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Abstract

Decision trees are a popular tool in machine learn-
ing and yield easy-to-understand models. Several
techniques have been proposed in the literature
for learning a decision tree classifier, with differ-
ent techniques working well for data from differ-
ent domains. In this work, we develop approaches
to design decision tree learning algorithms given
repeated access to data from the same domain.
We propose novel parameterized classes of node
splitting criteria in top-down algorithms, which
interpolate between popularly used entropy and
Gini impurity based criteria, and provide theoret-
ical bounds on the number of samples needed to
learn the splitting function appropriate for the data
at hand. We also study the sample complexity of
tuning prior parameters in Bayesian decision tree
learning, and extend our results to decision tree
regression. We further consider the problem of
tuning hyperparameters in pruning the decision
tree for classical pruning algorithms including min-
cost complexity pruning. We also study the inter-
pretability of the learned decision trees and intro-
duce a data-driven approach for optimizing the
explainability versus accuracy trade-off using deci-
sion trees. Finally, we demonstrate the significance
of our approach on real world datasets by learning
data-specific decision trees which are simultane-
ously more accurate and interpretable.

1 INTRODUCTION

Decision trees are ubiquitous, with applications in oper-
ations research, management science, data mining, and
machine learning. They are easy to use and understand
models that explicitly include the decision rules used
in making predictions. Each decision rule is a simple

comparsion of a real-valued attribute to a threshold or
a categorical attribute against a candidate set of values.
Given their remarkable simplicity, decision trees are widely
preferred in applications where it is important to justify
algorithmic decisions with intuitive explanations Rudin
[2018]. However, decades of research on decision trees
has resulted in a large suite of candidate approaches for
building decision trees Breiman et al. [1984], Mingers
[1987], Quinlan [1993, 1996], Kearns and Mansour [1996],
Mansour [1997], Maimon and Rokach [2014]. This raises an
important question: how should one select the best approach
to build a decision tree for the relevant problem domain?

Several empirical studies have been performed comparing
various ways to build decision trees Mingers [1989a,b], Es-
posito et al. [1997], Murthy [1998]. Current wisdom from
the literature dictates that for any problem at hand, one
needs a domain expert to try out, compare and tune vari-
ous methods to build the best decision trees for any given
problem domain. For instance, the popular Python library
Scikit-learn Pedregosa et al. [2011] implements both Gini
impurity and entropy as candidate ‘splitting criteria’ (a cru-
cial component in building the decision trees top-down by
deciding which node to split into child nodes), and yet theory
suggests another promising candidate Kearns and Mansour
[1996] that achieves smaller error bounds under the Weak
Hypothesis Assumption1. It is therefore desirable to deter-
mine which approach works better for the data coming from
a given domain. With sufficient data, can we automate this
tedious manual process?

In this work we approach this crucial question, and propose
ways to build more effective decision trees automatically.
Our results show provable learning theoretic guarantees
and select methods over larger search spaces than what
human experts would typically explore. For example,
instead of comparing a small finite number of splitting

1an a priori assumption on the target function. Roughly speak-
ing, it means that the decision tree node functions are already
slightly correlated with the target function.
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criteria, we examine learnability over continuously infinite
parameterized families that yield more effective decision
tree learning algorithms.

We consider the problem where the learner has access to
multiple related datasets D1, . . . , DN coming from the
same problem domain (given by a fixed but unknown distri-
bution D), and the goal is to design a decision tree learning
algorithm that works well over the distribution D using
as few datasets (N , the sample complexity) as possible.
This algorithm design problem is typically formulated as
the selection of a hyperparameter from an infinite family.
Typically finding the best hyperparameters even on a single
problem sample is tedious and computationally intensive, so
we would like to bound the number of samples over which
we should optimize them, while learning parameters that
generalize well over the distribution generating the problem
samples. We take steps towards systematically unifying,
automating and formalizing the process of designing
decision tree learning algorithms, in a way that is adaptive
to the data domain.

1.1 OUR CONTRIBUTIONS

We formulate the problem of designing a decision tree learn-
ing algorithm as a hyperparameter selection problem over
multiple problem instances coming from the same domain.
Under this formulation, we study the sample complexity, i.e.
the number of problem instances needed to learn a provably
good algorithm (hyperparameter) under the statistical
learning setting (meaning problem instances are drawn from
a fixed but unknown distribution) from several different
design perspectives important in the construction of
decision trees. A key technical challenge is the non-linearity
of boundaries of the piecewise structured dual loss function.

• We introduce a novel family of node splitting criterion
called (α, β)-Tsallis entropy criterion, which contains two
tunable parameters, and includes several popular node
splitting criteria from the literature including the entropy-
based ID3/C4.5 Quinlan [1986, 1993] and Gini impurity
based CART Breiman et al. [1984]. We bound the sample
complexity of provably tuning these hyperparameters in
top-down learning algorithms.

• We further study tuning of parameters in Bayesian deci-
sion tree learning algorithms used in generating the prior
distribution. We also study a parameterized family for
node splitting for regression trees and bound the sample
complexity of tuning the parameter.

• We next consider the problem of learning the pruning algo-
rithm used in constructing the decision tree. We show how
to tune parameters in popular algorithms including the
complexity parameter α̃ in the Minimal Cost-Complexity
Pruning algorithm, and again obtain sample complexity
bounds. We also study the sample complexity of tuning

pessimistic error pruning methods, which are computa-
tionally faster.

