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ABSTRACT

Large Language Models (LLMs) are increasingly applied to structured reasoning
tasks, but remain prone to generating outputs that are both syntactically coherent
and semantically invalid, posing a serious challenge for the domain of mathemati-
cal optimization. In particular, applications to operations research (OR) problems,
where problem descriptions are often ambiguous, context-rich, and semantically
dense, are compromised by these issues and a dearth of publicly available datasets
appropriately designed for both training and benchmarking model performance.
In this paper, we address these issues by first introducing NLMOptimizer, a neu-
rosymbolic framework built on two classes: (i) the Problem class, which sys-
tematically generates optimization problems; and (ii) the SymInterchange class,
an exploratory suite of neurosymbolic methods intended to map word problems
into structured, solver-executable forms. We then address the dearth of plausi-
bly complex OR problems with the associated NLMOptimizer dataset, generated
using Problem, which pairs structured natural-language descriptions with solver-
checked mathematical programs across 1000 different linear (LP) and quadratic
programs (QP) across integer, mixed-integer, and continuous types. We evalu-
ate four instruction-tuned LLMs (LLaMa-3.3, LLaMa-4-Scout, Gemini-1.5-Pro,
GPT-0OSS-120B) under zero-shot prompting and observe substantial degradation
on our dataset, with the strongest model dropping from 66.6% end-to-end accu-
racy on the NLAOPT benchmark dataset to 14.6% on NLMOptimizer. Our results
indicate that (i) widely used benchmarks understate the difficulty of mapping nat-
ural language to formal OR optimization problem structure, (ii) current LLMs
struggle to represent even modestly more complex OR optimization problems than
LPs with three variables, and (iii) progress will require methods that directly target
representational fidelity without training models to fit fixed examples.

1 INTRODUCTION

Despite remarkable advances in large language models (LLMs) and neural reasoning systems, to-
day’s artificial intelligence (Al) still struggles to integrate the depth and rigor of symbolic math-
ematics with the flexibility of natural language understanding. This gap is especially salient in
mathematical optimization, where problem descriptions are often ambiguous, context-rich, and se-
mantically dense, yet require precise formalization for solver execution. Operations research (OR),
a branch of applied mathematics central to decision making in domains such as health care, logis-
tics, and network security, exemplifies this challenge. In particular, optimization requires a faithful
problem representation whose entities, relations, and algebraic constraints can be manipulated reli-
ably. The Natural Language for Optimization (NL4OPT) challenge (Ramamonjison et al.| [2022a)),
which seeks to translate text descriptions of OR problems into mathematical formulations, is thus
both a high-stakes application and a difficult representation learning task. Recent systems such as
OptGen (Ramamonjison et al, 2022), OptiMUS (AhmadiTeshnizi et al., [2024), and ComplexOR
(Xiao et al., [2024) have demonstrated progress using intermediate representations, chain-of-thought
prompting, and modular task decomposition. However, they remain fundamentally limited in their
ability to ensure semantic alignment, manipulate symbolic structures, and scale to solver-executable
outputs. Further, the dominant NLAOPT benchmark (Ramamonjison et al., 2022a) is restricted to
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Figure 1: Design pattern of Problem and SymInterchange classes.

a small set of simple examples, failing to capture the diversity and structural richness of real-world
OR problems (Xiao et al., [2024)).

Most recently, Mostajabdaveh et al.| (2025) introduced ORQA, a hand-crafted benchmark that asks
models to identify objectives, constraints, entities, and interrelations from realistic textual cases.
Despite strong instruction-tuned models, accuracies plateau well below expert performance and de-
grade when reasoning is elicited by chain-of-thought prompts We argue that such failures are
not idiosyncrasies of prompting, but symptoms of a deeper representational deficit and highlight
the need for neurosymbolic approaches that treat representation as first-class: not only recognizing
patterns in text, but also learning to map across natural language, symbolic abstractions, and solver-
ready code in a way that is precise, generalizable, and transparent. We argue that many practical op-
timization problems admit a compact description as semi-algebraic sets and exponential-polynomial
expressions over E-rings, and that the proper challenge is reconstructing this from natural language
descriptions.

We propose NLMOptimizer, a neurosymbolic framework that couples a scalable realistic OR op-
timization problem generator with a suite of methods to share and conform lightweight IR into
executable code. Our contributions in this paper consist of:

1. Problem generation at scale. We introduce the Problem class, which generates optimiza-
tion problems, symbolically represented as semi-algebraic varieties defined over exponen-
tial rings (R[z1,...,x,])*P (Van Den Dries} |1984), and instantiate an initial dataset of
1000 linear and quadratic programs to enable head-to-head comparability with NLAOPT
while increasing structural realism by including multiple resources types and larger vari-
able counts.

2. Empirical evaluation. We benchmark four LLMs on both NL4OPT and 1000 Problem-
generated examples. As with Mostajabdaveh et al.|(2025)), we observe that all models col-
lapse under zero-shot prompting when faced with more realistic problems (e.g., continuous
linear programs with 5+ variables), with Gemini-1.5-Pro End-to-End accuracy dropping
from 66.6% (on NL4OPT) to 14.6% (on NLMOptimizer problems).

Together, these results demonstrate that current benchmarks dramatically underestimate task diffi-
culty, that existing LLMs lack robust representations for optimization, and that principled symbolic
interfaces are essential for advancing neurosymbolic reasoning and representation. While the total
representational framework presented by Problem is scoped beyond polynomial terms, we restrict
our empirical evaluation in this paper to LP and QP problems for its first release. This choice iso-
lates and highlights representational difficulties without confounding it further by the introduction
on non-standard polynomial objectives and constraints. This directly enables like-for-like compar-
ison with NL4OPT, and avoids being able to dismiss observed degradations in performance due to
significantly more challenging problems, as these degradations appear already at linear and quadratic
cases with realistic scale and structure.

!'See their Table 2 and human baseline, where the largest open model achieving 0.772 accuracy and a PhD
baseline at 0.93, while CoT degrades with additional prompting.
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Figure 2: NLMOptimizer Protocol With Problem For Dynamic Tranche Evaluation

2 RELATED WORK AND PRELIMINARIES

We assess that fully automated end-to-end processes without human-in-the-loop interventions risk
incorrect outputs, particularly for more complex, domain-specific real-world use cases. To motivate
our proposed framework, we first review several LLM-based efforts and their related datasets that
pursued complementary approaches to natural language modeling of optimization problems.

2.1 PRIOR BENCHMARKING EFFORTS FOR NL-BASED OPTIMIZATION MODELING

Developed for the Natural Language for Optimization competition, the NL4OPT dataset was devel-
oped to increase the accessibility and usability of optimization solvers by allowing general users to
interface with them through natural language descriptions (Ramamonjison et al, |2022; |Ramamon-
jison et al.l |2022b)), and it has served as the benchmark dataset for the NL4OPT task. This dataset
presents a total of 1101 annotated Linear Programming (LP) word problems across 6 different do-
mains created using the Prodigy tool to manually create and annotate 600 problems, with the remain-
ing 501 samples and annotations were generated using a NER model. OptiMUS (AhmadiTeshnizi
et al., [2024) is a natural language (NL) to optimization code generator that employs LLM-based
agents in a multi-step process including problem specification, variable and formulae generation,
code generation, and debugging. The authors evaluate their approach over both existing and new
benchmark datasets, and demonstrate improvement over existing NL-based solver code generators.
ComplexOR (Xiao et al.,[2024) uses a Chain-of-Experts approach with multiple experts (or agents)
with individual tasks and goals. These experts include a conductor, terminology interpreter, mod-
eling expert, programmer, and evaluator. Work is orchestrated via conductor, and tasks pass bidi-
rectionally between experts based on feedback from the modeling expert and evaluator agents. In
addition to this novel approach, the authors also present a more challenging benchmark dataset that
more closely resembles real-world optimization problems, although presently the formal 37 datasets
mentioned in the paper have yet to be released for review. Recent results with ORQA (Mosta-
jabdaveh et al., [2025) indicate that multiple-choice QA (MCQ) can diagnose gaps in recognizing
optimization structure but underestimates the difficulty of constructing it: large models achieve
respectable scores on reading-comprehension-like items yet fail sharply when entity—relation mod-
eling is required, and chain-of-thought prompting often reduces accuracy. These outcomes align
with a representation-centric view of LLM failures in OR. Prior datasets either rely on toy tasks,
require code-generation and solver execution for scoring, or conflate notation bugs with modeling
errors. ORQA improves on this by isolating model-component identification, but its MCQ format
still cannot test constructive adequacy.

