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ABSTRACT

We propose a novel Conditional Guided Diffusion Probabilistic Model (CG-DPM)
for image super-resolution. CG-DPM adopts diffusion models, which have strong
abilities to generate diverse and photo-realistic images, through a stochastic it-
erative denoising process. The abilities can tackle the existing issue of over-
smoothing artifacts in super-resolution tasks. The earlier work SR3 firstly uses
diffusion models to conditional image generation for super-resolution. However, it
simply upsamples the low-resolution images to the target resolution using bicubic
interpolation as the conditional input, which cannot maximize the information of
conditional images. In contrast, our CG-DPM involves conditional images in each
different-scale level in the encoder so that the model can use the conditional im-
ages more effectively. We also introduce a separate score-based likelihood model
to guide the original diffusion model to obtain a score-based posterior model.
Moreover, since there is no analytic probabilistic formula to represent the likeli-
hood probability for image super-resolution, we propose a novel scored-based loss
function to train a separate guided network so that it can approximate the score-
based likelihood probability. We conduct experiments on image super-resolution
tasks for human faces and natural images at different scaling factors. CG-DPM
achieves strong performance compared with existing methods. Meanwhile, the
proposed method can also be used on other tasks, and more experiments show
that our method achieves competitive results on the medical image segmentation.

1 INTRODUCTION

The single-image super-resolution aims to restore the high-resolution images from the correspond-
ing low-resolution images, which contain unknown degradations. Many existing super-resolution
methods Dai et al. (2019); Dong et al. (2014; 2015) learn a mapping from low-resolution images to
high-resolution images with a pixel-wise constraint. These methods often result in perceptually un-
convincing images with severe over-smoothing artifacts, though they can achieve remarkable results
in terms of PSNR. To yield more photo-realistic results, GANs Ledig et al. (2017); Sajjadi et al.
(2017); Wang et al. (2018) are employed. However, unnatural artifacts can still be observed in the
generated images. Recently, diffusion models have been proposed and attracted numerous attention
since diffusion models have the ability to generate diverse and photo-realistic images, which can
tackle the existing issues of unnatural artifacts in super-resolution tasks.

Diffusion-based (i.e, DDPM Ho et al. (2020)) and scored-based (i.e, NCSN Song et al. (2020))
generative models, which we call both models “diffusion models” for brevity, have been proposed
with similar ideas underneath but with two kinds of different perspectives. Firstly, the diffusion
process utilizes T steps of a small amount of isotropic Gaussian noise with gradually incremental
standard deviations to corrupt the data x0 ∼ q(x0). Then, when T is sufficiently large T →∞, xT

is equivalent to an isotropic Gaussian distribution. Meanwhile, diffusion models are trained to learn
how to denoise each different step. Finally, diffusion models can construct desired data samples
via a Markov chain that progressively denoises from Gaussian noise into a high-quality image.
The Markov process of diffusion models is either based on Langevin dynamics algorithm Song
et al. (2020) or learned via reversing the above diffusion process for score-based or diffusion-based
generative models Sohl-Dickstein et al. (2015), respectively.
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Figure 1: The visualized predicted results of face (16× 16→ 128× 128 and 64× 64→ 512× 512)
and natural (64×64→ 256×256 and 128×128→ 512×512) image super-resolution and medical
image segmentation via our proposed CG-DPM.

Both diffusion models of DDPM Ho et al. (2020) and NCSN Song et al. (2020) have achieved
excellent performance on unconditional image generative tasks. Afterward, many works Saharia
et al. (2021); Tashiro et al. (2021); Song et al. (2020); Dhariwal & Nichol (2021) that adapt DDPMs
to conditional image generation have made progress. The existing conditional diffusion models are
mainly divided into two categories.