• We consider the problem of optimizing the explainability-
accuracy trade-off in the design of decision tree learning
algorithms. Here we consider tuning splitting and pruning
parameters simultaneously when growing a decision tree
to size t and pruning it down to size t′ ≤ t, while minimiz-
ing an objective that incorporates explainability as well
as accuracy. Our work is the first to study explainability
from a data-driven design perspective.

• We perform experiments to show the practical significance
and effectiveness of tuning these hyperparameters on real
world datasets.

1.2 RELATED WORK

Decision trees Breiman et al. [1984] predate the develop-
ment of deep learning based methods, but continue to be
an extremely popular tool for data analysis and learning
simple explainable models. Recent interest in developing
interpretable ‘white-box’ models due to concerns around de-
ployment of deep learning in sensitive and critical decision-
making have led to a renewed interest in the study of deci-
sion trees Rudin [2019], Loyola-Gonzalez [2019], Molnar
[2019]. However, the basic suite of tools for the design of
decision trees has seen little advancement over the decades.

Building and pruning decision trees. Typically, decision
trees are built in two stages. First the tree is grown in a
top-down fashion by successively ‘splitting’ existing nodes
according to some splitting criterion. Numerous different
methods to select which node to split and how to split have
been proposed in the literature Breiman et al. [1984], Quin-
lan [1986, 1993], Kearns and Mansour [1996], Larose and
Larose [2014]. The second stage involves pruning the tree
to avoid overfitting the training set, and again a variety of
approaches are known Breiman et al. [1984], Bohanec and
Bratko [1994], Mingers [1987], Quinlan [1987], Mansour
[1997]. Furthermore, empirical works suggest that the appro-
priate method to use, for both splitting and pruning, depends
on the data domain at hand Mingers [1989a,b]. The task of
selecting the best method or tuning the hyperparameters for
a method is left to domain expert. Recent work has devel-
oped techniques for computing the optimal decision trees by
using branch-and-bound and dynamic programming based
techniques Hu et al. [2019], Lin et al. [2020], Demirović
et al. [2022]. The key idea is to reduce the search space
by tracking bounds on the objective value. However, these
approaches are computationally more expensive than the
classical greedy methods.

Tsallis entropy. Often in modern applications one needs
to solve the classification problem over repeated data in-
stances from the same problem domain. In this work, we
take steps to automate the process of algorithm selection for
decision tree learning using repeated access to data from



the same domain, and also develop more powerful methods
for designing decision trees. Our approach is based on Tsal-
lis entropy introduced in the context of statistical physics
Tsallis [1988], which has been found to be variously useful
in machine learning, for example, as a regularizer in rein-
forcement learning Chow et al. [2018], Zimmert and Seldin
[2021]. Khodak et al. [2023] study tuning of Tsallis entropy
in an online meta learning setting for adversarial bandit al-
gorithms. Tsallis entropy based splitting criteria have been
empirically studied in the context of decision trees Wang
et al. [2016]. We provide a novel two-parameter version that
unifies various previously proposed metrics, and provide
principled guarantees on the sample complexity of learning
the parameters from data.

Data-driven algorithm design is a framework for the design
of algorithms using machine learning in order to optimize
performance over problems coming from a common prob-
lem domain Gupta and Roughgarden [2016], Balcan [2020].
The approach has been successful in designing more ef-
fective algorithms for a variety of combinatorial problems,
ranging from those encountered in machine learning to those
in mechanism design Balcan et al. [2018b], Morgenstern
and Roughgarden [2015]. The basic premise is to design
algorithms for typical inputs instead of worst-case inputs by
examining repeated problem instances. In machine learning,
this can be used to provably tune hyperparameters Balcan
and Sharma [2021], Blum et al. [2021], Bartlett et al. [2022],
Balcan et al. [2022a] as opposed to employing heuristics like
grid search or random search Bergstra and Bengio [2012]
for which formal global-optimality guarantees are typically
not known. A key idea is to treat the hyperparameter tuning
problem as a statistical learning problem with the parameter
space as the hypothesis class and repeated problem samples
as data points. Bounding the statistical complexity of this hy-
pothesis class implies sample complexity bounds for hyper-
parameter tuning using classic learning theory. The frame-
work has formal connections with meta-learning as shown
by Balcan et al. [2021b]. Previous work has already shown
how to use data-driven algorithm design to improve the the
adversarial robustness of non-Lipschitz networks Balcan
et al. [2023a] and the running time of branch-and-bound
search algorithms Balcan et al. [2018a, 2022b, 2023b]. Gen-
eral techniques have been developed in the latter for provid-
ing the sample complexity of tuning a linear combination of
variable selection policies in branch-and-bound, and special
cases of "path-wise" node selection policies have been stud-
ied. In contrast, our work provides new technical insights
for node selection policies relevant for decision tree learning
which do not satisfy the previously studied path-wise proper-
ties and involve a more challenging non-linear interpolation.
Prior work Balcan et al. [2021c] obtains a general result
for tree search without any path-wise assumptions, but still
require a linear interpolation of selection policies.