2.2 REPRESENTING AND SOLVING OPTIMIZATION PROBLEMS

An optimization problem captures decision-making under constraints with a goal to minimize, or
dually, maximize a particular function. Constraints produce a set of options from which the decision-
maker must choose. Whenever the set of options is empty, the problem is infeasible. For LLM
systems that generate optimization routines, a symbolic formalism capturing the full spectrum of
objective functions and constraint types is essential for expressivity and correctness.
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Crucial for our purposes, semidefinite programming (SDP), a subclass of convex optimization prob-
lems where the feasible set is described by linear matrix inequalities, bridges the numerical algorith-
mic implementations of optimization and the core real algebraic geometric content. SDP captures
non-linear algebraic constraints in a convex formulation, using auxiliary variables and moment rep-
resentations, acting as the natural computational arena for embedding semialgebraic geometry into
optimization solvers (Netzer,2016). Formally, a program P is semidefinite if there are some ¢ € R",
and symmetric matrices Mg, M1, ..., M, € Symy(R) such that P is given by min ¢ - @ subject to
Mo+ a1 My + - --a, M, > 0, where M > means that M is a semipositive definite matrix.

Following standard model theory conventions, given a first order language £, an L-structure M
is some domain M whose elements satisfies a set of sentences in £. For example, given £ =
(0,1,4, ), any field F is defined over the language £ using the field axioms (Marker, [2002)). For
aD C M, D is a definable set if there is an L-formula ¢ such that a € D if and only if M |
©(a). In theory, optimization problems rely on feasible sets, while in practice feasible sets and
the objective functions are precisely those that are definable in terms from the first-order language
of ordered commutative rings L, = (0,1+,-, <). We can expand the language L, to include
a function symbol E, or exp, and provide sentences that allow us to interpret E as the standard
real-valued exponential function. It is immediate that there is a bijective correspondence between
the polynomials in any given ordered ring R[ X1, ..., X,,] with indeterminates X, and the terms
generated from L, when adding the constants of R to the £, (without any extensions of the
language, the terms are precisely in correspondence with polynomials in Z[ X7, . .., X,,]) (Marker,
2002). A field is F' is said to be real-closed if there is a total order < on F such that every positive
element of F' has a square root in F' and every polynomial of odd degree with coefficients in F'
has at least one root in . The canonical real-closed field is the field of real numbers, R. For
any real-closed field F', a set W C F™ is said to be basic closed semialgebraic set if it is a finite
intersection of sets defined by polynomial inequalities of the form p;(X1,...,X,) > 0 for p; €
F[Xi1,...,X,),sothat W = {& € F" | /\:elw pi(Z) > 0}, while a general semialgebraic set
(alternatively, semialgebraic variety) is a finite Boolean combination of basic closed algebraic sets
(Netzer, 2016; Marker, 2002). Following the standard definition (see [Van Den Dries| (1984)), an
E-ring (R, F) augments a commutative ring R with an exponential map £ : R — R* satisfying
E(x +y) = E(x) - E(y). E-polynomials are built inductively from R by adjoining symbols closed
under +, -, and E(-).

3 METHODOLOGY

3.1 NLMOPTIMIZER

Our preliminary investigation concerns the representation of optimization problems, and our exper-
iments principally concern benchmarking with the Problem class. We consider the challenge posed
by correct intermediate representations (IR) as a matter to be addressed by future development of the
SymInterchange class, detailed in Appendix [C.3| We recognize following Section [2.2) that feasible
sets are identifiable with terms satisfying relations determined by the elements of E-rings, we devel-
oped a class titled Problem, which randomly selects for terms ¢ :=r | x | t+¢ | t*t | exp(t), where
r € R, are terms subject to the natural < order relation on R, subject to hyperparameter selection.
Our pragmatic motivation for E-rings is summarized by Corollary (details in Appendix [B)).

Corollary 3.1 (Pragmatic E-ring policy). If a natural language to intermediate representation map-
ping stays within R, feasibility and optimality are decidable, admitting effective QE. If an NL —
IR mapping stays within Ry, oxp, we admit weak quantifier elimination.

For our initial benchmarks, we set our generator to linear and quadratic programs, which are either
classical programs, mixed integer, or integer programs, and have included a restricted implemen-
tation of the general problem class in Appendix [C.I} This restriction is intentional: problems are
guaranteed to admit QE by Cor. and it keeps algorithmic and solver complexity fixed while
scaling representation complexity for the standard benchmark solver, Gurobi For our initial exper-
iments, we generated a test batch of 1000 linear (LP) and quadratic programs (QP), consisting of a

2Consequently, the general E-ring formulation and code paths for exp and log terms are part of the frame-
work design, but are not exercised in this preliminary empirical study.
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mix between integer (ILP/IQP), mixed-integer (MILP/MIQP), and real-valued problems (LP/QP),
which we have summarized in Table [3|in Appendix [E]

Crucially, with the symbolic representation, we use standard regex methods to construct a default
instance of Gurobi code, which we then execute to ensure that the problem has a pregenerated and
annotated solution. Each generated problem is paired with a natural language representation. This
is achieved by inserting the parameters of the formal optimization model into pre-built natural lan-
guage templates. These templates are structured to mimic human-authored prompts, and include
redundant sentence options to introduce variation to natural language representations, incorporat-
ing elliptical references,anaphora, ratio constructions, and domain-specific jargon. Variable and
resource mentions are deliberately non-uniform to require coreference resolution rather than string
matching. Appendix [D.0.T|enumerates the pattern classes and provides verbatim examples for each,
along with the sampling logic that yields lexical variety. Natural language prompts are assembled
from templates using a combination of string formatting and regular expression substitution, ensur-
ing that the resulting language is coherent and varied while remaining traceable to the underlying
mathematical representation of an optimization problem. The initial batch of scenarios covers: Of-
fice supply budgeting, household budgeting, horticulture, cybersecurity staffing and management,
military force structure, personnel management, and personal diet (such as macronutrient intake).
Variables and resources are assigned labels from sets of available labels based on the selected con-
text. Collectively, these statement sets are large enough to provide lexical diversity across problem
statements exceeding those provided by Xiao et al.| (2024)).

We settled on the current hyperparameters so that roughly half the problems would be real-valued,
25% mixed integer, and 25% integer programs, three-quarters would be linear programs, and be-
tween 1/3 and 1/2 would be feasible. Achieving the latter required adjusting the hyperparameters
used for generating the constraints. While we generate some instances of problems with hundreds
to thousands of constraints, the majority of problems contain fewer than 36 constraints. We detail in
Algorithm [I] the generation of a random instance of the Problem class, which we describe in detail

in Appendix [C.T]

3.2 EXPERIMENTAL SETUP

We compare the NLMOptimizer dataset problems against the NL4OPT dataset (Ramamonjison
et al.l 2022a)) given the latter’s previous use as a benchmark against novel alternate datasets, its’
public availability, its’ suitability for zero-shot prompting, and for the number of problems available
(contra the NLP4LP dataset consisting of 61 MILPs, NLAOPT has more than 600). We test two
hypotheses: the first is that each LLM will perform worse on NLMOptimizer test problems than
the NLAOPT benchmark dataset (e.g. lower end-to-end accuracy and higher errors across all experi-
ments); the second is that expanded prompting to first reason out the specification of the optimization
problem in the symbolic interchange format can improve the quality and success of the Gurobi code
output from LLMs (that is, improved end-to-end accuracy and lower error rates). We test these two
hypotheses using the following models: LLaMa-3.3 (Grattafiori et al.,[2024), LLaMa-4-Scout-17B-
16E-Instruct (Al 2024)), Gemini-1.5-Pro (Team et al.l [2024), and GPT-OSS-120B (OpenAl et al.,
2025). LLaMa-3.3 has a maximum number of tokens of 8000, whereas the other two models had
a maximum number of tokens of 1000000. We tested each model and each problem set with two
prompts: a base prompt that establishes the LLMService as a team of operations researchers and
programmers tasked with producing Gurobi code to model and solve an optimization problem, and
a second prompt expanding on the base prompt by providing additional instructions to conform their
responses first to an IR format, before providing a code output. In both prompts, we feed the same
natural language description of an OR problem.

We summarize the problems we generated from our Problem class for our experiment in Ta-
ble 3] and in Figure [3] provide a cursory visualization of the differences in complexity between
the NL4OPT dataset and the NLMOptimizer problems we have included in our supplemen-
tary materials. We note that we generated problems with substantially more variables than the
NLA4OPT problems, as well as those subject to multiple types of resources constraints. Whereas
the NL4OPT dataset only contains problems constrained by one resource, such as budget, or
space, our problems could have multiple different types of resources, leading to substantially
more constraints while also producing realistic OR problems. We also explicitly cast constraints
indicating variable type, as well as strictly asserting non-negativity. In our summary statis-
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tics table, we denote all instances on our initial problem set by ’-n’. We included the json
and additional generation content from the NL4OPT project (Ramamonjison et al, 2022)) in the
dataset folder included in our supplementary materials. The NLMOptimizer problem set can be
found in the ’oproblems’ subfolder of the data folder included in our supplementary materials.

