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ABSTRACT

Self-supervised learning methods have shown promising results across a wide range
of tasks in computer vision, natural language processing, and multimodal analysis.
However, self-supervised approaches come with a notable limitation, dimensional
collapse, where a model doesn’t fully utilize its capacity to encode information
optimally. Motivated by this, we propose ProSMin, a novel probabilistic self-
supervised learning approach that leverages the power of probabilistic models
to enhance representation quality and mitigate collapsing representations. Our
proposed approach involves two neural networks, the online network and the target
network, which collaborate and learn the diverse distribution of representations
from each other through probabilistic knowledge distillation. The two networks
are trained via our new loss function based on proper scoring rules. We provide a
theoretical justification for ProSMin and demonstrate its modified scoring rule. This
insight validates the method’s optimization process and contributes to its robustness
and effectiveness in improving representation quality. We evaluate our probabilistic
model on various downstream tasks, such as in-distribution generalization, out-of-
distribution detection, dataset corruption, low-shot learning, and transfer learning.
Our method achieves superior accuracy and calibration, outperforming the self-
supervised baseline in a variety of experiments on large datasets such as ImageNet-
O and ImageNet-C. ProSMin thus demonstrates its scalability and real-world
applicability. Our code is publicly available: https://github.com/amirvhd/SSL-sore-
rule.

1 INTRODUCTION

Self-supervised learning (SSL) is one of the most promising approaches for learning representations
from a limited set of labeled data and has achieved outstanding results in several domains and
applications, including natural language processing (NLP; Devlin et al. (2018); Brown et al. (2020);
Saggau et al. (2023)), computer vision (Chen et al., 2020; Bardes et al., 2021; Grill et al., 2020;
Rezaei et al., 2023a), multimodal learning (Radford et al., 2021; Li et al., 2022b; Shi et al., 2022),
and bioinformatics (Gündüz et al., 2023; Rezaei et al., 2023b). However, collapsing representations
is one of the significant drawbacks to current SSL methods, in which the representations converge to
a limited set of points in the embedding space.

The dimensional collapse in SSL occurs due to excessive distortion caused by strong data augmen-
tation, making the duplicates dissimilar to the originals collapsing certain dimensions, as well as
network overparameterization which leads to lower-dimensional solutions (Jing et al., 2022). Strong
augmentation can introduce more variance than present in the data distribution, causing collapse
when the contrastive covariance matrix is not positive semidefinite, while overparameterization
biases the network towards flatter minima, hindering information encoding in dimensions even for
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Figure 1: Illustration of our proposed probabilistic self-supervised learning via scoring rule mini-
mization namely ProSMin. Given a batch X of input samples, two different augmented samples x̃
and x̃′ are taken by an online network with θ and target network with ξ parameters respectively. Our
objective is to minimize the proposed scoring rule between Pθ, Pξ.

similar positive pairs. Understanding and addressing these mechanisms is crucial for enhancing the
effectiveness of self-supervised learning and preventing undesirable dimensional collapses.

Collapsing representations lead to reduced representation quality, impaired generalization to new
tasks or domains, and limited capacity to handle variations in the data (Jing et al., 2022). Most
recent studies addressed this problem with contrastive learning through effective augmentation (Bai
et al., 2022), negative sample strategies (Kalantidis et al., 2020), ensemble approaches (Vahidi et al.,
2023; Ruan et al., 2022), regularization techniques (Li et al., 2022a; Rezaei et al., 2023a), removing
correlations in the feature space (Bardes et al., 2022), clustering-based approaches (Assran et al.,
2022; 2021) and self-distillation (Caron et al., 2021; Grill et al., 2020).

In this paper, we formulate the collapsing self-supervised representation problem through probabilistic
machine learning, aiming to provide a comprehensive and nuanced solution that addresses the
limitations of deterministic approaches. This integration allows us to offer predictive distributions
alongside their associated point predictions (Ho et al., 2020; Nichol & Dhariwal, 2021). This pivotal
shift offers promising avenues for achieving representation reliability and superior generalization
capabilities in self-supervised learning scenarios.

Specifically, we propose ProSMin, a novel probabilistic self-supervised learning method that mini-
mizes a scoring rule during pretext task learning. We motivate ProSMin by formulating knowledge
distillation (KD) in a probabilistic manner. As shown in Figure 1, our proposed method involves
two deep neural networks, an online and a target network, each learning a different representation of
input samples. The online network maps input samples to a probability distribution inferred from the
representation of the online encoder part. We train the online network in such a manner that samples
from its output distribution predict the target network’s representation on a second augmented view
of the input. The loss realized by this prediction is expressed via a modified scoring rule, which
incentivizes the recovery of the true distribution. Our contributions are:

• We introduce a novel probabilistic definition of robust representation for self-supervised
learning. The probabilistic definition provides a deeper understanding of the quality and
trustworthiness of the learned representations in guiding subsequent tasks.

• Our probabilistic approach effectively mitigates collapsing representations by encouraging
the online and target networks to explore a diverse range of representations, thus avoiding
convergence to a limited set, which results in a more comprehensive representation space
that better encapsulates the intricacies of the data distribution.

• We discuss a rigorous theoretical foundation for our proposed algorithm. This theoretical
insight not only underscores the robustness of our approach but also provides a principled
explanation for its effectiveness in improving representation quality.

• Through extensive empirical analysis, we validate the effectiveness of our approach in
diverse scenarios. Our method achieves competitive predictive performance and calibration
on various tasks such as in-distribution (IND), out-of-distribution (OOD), and corrupted
datasets, demonstrating generalization capabilities. Moreover, we demonstrate the superi-
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ority of our method in semi-supervised and low-shot learning scenarios. Our framework
establishes a superior trade-off between predictive performance and robustness when com-
pared to deterministic baselines. This outcome is particularly notable on large-scale datasets
such as ImageNet-O and ImageNet-C, underscoring the scalability and effectiveness of our
method in real-world, high-dimensional settings.