2 PRELIMINARIES AND DEFINITIONS

Let [k] denote the set of integers {1, 2, . . . , k}. A (super-
vised) classification problem is given by a labeled dataset
D = (X, y) over some input domain X ∈ Xn and
y ∈ Yn = [c]n where c denotes the number of distinct
classes or categories. Let D be a distribution over classifi-
cation problems of size n.2 We will consider parameterized
families of decision tree learning algorithms, parameterized
by some parameter ρ ∈ P ⊆ Rd and access to datasets
D1, . . . , DN ∼ DN . We do not assume that individual data
points (Xi, yi) are i.i.d. in any dataset Dj .

We consider a finite node function class F consisting of
boolean functions X → {0, 1} which are used to label
internal nodes in the decision tree, i.e. govern given any
data point x ∈ X whether the left or right branch should
be taken when classifying x using the decision tree. Any
given data point x ∈ X corresponds to a unique leaf node
determined by the node function evaluations at x along some
unique root-to-leaf path. Each leaf node of the decision tree
is labeled by a class in [c]. Given a dataset (X, y) this leaf
label is typically set as the most common label for data
points x ∈ X which are mapped to the leaf node.

We denote by Tl→f the tree obtained by splitting the leaf
node l, which corresponds to replacing it by an internal node
labeled by f and creating two child leaf nodes. We consider
a parameterized class of splitting criterion GP over some pa-
rameter space P consisting of functions gρ : [0, 1]c → R≥0

for ρ ∈ P . The splitting criterion governs which leaf to
be split next and which node function f ∈ F to be used
when building the decision tree using a top-down learning
algorithm which builds a decision tree by successively split-
ting nodes using gρ until the size equals input tree size t.
More precisely, suppose w(l) (the weight of leaf l) denotes
the number of data points in X that map to leaf l, and sup-
pose pi(l) denotes the fraction of data points labeled by
y = i ∈ [c] among those points that map to leaf l. The
splitting function over tree T is given by

Gρ(T ) =
∑

l∈leaves(T )

w(l)gρ ({pi(l)}ci=1) ,

and we build the decision tree by successively splitting
the leaf nodes using node function f which cause the
maximum decrease in the splitting function. For exam-
ple, the information gain criterion may be expressed using
gρ({pi(l)}ci=1) = −

∑c
i=1 pi log pi.

Algorithm 1 summarizes this well-known general paradigm.
We denote the tree obtained by the top-down decision tree
learner on dataset D as TF,ρ,t(D). We study the 0-1 loss of
the resulting decision tree classifier. If T (x) ∈ [c] denotes

2For simplicity of technical presentation we assume that the
dataset size n is fixed across problem instances, but our sample
complexity results hold even without this assumption.



Algorithm 1 Top-down decision tree learner (F , gρ, t)
Input: Dataset D = (X, y)
Parameters: Node function class F , splitting criterion gρ ∈
GP , tree size t
Output: Decision tree T

1: Initialize T to a leaf node labeled by most frequent label
y in D.

2: while T has at most t internal nodes do
3: l∗, f∗ ← argminl∈leaves(T ),f∈FGρ(Tl→f )
4: T ← Tl∗→f∗

5: return T

the prediction of tree T on x ∈ X , we define the loss on
dataset D(X, y) as

L(T,D) :=
1

n

n∑
i=1

I[T (Xi) ̸= yi],

where I[·] denotes the 0-1 valued indicator function.

3 LEARNING TO SPLIT NODES

In this section, we study the sample complexity of learning
the splitting criteria. Given a discrete probability distribution
P = {pi} with

∑c
i=1 pi = 1, we define (α, β)-Tsallis

entropy as

gTSALLIS
α,β (P ) :=

C

α− 1

1−

(
c∑

i=1

pαi

)β
 ,

where C is a normalizing constant (does not affect Algo-
rithm 1), α ∈ R+, β ∈ Z+. β = 1 corresponds to standard
Tsallis entropy Tsallis [1988]. For example, α = 2, β = 1
corresponds to Gini impurity, α = 1

2 , β = 2 corresponds to
the Kearns and Mansour criterion (using which error ϵ can
be achieved with trees of size poly(1/ϵ), Kearns and Man-
sour [1996]) and limα→1 g

TSALLIS
α,1 (P ) yields the (Shannon)

entropy criterion. We omit the definitions of these well-
known criteria (see Appendix B, proof of Proposition 3.1).
Formally, we show in the following proposition that (α, β)-
Tsallis entropy recovers three popular splitting criteria for
appropriate values of α, β.

Proposition 3.1. The splitting criteria
gTSALLIS
2,1 (P ), gTSALLIS

1
2 ,2

(P ) and limα→1 g
TSALLIS
α,1 (P ) cor-

respond to Gini impurity, the Kearns and Mansour [1996]
objective and the entropy criterion respectively.

We further show that the gTSALLIS
α,β (P ) family of splitting

criteria enjoys the property of being permissible splitting
criteria (in the sense of Kearns and Mansour [1996]) for any
α ∈ R+, β ∈ Z+, α /∈ (1/β, 1), which implies useful de-
sirable guarantees (e.g. ensuring convergences of top-down

learning) for the top-down decision tree learner Kearns and
Mansour [1996], De Rosa and Cesa-Bianchi [2015].

Proposition 3.2. (α, β)-Tsallis entropy has the following
properties for any α ∈ R+, β ∈ Z+, α /∈ (1/β, 1)

1. (Symmetry) For any P = {pi}, Q = {pπ(i) for some
permutation π over [c]}, gTSALLIS

α,β (Q) = gTSALLIS
α,β (P ).