H NLMOptimizer
BN NL4OPT

Following [Xiao et al.|(2024)), we gathered end- 600 1
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We implement Gurobi in Python 3.10.12 using Gurobi Optimizer version 12.0.2 build v12.0.2rcO
(linux64 - Ubuntu 22.04.4 LTS). All experiments were run using vanilla models, with the LLaMa
models hosted locally. We set temperature to 0, top_p to 1, top_k to 0, and the frequency and presence
penalty to 0. We implemented a 180 second timeout for each model, and when executing code via
multiprocessing, implemented a 10 second timer, listing any code that exceeded this threshold as
having a runtime error. All local components of the experiments were run with CPU model: AMD
Ryzen Threadripper PRO 3995WX 64-Cores, instruction set [SSE2—AVX—AVX?2], with a Thread
count: 64 physical cores, 128 logical processors, using up to 32 threads. We include all prompts in

Appendix

4 EXPERIMENTAL RESULTS

We display the summary statistics of ex-
periments by the model, dataset, and flag
Table 1: Summary statistics by model, dataset, and ad- for additional prompting in in Table [I]
ditional prompting. Datasets are either NLMOptimizer (along with Figure displayed in Ap-
(NLM) or the NL4OPT (nl4opt) datasets. Additional pendix[E) , and the Wilcoxon-Signed rank

prompting denoted by sym. summary statistics in Table 2] Addition-
model&data&prompt. id | ACC _ACC-adj CE RE  REagj | ally, we plot the relevant statistics for each
llama3.3 NLM 0.056 0.056 0.015 0.590  0.590 model and prob]em type across our dif-
llama4 NLM 0.008 0049 0.123 0857 0.729 . N
gem NLM 0161 0161 0015 0101 0101 | ierent prompting scenarios in Figures A
gptoss NLM 0031 0031 0037 0212 0212 | to [I0} along with the breakdown of each
llama3.3 NLM sym 0.023 0.023 0.015 0.817 0.817 model by experimental set-up. In these
llama4 NLM sym 0001 0012 0120 0878 0818 | o h . descri
gem NLM sym 0.146  0.146 0015 0071 0.071 lgures, €ach curve summarizes descrip-
gptoss NLM sym 0.082 0082 0026 0.139 0.139 | tive outcomes across the full 1000 in-
llama3.3 nidopt 0593 0593 0000 0024 0024 : : :
llama 4 nl4opt 0017 0035 0003 0995 o0so4 | Stances provided in the dat_aset included
gem nldopt 0660  0.660 0000 0027 0027 in our supplementary materials. As these
gptoss nl4opt 0.065 0065 0.000 0.005 0.005 | are aggregate outcomes over the provided
llama 3.3 nl4opt sym 0597 0597 0000 0.112 0.112 . L
flama 4 nldopt sym 0061 0064 0005 0960 0954 | dataset, they depict deterministic trends
gem nldopt sym 0666  0.666 0000 0020 0020 | rather than sampling uncertainty, which
gptoss nldopt sym 0.184 0.184 0.000 0.000  0.000 could in principle be derived from gener-
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ating multiple tranches with Problem. Fi-
nally, we provide expanded tables and figures in Appendix |[El including a full audit of instance
composition.

We make two immediate observations: across all four models, each performed appreciably worse
with respect to end-to-end accuracy, compile error, and run-time errors, even after post hoc adjust-
ment compared to the NL4OPT dataset, with poor performance observed across all problem types;
independent of model, problem type, and prompt, end-to-end accuracy decline and errors increased
for problems with more than 3 variables. Instances where model end-to-end accuracy improved
tended to be spurious as models correctly concluded that the problems were infeasible, but other-
wise failed to faithfully represent all named, albeit redundant and inconsistent constraints.

LLaMa-4-Scout-17B-16-Instruct was a particularly poorly performing model, in part because of
near uniform failure to properly import Gurobi, which requires import gurobipy. Even
when correcting for this, as noted by the adjusted end-to-end accuracy and adjusted RE scores,
the run time errors remained high, and end-to-end accuracy remained below 10%. Improve-
ments with respect to RE-adj did not lead to equivalent improvements in adjusted end-to-
end accuracy, indicating that LLaMa-4 was especially challenged at both generating code and
faithfully representing the optimization problem, independent of managing the proper imports.

In the case of additional prompting, the
LLaMa-4 model managed to answer only
1 out of 1000 questions correctly without

Table 2: Wilcoxon signed rank one-sided hypothesis
summary statistics (score, p-value)

ACC CE RE - .
BT (n=S) 0.0.008) 36,000 (290073 adjustment, after which it only managed
E2 (n=8) (12,0.230) (5,.250) (18,0.527) to answer 12 questions correctly. LLaMa-
E2a (n=6632) | (61494,0.000) (432,0.014) (82956,1.000) 3.3 also performed poorly on our problem

set, but otherwise performed comparably

to the Gemini model. Similar to LLaMa-4-
Scout, GPT-OSS-120B performed poorly on both datasets but principally due to a failure to reliably
capture problem description in the executable Gurobi code format that was requested. GPT-OSS-
120B improved the most when including additional prompts to follow an IR template.
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The significance of these results for our two experiments, denoted by £'1, E2 and E2a are detailed
in Table 2] where we gather the Wilcoxon statistic and corresponding p-value for changes to ACC,
CE, and RE results across all experiments. Further, while we can only compare the point-estimates
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Figure 11: Distribution of scores for GPT-OSS with additional prompting by number of variables.

between models for experiment 1, we can also look at the difference between prompts on a problem-
by-problem basis in experiment 2, with the problem-by-problem results displayed as E2a, and have
developed a protocol (see Figure [2) for future dynamic evaluation. We list the sample sizes respec-
tively for the test. In 1 we match against the two datasets, in /2 we match against the results of
using the same base prompt for each model against an expanded prompt first specifying a preferred
symbolic structure. For the first experiment: we reject the null-hypothesis against the alternative
hypothesis that benchmarking NL4AOPT against the original problems leads to an average accuracy
difference below O (i.e. models will be less accurate with respect to the novel data presented by the
Problem class), and we reject the null-hypothesis against the alternative hypothesis that benchmark-
ing NL4OPT against the original problems leads to an average Compilation Error difference greater
than O (i.e. models will have more compilation errors when trying to model the original problems in
the Problem class); we fail to reject the null-hypothesis for run-time errors. For the second exper-
iment, both with respect to the point-estimate as well as the problem-by-problem basis, we fail to
reject the null-hypothesis against the alternative hypotheses where the additional symbolic prompt-
ing improves accuracy (or decreases compile time and run time errors) over the baseline prompting
if we group by model. However, when comparing problems directly, we found statistically sig-
nificant improvements with respect to accuracy and compilation errors when including additional
prompting.

5 CONCLUSION

Our findings are consistent with the observations in Xiao et al.| (2024)) and Mostajabdaveh et al.
(2025)): even the best models plateau well below expert performance on modeling-centric questions,
finding further evidence that general-purpose instruction-tuned LLMs, even with explicit chain-of-
thought or chain-of-experts implementations, fail on more realistic LP/QP instances across those
respective ablation studies, and that errors concentrate in categories requiring identification of en-
tities and relations, reinforcing our finding that the core bottleneck is problem representation. We
conclude that the NL4OPT competition dataset is less appropriate as a training and benchmarking
dataset than problems generated by our Problem class for the task of generating code that correctly
solves an optimization problem. The problems in NL4OPT are too simple to be representative of
actual optimization problems faced by real-world operations researchers. We further find support
that the alternate benchmark datasets discussed in this paper are inadequate for the task of repre-
senting OR problems for training. We are not proposing a faster solver, nor that MCQ should be
abandoned as a complementary benchmark for understanding. We advocate for the adoption of the
Problem generator class over other alternatives for future model development on the grounds that
ours covers a substantially larger class of problems that are relevant to both the real-world OR com-
munity, and that training, testing and validation can be done dynamically using the NLMOptimizer
protocol so as to avoid overfitting a static dataset. Finally, while outside the scope of our experi-
ments, we also explored initial human-guided interaction between LLMs using a Chain-of-Expert
agents approach coupled with the SymInterchange class methods and real-time display of problem
formulation. We found this successfully improved conversion of problems from natural language to
executable Python code that also properly solved the problem for LL.aMa-3.3 and Gemini-1.5-Pro.
We encourage future research in the direction of multi-shot prompting LLM-agents to use both the
Problem class and the corrective methods for the SymInterchange class.
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A APPENDIX

A full reproduction of the Problem class will not fit in an Appendix, but has been included in the
Supplementary materials. However, we have provided details for the hyperparameters we used for
generating the 1000 problems used for benchmarking, the experimental set-up, the natural language
problem generation, and some additional breakdown of the performance of the LLMs.

B THEORETICAL BACKGROUND

Our choice of E-rings as the principle representation for OR optimization problems relies on a
pragmatic argument that this is a suitable formal object for representing a wide class of problems
of interest that are largely decidable, and such that intermediate representations of definable sets are
amenable to neurosymbolic to determine if problems are solvable.

Throughout this Appendix, we expand on the material in Section[2.2] providing the readers primers
on quantifier elimination (QE), o-minimality, and E-rings, along with corresponding results that
provide decidability guarantees.
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B.1 OPTIMIZATION FORMALLY UNDERSTOOD

We first summarize the primary scope of optimization problems considered in the main body of the
paper.