2 BACKGROUND AND RELATED WORK

Self-supervised methods are designed to tackle unsupervised problems by training on a pretext task
that utilizes the data itself to generate labels, effectively employing supervised methods to solve
unsupervised problems (Grill et al., 2020; Chen et al., 2020; Jang et al., 2023; Caron et al., 2021; Zhou
et al., 2021; Zbontar et al., 2021; Bardes et al., 2021; Chen et al., 2021). The resulting representations
learned from the pretext task can serve as a foundation for downstream supervised tasks, such as image
classification or object detection. Alternatively, the extracted representation can be directly utilized
for downstream applications, such as detecting anomalies and OOD data (Tran et al., 2022). Recent
studies (Oquab et al., 2023; Zhou et al., 2021) provided evidence that performing self-supervised
pretext task learning on a large-scale and diverse dataset can extract features that are effective across
different image distributions and tasks without the need for fine-tuning. Following this, we introduce
a novel probabilistic self-supervised framework aiming to learn robust representation over parameters
using self-distillation and by minimizing a scoring rule.

Self-distillation is a variant of knowledge distillation (Hinton et al., 2015) in which a larger model
(teacher) is used to distill knowledge into a smaller model (student) of the same architecture (Caron
et al., 2021; Zhou et al., 2021). Given an input sample x, the student network fθ is trained on the
soft labels provided by the teacher network fξ. Self-distillation combines self-supervised learning
with knowledge distillation and was introduced by DINO (Caron et al., 2021). The two networks
share the same architecture but take different augmentations of the input sample and output different
representation vectors. The knowledge is distilled from the teacher network fξ to student fθ by
minimizing the cross-entropy between the respective representation vectors. The parameters θ of
the student network are obtained from an exponential moving average (EMA) of the parameters ξ of
the teacher network, thus reducing computational cost by confining backpropagation to the teacher
network. In this paper, we present a novel approach to knowledge distillation aimed at training a
network in a probabilistic manner using parametrization trick (Kingma et al., 2015) and a novel
scoring rule objective function.

A scoring rule is a function used to evaluate the accuracy of a probabilistic prediction (Gneiting &
Raftery, 2007; Der Kiureghian & Ditlevsen, 2009; Hanselle et al., 2023). It quantifies the divergence
between the predicted probability distribution and the true distribution of the event. The concept
of a scoring rule is fundamental to many areas of machine learning, including probabilistic classifi-
cation (Parry, 2016) and decision theory (Dawid & Musio, 2014). A proper scoring rule (Gneiting
& Katzfuss, 2014) is one that incentivizes truthful reporting of the probabilities by the forecaster,
i.e., the forecaster is incentivized to report the correct probability distribution (Pacchiardi et al.,
2021). The use of proper scoring rules has had significant implications in areas such as online
learning (V’yugin & Trunov, 2019), generative neural networks (Pacchiardi & Dutta, 2022), and
uncertainty quantification (Bengs et al., 2023; Gruber & Buettner, 2022; Sale et al., 2023). This paper
utilizes scoring rules and adapts them for the purpose of pretext task learning of a self-supervised
framework. This adaptation is inspired by the endeavor to infuse probabilistic learning principles into
the self-supervised learning domain.

3 PROBLEM FORMULATION

Avoiding collapsing representation One of the major challenges in self-supervised learning is
collapsing representations, where learned representations converge to a limited set of points in the
representation space. In other words, the model fails to capture the full diversity and richness of the
underlying data distribution. This can lead to reduced representation quality, impaired generalization
to new tasks or domains, and limited capacity to handle variations in the data. various techniques
have been explored to mitigate dimensional collapse including contrastive losses (Kalantidis et al.,
2020) that separate embedding of negative examples, non-contrastive losses (Rezaei et al., 2023a;
Bardes et al., 2022) that reduce informational redundancy among embeddings, and joint embedding
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and clustering approaches (Assran et al., 2022; 2023) aiming to increase the average embedding
entropy. In this paper, we formulate the collapsing representation problem through a probabilistic
lens, aiming to provide a comprehensive and nuanced solution that not only addresses the limitations
of deterministic approaches but also harnesses the power of uncertainty quantification and broader
representation distributions.

Scoring rules A scoring rule (Gneiting & Raftery, 2007) is a function that evaluates how well a
predicted distribution P over a random variable X aligns with the actually observed realizations x
of X. We define the loss1 of predicting distribution P while observing x as S(P,x). Assuming
that X follows some true distribution Q, the expected scoring rule measuring the loss of predicting
P can be expressed as S(P,Q) ≜ EX∼QS(P,X). A scoring rule S is proper with respect to a
set of distributions P if for all P,Q ∈ P it holds that S(Q,Q) ≤ S(P,Q), thus incentivizing the
prediction of the true distribution Q. If the former holds with equality, i.e., the expected score S(P,Q)
is uniquely minimized in Q at Q = P , then the scoring rule is called strictly proper. In practice,
the expectation with respect to Q is usually replaced by an empirical mean over a finite amount of
samples. We refer to the resulting scoring rule as Ŝ. There are many types of scoring rules, including
entire parameterized families of strictly proper scoring rules. In Appendix 10, we provide more
details about some of the rules we use in our experiments.

4 METHOD

Consider a randomly sampled mini-batch of training data X ≜ [x1, . . . ,xn] where xi ∈ RD and
transformation functions τ, τ ′ acting on the data. To enhance the training process, the transformation
functions produce two augmented views x̃ ≜ τ(x) and x̃′ ≜ τ ′(x) for each sample in X . These
augmented views are generated by sampling τ, τ ′ from the distribution of suitable data transforma-
tions, such as partially masking image patches (He et al., 2022) or applying image augmentation
techniques (Chen et al., 2020).