2. gTSALLIS
α,β (P ) = 0 at any vertex pi = 1, pj = 0 for all
j ̸= i of the probability simplex P .

3. (Concavity) gTSALLIS
α,β (aP+(1−a)Q) ≥ agTSALLIS

α,β (P )+

(1− a)gTSALLIS
α,β (Q) for any a ∈ [0, 1].

The above properties ensure that (α, β)-Tsallis entropy is
a permissible splitting criterion whenever α /∈ (1/β, 1).
This property makes the (α, β)-Tsallis entropy an interest-
ing parametric family to study and select the best splitting
criterion form, but is not needed for establishing our sample
complexity results.

We consider α ∈ R+ and β ∈ [B] for some positive integer
B, and observe that several previously studied splitting cri-
teria can be readily obtained by setting appropriate values
of parameters α, β. We consider the problem of tuning the
parameters α, β simultaneously when designing the split-
ting criterion, given access to multiple problem instances
(datasets) drawn from some distribution D. The goal is to
find parameters α̂, β̂ based on the training samples, so that
on a random D ∼ D, the expected loss

ED∼DL(TF,(α̂,β̂),t, D)

is minimized. We will bound the sample complexity of
the ERM Empirical Risk Minimization (ERM) principle,
which given N problem samples D1, . . . , DN computes
parameters α̂, β̂ such that

α̂, β̂ = argminα>0,β∈[B]

N∑
i=1

L(TF,(α,β),t, Di).

We obtain the following guarantee on the sample complexity
of learning a near-optimal splitting criterion. The overall
argument involves an induction on the size t of the tree
(which has appeared in several prior works Megiddo [1978],
Balcan et al. [2018a, 2021c, 2022b]), coupled with a count-
ing argument for upper bounding the number of parameter
sub-intervals corresponding to different behaviors of Algo-
rithm 1 given a parameter interval corresponding to a fixed
partial tree corresponding to an intermediate stage of the
algorithm.

Theorem 3.3. Suppose α > 0 and β ∈ [B]. For any ϵ, δ >
0 and any distribution D over problem instances with n ex-
amples, O( 1

ϵ2 (t(log |F|+log t+c log(B+c))+log 1
δ )) sam-

ples drawn fromD are sufficient to ensure that with probabil-
ity at least 1−δ over the draw of the samples, the parameters



α̂, β̂ learned by ERM over the sample have expected loss
that is at most ϵ larger than the expected loss of the best pa-
rameters α∗, β∗ = argminα>0,β≥1ED∼DL(TF,(α̂,β̂),t, D)
over D. Here t is the size of the decision tree, F is the node
function class used to label the nodes of the decision tree
and c is the number of label classes.

Proof Sketch. Our overall approach is to analyze the struc-
ture of the dual class loss function, that is the loss as a
function of the hyperparameters α, β for a fixed problem
instance (X, y). Based on this structure, we give a bound
on the pseudodimension of the loss function class which
implies a bound on the sample complexity using classic
learning theoretic results. In more detail, we show that the
loss function is piecewise constant, with a bounded number
of pieces by analysing the behavior of Algorithm 1 as the
parameters α, β are varied. Given this structure, the sample
complexity results follow from previously shown bounds
on the pseudo-dimension (e.g. Lemma 3.8 of Balcan et al.
[2021a]).

Since the loss is completely determined by the final decision
tree TF,(α,β),t, we seek to bound the number of different
algorithm behaviors as one varies the hyperparameters α, β
in Algorithm 1. If the number of internal nodes is τ < t
during the top-down construction, there are (τ + 1)|F|
choices for (l, f) in Line 3 of Algorithm 1. For any of(
(τ+1)|F|

2

)
pair of candidates (l1, f1) and (l2, f2), the pref-

erence is governed by the splitting functions Gα,β(Tl1→f1)
and Gα,β(Tl2→f2). This preference flips across bound-
ary given by

∑
l∈leaves(Tl1→f1

) w(l)gα,β({pi(l)}) =∑
l∈leaves(Tl2→f2

) w(l)gα,β({pi(l)}). We use the multino-
mial theorem and Rolle’s Theorem to give a bound O((β +
c)c) on the number of distinct solutions of the boundary
condition for a fixed β. Over t rounds, this corresponds to at
most O(Πt

τ=1|F|2τ2(β + c)c) critical points across which
the algorithmic behaviour (sequence of choices of node
splits in Algorithm 1) can change as α is varied for a fixed β.
Adding up over β ∈ [B], we get at most O(B|F|2tt2t(B +
c)ct) critical points, which implies a bound of O(t(log |F|+
log t + c log(B + c)) on the pseudodimension of the loss
function class. This in turn implies the claimed sample com-
plexity guarantee using standard learning theoretic results
Anthony and Bartlett [1999], Balcan [2020].

Observe that parameter α is tuned over a continuous domain
and our near-optimality guarantees hold over the entire con-
tinuous domain (as opposed to say over a finite grid of α
values). Our results have implications for cross-validation
since typical cross-validation can be modeled via a distri-
bution D created by sampling splits from the same fixed
dataset, in which case our results imply how many splits
are sufficient to converge to within ϵ error of best the pa-
rameter learned by the cross validation procedure. Similar
convergence guarantees have been shown for tuning the

regularization coefficients of the elastic net algorithm for
linear regression via cross-validation Balcan et al. [2022a,
2023c]. Our setting is of course more general than just cross
validation and includes the case where the different datasets
come from related similar tasks for which we seek to learn
a common good choice of hyperparameters.