Linear programs involve a linear objective function over a polyhedron defined by linear equalities
and inequalities, whereas quadratic programs allow for the objective function to be a quadratic
function. Convex optimization occupies a central place in this landscape, characterized by problems
where both the objective function and feasible region are convex (Jensen & Bard} 2002). Convexity
guarantees the existence of global minima and underpins the success of scalable first- and second-
order methods, however it is not enough to reveal the algebraic structure of optimization problems
or to build a symbolic framework for constraint representation for the full scope of optimization
problems that concern us (Aubin, [2002). For LLM systems that generate optimization routines,
a symbolic formalism capturing the full spectrum of objective functions and constraint types is
essential for expressivity and correctness.

B.2 LANGUAGES AND DEFINABILITY

Following Marker| (2002), we recall the definition of languages, structure, and definability.
Definition B.1. A first-order language L is given by specifying the following data:

1. a set of function symbols F and positive integers ny for each f € F describing the arity of
the function,

2. a set of relation symbols R and positive integers ng for each R € R;
3. a set of constant symbols C
An L-structure M is a given by the following data:
1. a nonempty set M called the universe, domain, or underlying set of M;
2. afunction f™ : M™ — M for each f € F;
3. aset RM C M™% for each R € R;
4. an element ™ € M for each c € C.

FM RM and M are refered to as the interpretations of their respective symbols. The set of L-terms
is the smallest set T such that

1. c€T foreachc € C;

2. each variable symbol v; € T fori=1,2,3,...;

3. ifty,...,tn, € T and f € F, then f(ty,... t,,) € T.
We say ¢ is an atomic-formula if ¢ is either

1. t1 = to forterms ty,ts;

2. R(ty,...,tny,) fortermsty, ... ty,.

The set of L-formulas is the smallest set YV containing the atomic formulas and closed under logical
connectives and quantifiers, i.e.

1. ifp €W, then ¢ € W
2. if g, €W, then ¢ N and ¢V Y are in W;
3. if pinW, then Yv;¢p € W and v;p € W.

Given an L-structure M, a subset X C M™ is definable if X = {z € M™ : o(x)} for some
first-order L-formula p with parameters from M.
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Let Lo := {0,1,+,-, <} be the language of ordered rings. Let Lexp = Lor U {exp} be the
language of ordered exponential rings (E-rings in the sense used in this paper). We write R, for the
real field in £, and Reyp, for (R; 0,1, 4+, -, <, exp). For restricted analytic functions, write R,,,, and
for the expansion by the (unrestricted) exponential function, Ray exp.

Further, we recall the chain of definitions for real-closed fields and semi-algebraic sets:

Definition B.2. For any of the languages L whose underlying universe is a field F', we say F is real-
closed if there is a total order < on F such that every positive element of F' has a square root in ' and
every polynomial of odd degree with coefficients in F has at least one root in F'. The canonical real-
closed field is the field of real numbers, R. For any real-closed field F', a set W C F™ is said to be
basic closed semialgebraic set if it is a finite intersection of sets defined by polynomial inequalities of
the form p;(X1,...,X,) > 0forp; € F[Xq1,...,X,), sothat W = {& € F" | /\:elw pi(¥) > 0},
while a general semialgebraic set is a finite Boolean combination of basic closed algebraic sets
(Netzer |2016; Marker, |2002)).

With respect to our semi-algebraic set, this means ¢(a) satisfies the implied (in)equalities expressed
in formula ¢.

In theory, optimization problems rely on feasible sets, and in practice feasible sets and the objective
functions are often precisely those that are definable in terms from the first-order language of ordered
commutative rings L, = (0, 1+, -, <). In our expansion of the language L, to include a function
symbol F, or exp, we want to capture semi-algebraic sets that definable in logarithmic-exponential
polynomial terms, and provide sentences that allow us to interpret £ as the standard real-valued
exponential function. We will summarize below the model theoretic reasoning as to why this is
both desirable for optimization by SDP, as well as how o-minimal geometry allows us to retain the
decidability necessary to determine feasibility.

As mentioned before, it is immediate that there is a bijective correspondence between the polynomi-
als in any given ordered ring R[X1, ..., X,,] with indeterminates X;, and the terms generated from
L, when adding the constants of R to the £,, (without any extensions of the language, the terms
are precisely in correspondence with polynomials in Z[ X, ..., X;,]) (Marker, 2002).

Expanding on E-rings in greater detail and following (Van Den Dries| |1984), an E-ring is a pair
(R, E) where R is a ring with unity, denoted by 1, and a map £ : (R,+) — R, such that
E(0) = 1, and which maps the additive group structure of R to the multiplicative group of units of
R, sothat E(z+y) = E(x)-E(y). Given an E-ring (R,E), the ring of E-polynomial in indeterminates
Xi,...,X,, over R, is denoted by R[X1, ..., X,,]¥, and has the structure of a group ring over the
polynomial ring R[X7, ..., X,,]. The additive group structure of the E-polynomial ring is given by:

R @ @ Ay, where Ay, is recursively defined in terms of Ay, group homomorphisms F, and rings
k=0
Ry suchthat Ry, C Ry41 and Ey4; is a functional extension of Ey, which is a group homomorphism
from the additive group Ry to the group of units in Rj;. In particular, each Ey : Ry — R4
is a group-homomorphism sending each r € Ry, written as » = 7/ + a such that v’ € Rj_; and
a € Ay, to the element Ej,_1(r') exp(a) in Rj41, such that Ry 1 := Ry[exp(Ay)], the group ring
of exp(Ag) over Ri. In turn, Ay is defined to be an Ry-submodule of Ry freely generated by
exp(a) with a € Ay, for a # 0, which establishes Ri1 = Ry @ Ay as additive groups. In turn,
the underlying polynomial ring R[X, ..., X,,]¥ is taken as the algebraic object li_r>n Ry = U Rk.
keN

Of particular interest, any polynomial p € R[X;...,X,,]” will correspond to a formal term

o0
t, € R® @@ Aj, which in turn is an element ¢, € Ry, where k is of height of t,, with k the
k=0
integer where ¢, € Rj;\Rj_1. Intuitively, the height is the maximum number of embedded expo-
nentiations appearing in the term ¢,. Real exponential rings introduce a compositional algebraic
structure capable of representing optimization constraints involving both polynomials and exponen-
tials in a uniform symbolic language. This algebraic expressiveness invites a deeper inquiry into the
geometric behavior of such constraints.
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B.3 QUANTIFIER ELIMINATION AND DECIDABILITY IN REAL CLOSED FIELDS

We now describe two foundational theorems for our purposes: Theorems and (see |Seiden-
berg| (1954) and |Collins| (1976)) for full proofs and details).

Theorem B.3 (Tarski-Seidenberg). The complete first-order theory Th(R,,) of real closed ordered
fields admits quantifier elimination. In particular, any first-order sentence over (R;0,1,+,-, <) is
effectively reducible to a quantifier-free one, hence Th(R,,) is decidable.

Theorem B.4. There is an effective procedure, cylindrical algebraic decomposition (CAD), that
performs quantifier elimination over R.. The worst-case complexity is doubly-exponential in the
number of variables, and this is optimal in general.

Theorem [B.3] implies that the image of any semi-algebraic set under a polynomial map remains
semi-algebraic under coordinate projection, which is the geometric core of quantifier elimination
over the reals (Seidenberg, |1954). Concretely, existential quantifiers, and thus universal quantifiers
under the identification that Vzp(x) = —=Jz—p(x), over real variables can be eliminated effectively,
reducing feasibility questions for semi-algebraic constraints to equivalent quantifier-free formulas
that symbolic procedures can manipulate. Algorithmically, Collins’ cylindrical algebraic decom-
position (CAD) provides a constructive QE method: it decomposes R"™ into finitely many cells on
which every input polynomial has a constant sign, enabling projection and elimination steps that
decide first-order sentences in the language of ordered rings. (Collins, |1976) While CAD is worst-
case doubly exponential in the number of variables, and this is unavoidable in general, its cell or
sample-point outputs yield exact certificates of feasibility and optimality for low-dimensional or
low-degree instances. Further, guarantees of decidability provide motivation for reliance on approx-
imation methods which can be run more efficiently and for real-world applications often suffice
given tolerable imprecision found within real-world implementations.

In addition to decidable guarantees for feasibility, real algebraic geometry is furnished with many
decision-to-optimization reductions and critical-point methods that recover algebraic minimizers by
eliminating variables (and multipliers) from KKT-style conditions or by optimizing on QE-produced
cells (Basu et al.| 2006). These facts are what justify using semi-algebraic structure as a target for
our IR and validators: feasibility remains a decidable, tame geometric problem; optimality can
be certified exactly for small cases; and larger cases still benefit from the same logical invariants
(e.g., unit/convexity checks) even when solved numerically(Basu et al., 2006). We summarize these
observations for practical purposes in Corollary [B.5]

Corollary B.5 (Decision-to-optimization reduction). Let f, g;, h; be polynomial terms, and define
a decision predicate P(t) := (3z) \; gi(z) <OANA; hj(z) = O0A f(x) < t. Then P is decidable.

The proof of Corollary follows immediately by Theorem [B.3] As a consequence of Corollary
the global minimum min{f(x) : g;(x) < 0, h;(z) = 0} is computable exactly by bracketing
t and deciding P(t), or by eliminating 2 from the KKT/global optimality conditions.