As depicted in Fig. 1, the first augmented view x̃ is fed to the encoder of online network fθ that
outputs a representation yθ ≜ fθ(x̃). This is followed by passing it subsequently through a projector
gθ and predictor qθ, such that tθ ≜ gθ(yθ) and zθ ≜ qθ(tθ). We collect all trainable parameters of
the online network in θ. Similarly, the encoder of target network fξ takes the second augmented view
and outputs yξ ≜ fξ(x̃

′), followed by the projector network gξ producing tξ ≜ gξ(yξ), where the
trainable parameters are denoted as ξ. It is important to note that the predictor is applied exclusively
to the online network.

In order to introduce probabilistic self-distillation training, we employ a scoring rule (Gneiting &
Raftery, 2007) as our loss function. To accomplish this, it is necessary to generate samples from the
online network. However, directly sampling µ and σ from a deterministic vector qθ(t) is inadequate,
as it prevents us from performing backpropagation effectively. One way of producing samples
from a neural network architecture, while still enabling backpropagation with respect to the latent
representation z, is to use the reparametrization trick (Kingma et al., 2015). Here, we assume that the
output of the predictor network zθ = qθ(tθ) follows an underlying normal distribution with mean µ
and standard deviation σ. We generate r ∈ N samples from the output of the linear layers following
the prediction head by sampling random noise ϵij ∼ N(0, 1) for each augmented view of the i-th data
point, such that the j-th sample, with j ∈ 1, ..., r, is given by: zi

j = µi + σi ⊙ ϵij .

Thus, we obtain samples zi
j by shifting and scaling the random noise samples ϵij by the outputs

(µ, σ) of a neural network with trainable parameters θ, and the loss incurred by these samples can
be backpropagated to update θ during training. The online network parameters are updated by
minimizing the scoring rule as follows:

θ̂ := argmin
θ

J(θ), J(θ) = S(Pθ, Pξ) := Ezξ∼Pξ
[Pθ, zξ], (1)

1The original proposal in Gneiting & Raftery (2007) defines scoring rules in terms of a gain that is to be
maximized. We adhere to the convention in deep learning of expressing the objective via a loss function that we
seek to minimize.
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where Pξ denotes the target distribution and zξ denotes the target output and Pθ represents the online
induced multivariate normal distribution. We define the approximation of our customized scoring
rule loss for Pθ and Pξ as follows:

Ŝ(Pθ, Pξ) =
1

N

N∑
i=1

2λ

r

r∑
j=1

∥zi
j − zi

ξ∥
β
2 − 1− λ

r(r − 1)

∑
j ̸=k

∥zi
j − zi

k∥
β
2

 (2)

where zi
ξ represents the target prediction for the i-the input sample. β ∈ (0, 2) and λ ∈ (0, 1) are

learn-able hyperparameters. We set λ so that Ŝ(Pθ, zξ) > 0. See Appendix 10.5.6 for detailed
information.

By the principle of knowledge distillation, the parameters of the target network are updated through
the EMA of the weights from the online network (Grill et al., 2020; Caron et al., 2021), saving the
need for backpropagation and thus reducing computation time considerably.

ξt = (1− α)θt + αξt−1, t = 1, 2, . . . , α ∈ [0, 1] (3)
The initial weights ξ0 are obtained through random initialization, while α is a hyperparameter that
determines the updating rate of the target weights and is set to change from 0.9 to 1 during training
with a cosine scheduler.

Next, we provide a comprehensive description of our objective function based on scoring rules
(Section 4.1). For a detailed understanding of scoring rules and their various variants, please refer to
Section 10.

4.1 OBJECTIVE FUNCTION

Numerous scoring rules can be decomposed into two terms. The first term is a function of zj and
the realized observation zξ. The second term is a function of two samples, zj and zk, drawn from
the predicted distribution P . Our objective function is an adjusted version of the former, where
the two components are posed as a convex combination with component weights controlled via
hyperparameter λ ∈ (0, 1). We set λ so that Ŝ(Pθ, zξ) > 0. This modification of the scoring rule
can be useful to adjust the focus of the loss function on either part of the scoring rule. Two notable
examples of scoring rules adhering to this form are the energy score and the kernel score (Gneiting &
Raftery, 2007).

With the above notation, we define the energy score as:

SE(Pθ, zξ) = 2 · EPθ

[
∥zj − zξ∥β2

]
+
(
−EPθ

[
∥zj − zk∥β2

])
=: S1

E(Pθ, zξ) + S2
E(Pθ) (4)

Analogously, we write the kernel score as:
SK(Pθ, zξ) = EPθ

[k(zj , zk)] + (−2 · EPθ
[k(zj , zξ)]) =: S2

K(Pθ) + S1
K(Pθ, zξ), (5)

with suitable kernel function k(·, ·).
For simplicity, we only write S(Pθ, zξ) = S1(Pθ, zξ) + S2(Pθ) in the following for both scores.
With λ ∈ (0, 1), we define the general form of our objective function as follows:

S∗(Pθ, zξ) := λS1(Pθ, zξ) + (1− λ)S2(Pθ) (6)

4.2 THEORETICAL JUSTIFICATION

Our approach is motivated by a strictly proper scoring rule, which ensures that the expected score is
optimized only by the true distribution. However, our modified scoring rule gives more weight to the
online network predictions during training. This deliberate focus is aimed at enhancing the model’s
learning efficacy. By optimizing the relative importance of each component using a hyperparameter
λ, we encourage the model not only to fit the data but also to actively refine its predictive capabilities.
Our proposed loss function (Eq. 6) consists of two key elements:

• Comparison with the target network (S1): This term measures the adherence of the model’s
predictions to a known benchmark, ensuring that the model remains grounded in established
knowledge.
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• Entropy for online network predictions (S2): This term emphasizes the internal consistency
and reliability of the model’s own predictions over time. This term increases the entropy of
prediction and helps generalization by helping the exploration power of the model.

