

0

200

400

600

800

1000

1200

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Enduro

0

1000

2000

3000

4000

5000

6000

7000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

BeamRider

0

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

WizardOfWor

0

100

200

300

400

500

600

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Jamesbond

0

10000

20000

30000

40000

50000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

RoadRunner

1000

2000

3000

4000

5000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Asterix

20

10

0

10

20

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Pong

0 10 20 30 40
0

2000

4000

6000

8000

10000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

Zaxxon

0 10 20 30 40

5000

10000

15000

20000

25000

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

YarsRevenge

0 10 20 30 40
0

25

50

75

100

125

150

175
Ev

al
/A

ve
ra

ge
Re

tu
rn

s
Breakout

0 10 20 30 40

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

Ev
al

/A
ve

ra
ge

Re
tu

rn
s

IceHockey

Number of Frames (x106)

algorithm

DQN
DQN + ReDo

Figure 28. Training curves for DQN with the nature CNN architecture (RR = 0.25).

22

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Figure 29. Training curves for DrQ(ε) with the nature CNN architecture (RR = 4).

23

The Dormant Neuron Phenomenon in Deep Reinforcement Learning

Figure 30. Training curves for DrQ(ε) with the nature CNN architecture (RR = 1).

24