Remark B.6 (What QE means in practice). For low degrees, i.e. small n, CAD-based QE supplies
exact feasibility certificates, algebraic optima, and sample points for minimizers. For larger degrees,
best practices rely on numerical solvers. Nonetheless, these problems still retain the logical form to
guide validation.

B.4 O-MINIMAL EXPANSIONS AND EXPONENTIALS

Let £ contain a relation symbol <, and let M be a dense linear order with respect to <. Then M
is o-minimal iff every definable subset S C M (with parameters) is a finite union of points and in-
tervals. Following[Van den Dries| (1998)), o-minimality generalizes the semialgebraic setting once £
furnishes an ordered ring structure, so that tame sets behave like semialgebraic sets with robust ge-
ometric control (monotonicity, cell decomposition, dimension). Practically, the connective tissue to
optimization is that tame geometry underlies semidefinite relaxations for polynomial optimization,
notably Lasserre’s hierarchy: minimizing a polynomial f on a compact basic semialgebraic set W
is approached by a sequence of SDPs over moment cones with SOS certificates (Josz & Molzahn)
2018)). Each level optimizes a linear functional subject to PSD moment/localizing matrices, encod-
ing polynomial nonnegativity by SOS constraints and yielding increasingly tight lower bounds, with
many refinements for sparsity and large scale. Conceptually, this casts global polynomial optimiza-
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tion over semialgebraic sets as an SDP sequence that exploits positivity, duality, and moment/SOS
geometry(Netzer, [2016; Josz & Molzahn, 2018)).

Theorem B.7 (O-minimality of R,,). The structure R,,, (real field expanded by all restricted ana-
Iytic functions) is o-minimal. Consequently, definable sets admit cell decomposition and the usual
tame geometric properties. (van den Dries et al.| |[1994)

O-minimality yields a calculus for tame sets and functions: finite cell decompositions, stratifica-
tions, and dimension control that mirror the semialgebraic case and support symbolic preprocessing
(projection, variable elimination) in optimization pipelines (Van den Dries| |[1998). As explored in
Attouch et al.| (2013)), tameness also underpins algorithmic analysis, as for tame (e.g., semialge-
braic/definable) objectives, descent and proximal methods will still admit global convergence guar-
antees via the Kurdyka-t.ojasiewicz inequality. In particular, definability ensures the KEproperty
and yields convergence rates and stability for a wide class of first-order schemes.

Real-world models often require exponentials (entropy, logistic regression, log-barriers, softmax/-
soft constraints), and we want to retain tameness while adding exp (Wilkie, |1998). The key bridge
we identify builds upon Wilkie’s results for exponential fields (principally Theorems [B.8|and [B.9):
expansions of the real field by suitable analytic functions, including the (unrestricted) exponential,
remain o-minimal or at least admit strong model-theoretic control, and so definable sets with expo-
nentials inherit the same geometric regularity (cell decomposition, dimension, finiteness properties)
(Wilkie, [1996)). This provides the fundamental justification for our choice of E-rings as the target
for our IR. We can model exponential terms while preserving tame geometry for symbolic reasoning
and quantifier simplification (van den Dries et al.,|1994)).

Theorem B.8 (Wilkie’s Theorem). The real exponential field Reyy, is o-minimal, and certain expan-
sions by restricted Pfaffian functions are model complete. (Wilkie||1996)

Following |Wilkie| (1999), o-minimality of R, gives tame geometry for formulas involving real
polynomials and exponentials: definable sets admit cell decomposition and controlled combina-
torics, which is precisely the regularity needed to design and analyze robust optimization layers
(e.g., screening infeasibility, preserving convexity, bounding active set changes). This directly sup-
ports our intended natural language to IR workflow that must manipulate exponential constraints
without leaving the tame world.

Theorem B.9. (van den Dries et al.||[1994) The expansion Ry, exp is model complete and o-minimal.

Theorems and are forms of a weak QE result. Whereas strong QE means every first-order
formula in the given language is equivalent to a quantifier-free one in the same language, as in
real closed fields, by contrast, there are two practically important senses of weak QE that arise in
o-minimal expansions such as R, exp. First, the model-completeness sense, where every formula
is equivalent to an existential formula (no universal blocks or alternation) though not necessarily
quantifier-free. Second, the language-expansion sense, where formulas become quantifier-free after
enlarging the language by naming standard definable primitives (e.g., restricted analytic/Pfaffian
pieces, exp), even if they are not quantifier-free in the strict base language (Van Den Dries| |1984;
Wilkiel [{1996; [Van den Dries & Miller, |1996; Marker, [2002).

Either sense of weak QE enables a solver architecture resembling those employed by mixed-integer
linear and cone programs with cutting planes and oracles, as the solution to an optimization problem
isreduced to a X1 - sentence of the form 3Z[f (Z) < tAp(ZF)], where f is a (definable) objective func-
tion, ¢ is the collected formula describing the constraints, and ¢ is the definable candidate term for an
optimal solution (in this particular setting, f and ¢ are scalar valued, but this can be further amended
for vector-valued functions, and general definable functions). In particular, existential checks can
be approached with feasibility oracles, and the optimization loop then is recast as repeated queries
checking whether a current discrete assignment or candidate bound term for the objective function
returns a witness to the defining formula for the objective modulo constraints (a sample point with
the corresponding algebraic data), or a small unsatisfiable explanation, from which we can then
deploy branch-and-bound and cut-generation loops as needed. Future work involving formal veri-
fication can post-certify winners via Positivstellensatz or KKT-based checks (see Netzer| (2016)) for
details), following common OR workflows validating incumbent solutions instead of proving global
optimality at every node. Further, in the weak QE setting, the polynomial term constraints can be
cast into an answer-set program (ASP), where they act as external atoms that are evaluated by an
oracle given the current ASP assignment to discrete choices and parameters symbols.
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For our pipeline, this distinction guides how we validate and compile NL — IR instances. In the
semialgebraic fragment, strong QE yields full elimination and decidability, which we exploit for
exact feasibility/optimality on small cases and for sound structural checks more generally. In the
exponential fragment, R, oxp gives o-minimal tameness and model-completeness (weak QE). In
this general setting, feasibility reduces to existential forms, projections preserve definability, and
quantifiers can be simplified once the IR names the right primitives. O-minimality/model complete-
ness do not by themselves yield decidability. The decidability of Th(Rexp) is open. Assuming a
suitable real form of Schanuel’s conjecture, Macintyre and Wilkie show that Th(ReXp) is decidable;
conversely, a weak Schanuel statement is equivalent to decidability(Wilkie} |1997).

B.5 CONSEQUENCES FOR OR MODELING

Reiterating our motivation, many optimization models used in OR and ML are definable in the lan-
guages described above expressing tame theories: LP, QP, Second Order Cone Programs (SOCP),
and SDP feasible regions are semialgebraic, and common exponential terms (such as entropy, log-
likelihoods, log-barriers, softmax) live naturally in expansions with exp. Working in an o-minimal
expansion preserves geometric regularity (chiefly cell decomposition, dimension theory, stratifica-
tions), which in turn supports symbolic preprocessing (namely projection and thus elimination) and
robust certification prior to numerical solution (Denef & Van den Dries|, |1988; [Van den Dries &
Miller, [1996). For polynomial parts, Lasserre-type hierarchies provide systematic SDP relaxations
and certificates via moments/SOS, allowing us to transform global polynomial optimization over
compact semialgebraic sets into a convergent sequence of tractable SDPs (Josz & Molzahn, 2018;
Netzer, 2016)).

Proposition B.10 (Standard OR cones are definable). The feasible sets of LPs and QPs are semi-
algebraic (linear or quadratic equalities/ inequalities). SOCP constraints |Az +b|l2 < ¢c'z +d
are semialgebraic. SDP constraints {X = 0} are semialgebraic via principal minors. Exponen-
tial/power cones (e.g., yexp(z/y) < z, y > 0) are definable in Reyy, and hence in Rap exp-

Prop.[B.10justifies aiming the natural language to IR mapping at a formal language whose first order
terms are composed of polynomials and exp: we keep the cones that appear in OR, while staying
within an o-minimal setting. This yields closure under projection and cell decomposition—key
for IR-level checks (unit consistency, convexity screens, feasibility typing) and safe simplifications
before calling a solver. For purely polynomial instances, moment/SOS machinery supplies SDP-
based lower bounds and, in small cases, exact certificates.

Concretely, the E-ring perspective provides a first-order language in which constraints take the form

p(x) =1p(x) = 0,

where 1, is a formal term built from polynomials and (possibly) exp. Then, via the established corre-
spondence, t,, is in one-to-one correspondence with a polynomial in an E-ring understood as nested
compositions of elements of R[ X7, ..., X,,,] and exp. In this language, feasibility corresponds to the
existential truth of a sentence, while optimality (e.g., minimality) requires restricted universal quan-
tification. O-minimality provides the weak quantifier-elimination and geometric tameness needed so
that such transformations remain within the definable universe (Wilkie, [1996; |[van den Dries et al.,
1994; Marker| 2002). We reiterate and gather this observation in the following Corollary:

Corollary B.11 (Pragmatic E-ring policy). If an NL — IR mapping stays within R, ( namely for
LP/QP/SOCP/SDP), feasibility/optimality are decidable and admit effective QFE. If an NL— IR
mapping stays within Ray, exp, we admit weak quantifier elimination.