While (α, β)-Tsallis entropy is well-motivated as a parame-
terized class of node splitting criteria as it includes several
previously studied splitting criteria, and generalizes the Tsal-
lis entropy which may be of independent interest in other
applications, it involves simulatenous optimization of two
parameters which can be computationally challenging. To
this end, we define the following single parameter family
which interpolates known node splitting methods:

gγ({pi}) := C (Πipi)
γ
,

where γ ∈ (0, 1] and C is some constant. For binary classi-
fication, the setting γ = 1

2 and γ = 1 correspond to Kearns
and Mansour [1996] and Gini impurity respectively, for ap-
propriate choice of C. It is straightforward to verify that
gγ is permissible for all γ ∈ (0, 1], i.e. is symmetric, zero
at simplical vertices and concave. We show the following
improved sample complexity guarantee for tuning γ (proof
in Appendix B). Note that this family is not a special case
of (α, β)-Tsallis entropy, but contains additional splitting
functions which may work well on given domain-specific
data. Also, since it has a single parameter, it can be easier
to optimize efficiently in practice.

Theorem 3.4. Suppose γ ∈ (0, 1]. For any ϵ, δ > 0 and
any distribution D over problem instances with n examples,
O( 1

ϵ2 (t(log |F| + log t) + log 1
δ )) samples drawn from D

are sufficient to ensure that with probability at least 1− δ
over the draw of the samples, the parameter γ̂ learned by
ERM over the sample is ϵ-optimal, i.e. has expected loss at
most ϵ larger than that of the optimal parameter over D.

3.1 BAYESIAN DECISION TREE MODELS

Several Bayesian approaches for building a decision tree
have been proposed in the literature Chipman et al. [1998,
2002], Wu et al. [2007]. The key idea is to specify a prior
which induces a posterior distribution and a stochastic
search is performed using Metropolis-Hastings algorithms
to explore the posterior and find an effective tree. We will
summarize the overall approach below and consider the
problem of tuning parameters in the prior, which control the
accuracy and size of the tree. Unlike most of prior research
on data-driven algorithm design which study deterministic
algorithms, we will analyze the learnability of parameters in
a randomized algorithm. One notable exception is the study
of random initialization of centers in k-center clustering via
parameterized Llyod’s families Balcan et al. [2018b].



σ, ϕ-Bayesian algorithm family. Let F = (f1, . . . , ft)
denote the node functions at the nodes of the decision tree
T . The prior p(F, T ) is specified using the relationship

p(F, T ) = p(F |T )p(T ).

We start with a tree T consisting of a single root node. For
any node τ in T , it is split with probability pSPLIT(τ) = σ(1+
dτ )

−ϕ, and if split, the process is repeated for the left and
right children. Here dτ denotes the depth of node τ , and σ, ϕ
are hyperparameters. The size of generated tree is capped to
some upper bound t. Intuitively, σ controls the size of the
tree and ϕ controls its depth. At each node, the node function
is selected uniformly at random from F . This specifies the
prior p(T ). The conjugate prior for the node functions F =
(f1, . . . , ft) is given by the standard Dirichlet distribution
of dimension c− 1 (recall c is the number of label classes)
with parameter a = (a1, . . . , ac), ai > 0. Under this prior,
the label predictions are given by

p(y | X,T ) =

(
Γ(
∑

i ai)

ΠiΓ(ai)

)t t∏
j=1

ΠiΓ(nji + ai)

Γ(nj +
∑

i ai)
,

where nji =
∑

k I(yjk = i) counts the number of data-
points with label i at node j, nj =

∑
i nji and i = 1, . . . , c.

a is usually set as the vector (1, . . . , 1) which corresponds to
the uniform Dirichlet prior. Finally the stochastic search of
the induced posterior is done using the Metropolis-Hastings
(MH) algorithm for simulating a Markov chain Chipman
et al. [1998]. Starting from a single root node, the initial tree
T 0 is grown according to the prior p(T ). Then to construct
T i+1 from T i, a new tree T ∗ is constructed by splitting
a random node using a random node function, pruning a
random node, reassigning a node function or swapping the
node functions of a parent and a child node. Then we set
T i+1 = T ∗ with probability q(T i, T ∗) according to the
posterior p(y | X,T ), or keep T i+1 = T i otherwise. The
algorithm outputs the tree Tω where ω is typically a fixed
large number of iterations (say 10000) to ensure that the
search space is explored sufficiently well.