Training a single diffusion model involves conditional labels. For example, SR3 Saharia et al. (2022)
simply upsamples the low-resolution image to the target resolution using bicubic interpolation and
then concatenates with a noisy image xt at t step as input, which achieves strong performance. But
the simple upsampling and concatenation cannot maximize the information of conditional images.
Therefore, in this paper, we design the network that involves conditional images in each different-
scale level in the encoder. In this way, our network can learn different scale information of condi-
tional images. Meanwhile, our network can better learn how to denoise from Gaussian noise to real
target data points by involving conditional images several times. But our redesigned model does
arrive at the maximum capacity in this category, since the performance would always be affected via
the stochastic iterative denoising process, which is the property of diffusion models, for pixel-level
tasks (i.e, image super-resolution). One feasible solution is to introduce a separate score-based like-
lihood model, which is the second category introduced in the following part, to guide the stochastic
iterative denoising process to real target data points closer to pursuing higher performance.

Training a separate score-based (the gradient of the log probability density function) likelihood
model guides the original diffusion model to obtain a score-based posterior model. For example,
Guided-Diffusion Dhariwal & Nichol (2021) achieves state-of-the-art performance on ImageNet via
involving a guided classifier to achieve conditional diffusion models on class labels. Inspired by the
guided network, we introduce a novel separate score-based likelihood model to guide an original
diffusion model to obtain a score-based posterior model. Because there is no exact probabilis-
tic formula to represent the likelihood probability for image super-resolution, we propose a novel
scored-based loss function to train a separate guided network so that it can approximate the score-
based likelihood probability. In this way, we can guide the stochastic iterative denoising process to
real target data points closer.

Especially, for the redesigned method in the first category, we utilize high-resolution images as
training data to implement diffusion process that progressively adds a small amount of Gaussian
noise and set low-resolution images as conditional images to train conditional diffusion models.
We conduct several experiments and find it is a benefit to involve low-resolution images in each
different scale level in the encoder of the U-Net. For the second category, in order to pursue better
performance, we train a separate model to approximate the likelihood score function via a score-
based loss function (which we will call the separate model “guided network” for brevity). The input
of the guided network consists of xt that samples starting from white noise and denoises via a pre-
trained diffusion model, and low-resolution images y. Since T can not be set to ∞ but usually
thousands, there is a gap between xT and an isotropic Gaussian distribution that we start sampling
from. Meanwhile, our goal equips our model with the ability to sample from any random Gaussian
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Figure 2: The overview of our proposed single conditional diffusion model. (a) performs the whole
process of diffusion models. We utilize high-resolution images to implement the diffusion process
that gradually adds a small amount of Gaussian noise and utilize low-resolution images as condi-
tional images. (b) performs our proposed U-Net architecture, which involves different scales of
conditional images into the encoder via a or several stacked up-sampling or down-sampling layers.
The U-Net is trained to learn the reverse process.

noise to a certain data point in terms of a given low-resolution image. Given a pre-trained diffusion
model, it can sample data points nearly a real target data point, which has a gap as well. Therefore,
we build a guided network to learn the two gaps via the input images of xt and y to learn how to
represent the likelihood function.

To summarize, we make the following contributions: (i) We propose a novel conditional guided
diffusion probabilistic model, named CG-DPM, for image super-resolution, and to achieve strong
performance. (ii) In order for diffusion models to learn the information of conditional images ade-
quately, we redesign the U-Net architecture that involves conditional images into each different scale
level in the encoder. (iii) We train a separate guided network via a proposal and novel scored-based
loss function to predict the scored-based likelihood function, which can guide our model to achieve
higher performance. (iv) We conduct extensive experiments on image super-resolution tasks for
human faces and natural images. Both qualitative and quantitative results demonstrate that our pro-
posed CG-DPM achieves strong results compared with existing methods. Meanwhile, the proposed
method can be used to solve other tasks, such as medical image segmentation.

2 RELATED WORK

Diffusion Models. Given a real data distribution x0 ∼ q(x0), we define the diffusion process that
gradually adds a small amount of isotropic Gaussian noise with a variance schedule β1, ..., βT ∈
(0, 1) to produce a sequence of latent x1, ...,xT , which is fixed to a Markov chain. When T is
sufficiently large T → ∞ and a well-behaved schedule of βt, xT is equivalent to an isotropic
Gaussian distribution.