Corollary follows principally from Theorems [B.3]—[B.4] When exponentials appear in terms,
we will be working in Ry, exp, Which by Theorems yields tame geometry and model com-
pleteness. Although full decidability is not known in general, but the o-minimal setting supports
robust validation and quantifier simplification, as for fragments that appear within £,,., we will have
decidability guarantees. This justifies our choice to target the E-ring fragment for modeling and
training.

We note that for terms in these languages With integer variables, the linear fragment (Presburger
Arithmetic, i.e. an ILP) is decidable. If we allow for general polynomial relations over Z though,
this leads to undecidability as determined by Hilbert’s Tenth Problem. The proposed IR conforming
to Problem therefore classifies integer problems and restricts to the linear case for exact certification.
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Finally, given a Problem instance in the semi-algebraic fragment, we may form P(t) as in Cor.
Using CAD (or a specialized QE) to decide P(t) along a rational bisection on ¢, we can then ex-
tract t* and (optionally) a sample minimizer via the CAD cell containing the optimum. For larger
instances, we may still use numerical solvers but keep IR-level feasibility/convexity/unit checks as
first-order invariants. For the purposes of improving LLM-based systems then, reliably reconstruct-
ing and building an IR that maps faithfully onto a Problem instance is a sufficient goal for operations
research optimization from natural language.

C CODE

C.1 GENERATING A PROBLEM

We examine in greater detail the pseudo-code description provided in the main body of the paper,
so that readers can examine the code we have provided in the supplementary materials with greater
clarity.

Although we provide methods to pre-load problem configurations, by default we randomly generate
problems from scratch with a number of fixed hyperparameters, both in the class __init__ method, as
well as within various functions. 7., the number of variables, and n,..s, the number of resources
are generated from a mixed model of three separate integral uniform distribution and hypergeo-
metric distributions respectively, each determined by three hyperparameters. Because minimization
problems and maximization problems can be freely converted between each other by multiplying
the objective function by —1, we used a fair Bernoulli random variable to determine the problem
goal.

We only generate arbitrary polynomials in the base E-ring in order to compare the complexity of
our linear and quadratic programs with the linear programs found in the NL4OPT dataset. The
objective function is generated by the _gen_function method of the problem class, and randomly
selects monomials by the grading of the degree from combinations of the variables. Coefficients for
each monomial term are either drawn uniformly from Uni f7(1,10) or Unifz(1,10) + Unif(0,1)
depending on an fixed hyperparameter for whether we prefer integer coefficients only. We have
opted to default solely to integer coefficients.

Constraints are organized into four cases: non-negativity, type, lower-bound, and upper-bound. The
non-negativity constraints were implemented to ensure that all variables are to be non-negative.
The type constraints are used to enforce cases where variables must be integral - if any variable
is integral, the problem becomes mixed-integer unless all variables are integral, in which case it
becomes an integer program. Lower- and upper-bound constraints were further sorted into several
resources that are randomly determined by a class hyperparameter.

Lower- and upper-bound constraints consist of either two, three or all variables, and either determine
a minimum or maximum proportion for those constraints or otherwise correspond to a minimum or
maximum allocation of resources set by a budget cap that is by default randomly generated along
with the scalar coefficients for each resource. The coefficients appearing in both budget constraint
types are randomly generated by default with the _gen_resources_dict method unless users provide
explicit resource functions when initializing a Problem instance. The default method first generates
three random integers: a and b are uniformly selected from between 2 and 10, while ¢ is drawn
t ~ 24+ HGeo(a,b,n),n ~ Unif(a,a + b). Afterward, with a fixed hyperparameter value of
resources_split_parameter, which we default to .2, if a variable is a uniform random variable from
the unit interval is greater than this hyperparameter, then the coefficients were drawn from a ran-
dom integer matrix whose components were uniformly drawn between 1 and 3t; otherwise, coef-
ficients were drawn from a real-valued random matrix whose components were drawn uniformly
between 1 and 3t and rounded to the hundredth’s place. Similarly, budget cap ‘seeds‘ b,..; are used
when generating constraints as a random vector drawn uniformly from between L and U, where
L ~ Unifz(2tnyars, 5tnyars) and U ~ Uni f7,(6tn,qrs, 20t0,4.5). For the resource constraints,
bounds are then uniformly drawn from Uni f7(|bres/(3nvars) |5 [bres/(Mwvars)|) for lower bounds,
and Uni f7(|bres/(Nyars) |, bres) for upper bounds.

The number of pairs and triples that appear in the lower- and upper-bound constraints for each
resource type are random variables, which depend on whether the goal is to maximize or minimize
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the objective function. We describe the minimize case below, noting that we reverse the parameters
for the lower and upper bounds when the goal is to maximize the objective function. These variables
are Nipair,res> Niriple,ress Mupair,res, Mutriple,res and in the minimization case are drawn as follows:

T~ UnifZ(nvarSa <”v;7‘5>) S~ Unle(O, <n”§7‘5>)

t ~ Unifz(0, (””“”)) u ~ Unif2(0, ("”“”))

2 3
Nyars 3r
Nipair,res ™~ HG@O(Tv ( 9 >)a L?J)
Nyars 3s
Nitriple,res ™ HGeo(s, ( 3 )7 L?J

vars 3t
Nupair,res ™~ HGBO(t, <n1; >)7 I_?J)

Noyars 3u
Nuytriple,res ™ HG@O(“’? ( 2 >)a L?J)

Having now formed the symbolic representation of the problem, we now randomly select the se-
mantic template for the natural language description of the problem. The options are conditioned
on the problem_type attribute, and are drawn uniformly from one of three possible lists. Then,
depending on the number of variables in the symbolic problem, we uniformly select from the se-
mantic template determined by the semantic_problem_type attribute, we select corresponding
variables from a list of possible semantic variable names with the _.gen_sym_vars method. Simi-
larly, we select resource names in a similar fashion with the .gen_nl_resources_dict method.
After this, we construct the word problem through substitution and random selection of syntactically
correct connecting phrases. We explain this in greater detail in the Data section of this Appendix.

We also convert the symbolic description of the problem into a corresponding Python file that im-
plements the problem in Gurobi. We default to Gurobi in this paper, as we have restricted ourselves
for the time being to quadratic problems. However, when dealing with arbitrary terms drawn from
an E-ring, we would default to an implementation in SymPy. This will require a future iteration of
the Problem class to substitute the gurobi_code attribute with a generic code attribute name.
With respect to the translation of the problem into Gurobi code, this amounts to properly providing
the Problems symbolic attributes for the objective function, variables, and constraints as they appear
in attribute dictionaries. Finally, we run the code produced with the _run_gurobi_code method,
storing it as the problem_solution attribute.

C.2 RUNNING EXPERIMENTS

We have included a detailed README file in our supplementary materials. We advise researchers
consult this first before running any experiments. We also advise researchers to properly provide
their own API keys for each respective model, or appropriately adjusting the LLM Service templates
that we have provided in order to ensure smooth operation. We include two functions to run exper-
iments on the NLAOPT data and the NLMOptimizer problems with the baseline_llm_nlp4opt_qa.py
and baseline_llm_problem_answer.py files respectively. These functions run locally within the sup-
plementary materials folder and interact with the Data and Dataset folders also included in the
Supplementary materials folder.

For the NL4OPT data, we convert the stored problem description into our Problem class format, pri-
marily by preloading in the symbolic representation of the problem and natural language description
of the problem, before also generating appropriate Gurobi code. All experiments are run through an
interface between the Problem attributes and various LLM Services. We use two prompts for our
experiments, one baseline, and one expanded to further prompt the LLM Service to conform to a
consistent symbolic representation.
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Algorithm 1 Problem Initialization

Require: Sampling configuration (distributions for variables, constraints, objectives), desired se-
mantic problem type, solver parameters, and optionally resource functions.
Ensure: Symbolic problem, natural language description, solver-compatible code, and solver out-
put.
1: Sample number of variables using multi-branch distribution
2: Sample number of resources using hypergeometric distribution
3: Generate resource matrix and budget caps and store.
4: Determine problem type by maximum Degree, maximum height, Variable type (continuous,
mixed, or integer), and Goal (maximize or minimize)
Generate term space for objective function
Construct symbolic objective from randomly sampled monomials and coefficients
7: Generate constraint set by : 1) Non-negativity, integrality, upper and lower bounds including
tradeoff and budget constraints
8: Assign semantic problem type based on variable type.
9: Sample variable names and resource descriptions from semantic type
10: Generate natural language mappings for Variables, Resources, Constraints, and Objective func-
tion, and store.
11: Compile symbolic and natural language problem descriptions
12: Translate to solver-executable code and store (e.g., Gurobi)
13: Run solver-executable code and store solution
14: Return Problem object

AN

We use the following as to generate our two prompts, with the condition include_sym to trigger
the expanded prompt:
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Prompt Template

"PURPOSE: I need you to solve an optimization problem,
outputting Gurobi code that captures the problem description
and provides a solution, or otherwise indicates the problem
is infeasible.