In its original form, the scoring rule can exhibit a slight bias toward matching the target network
too closely. To address this, we introduce stochasticity into the training process by increasing the
weight of the second term (comparing online network predictions) in the loss function. This is not an
artifact of poor design but a strategic insertion of complexity that nudges the algorithm towards more
sophisticated regions of the solution space, thereby potentially locating a better optimum. Empirically,
we show that an "improper" scoring rule variant can paradoxically increase accuracy.

5 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETUP

Image augmentation We define a random transformation function T that applies a combination of
multi-crop, horizontal flip, color jittering, and grayscale. Similar to Caron et al. (2021), we perform
multi-crops with a random size from 0.8 to 1.0 of the original area and a random aspect ratio from
3/4 to 4/3 of the original aspect ratio. We define color-jittering of (0.8, 0.8, 0.8, 0.2), and Gaussian
blurring with 0.5 probability and ζ = (0.1, 2.0).

Deep self-supervised network architecture The online neural network is constructed from a
backbone f , which can be either ViT (Dosovitskiy et al., 2021) or ResNet (He et al., 2016), and
a projection head g followed by a prediction q. The backbone output f is used as a feature for
downstream tasks. The projection consists of a 3-layer multilayer perceptron (MLP) with a hidden
dimension of 2048, followed by 2 normalizations and a weight-normalized fully connected layer
with K dimensions, similar to the design used in the DINO projection head. We use a predictor with
two layers of MLPs with a hidden dimension of 12000, with a GELU nonlinearity in between. Note
that ViT architectures do not use batch normalization (BN) by default, so we do not use BN in the
projection or prediction when using ViT.

The target network has the same backbone and projection as the online network and the target
network learns through self-distillation. Similar to DINO Caron et al. (2021), after the online network
parameters are updated, an EMA of the online parameters (i.e., a momentum encoder) is used to
update the target parameters. The EMA prevents the target parameters from being updated too quickly.
After the parameters are updated, the target also receives a new centering parameter.

Optimization Our pretraining process involves training the models on the ImageNet training
dataset (Deng et al., 2009) using the adamw optimizer (Loshchilov & Hutter, 2017a) and a batch size
of 512, distributed across 8 GPUs using Nvidia Tesla A100 with ViT-S/16 architecture. We adopt a
linear scaling rule to determine the base value of the learning rate, which is ramped up linearly during
the first 30 epochs. Specifically, the learning rate is set to lr = 0.0005 ∗ batchsize/256. After the
warmup phase, we decay the learning rate using a cosine schedule (Loshchilov & Hutter, 2017b).
The weight decay also follows a cosine schedule, increasing from 0.04 to 0.4. The centering (smooth
parameter) is 0.9.

Datasets The datasets utilized in our experiments are as follows: The ImageNet (Deng et al., 2009)
dataset with 1.28 million training images and 50,000 validation images with the size of 256× 256
contains 1,000 classes. The ImageNet-O dataset (Srivastava et al., 2022) comprises images belonging
to classes that are not present in the ImageNet-1k dataset. It is considered a challenging benchmark
for evaluating the robustness of the models, as it requires models to generalize to a diverse range
of visual conditions and handle variations that are not typically encountered in standard training
datasets. The ImageNet-C (Hendrycks & Dietterich, 2019) is a benchmark for evaluating the
robustness of the models against common corruptions and perturbations that can occur in real-world
scenarios. It consists of more than 30,000 images derived from the ImageNet dataset, with each image
being corrupted in one of 15 different ways, including noise, blur, weather conditions, and digital
artifacts. CIFAR-10/100 (Krizhevsky, 2009) are subsets of the tiny images dataset. Both datasets
include 50,000 images for training and 10,000 validation images of size 32× 32 with 10 and 100
classes, respectively. The Oxford 102 Flower (Nilsback & Zisserman, 2008) consists of 102 flower
categories, each class including between 40 and 258 images. The images have large scale, pose,
and light variations. In addition, there are categories that have large variations within the category
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and several very similar categories. iNaturalist-2018 (Van Horn et al., 2018) (iNat) comprises a
vast collection of 675,170 training and validation images, classified into 5,089 distinct fine-grained
categories found in the natural world. It is worth noting that the iNat dataset exhibits a significant
imbalance, as the number of images varies greatly across different categories.

Tasks We evaluate the performance of ProSMin representations after self-supervised pretraining on
the ImageNet on the basis of In-Domain (IND) generalization, OOD detection, semi-supervised
learning, low-shot learning, corrupted dataset evaluation (see Section 6), as well as transfer
learning to other datasets and tasks (see Section 11).

Evaluation metrics We report the prediction performance with the following metrics: Top-1
accuracy ↑: refers to the proportion of test observations that are correctly predicted by the model’s
output as belonging to the correct class. AUROC ↑: the area under the ROC curve represents the
relationship between false-positive and false-negative rates for various classification thresholds. In
this case, the positive and negative classes refer to whether an observation is in or out of a given
distribution, respectively, and the ROC curve is plotted as the threshold for classifying an observation
as "positive" is gradually increased. Negative log-likelihood (NLL) ↓: measures the probability of
observing the given test data given the estimated model parameters, multiplied by -1. This measure
quantifies the degree to which the model’s estimated parameters fit the test observations. Expected
calibration error (ECE) ↓ (Naeini et al., 2015): calculated as the mean absolute difference between
the accuracy and confidence of the model’s predictions, where confidence is defined as the highest
posterior probability among the predicted classes. The difference is calculated across equally-spaced
confidence intervals or bins and is weighted by the relative number of samples in each bin. A lower
value of ECE indicates better calibration of the model. Mean Calibration Error (mCE) ↓ is a metric
used to evaluate the calibration of a classification model, similar to ECE. It is calculated as the mean
of the absolute differences between the predicted and true probabilities of a given class across all
classes. A lower value of mCE indicates better calibration of the model.