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1). (2)

A notable Ho et al. (2020) property of the diffusion process admits us to sample xt at an arbitrary
timestep t via directly conditioned on the input x0. Let αt = 1− βt and ᾱt =

∏T
i=1 αi:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (3)

Since q(xt−1|xt) depends on the data distribution q(x0), which is intractable. Therefore, we need
to parameterize a neural network to approximate it:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (4)

We utilize the variational lower bound to optimize the negative log-likelihood.

LVLB = Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
≥ −Eq(x0) log pθ(x0). (5)
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Figure 3: The overview of our proposed guided network. We utilize a pre-trained conditional dif-
fusion model to sample T − t steps to obtain xt starting from Gaussian noise. We also utilize the
pre-trained model to calculate the score function of ∇xt logpθ(xt) by given xt and t. Given a new
training high-resolution image s0, we can calculate q(xt|s0) by the diffusion process. We build
a new network to approximate the score function of likelihood with xt and conditional images y
as the input. The loss function is expressed by the output of the trainable network, q(xt|s0) and
∇xt

logpθ(xt).

The objective function of the variational lower bound can be further rewritten to be a combination
of several KL-divergence and entropy terms (see more details in Sohl-Dickstein et al. (2015)).

LVLB = Eq[DKL(q(xT |x0) ∥ pθ(xT ))︸ ︷︷ ︸
LT

− log pθ(x0|x1)︸ ︷︷ ︸
L0

+

T∑
t=2

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

]

L0 uses a separate discrete decoder derived fromN (x0;µθ(x1, 1),Σθ(x1, 1)). LT does not depend
on θ, it is close to zero if q(xT |x0) ≈ N (0, I). The remain term Lt−1 is a KL-divergence to directly
compare pθ(xt−1|xt) to diffusion process posterior that is tractable when x0 is conditioned,

β̃t :=
1− ᾱt−1

1− ᾱt
· βt, µ̃t(xtx0) :=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0, (6)

q(xt−1|xt,x0) := N (xt−1; µ̃(xt,x0), β̃tI). (7)

Conditional Diffusion Models. Inspired by the successes of GANs in conditional image synthe-
sis Mirza & Osindero (2014); Brock et al. (2018); Isola et al. (2017), it is reasonable to explore
diffusion models with conditional labels. There are two main approaches to conditional diffusion
models. Given a dataset denoted D = {xi,yi}Ni=1, xi represents target images and yi represents
conditional labels. One approach of conditional diffusion models is to involve with conditional la-
bels when training the network so that it can learn conditional transition distribution pθ(xt−1|xt,y).
Based on the idea, Saharia et al. (2021), and Tashiro et al. (2021) involve cleaned conditional im-
ages y into diffusion models and score-based models, respectively. Meanwhile, Song et al. (2020)
replaces the cleaned conditional images y with diffused conditional images yt that implement the
same operation of diffusion process of xt. The other approach is to exploit a separate model to ap-
proximate the likelihood p(y|xt) and combine a pre-trained diffusion model to obtain the posterior.
Sohl-Dickstein et al. (2015); Song et al. (2020) achieve it using the score function of the likelihood
∇xt logpϕ(y|xt) to guide the reverse process to an arbitrary label y. Based on the approach, Dhari-
wal & Nichol (2021) trains a classifier to guide the reverse process to an arbitrary class label on
ImageNet. Diffusion models are utilized to solve inverse problems in image editing Song & Ermon
(2019); Song et al. (2020); Kawar et al. (2022) and medical imaging Jalal et al. (2021).