CONTEXT: I have the following variables to consider:
{problem.problem variables} which have the following
resources/attributes that I need to deal with:

{problem.nl _resources_dict}

ROLE: You are a consulting team of business analysts,
operations researchers, and programmers who will convert my
natural language description of an optimization problem into
functional Gurobi code that answers my problem.

INPUT: I need to {problem.goal} the following objective

function : {problem.objective_function_statement} subject
to the following constraints:"

for constraint in problem.problem constraints: "=«
{constraint}"

"OUTPUT: "

if include_sym: "In order to convince me that the code you

are producing is correct, I also need to have a symbolic
representation of the problem showing me that you have
converted the description above into an appropriate symbolic
representation of the optimization problem. This consists of
a pairs of variables in symbolic notation for the first item
in the pair of the form ’'x1’, ’"x2’, and so on, and the second
item of the pair being the natural language object appearing
in the problem description; the objective function rendered
as an algebraic term where all natural language objects are
substituted for the corresponding symbolic variable; and

the list of semi-algebraic constraints where the natural
language object is substituted with its symbolic variable
counterpart. Return this solution in a code bloc encased

as ‘‘‘json {dict ({"symvariables": [("x#i","object#i")],
"objective_function":"objective function description with sym
variables", "constraints":["constraint",]1})} ‘'' " fi

Prompt Template (Cont’D)

" Finally, please output Gurobi code enclosed as ‘‘‘python
<CODE>

* Do not have anything else AFTER this final block.

x» If you provide any reasoning for your final answer, you
MUST put it before the final ‘'‘python <CODE> ‘'' bloc "

C.3 SYMINTERCHANGE

The SymInterchange class was designed to produce ’inverse’ methods for the Problem class, and
produce an IR, intended for ingestion by an Agent or teams of Agents. The class instantiates an
intermediate data structure for representing optimization problems in both natural language and
symbolic mathematical form, with methods starting from the natural language representation.

The class is initialized with a dictionary of key attributes such as the problem statement, variables,
resources, constraints, and objective function, along with metadata like the problem type and goal.
It provides methods to extract symbolic representations from natural language descriptions, convert
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objectives and constraints into symbolic form, and optionally generate executable code (e.g., for
Gurobi) to solve the problem.

The class also includes functionality for loading, saving, updating, and verifying the consistency of
these symbolic-natural language mappings, enabling seamless transformation between interpretable
and computable representations of structured optimization tasks. We have included it in the Supple-
mentary Files for researchers.

D DATA

D.0.1 NLMOPTIMIZER DATA

We have included 1000 problems generated by the Problem class. We have included both the Prob-
lem class as well as the problems in our Supplementary files. Beyond simple slot-filling, our tem-
plates incorporate anaphora, ellipsis, proportional statements, and domain jargon, in line with other
efforts such as Xiao et al.| (2024) each pattern family is listed with multiple surface variants and
examples to support inspection and reuse.

Each generated problem is paired with a natural language representation. This is achieved by insert-
ing the parameters of the formal optimization model into pre-built natural language templates. These
templates are structured to mimic human-authored prompts, and include redundant sentence options
to introduce variation to natural language representations. Natural language prompts are assembled
from templates using a combination of string formatting and regular expression substitution, ensur-
ing that the resulting language is coherent and lexically diverse, while remaining traceable to the
underlying mathematical representation of an optimization problem.

The generation of natural language representations begins with the random selection of a problem
context, semantic_type. The value of semantic_type determines the possible values for re-
sources, values, and some template text, ensuring that generated text is context-consistent and gram-
matically correct. An initial batch of available contexts covers: Office supply budgeting, Household
budgeting, Horticulture, Cybersecurity, staffing and management, Military force structure, Person-
nel management, Personal diet, and Macronutrient intake.

A natural language statement is selected from a set of alternative wordings to describe the problem
context, which places the agent in the role of the solver. Variables and resources are assigned labels
selected at random from sets of available labels for the selected context. Statements describing
resource costs for each variable are generated after randomly selecting from a set of context-relevant
sentence templates, before substitution with the corresponding variable names, resource names, and
resource costs. For any non-negativity constraints, statements are generated by randomly selecting
from multiple sets of sentence fragments and joining them to produce a single grammatically-correct
sentence asserting non-negativity. Upper- and lower-bound constraint statements are then generated
by random selection from a context-relevant set of available sentence templates, followed by term
substitution with the relevant resource and variable names. We consider proportion constraints to be
part of the lower-bound constraints.

We denote by int_type whether the optimization problem is integer, mixed-integer, or linear.
int_type is a randomly determined by two initializing parameters that partition the unit interval.
This was done so that users may opt to force a particular problem type if they so desired. The
int_type determines the statements that can be generated where the permissible solution value
types are described. As with other methods, these statements are formed by combining selecting
randomly from multiple sets of sentence fragments and joining them to produce grammatically-
correct sentences conditioned on the int_t ype. Similarly, the natural language objective function
statement is generated by first iterating through the symbolic objective function, and substituting
variables, values, and operators with their previously selected semantic equivalents in natural lan-
guage, before randomly selecting from a set of sentence fragment templates that are used to construct
a full natural language statement. Finally, we collect all of the statements generated by the above
methods are collected into a single problem statement.

We illustrate this process with the following example. Consider the case of a 2-variable 1-resource
integer optimization problem with a goal of maximization, and objective function: 2 - g + 3 - 1 +
o - x1 and three constraints:
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1. (E()ZO
2. 213120
3. 29+ 21 <10

Once the symbolic representation of the problem has been generated, the context diet 0 (personal
diet) is selected at random.

_select_semantic_problem(

em_options

2mantic_problem_optio

Figure 12: Method to select semantic_type.

A dictionary mapping variables to names, sym_vars, is constructed by selecting a random sample
of size num_vars from the dietO context-relevant list of possible variable names.
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Figure 13: A portion of the possible_semantic_vars list.

Figure 14: Method to produce the sym_vars dict.
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For our example, suppose that apples” and “bananas” have been randomly selected. Likewise,
a dictionary mapping resources to names, nl_resources_dict, is constructed by selecting a
random sample of size num_resources from the dietO context-relevant list of possible resource
names.

Figure 15: A portion of the possible_resources list.

nple(possible_resources

Figure 16: Method to produce nl_resources_dict.

For our example, say we select "milligrams of calcium”. Next we want to generate value statements
for each variable and resource. We randomly select a template from available options for each
resource and input names and values to produce the full statements.
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weigh

weight r urce_name
weight} {resource_name

weight resource_name

Figure 17: Weight statement options for milligrams of calcium.

One possible output would be: “apples each contain 2 milligrams of calcium.” Non-negativity con-
straints are then generated by selecting sentence fragments, joining them, and inputting variable
names.
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Figure 18: Non-negativity statement segment construction.
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For instance, this could produce the statement: ~You must use no less than zero apples.” Upper- and
lower-bound statements are assembled by inputting the appropriate values into templates.

ent = random.cho

bound

Figure 19: Upper-bound statement segment construction.

In the instance of our example upper bound constraint, this may generate the statement ”You must
get at most 10 milligrams of calcium from apples and bananas.” Integer constraints will then be
generated for each variable by joining sentence fragment templates with resource names, similar to
non-negativity constraints.
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aint[

random.rando

impe

Figure 20: Integer type statement segment construction.
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This may produce the statement: ”You must use an integer amount of apples.” For the objective
function, we again select randomly from multiple sentence fragments to start the statement, then
loop over the terms in the objective function to produce a natural language representation of the
entire function and join that to our initial sentence fragment to produce the full statement.

_gen_objective_function_statement(

t = rando

ling_op

iling_o

(trailing_operator)] +

Figure 21: Method to produce natural language objective function statements.

For instance: ”Your overall goal is to maximize 2 times the number of apples plus three times the
number of bananas plus apples times the number of bananas.” Lastly, all of the above will be joined
into a singular statement. This begins by selecting a context-relevant initial problem statement
establishing context.
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.semantic_problem_type ==

problem_statement = random.choice([

Figure 22: Problem statement initial sentence list.

Variable and resource statements are then appended iteratively.

nt += random.choice([

problem

probl nt += random.choice([

+ random.choice([

Figure 23: Problem statement initial sentence list.

And finally, each constraint statement and the objective statement are simply appended to the
problem_statement string.
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proble nent += random.choice([

proble ment += random.choice([

+ random.choice([

+

Figure 24: Problem statement initial sentence list.

The fully constructed problem statement is then saved to the instantiated Problem object. In our
example case, this would evaluate to: I need to optimize my nutrient intake. My diet must consist
entirely of apples and bananas. I need to optimize my intake of milligrams of calcium. Apples
contain 2 milligrams of calcium. Bananas contain 3 milligrams of calcium. You must use no less
than zero apples. You must use a positive number of bananas. You must get at most 10 milligrams
of calcium from apples and bananas. You must use an integer amount of apples. You must use a
whole number of bananas. Your overall goal is to maximize 2 times the number of apples plus three
times the number of bananas plus apples times the number of bananas.”