6 RESULTS AND DISCUSSION

In-distribution generalization IND generalization (or linear evaluation) measures how well a
model’s confidence aligns with its accuracy. To assess and compare the predictive abilities of our
proposed model on in-distribution datasets, we freeze the encoder of the online network, denoted
as fθ, after performing unsupervised pretraining. Then, we train a supervised linear classifier using
a fully connected layer followed by softmax, which is placed on top of fθ after removing the
projection and prediction network. The desired outcome is high predictive scores and low uncertainty
scores. In Table 1, a comprehensive comparison is presented between our approach and other
self-supervised methods. The results indicate that our method outperforms all others in terms of
top-1 accuracy, and calibration, as demonstrated by the lowest expected calibration error (ECE) and
negative log-likelihood (NLL) scores.

Out-of-distribution detection The ability of a model to recognize test samples from classes that
were not present during training is evaluated using OOD detection, as discussed in Geng et al. (2020).
We conduct experiments on ImageNet-O (Srivastava et al., 2022) to assess the generalization of the
model from IND to OOD datasets, as well as to predict the uncertainty of the models on OOD datasets.
Note that evaluation is performed directly after self-supervised pretraining without a fine-tuning
step. The y-axis of Figure 2 shows and compares the results for the OOD task in terms of AUROC.
Remarkably, our method shows outstanding results for the detection of OOD samples compared to
other approaches such as i-BOT, DINO, and Moco-V3. This outcome aligns with our expectations as
we directly use the probabilistic latent representation for this task.

Corrupted dataset evaluation An essential aspect of model robustness is its capability to produce
precise predictions when the test data distribution changes. We examine model robustness under the
context of covariate shift. Fig. 2 presents the improved performance metrics. Our method outperforms
the baseline and has comparable predictive performance to the baseline for mCE.

Semi-supervised and low-shot learning on ImageNet Following the semi-supervised protocol
established in Chen et al. (2020), we employ fixed 1% and 10% splits of labeled training data from
ImageNet. In Table 2, we compare our performance against several concurrent models, including the
baseline (DINO). Based on results obtained in Table 2, our approach outperforms state-of-the-art
methods in semi-supervised evaluation for both 1% and 10% scenarios. We assess our model’s
efficacy on a low-shot image classification task, where we train logistic regression on frozen weights
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Figure 2: OOD detection and corrupted dataset evaluation. Methods with higher AUROC and
lower mCE are better. Our method demonstrates outstanding performance among other approaches.
We present and compare the performance of our method with others on the task of OOD detection on
ImageNet-O and corrupted datasets on ImageNet-C, in Table 5

with 1% and 10% labels. It’s important to note that this experiment was performed on frozen
weights, without finetuning. Table 2 shows our features achieved better performance compared to
state-of-the-art methods.

Table 1: IND Generalization (or Linear Evaluation). Top-1 accuracy, κ-NN, ECE, and NLL
averaged over in-distribution on test samples of the ImageNet dataset where the encoder is ViT-S/16
over 800 epochs. The best score for each metric is shown in bold, and the second-best is underlined.

Method Top-1 Acc (%) (↑) κ-NN (↑) NLL (↓) ECE (↓)

DINO Caron et al. (2021) 76.8 74.5 0.919 0.015
MOCO-V3 Chen et al. (2021) 73.2 64.7 1.152 0.027
i-BOT Zhou et al. (2021) 77.9 75.2 0.918 0.013
ProSMin 78.4 76.2 0.900 0.006

7 ABLATION STUDY

To gain a deeper understanding of the behavior and performance of our proposed method, we
conducted several ablation studies to explore various aspects of our approach. Specifically, we
investigate the following factors: different scoring rules as an objective function, the hyperparameter
of our loss function (λ), the number of samples used for generating latent representations, the
dimension of the embedding space, the effect of the momentum hyperparameter, the impact of
batch normalization (BN), and the prediction layer (PL). We also supply an ablation analysis on
computational efficiency and the broader impact of our method in the Appendix (see Section 11).
These investigations aim to provide insights and intuition regarding our approach.

Impact of different components of scoring rule We conduct a series of experiments to explore
alternative scoring rules, including kernel scoring rules and various variations of energy scoring rules,
for our objective function. The results, as presented in Table 3, demonstrate that the kernel scoring

Table 2: Low-shot and semi-supervised evaluation: Top-1 accuracy (ACC), ECE, and NLL for semi-
supervised on ImageNet classification using 1% and 10% training examples fine-tuning. and Low-shot results
with frozen ViT features.

Method 1% 10% Architecture Parameters

Semi-supervised
DINO Caron et al. (2021) 60.3 74.3 ViT-S/16 21
i-BOT Zhou et al. (2021) 61.9 75.1 ViT-S/16 21
ProSMin (ours) 62.1 75.6 ViT-S/16 21

Low-shot learning
DINO Caron et al. (2021) 64.5 72.2 ViT-S/16 21
i-BOT Zhou et al. (2021) 65.9 73.4 ViT-S/16 21
ProSMin (ours) 66.1 73.8 ViT-S/16 21
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Figure 3: Study of hyperparameters of our proposed ProSMin (a) λ, (b) Number of samples, (c)
Momentum coefficient (α), and (d) Size of embedding obtained by 100 epochs on ImageNet.

Table 3: Important component for training. We investigate the effect of each component on the linear
evaluation performance for 100 epochs. The first line shows the best combination. PL is the prediction layer, BN
is the batch normalization layer.

Energy (L1 loss) Kernel score Energy (L2 loss) BN. PL. λ σ Accuracy

✓ ✗ ✗ ✗ ✓ ✓ ✓ 73.2
✗ ✓ ✗ ✗ ✓ ✓ ✓ 1.1
✗ ✗ ✓ ✗ ✓ ✗ ✗ 43.0
✓ ✗ ✗ ✓ ✓ ✓ ✓ 68.5
✓ ✗ ✗ ✗ ✗ ✓ ✓ 71.2
✓ ✗ ✗ ✗ ✓ ✗ ✗ 47.8

rule exhibits instability. Furthermore, we investigate a case with L1 loss (the last row of Table 3) with
prediction layer and without batch normalization,that the λ and σ are zero, to motivate the effect
of the second part of our loss function. Overall, the energy score with β = 1 (L1 loss) yields the
best performance among the tested scoring rules. We provide a theoretical explanation for L1 in
Section 10.5.3.