Hyperparameter tuning. We consider the problem of
tuning of prior hyperparameters σ, ϕ, to obtain the best ex-
pected performance of the algorithm. To this end, we define
z = (z1, . . . , zt−1) ∈ [0, 1]t−1 as the randomness used in
generating the tree T according to p(T ). Let Tz,σ,ϕ denote
the resulting initial tree. Let z′ denote the remaining random-
ness used in the selecting the random node function and the
stochastic search, resulting in the final tree T (Tz,σ,ϕ, z

′, ω).
Our goal is to learn the hyperparameters σ, ϕ which mini-
mize the expected loss

Ez,z′,DL(T (Tz,σ,ϕ, z
′, ω), D),

where D denotes the distribution according to which the
data D is sampled, and L denotes the expected fraction
of incorrect predictions by the learned Bayesian decision
tree. ERM over a sample D1, . . . , Dn ∼ Dn finds the pa-
rameters σ̂, ϕ̂ which minimize the expected average loss
1
n

∑n
i=1 Ez,z′L(T (Tz,σ,ϕ, z

′, ω), Di) over the problem in-
stances in the sample. It is not clear how to efficiently im-
plement this procedure. However, we can bound its sample
complexity and prove the following guarantee for learning
a near-optimal prior for the Bayesian decision tree.

Theorem 3.5. Suppose σ, ϕ > 0. Consider the problem
of designing a Bayesian decision tree learning algorithm
by selecting the parameters from the σ, ϕ-Bayesian algo-
rithm family. For any ϵ, δ > 0 and any distribution D over
problem instances with n examples, O( 1

ϵ2 (log t + log 1
δ ))

samples drawn from D are sufficient to ensure that with
probability at least 1− δ over the draw of the samples, the
parameters σ̂, ϕ̂ learned by ERM over the sample have ex-
pected loss that is at most ϵ larger than the expected loss of
the best parameters. Here t denotes an upper bound on the
size of the decision tree.

Proof Sketch. Fix the dataset D and fix the randomness
z used to generate the tree T . We example the two-
dimensional functional curve in the σ-ϕ parameter space,
across which the generated tree T changes due to a change
in the splitting decision. We show that across N problem
instances, there are a total of at most O(t2N2) pieces
of the loss function where distinct trees are generated
across the instances. We use this piecewise loss structure
to bound the Rademacher complexity, which in turn implies
uniform convergence guarantees by applying standard
learning-theoretic results.

So far, we have considered learning decision tree classi-
fiers that classify any given data point into one of finitely
many label classes. In the next subsection, we consider an
extension of the setting to learning over regression data, for
which decision trees are again known as useful interpretable
models Breiman et al. [1984].

3.2 SPLITTING REGRESSION TREES

In the regression problem, we have Y = R and the top-
down learning algorithm can still be used but with con-
tinous splitting criteria. Popular splitting criteria for re-
gression trees include the mean squared error (MSE) and
half Poisson deviance (HPD). Let yl denote the set of la-
bels for data points classified by leaf node l in tree T
yl :=

1
|yl|
∑

y∈yl
y is the mean prediction for node l. MSE

is defined as gMSE(yl) :=
1

|yl|
∑

y∈yl
(y− yl)

2 and HPD as
gHPD(yl) :=

1
|yl|
∑

y∈yl
(y log y

yl
− y + yl). These are in-

terpolated by the mean Tweedie deviance Zhou et al. [2022]
error with power p given by



Figure 1: The loss of pruned tree as a function of the min-
inum cost-complexity pruning parameter α̃ is piecewise
constant with at most t pieces. The optimal complexity pa-
rameter α̃ varies with dataset.

gp(yl) :=
2

|yl|
∑
y∈yl

(
max{y, 0}2−p

(1− p)(2− p)
− yyl

1− p
+

yl
2−p

2− p

)
,

where p = 0 corresponds to MSE and the limit p → 1
corresponds to HPD. We call this the p-Tweedie splitting
criterion, and have the following sample complexity guaran-
tee for tuning p in the multiple instance setting.

Theorem 3.6. Suppose p ∈ [0, 1]. For any ϵ, δ > 0 and
any distribution D over problem instances with n examples,
O( 1

ϵ2 (t(log |F|+ n) + log 1
δ )) samples drawn from D are

sufficient to ensure that with probability at least 1− δ over
the draw of the samples, the Tweedie power parameter p̂
learned by ERM over the sample is ϵ-optimal. F here the
node function class, assumed to be finite (Section 2).

Since t < n, this indicates that tuning regression parameters
typically (for sufficiently small B, c) has a larger sample
complexity upper bound.

4 LEARNING TO PRUNE

Some leaf nodes in a decision tree learned via the top-down
learning algorithm may involve nodes that overfit to a small
number of data points. This overfitting problem in decision
tree learning is typically resolved by pruning some of the
branches and reducing the tree size Breiman et al. [1984].
The process of growing trees to size t and pruning back
to smaller size t′ tends to produce more effective decision
trees than learning a tree of size t′ top-down. We study the
mininum cost-complexity pruning algorithm here, which
involves a tunable complexity parameter α̃, and establish
bounds on the sample complexity of tuning α̃ given access
to repeated problem instances from dataset distribution D.

The cost-complexity function for a tree T is given by

R(T,D) := L(T,D) + α̃|leaves(T )|.

More leaf nodes correspond to higher flexibility of the de-
cision tree in partitioning the space into smaller pieces and

Figure 2: Accuracy vs η ∗ |leaves(T )| as the pruning param-
eter α̃ is varied, for η = 0.01.

therefore greater ability to fit the training data. α̃ ∈ [0,∞)
controls how strongly we penalize this increased complexity
of the tree. The mininum cost-complexity pruning algo-
rithm computes a subtree Tα̃ of T which minimizes the
cost-complexity function. When α̃ = 0, this selects T and
when α̃ =∞ a single node tree is selected.