Image Super-Resolution. Image super-resolution task is one domain of image-to-image transla-
tion tasks Isola et al. (2017); Zhang et al. (2016); Goodfellow et al. (2020). Many existing super-
resolution methods Dai et al. (2019); Dong et al. (2014; 2015) learn a mapping from low-resolution
images to high-resolution images with a pixel-wise constraint. These methods often result in per-
ceptually unconvincing images with severe over-smoothing artifacts, though they can achieve re-
markable results in terms of PSNR. To yield more photo-realistic results, GANs Ledig et al. (2017);
Sajjadi et al. (2017); Wang et al. (2018) are employed. However, unnatural artifacts can still be ob-
served in the generated images. Benefiting from the strong generative abilities of diffusion models
that can generate high-quality and diverse images, SR3 Saharia et al. (2022) uses diffusion mod-
els to iteratively refine the noise, starting with pure Gaussian noise with low-resolution images as
the conditional images. The model can generate high photo-realistic outputs due to the ability of
diffusion models.
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Figure 4: (a) illustrates the mean of xT for the different T step of the diffusion process. (b) illustrates
the KL-divergence of two cases in different t steps. (c) illustrates the straightforward idea of the
guided network. s0 is the target image. xT to x0 is generated via the reverse process.

3 THE PROPOSED METHOD

Our proposed conditional guided diffusion probabilistic model, named CG-DPM, consists of two
parts. One part is that we involve conditional images and redesign the architecture of the U-Net for
the original diffusion model (Section 3.1). The other part is that we train a separate guided network
to predict the score function of the likelihood ∇xt logpϕ(y|xt) with a proposal score-based loss
function (Section 3.2).

3.1 SINGLE CONDITIONAL DIFFUSION MODEL WITH INVOLVING CONDITIONAL IMAGES

Figure 2(a) illustrates the whole process for our single conditional diffusion model. We utilize high-
resolution images as training data to implement diffusion process that progressively adds T steps
of a small amount of isotropic Gaussian noise with gradually incremental standard deviations. We
redesign the U-Net in order to involve conditional images so that it can learn the reversing diffusion
process via a parametric pθ(xt−1|xt,y). Figure 2(b) illustrates our redesigned U-Net architecture.

We design several architectures and conduct experiments. We find that involving conditional images
in each different scale level in the encoder achieves the best results. In our redesigned U-Net, we first
use bicubic interpolation to up-sampling low-resolution images to the same size of high-resolution
and then concatenate xt as the input to the first level of the U-Net that consists of a symmetric
encoder-decoder with skip connections that combine shallow, low-level, and fine-grained feature
maps to deep, semantic, and coarse-grained feature maps. And then, we utilize one or several stacked
Up-Sampling or Down-Sampling layers to do up-sampling or down-sampling for conditional images
into different scale feature maps. These different scale feature maps will be concatenated with the
very beginning of each level in the encoder. In this way, the U-Net can learn different scale feature
maps of the conditional images, which can maximize the exploitation of the conditional images. In
the reversing diffusion process, our model can be easy to arrive at the target point by involving the
conditional images with many times and many scales.

Although we try lots of redesigned architectures, the performance does arrive at its maximum ca-
pacity. Since the attribute of the stochastic process for diffusion models is unfriendly for pixel-level
tasks, the extended pixels cannot generate accurately. Although training a single diffusion model
involving conditional images can bring a baseline performance, it can not bring a breakthrough in
pixel-level tasks in this way. Therefore, we introduce a separate score-based guided network to
guide the baseline model to arrive at higher performance in the next Section 3.2.

3.2 SCORED-BASED GUIDED NETWORK

Figure 3 illustrates the score-based guided network. Given a high-resolution image s0 and a low-
resolution image y as a pair of training data. Firstly, we obtain a pre-trained network from the above
Section 3.1, start from white noise, and denoise T − t steps to obtain xt. Secondly, we utilize xt and
t to calculate the score function of xt. Thirdly, we calculate q(xt|s0). Fourthly, we utilize xt and the
conditional image y as the input for the guided network Fϕ(xt,y), which has the same architecture
in Figure 2(b). And the output of the guided network has the same size of xt. Finally, we utilize
the output of the guided network, score function of xt and q(xt|s0) to calculate the loss function to
train the guided network.
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Figure 5: (a) Qualitative comparisons (16 × 16 → 128 × 128), trained on FFHQ and evaluated on
CelebA-HQ. (b) Qualitative comparisons (64×64→ 256×256), trained on ImageNet and evaluated
on ImageNet dev set. The indicators are PSNR (dB)/SSIM