E ADDITIONAL EXPERIMENTAL STATISTICS

Commenting first on Table [T} we display a model and prompt breakdown across five categories:
end-to-end Accuracy, Adjusted end-to-end Accuracy, Compilation Error, Runtime Error, and Ad-
justed Runtime Error. The adjusted end-to-end Accuracy and run time scores apply to allow model
outputs after performing a regex search to identify if there was a failure to import Gurobi properly,
which required import gurobipy. Failures frequently resulted from attempts to run the incor-
rect expression: import gurobi. This happened overwhelmingly with LLaMa-4, and presents

Table 3: Summary of problems generated by integer, mixed integer, and continuous linear &
quadratic programs

ILP IQP MILP MIQP LP QP
3 1

med Vars 4 4 4 4

Max Vars 8 7 9 7 9 8
med Res 2 2 2 2 2 2
Max Res 5 5 5 5 5 5

med Cons 33 27 32 32 32 36
Max Cons | 1448 1021 1994 635 2009 1977
Feas 79 12 81 16 164 22
Total 184 47 198 113 372 86
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Figure 25: Summary results for each model on NL4OPT dataset vs NLMOptimizer dataset.

a curiosity more than anything, as even after this adjustment, LLaMa-4 overwhelmingly suffered
from runtime errors. LLaMa-4 also overwhelmingly produced compilation errors when compared
with the other models. Successful solutions include both cases where the model produced correct
executable Gurobi code and cases where the model correctly identified the problem as infeasible.

In all Figures where models are end-labeled by *_op_result’, we mean to indicate model results for
the original problems produced for these experiments, with the additional end-label of *_wsym’
indicating the expanded prompting with additional prompting for symbolic representation.
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Figure 26: End-to-End accuracy scores by model and problem type.

Overall, the poor performance of LLaMa-4 applied to both datasets and both prompts. More in-
teresting for our purposes is the collapse in performance for the other models when tasked with
answering the NLMOptimizer problems. In Tables [ to[I0] we display the end-to-end Accuracy,
Compilation Error, and Runtime Error by each model, prompt, and problem type. We collectively
visualize the end-to-end Accuracy, Compilation Error, and Runtime Errors across model, prompt,
and model type in Figures[26)-[31]

We consistently observe that the model performance collapses for any problem that is not a standard
linear program. Most especially, we observe that even Gemini-1.5 suffers on the linear programs
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Figure 27: Compilation error scores by model and problem type.
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Figure 28: Runtime error scores by model and problem type.
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Figure 29: End-to-end accuracy scores by model with additional prompt and problem type.
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Figure 30: Compilation error scores by model with additional prompt and problem type.
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Figure 31: Runtime error scores by model with additional prompt and problem type.

Table 4: Problem type statistics for LLaMa-3.3 and NLMOptimizer problems

ACC CE RE
iip | 0043 0016 0.620
milp | 0.000 0.010 0.530
Ip | 0.118 0024 0565
igp | 0.021 0.000 0.617
migp | 0.009 0.009 0.628
gp | 0.023 0.000 0.709

Table 5: Problem type statistics for LLaMa-4 and NLMOptimizer problems

ACC CE RE
iip | 0.000 0.152 0.837
milp | 0.000 0.131 0.869
Ip | 0022 0126 0.849
igp | 0.000 0.043 0.894
migp | 0.000 0.124 0.850
gp | 0.000 0.070 0.895

Table 6: Problem type statistics for Gemini and NLMOptimizer problems

ACC CE RE
ilp 0.114 0.016 0.141
milp | 0.020 0.010 0.091
Ip 0.341 0.024 0.089
iqp 0.064 0.000 0.106
miqp | 0.035 0.009 0.062
qp 0.023  0.000 0.140
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Table 7: Problem type statistics for GPT-OSS and NLMOptimizer problems

ACC CE RE
ilp | 0.027 0.027 0207
milp | 0.000 0.030 0.227
Ip | 0065 0.046 0.226
igp | 0.000 0.000 0.106
migp | 0.000 0.053 0.150
qp | 0.023 0.035 0267

Table 8: Problem type statistics for LL.aMa-3.3 and NLMOptimizer problems and expanded prompt

ACC CE RE
ilp | 0.022 0016 0.788
milp | 0.000 0.010 0.818
Ip 0.046 0.024 0.785
igp | 0.000 0.000 0.851
migp | 0.009 0.009 0.858
qQp | 0.012 0.000 0.942

Table 9: Problem type statistics for LLaMa-4 and NLMOptimizer problems and expanded prompt

ACC CE RE
ilp | 0.005 0.152 0.42
milp | 0.000 0.131 0.869
Ip 0.000 0.121 0.879
igp | 0.000 0.043 0.936
migp | 0.000 0.115 0.885
qQp | 0.000 0.070 0.930

Table 10: Problem type statistics for Gemini and NLMOptimizer problems and expanded prompt

ACC CE RE
ilp | 0.076 0.016 0.098
milp | 0.005 0.010 0.066
Ip | 0341 0024 0.073
igp | 0.021 0.000 0.043
migp | 0.009 0.009 0.062
qp | 0.023 0.000 0.047

Table 11: Problem type statistics for GPT-OSS and NLMOptimizer problems and expanded prompt

ACC CE RE
ilp | 0.033 0016 0.147
milp | 0.010 0.010 0.167
Ip 0.188 0.040 0.121
igp | 0.021 0.000 0.106
migp | 0.018 0.027 0.124
Q| 0012 0.035 0.174
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generated under the NLMOptimizer framework, with end-to-end Accuracy below .35. Gemini-1.5
also managed to be inaccurate, but not due to code failure, whereas the LLaMa models both had high
incidence rates of run time errors, with LL.aMa-4 also suffering from high compilation errors above
10% for every problem type but quadratic programs and integer quadratic programs. Conversely, the
LLaMa models consistently had trouble with all forms of quadratic programs, with Runtime Errors
above 80% as seen in Figure 28]

We then consider a granular breakdown across our three categories by the number of problem vari-
ables and problem types, with each model and prompt pairing being visualized in its own respective
figure (across Figures @}{TT). Specifically, in Figure[d] we observe that LLaMa-3.3 performs poorly
for all problem types, with scores generally worsening as the number of variables increases across
problem types, although curiously end-to-end Accuracy scores are parabolic for classical linear pro-
grams, and bottom out at 5 variables. In contrast, Figure[8|shows that the end-to-end Accuracy does
not exhibit this parabola when expanding the prompt to include symbolic reasoning. The general
trend for both prompts is that compile and runtime errors increase as the number of variables in-
creases across all problem types. Figures [5] and [9] show that LLaMa-4 remained a poor performer
across all categories and all problem types, under-performing even in comparison to its own prede-
cessor model.

Token limitation for LLaMa-3.3 ruled out all but the simplest linear and quadratic programs when-
ever the full conversation history was provided as context. We also found that the GPT-OSS-120B
model performed poorly on both datasets, but demonstrated significant improvements when given
additional prompting to follow the symbolic interchange format. Removing either GPT-OSS-120B
or the Gemini model eliminated the significance of the E2a results, which were otherwise insignifi-
cant with respect to the two LLaMa models.

We breakdown Gemini-1.5’s performance with respect to the number of variables in Figures [6] and
[IT} Again, general trends indicate that performance declines as problem complexity increases across
all problem types. Linear programs remain the best performers. Curiously, Gemini-1.5’s perfor-
mance on integer linear programs shot up from 0% to almost 50% when the number of variables
increased from 7 to 8, despite having bottomed out at 6 variables. Crucially, we witnessed that
runtime errors increased in proportion to the number of variables across all models.

Finally, we also broke down the performance of each model and prompt pair according to whether
the problem was feasible by problem type in Figures [32]-[38] We generally observed that models
performed more ’accurately’ when the problem was unsolvable than when it was solvable across
all problem types. We suspect this can be attributed to our measurement method, which simply
examined that the output of the problem matched the corresponding Problem output; it is infinitely
easier to make a problem infeasible. Consider an LLM Service incorrectly recording one constraint
as another- both the correct constraint and the incorrect constraint happen to render a problem de-
scription infeasible. In such a case, the LLM Service might get the correct answer unintentionally,
despite incorrectly formalizing the problem.

ACC CE
0.025
0.200 4

01759 0.020 -

0.150 4

0.125 0.015 4§
Solvability

mm solvable
B unsolvable

Value

0.100
0.010 4
0.075 +
0.050 4
0.005 A

0.025 1

0.000 - 0.000 - .
ilp mip Ip igp  migp  ap ilp milp Ip igp  migp  ap ip milp Ip igp migp  op
Problem Type Problem Type Problem Type

Figure 32: Distribution of scores for LL.aMa-3.3 according to problem feasibility.
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Figure 37: Distribution of scores for LLaMa-4 according to problem feasibility.

Figure 38: Distribution of scores for Gemini according to problem feasibility.
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Figure 39: Distribution of scores for GPT-OSS according to problem feasibility.
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