Given a leaf node l of T labeled by i ∈ [c], the cost-
complexity measure is defined to be R(l,D) = w(l)−pi(l)

w(l) +

α̃. Denote by Tt, the branch of tree T rooted at node t and
R(Tt, D) :=

∑
l∈leaves(Tt)

R(l,D) + α̃|leaves(Tt)|. The
mininum cost-complexity pruning algorithm successively
deletes weakest links which minimize R(t,D)−R(Tt,D)

|leaves(Tt)|−1 over
internal nodes t of the currently pruned tree.

We have the following result bounding the sample complex-
ity of tuning α̃ from multiple data samples. Proof details of
results in this section are located in Appendix C.

Theorem 4.1. Suppose α̃ ∈ R≥0 and t denote the size of the
unpruned tree. For any ϵ, δ > 0 and any distribution D over
problem instances with n examples, O( 1

ϵ2 (log t + log 1
δ ))

samples drawn from D are sufficient to ensure that with
probability at least 1 − δ over the draw of the samples,
the mininum cost-complexity pruning parameter learned by
ERM over the sample is ϵ-optimal.

Minimum cost-complexity pruning Breiman et al. [1984]
can be implemented using a simple dynamic program to
find the sequence of trees that minimize R(T,D) for any
given fixed α̃, which takes quadratic time to implement in
the size of T Bohanec and Bratko [1994]. Faster pruning
approaches are known that directly prune nodes for which
the reduction in error or splitting criterion when splitting the
node is not statistically significant. This includes Critical
Value Pruning Mingers [1987, 1989a] and Pessimistic Er-
ror Pruning Quinlan [1987]. Principled statistical learning
guarantees are known for the latter Mansour [1997], and
here we will consider the problem of tuning the confidence
parameter in pessimistic pruning, which we describe below.

Suppose X ⊆ Ra, i.e. each data point consists of a real
features or attributes. For any internal node h of T , if eh
denotes the fraction of data points that are misclassified
among the nh data points that are classified via the sub-tree
rooted at h, and el denotes the fraction of misclassified data



points if h is replaced by a leaf node, then the pessimistic
pruning test of Mansour [1997] is given by

el ≤ eh + c1

√
th log a+ c2

nh
,

where c1 and c2 are parameters, and th denotes the size of
the sub-tree rooted at h. We consider the problem of tuning
c1, c2 given repeated data samples, and bound the sample
complexity of tuning in the following theorem.

Theorem 4.2. Suppose c1, c2 ∈ R≥0 and t denote the size
of the unpruned tree. For any ϵ, δ > 0 and any distribution
D over problem instances with n examples, O( 1

ϵ2 (log t +
log 1

δ )) samples drawn from D are sufficient to ensure that
with probability at least 1− δ over the draw of the samples,
the pessimistic pruning parameters learned by ERM over
the sample is ϵ-optimal.

We have studied parameter tuning in two distinct parameter-
ized approaches for decision tree pruning. However, several
other pruning methods are known in the literature Esposito
et al. [1997, 1999], and it is an interesting direction for fu-
ture research to design approaches to select the best method
based on data. We conclude this section with a remark about
another interesting future direction, namely extending our
results to tree ensembles.

Remark 1 (Extension to tree ensembles). Extension of our
approaches to tree ensembles is an interesting question, al-
though this comes at the expense of making the model less
interpretable. We still need to choose splitting and pruning
methods used in building the individual trees. If we learn
a uniform splitting criterion for all trees, our sample com-
plexity arguments are straightforward to extend to this case
and would imply an additional O(nt) factor in the sample
complexity, where nt is the number of trees in the random
forest (in the case of pruning, our arguments would imply
an O(log nt) term). There are interesting further questions
here, including learning a combination of splitting/pruning
criteria across different trees and tuning the number of trees
nt as a hyperparameter (which impacts both accuracy and
interpretability).

5 OPTIMIZING THE EXPLAINABILITY
VERSUS ACCURACY TRADE-OFF

Decision trees are often regarded as one of the preferred
models when the model predictions need to be explainable.
Complex or large decision trees can however not only over-
fit the data but also hamper model interpretability. So far we
have considered parameter tuning when building or pruning
the decision tree with the goal of optimizing accuracy on
unseen “test” datasets on which the decision tree is built
using the learned hyperparameters. We will consider a mod-
ified objective here which incorporates model complexity in

the test objective. That is, we seek to find hyperparameters
α, β, α̃ based on the training samples, so that on a random
D ∼ D, the expected loss

Lη := ED∼DL(T,D) + η|leaves(T )|

is minimized, where η ≥ 0 is the complexity coeffi-
cient. This objective has been studied in a recent line of
work which designs techniques for provably optimal deci-
sion trees with high interpretability Hu et al. [2019], Lin
et al. [2020]. Note that, while the objective is similar to
min cost-complexity pruning, there the regularization term
α̃|leaves(T )| is added to the training objective to get the
best generalization accuracy on test data. In contrast, we
add the regularization term to the test objective itself and η
here is a fixed parameter that governs the balance between
accuracy and explainability that the learner aims to strike.

Our approach here is to combine tunable splitting and prun-
ing to optimize the accuracy-explainability trade-off. We
set (α, β)-Tsallis entropy as the splitting criterion and min
cost-complexity pruning with parameter α̃ as the pruning al-
gorithm. We show the following upper bound on the sample
complexity when simultaneously learning to split and prune.