Selected T. Ideally, T should be sufficiently large T → ∞ so that xT is equivalent to an isotropic
Gaussian distribution. In empirical, we usually set T as 1,000 for the diffusion process. For the
reversing diffusion process, we start from a Gaussian noise xT ∼ N (0, I). Therefore, there is a
question of whether the gap between xT via 1,000 steps of the diffusion process and Gaussian noise
is enough small so that we can utilize a Gaussian noise as the start point xT .

Therefore, we conduct experiments that select different T (i.e., 100, 500, 1,000, 2,000, 5,000,
10,000, 20,000, 50,000) and utilize q(xT |x0) sampling for each T . For each xT , we calculate
the mean and standard variance. Meanwhile, we also sample a Gaussian noise and calculate the
mean is equal to 0.0001, and the standard variance is equal to 1. We find the standard variance of
all cases is close to 1. But the mean of all T steps is larger than 25 times. Figure 4(a) illustrates the
results. Although the mean of all T steps is close to 0.0030 that seems very small, the ϵθ(xt, t) and
the score function ∇xt logpϕ(xt) are close to 0.0001. Therefore, there is a huge gap between xT

from q sampling and a Gaussian noise xT ∼ N (0, I). Figure 4(c) illustrates the gap e(N (0, I)|sT ).
Disparity between Two Cases in Different Steps. existing methods usually utilize traditional prob-
ability density functions to represent the likelihood function p(y|xt), such as the softmax function,
and then train the network via traditional loss function, such as the cross-entropy loss function.

In image super-resolution tasks, it is hard to find an existing function to represent the likelihood
function. Even if we can find a function to represent the likelihood function, it needs to meet the
requirements that have low curvature compared to Σ−1 and everywhere is non-zero. Our purpose is
to obtain a target data point by giving a conditional image. Therefore, there is still a problem that
the likelihood function should have the ability to distinguish the difference among any xt that t is
around T . However, these xt are extremely hard to distinguish since these are similar to Gaussian
noise. Figure 4(b) illustrates the KL divergence of two cases in different t steps. We can see that KL
divergence is extremely small for more than 500 steps, which means it is very hard to distinguish
two cases after 500 steps of q sampling that progressively adds a small amount of Gaussian noise if
you just directly distinguish based on two xt. Figure 4(c) illustrates the gap e(xt|st).
Score-based Loss Function. For image super-resolution tasks, it is extremely hard to represent the
possibility density function of the likelihood p(y|xt). We tried using many functions that calculate
similarity and distance to represent the likelihood and using a neural network to approximate. And
all experiments got worse results since the non-scored-based functions destroy the structure of the
original diffusion models. The approximated function must meet the requirements that have low
curvature compared to Σ−1 and everywhere is non-zero. Since the Σ−1 of the reverse process has
very low curvature, it must destroy the reverse process if the likelihood function has a high curvature.

Inspired by Chao et al. (2022), we approximate the likelihood function via a scored-based loss func-
tion. By the observation in Figure 4(c), the “green arrow” represents the score-based likelihood func-
tion that can be expressed via e(xt|st) + e(N (0, I)|st) (“red dash line”) and∇xt logpϕ(xt) (“black
arrow”), which all have a relationship with xt and conditional images y. Therefore, we utilize xt

and y as the input images to extract useful information. We define a function to approximate the
likelihood as below:

Fϕ(xt,y) ≈ ∇xt
log p(y|xt). (8)
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Figure 6: (a) Qualitative comparisons (128×128→512×512), trained on ImageNet and evaluated
on ImageNet dev set. (b) Qualitative comparisons on the ACDC dataset for medical segmentation.