Study of hyperparameters Figure 3a depicts the influence of the hyperparameter λ utilized in our
proposed loss function, which controls the impact of S1(Pθ, zξ) and S2(Pθ, zξ) on the objective
function. An ablation analysis was conducted to investigate the effect of increasing the number of
samples from qθ, as illustrated in Figure 3b. The results demonstrate that employing four samples
yields satisfactory performance. Figure 3c showcases the outcomes obtained from the knowledge
distillation rate. In previous approaches, the exponential moving average parameter initiated from a
value relatively close to 1 (e.g., 0.996 (Grill et al., 2020), Caron et al. (2021)). However, in our case,
α starts from 0.9, implying a faster pace of knowledge distillation. Furthermore, we examine the
impact of different sizes for the embedding vector, as presented in Fig. 3d. The results obtained after
100 epochs reveal that increasing the embedding size leads to improved performance. However, it
should be noted that larger embedding sizes necessitate additional computational resources, thus our
choice of size is based on the available computational capacity. Table 3 provides insights into the
influence of batch normalization in the prevention of representation collapse (Grill et al., 2020). As
our framework operates in a probabilistic setting, the inclusion of batch normalization is unnecessary
for averting collapse. Additionally, the prediction layer (qθ) enhances performance by facilitating
improved feature extraction in online networks.

8 CONCLUSION

In this paper, we presented ProSMin as a novel probabilistic self-supervised framework to address
a collapsing representation problem. Our method includes two neural networks that collaborate
and learn from each other using an augmented format. Our framework is trained by minimizing a
proposed scoring rule objective function. We evaluated ProSMin across different tasks, including
in-distribution generalization, out-of-distribution detection, dataset corruption, transfer learning,
low-shot, and semi-supervised learning. The results demonstrate that our method achieves superior
performance in terms of accuracy and calibration, thus showing the effectiveness of our proposed
approach.
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10 SCORING RULES

The notation employed in this study aligns with the work of Gneiting & Raftery (2007) regarding
scoring rules S(P,x), where P represents the predictive distribution and x denotes the observed data.
By assuming that X follows a true distribution Q. With this assumption, we first explain different
variations of scoring rules, such as the expected scoring rule (10.1), the proper scoring rule (10.2),
the energy scoring rule (10.3), and the kernel scoring rule (10.4).

We then discuss the unbiased estimation properties of the scoring rule 10.5 for kernel score 10.5.1
and energy score 10.5.2, which we used as the objective function in our study.

In subsection 10.5.4, we establish the interchangeability of the expectation and gradient in our
theoretical derivative, enabling us to derive gradients in a conventional manner. This is crucial due to
the incorporation of samples within the scoring rule and the utilization of non-differential activation
functions. Subsequently, in subsection 10.5.5, we introduce an unbiased estimate of the gradient.

10.1 EXPECTED SCORING RULE

We define the scoring rule S(P, x) as a function of the distribution P and the observation x of X.
The expected scoring rule is defined as:

S(P,Q) := EX∼QS(P,X). (7)

10.2 PROPER SCORING RULE

A scoring rule S is called proper w.r.t a set of distributions P , if for all P,Q ∈ P the expected score
S(P,Q) is minimized in Q at Q = P . A scoring rule S is called strictly proper if there exists the
unique minimum S(P,Q) > S(Q,Q) for Q ̸= P .

10.3 ENERGY SCORE

The energy score is defined by:

S
(β)
E (P,x) = 2 · E

[
∥X̃− x∥β2

]
− E

[∥∥∥X̃− X̃′
∥∥∥β
2

]
, X̃⊥ X̃′ ∼ P, (8)

where β ∈ (0, 2).

It is a strictly proper scoring rule for the class of probability measures P such that EX̃∼P ∥X̃∥β < ∞.
An unbiased estimate can be obtained by replacing the expectations in S

(β)
E with empirical means

over draws from P .

10.4 KERNEL SCORE

Let k(·, ·) be a positive definite kernel. The kernel score for k is defined by

Sk(P,x) = E
[
k
(
X̃, X̃′

)]
− 2 · E[k(X̃,x)], X̃⊥ X̃′ ∼ P. (9)

The kernel score is a proper scoring rule for the class of probability distribution P for which holds,
that EX̃,X̃′∼P

[
k
(
X̃, X̃′

)]
< ∞. Under the condition that the kernel Maximum Mean Discrepancy

is a metric, the kernel score is strictly proper. This condition is satisfied by the Gaussian kernel, which
will be used in this work. Let γ be a scalar bandwidth. We define the Gaussian kernel as follows:

k(x̃,x) = exp

(
−∥x̃− x∥22

2γ2

)
.

We get an unbiased estimate by replacing the expectations in Sk with the empirical means overdraws
from P .
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10.5 UNBIASED ESTIMATORS OF THE EXPECTED SCORING RULE

Let N be the batch size and r be the number of samples drawn from the online-induced distribution.
Let zθ = (z1, ..., zr) be the sample drawn from the online. We recall the definition of the Expected
Scoring Rule:

S(Pθ, Pξ) := Ezξ∼Pξ
[S(Pθ, zξ)],

where zξ denotes the output of the target network while Pθ represents the online induced multivariate
normal distribution.