We define the explicit score-based loss function as below and train a neural network to minimize the
loss function,

L(ϕ) = Ep(xt,y)

[
∥ Fϕ(xt,y)−∇xt

log p(y|xt) ∥2
]

(9)

However, the loss term involves the true score-based likelihood function, which is intractable. We
follow Bayes’ theorem and the attributes of score functions, and formulate the below objective
function as below (more details in the Appendix), L(ϕ) =

Ep(x0:t,y)

[
∥ Fϕ(xt,y) +∇xt

log pθ(xt)−∇xt
log p(xt|s0) ∥2

]
. (10)

Since we have a pre-trained model ϵθ(xt) that predicts the noise added via the reverse process. And
then, we can derive the score function:

∇xt
logpθ(xt) = −

1√
1− ᾱt

ϵθ(xt). (11)

Based on the Equation 3, the last term of Equation 10 can be expressed as:

∇xt
log p(xt|s0) = −

xt −
√
ᾱts0

1− ᾱt
. (12)

where xt is sampled T − t steps starting from xT via the reverse process and s0 is a new target
high-resolution image sampling from p(x0). If we utilize the diffusion process to sample t steps for
the s0 and obtain st. And we modify a little bit for Equation 12,

∇xt
logp(xt|s0) = −

xt − st
1− ᾱt︸ ︷︷ ︸

a

− st −
√
ᾱts0

1− ᾱt︸ ︷︷ ︸
b

= −xt − st
1− ᾱt︸ ︷︷ ︸

a

−
√
ᾱts0 +

√
1− ᾱtz −

√
ᾱts0

1− ᾱt︸ ︷︷ ︸
b

.

where the term a can be seen as the difference between xt sampling via the pre-trained reverse
process starting from a Gaussian and st sampling via the diffusion process at t step. Since z ∼
N (0, I), the term b can be expressed as a Gaussian noise N (0, 1

1−ᾱt
I).

Sampling. Following the classifier sampling algorithms proposed in Dhariwal & Nichol (2021), we
can modify and sample each reverse denoising step by two algorithms. The first sampling algorithm
calculates µ and Σ by given µθ(xt,y),Σθ(xt,y), y and t. And then we can sample xt−1 from,

xt−1 ← sampling from N (µ+ΣFϕ(xt,y),Σ). (13)

The second sampling algorithm, based on guided DDIM sampling, calculates a new ϵ̂ by given
ϵθ(xt,y). And then, we can sample xt−1 expressed by the following equation,

ϵ̂ = ϵθ(xt,y))−
√
1− ᾱtFϕ(xt,y), (14)

xt−1 =
√
ᾱt−1

(xt −
√
1− ᾱtϵ̂√
ᾱt

)
+

√
1− ᾱt−1ϵ̂. (15)

4 EXPERIMENTS

We assess the effectiveness of our model in image super-resolution on human faces and natural
images. Meanwhile, our method is not only suitable for image super-resolution but can also be
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Metric PULSE FSRGAN Regression SR3 CG-DPM

PSNR ↑ 16.88 23.01 23.96 23.04 23.74
SSIM ↑ 0.44 0.62 0.69 0.65 0.71

Consistency ↓ 161.1 33.8 2.71 2.68 2.66

Table 1: PSNR and SSIM on 16 × 16 → 128 × 128 face super-
resolution. Consistency measures MSE (×10−5) between the low-
resolution inputs and the down-sampled super-resolution outputs.

Model FID ↓ IS ↑ PNSR ↑ SSIM ↑
Reference 1.9 240.8 - -
Regression 15.2 121.1 27.9 0.801

SR3 Saharia et al. (2022) 5.2 180.1 26.4 0.762
LDMs Rombach et al. (2022) 4.3 174.9 24.7 0.710

CG-DPM (Ours) 4.8 188.7 27.1 0.783

Table 2: Quantitative evaluation with state-
of-the-art methods for natural image super-
resolution on the ImageNet validation set.

used to solve other generation tasks, e.g., medical image segmentation. Thus, we also conduct
experiments on medical image segmentation tasks.

Our experiments consist of:

• Human face super-resolution at 16×16→ 128×128 and 64×64→ 512×512. The experiments
are trained on FFHQ Karras et al. (2019) and evaluated on CelebA-HQ Karras et al. (2017).

• Natural image super-resolution at 64×64→ 256×256 and 128×128→ 512×512 on ImageNet.
• Medical image segmentation on the publicly available dataset, i.e., Automatic Cardiac Diagnosis

Challenge (ACDC) Bernard et al. (2018).

Datasets. We follow the training strategies of the previous work SR3 Saharia et al. (2022), which
trains face super-resolution models on Flickr-Faces-HQ (FFHQ) Karras et al. (2019) and evaluates
on CelebA-HQ Karras et al. (2017). For natural images super-resolution, we train on ImageNet
1K Russakovsky et al. (2015) and use the dev split for evaluation. For training and testing, we
utilize low-resolution images as conditional images involving our model. For ImageNet, we involve
the class label for each image as the conditional information to our model. We use the largest central
crop and then resize it to the target resolution using area resampling as high-resolution images. For
medical image segmentation, we use a random split of 70 training cases, 10 validation cases, and
20 testing cases for the ACDC Bernard et al. (2018) dataset of 100 patients with the right ventricle
(RV), myocardium (MYO), and left ventricle (LV) labels.

Evaluation Metrics. Following SR3 Saharia et al. (2022), we evaluate the model performance for
face super-resolution via PSNR and SSIM. Besides PSNR and SSIM, we also employ FID and IS
for natural image super-solution. For medical image segmentation, we evaluate performance via the
average DSC.

4.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

Face Super-Resolution. Figure 5(a) shows the qualitative results of the face super-resolution (16×
16→ 128×128). We compare our CG-DPM with recent methods such as SR3 Saharia et al. (2021),
FSRGAN Chen et al. (2018), and PULSE Menon et al. (2020). The Regression baseline method
baseline model uses the same architecture as SR3 but is trained with an MSE loss. Although the
experiment adopts an 8× magnification factor, the inference images can still clearly see the detailed
structure. Compared with SR3, the images inferred via our model are more like the reference images
and more photo-realistic. Meanwhile, the PSNR and SSIM are better than SR3 in Table 1.

Natural Image Super-Resolution. In this part, the purpose is to prove the effectiveness of our
guided network. We utilize a pre-trained model supplied by Dhariwal & Nichol (2021) that utilizes
low-resolution images and class labels as conditional information, which is similar to SR3 but in-
volves class labels. We build our guided network using the same architecture. But we utilize our
proposal score-based loss function to train the guided network. Figure 5(b) and Figure 6(a) show the
qualitative results of the natural super-resolution for 64×64→ 256×256 and 128×128→ 512×512
on the ImageNet dev set. The results demonstrate our model achieves better performance than
SR3 since the generated images via our model contain more details structures and are more photo-
realistic. Meanwhile, Table 3 illusrates the quantitative results, which show our CG-DPM outper-
forms SR3 for all metrics and outperforms Latent Diffusion Models (LDMs Rombach et al. (2022))
in IS, PNSR, and SSIM metrics, while LDMs has a better FID.

Medical Image Segmentation. In Table 4, we provide the quantitative experimental results on the
ACDC dataset. Specifically, we compare our proposed CG-DPM with several leading convolution-
based methods (i.e., R50-U-Net Ronneberger et al. (2015) and nnUNet Isensee et al. (2019))
and transformer-based methods (i.e., TransUNet Chen et al. (2021), SwinUNet Cao et al. (2021),
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Model FID ↓ IS ↑ PNSR ↑ SSIM ↑
Reference 1.9 240.8 - -
Regression 15.2 121.1 27.9 0.801

SR3 Saharia et al. (2022) 5.2 180.1 26.4 0.762
LDMs Rombach et al. (2022) 4.3 174.9 24.7 0.710

CG-DPM (Ours) 4.8 188.7 27.1 0.783

Table 3: Quantitative evaluation with SOTA methods
for natural image SR on the ImageNet val set.