10.5.1 KERNEL SCORE

We can write the estimated kernel score as follows:

Ŝ(Pθ, Pξ) =
1

N

N∑
i=1

 1

r(r − 1)

∑
j,k=1,j ̸=k

k(zij , z
i
k)−

2

r

r∑
j=1

k(zij , z
i
ξ)



10.5.2 ENERGY SCORE

Consider β ∈ (0, 2) and N be the batch size. The Estimated Energy Score can be written as:

Ŝ(Pθ, Pξ) =
1

N

N∑
i=1

2

r

r∑
j=1

∥zij − ziξ∥
β
2 − 1

r(r − 1)

∑
j,k=1,j ̸=k

∥zij − zik∥
β
2



10.5.3 PARTIAL DERIVATIVES OF THE ESTIMATED ENERGY SCORE

Let β ∈ (0, 2) and let N be the batch size. Let xi be the input data for i ∈ 1, ..., N . Let r ∈ N be
the number of samples. Let µi = f

(1)
θ (xi) and let σ2

i = f
(2)
θ (xi), where f (j) denotes the separated

branches for mean and variance in the last layer of the online network for j ∈ 1, 2. We can calculate
the partial derivatives needed for stochastic gradient descent as follows. Then, the formula for the
mean is:

∂

∂µ
Ŝ(Pθ, Pξ) =

∂

∂µ

1

N

N∑
i=1

2

r

r∑
j=1

∥∥∥∥µi + ϵj

√
σ2
i − ϕi

ξ

∥∥∥∥β
2

− 1

r(r − 1)

∑
j,k=1,j ̸=k

∥∥∥∥µi + ϵj

√
σ2
i − µi + ϵk

√
σ2
i

∥∥∥∥β
2


=

1

N

N∑
i=1

2

r

r∑
j=1

β

∥∥∥∥µi + ϵj

√
σ2
i − ϕi

ξ

∥∥∥∥β−1

2

∂

∂µ

[
µi + ϵj

√
σ2
i − ϕi

ξ

]

=
1

N

N∑
i=1

2

r

r∑
j=1

β

∥∥∥∥f (1)
θ (xi) + ϵj

√
f
(2)
θ (xi)− ϕi

ξ

∥∥∥∥β−1

2

∇θf
(1)
θ (xi)
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while the formula for the variance is:

∂

∂σ2
Ŝ(Pθ, Pξ) =

∂

∂σ2

1

N

N∑
i=1

2

r

r∑
j=1

∥∥∥∥µi + ϵj

√
σ2
i − ϕi

ξ

∥∥∥∥β
2

− 1

r(r − 1)

∑
j,k=1,j ̸=k

∥∥∥∥µi + ϵj

√
σ2
i − µi + ϵk

√
σ2
i

∥∥∥∥β
2


=

 β

N

N∑
i=1

2

r

r∑
j=1

∥∥∥∥f (1)
θ (xi) + ϵj

√
f
(2)
θ (xi)− ϕi

ξ

∥∥∥∥β−1

2

− 1

r(r − 1)

∑
j,k=1,j ̸=k

∥∥∥∥√f
(2)
θ (xi) (ϵj − ϵk)

∥∥∥∥β−1

2

∇θf
(2)
θ (xi)

10.5.4 EXCHANGEABILITY OF GRADIENT AND EXPECTATION

This proof follows a similar argumentation as the proof performed in Pacchiardi & Dutta (2022). We
want to solve

θ̂ := argmin
θ

J(θ), J(θ) =
1

N

N∑
i=1

S(Pθ, z
i
ξ) (10)

Finding a minimum in our network architecture is done via stochastic gradient descent (SGD) or
an algorithm exploiting the same properties as SGD. Recall that the scoring rule is defined as an
expectation over samples from Pθ . Additionally, we can describe the scoring rule as some function h
of independent inputs zi

j ⊥ zi
k. Hence we can write:

S(Pθ, z
i
ξ) = Ezi

j ,z
i
k∼Pθ

[
h
(
zi
j , z

i
k, z

i
ξ

)]
(11)

Let µi, σ
2
i be the estimated mean and variance, respectively, of the online network fθ for the i-th

input sample xi. With Pθ being the distribution induced by the online network and gθ being its
transformation, we use the reparametrization trick and get

J(θ) =
1

N

N∑
i=1

Eϵij ,ϵ
i
k∼N (0,1)

[
h(gθ(ϵ

i
j , µi, σ

2
i ), gθ(ϵ

i
k, µi, σ

2
i ), z

i
ξ)
]

(12)

We now can write the derivative as follows:

∇θJ(θ) = ∇θ
1

N

N∑
i=1

Eϵij ,ϵ
i
k∼N (0,1)

[
h(gθ(ϵ

i
j , µi, σ

2
i ), gθ(ϵ

i
k, µi, σ

2
i ), z

i
ξ)
]

=
1

n

n∑
i=1

Eϵij ,ϵ
i
k∼N (0,1)

[
∇θh(gθ(ϵ

i
j , µi, σ

2
i ), gθ(ϵ

i
k, µi, σ

2
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]

The exchange between expectation and gradient is not trivial because of the non-differentiability
of functions (e.g., ReLU) within the network function gθ. We can still perform this step by using
Theorem 5 from Pacchiardi & Dutta (2022), considering mild conditions on the neural network
architecture of gθ.

10.5.5 UNBIASED ESTIMATE OF THE GRADIENT

Let B be a random subset (batch) of the data set. Using 10.5.4, we can obtain unbiased estimates of
∇θJ(θ) using samples ϵji ∼ N (0, 1), j = 1, ..., r for each i ∈ {1, ..., N}:

∇̂θJ(θ) =
1

|B|
∑
i∈B

1

r(r − 1)

r∑
j,k=1,j ̸=k

∇θh(gθ(ϵ
k
i , µi, σ

2
i ), gθ(ϵ

j
i , µi, σ

2
i ), z

i
ξ) (13)
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10.5.6 DETAILED IMPLEMENTATION

In addition to the detail in Section 5, it’s important to mention that the target network takes two
global augmented samples while the online network takes two global augmented samples and 16 local
augmentations for multi-cropping samples. Then, the r in Eq. 2 refers to the number of augmentation
samples multiplied by the number of samples. Furthermore, in Eq. 2 zξ denotes one of the global
augmented samples.

11 ADDITIONAL EXPERIMENTAL RESULTS AND ABLATION ANALYSIS

In this section, we provide additional details on experiments and ablation analysis.

11.1 TRANSFER LEARNING EVALUATION

We further assess the generalization capacity of the learned representation on learning a new dataset.
We followed the same transfer learning protocol explained in (Caron et al., 2021). To this end, we
evaluate the performance of our model pretrained on ImageNet to CIFAR10/100, an imbalanced
naturalist dataset (iNat-18), and the Flower dataset. According to the results shown in Table 4, we
observe that our method provides a robust solution when transferring to the new dataset.

Table 4: Transfer to new dataset evaluation: Transfer learning by finetuning pretrained models on different
datasets. We report top-1 accuracy. Self-supervised pretraining with ProSMin transfers better than supervised
pretraining.

Method CIFAR-10 CIFAR-100 iNat-18 Flowers

DINO Caron et al. (2021) 99.0 90.5 72.0 98.5
i-BOT Zhou et al. (2021) 99.1 90.7 73.7 98.6
ProSMin (ours) 99.3 91.2 74.4 99.1

11.2 OUT-OF-DISTRIBUTION DETECTION AND CORRUPTED DATASET EVALUATION

Table 5 compares the performance of our method for the task of OOD detection and corrupted dataset
on ImageNet-O and ImageNet-C respectively.

Table 5: Out of distribution detection and corrupted dataset: AUROC for out of distribution
detection for Imagent-O dataset, where higher AUROC is better, and mCE for Imagent-C dataset
where lower mCE is better.

Method AUROC (%) (↑) mCE (↑)

DINO (300 epochs) Caron et al. (2021) 74.0 68.1
MOCO-V3 (300 epochs) Chen et al. (2021) 71.0 73.5
ProSMin (300 epochs) 76.0 66.1
DINO (800 epochs) Caron et al. (2021) 76.0 66.5
ProSMin (800 epochs) Caron et al. (2021) 77.1 65.8
i-BOT (800 epochs) Caron et al. (2021) 76.6 66.2

11.3 DIMENSION OF REPRESENTATION VECTOR

The dimensionality of latent representations influences the equilibrium between information preserva-
tion, transferability, computational efficiency, and defense against overfitting. In Table 6, we evaluate
the effect of varying the output dimensionality. Based on the results shown in Table 6 the large output
dimensionality improves the performance.
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Table 6: Analysis of dimension of representation vector in term of Top-1 K-NN.

Method 1024 4096 16384 65536 262144

DINO Caron et al. (2021) 67.8 69.3 69.2 69.7 69.1
ProSMin (ours) 69.0 69.4 69.5 69.9 -

11.4 IMPACT OF PROSMIN ON MITIGATING REPRESENTATION COLLAPSE

As we explained in Chapter 3, ProSMin formulates the collapsing representation problem through a
probabilistic lens, aiming to provide a comprehensive and nuanced solution that not only addresses the
limitations of deterministic approaches but also harnesses the power of uncertainty quantification and
broader representation distributions. Specifically, we propose a novel probabilistic self-supervised
learning method that minimizes a scoring rule during pretext task learning. We motivate ProSMin
by formulating knowledge distillation (KD) in a probabilistic manner. Through extensive empirical
analysis, we validate the effectiveness of our approach compared to other self-supervised approaches
proposed to prevent collapsing representation (MoCoV3 (Chen et al., 2021), DINO (Caron et al.,
2021), and BYOL (Grill et al., 2020).) In particular, BYOL prevents collapsing representation
using batch normalization and a prediction layer. For DINO, Sharpening and centering play the
same role. We showed the superiority of our method compared to other approaches for collapsing
representation in Tables 1, 2, 5, and 4 as well as Figure 2 for the task of in-domain generalization,
low-shot learning, semi-supervised learning, transfer learning, OOD detection, and corrupted dataset
evaluation respectively. Importantly, in Table 3, we showed that our method can achieve a good
performance without BN, prediction layer, centering, and sharpening which are the components of
BYOL and DINO to prevent collapsing representation.

11.5 ANALYSIS OF COMPUTATIONAL COST

We further assess the effectiveness of our proposed approach and compare it with DINO and iBOT
in Table 7. The presented values are obtained from the data reported in the DINO and iBOT papers.
However, these papers do not include information regarding the total number of parameters.

Table 7: Evaluation of computational efficiency We conduct a thorough analysis of the computational
efficiency of our novel probabilistic approach in comparison to alternative self-supervised methods. This
evaluation encompasses memory utilization and computational expenditure.

Method (ViT-s) parameters (M) im/s time/ 300-epochs (hr) number of GPUs memory (G)

DINO Caron et al. (2021) 21 1007 72.6 16 15.4
i-BOT Zhou et al. (2021) 21 1007 73.8 16 19.5
ProSMin (ours) 21 1007 98.0 8 21.1

11.6 BROADER IMPACT AND LIMITATIONS

This study has the potential to inspire new algorithms and stimulate theoretical and experimental
exploration. The algorithm presented here can be used for many different probabilistic downstream
tasks, including (but not limited to) uncertainty quantification, density estimation, image retrieval,
probabilistic unsupervised clustering, program debugging, image generation, music analysis, and
ranking. In addition, we believe that our extended concept probabilistic framework opens many
interesting avenues for future development in self-supervised learning, and addresses many problems
of existing models, such as avoiding representation collapse.

However, there are several limitations. One limitation of our model compared to other learning
methods (such as supervised learning) is that self-supervised learning may require more computational
resources and training time. However, considering that our proposed method does not require manual
annotation, which is usually very expensive, we would argue that this trade-off is acceptable.

.
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Figure 4: Study of hyperparameters of our proposed ProSMin (a) λ, (b) Number of samples, (c)
Momentum coefficient (α), and (d) Size of embedding obtained by 100 epochs on ImageNet.
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