Method Average ↑ RV ↑ Myo ↑ LV ↑
R50-U-Net Ronneberger et al. (2015) 87.55 87.10 80.63 94.92
R50-VIT-CUP Dosovitskiy et al. (2020) 87.57 86.07 81.88 94.75
UNETR Hatamizadeh et al. (2022) 88.61 85.29 86.52 94.02
TransUNet Chen et al. (2021) 89.71 88.86 84.54 95.73
nnUNet Isensee et al. (2019) 91.20 89.30 89.09 95.20
CG-DPM (Ours) 89.34 87.63 85.26 95.13

Table 4: Quantitative evaluation with SOTA methods
on the ACDC dataset (dice score in %).

and LeViT-UNet-384s Xu et al. (2021)). The results show that our proposed CG-DPM achieves
competitive results compared to the traditional methods. Although the proposed CG-DPM does not
achieve state-of-the-art results, our model performs the possibility that utilizes diffusion models to
work on medical segmentation tasks. In Figure 6(b), we provide several qualitative results compared
with several state-of-the-art methods, which demonstrate diffusion models have the ability to work
on medical segmentation tasks.

4.2 ABLATION STUDY

We conduct extensive ablation studies on 16×16→ 128×128 face super-resolution to evaluate the
proposed method. We have 5 baseline models (i.e., B1, B2, B3, B4, and B5). The first four baseline
models only have a single conditional diffusion model. (i) B1 has an original U-Net. Conditional
images connect with a series of stacked Down-Sampling layers, and then feed into the bottleneck. B1
is used to obtain semantic feature maps of conditional images and connect them with the bottleneck.
(ii) B2 has two of the same encoders for high-resolution images and conditional images, respectively,
and then concatenates the two outputs to feed into the bottleneck. B2 is employed to obtain more
semantic feature maps than B1. (iii) B3 has the same structure as Figure 2(b). But the different
scale feature maps are fed into the different scale levels in the encoder and the decoder. B3 is
used to involve more conditional information in the whole U-Net. (iv) B4 is our redesigned U-Net
architecture without the guided network as shown in Figure 2(b). B4 is employed to involve different
scales of conditional information in the encoder of the U-Net.

The results of the ablation study are shown in Table 5. Compared to B1, B2, and B3, the performance
of B4 is the best in terms of both metrics, which demonstrates the effectiveness of our redesigned
U-Net for image super-resolution tasks. Our redesigned U-Net equips each different scale level with
independently stacked up-sampling or down-sampling blocks for the low-resolution images, which
is effective to learn different scale information. Therefore, we utilize the same architecture for the
guided network. (v) B5 is our final model with a single conditional diffusion model and a guided
network. B5 achieves the best results that demonstrate the effectiveness of our guided network, since
it can guide toward the real target data points closer.

# Method PSNR ↑ SSIM ↑
B1 Stacked down-sampling for condition 22.84 0.59
B2 Two same encoders for input & condition 23.10 0.65
B3 Conditional features for encoder & decoder 23.24 0.66
B4 CG-DPM without guided network 23.51 0.68
B5 Our full model 23.74 0.71

Table 5: Ablation studies on 16× 16→ 128× 128 face super-resolution.

5 CONCLUSION

We propose a novel conditional diffusion model with a score-based guided network, named the
CG-DPM model. Particularly, we build a single diffusion model involving conditional images and
redesign the architecture of the U-Net that involves conditional images into different scale levels in
the encoder so that it can learn more different scale information about conditional images. In order
for higher performance, we introduce a guided network trained via our proposal a score-based loss
function to guide the single conditional diffusion model to generate high-resolution images toward
the real target data points closer. Extensive experiments on face Karras et al. (2019; 2017) and
natural Russakovsky et al. (2015) images super-resolution and medical image segmentation (i.e.,
ACDC Bernard et al. (2018)) datasets, demonstrate that our proposed CG-DPM model achieves
strong performance compared with existing methods.
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