Theorem 5.1. Suppose α > 0, β ∈ [B], α̃ ≥ 0. For any
ϵ, δ > 0 and any distributionD over problem instances with
n examples, O( 1

ϵ2 (t(log |F|+log t+c log(B+c))+log 1
δ ))

samples drawn from D are sufficient to ensure that with
probability at least 1− δ over the draw of the samples, the
parameters learned by ERM for Lη are ϵ-optimal.

6 EXPERIMENTS

We examine the significance of the novel splitting tech-
niques and the importance of designing data-driven deci-
sion tree learning algorithms via hyperparameter tuning for
various benchmark datasets. We only perform small-scale
simulations that can be run on a personal computer and in-
clude code in the supplementary material for reproducibility.
The datasets used are from the UCI repository, are publicly
available and are briefly described below.

Iris Fisher [1936] consists of three classes of the iris plant
and four real-valued attributes. A total of 150 instances, 50
per class. Wine Lichman et al. [2013] has three classes of
wines, 13 real attributes and 178 data points in all. Breast
cancer (Wisconsin diagnostic) contains 569 instances, with
30 features, and two classes, malignant and benign Wolberg
et al. [1994]. The Banknote Authentication dataset Lohweg
[2013] also involves binary classification and has 1372 data
points and five real attributes. These datasets are selected to
capture a variety of attribute sizes and number of data points.

We first study the effect of choice of (α, β) parameters in
the Tsallis entropy based splitting criterion. For each dataset,



Dataset Best (α∗, β∗) Acc(α∗, β∗) Acc(Gini) Acc(Entropy) Acc(KM96)
Iris (0.5,1) 96.00± 1.85 92.99± 1.53 93.33± 1.07 94.67± 2.70
Banknote (2.45,2) 98.32± 0.52 97.01± 0.59 97.30± 1.62 97.00± 1.79
Breast cancer (0.5, 3) 94.69± 0.77 92.92± 1.29 93.01± 1.05 93.27± 1.16
Wine (2.15,6) 96.57± 1.88 89.14± 3.18 92.57± 2.38 93.71± 2.26

Table 1: A comparison of the performance of different splitting criteria. The first column indicates the best (α, β) parameters
for each dataset over the grid considered in Figure 3. Acc denotes test accuracy along with a 95% confidence interval.

Figure 3: Average test accuracy (proportional to brightness,
yellow is highest) of (α, β)-Tsallis entropy based splitting
criterion as the parameters are varied, across datasets. We
observe that different parameter settings work best for each
dataset, highlighting the need to learn data-specific values.

we perform 5-fold cross validation for a large grid of param-
eters depicted in Figure 3 and measure the accuracy on held
out test set consisting of 20% of the datapoints (i.e. training
datasets are just random subsets of the 80% of the dataset
used for learning the parameters). We implement a slightly
more sophisticated variant of Algorithm 1 which grows the
tree to maximum depth of 5 (as opposed to a fixed size t).
We do not use any pruning here. There is a remarkable differ-
ence in the optimal parameter settings for different datasets.
Moreover, we note in Table 1, that carefully chosen values
of (α, β) significantly outperform standard heuristics like
Gini impurity or entropy based splitting, or even specialized
heuristics like Kearns and Mansour [1996] for which worst-
case error guarantees (assuming weak learning) are known.
This further underlines the significance of data-driven algo-
rithm design for decision tree learning.

We further study the impact of tuning the complexity
paramter α̃ in the minimum cost-complexity pruning al-
gorithm. The test error varies with α̃ in a data dependent
way and different data could have different optimal param-
eter as depicted in Figure 1. We use Gini impurity as the
splitting criterion. Furthermore, we observe that on a sin-
gle instance, the average test error is a piecewise constant
function with at most t pieces which motivates the sample
complexity bound in Theorem 4.1.

We also examine the explainability-accuracy trade-off as
given by our regularized objective with complexity coef-
ficient η. In Figure 2, we plot the explainability-accuracy

frontier as the pruning parameter α̃ is varied. Here we fix the
splitting criterion as the Gini impurity. For a given dataset,
this frontier can be pushed by a careful choice of the split-
ting criterion (Theorem 5.1). We defer these examinations
and further experiments to the appendix.

7 CONCLUSION

We consider the problem of automatically designing deci-
sion tree learning algorithms by data-driven selection of
hyperparameters. Previous extensive research has observed
that different ways to split or prune nodes when building
a decision tree work best for data coming from different
domain. We present a novel splitting criterion called (α, β)-
Tsallis entropy which interpolates popular previously known
methods into a rich infinite class of algorithms. We consider
the setting where we have repeated access to data from the
same domain and provide formal bounds on the sample com-
plexity of tuning the hyperparameters for the ERM principle.
We extend our study to learning regression trees, selecting
pruning parameters, and optimizing over the explainability-
accuracy trade-off. Empirical simulations validate our theo-
retical study and highlight the significance and usefulness
of learning decision tree algorithms.

Our work presents several directions for future research.
While our results provide guarantees on sample efficiency,
the problem of computationally efficient optimization of the
sample accuracy is left open. Another direction for future
research is designing and analyzing a potentially more pow-
erful algorithm family for pruning, and extending our results
to tree ensembles. We also remark that we focus on upper
bounds on sample complexity, and providing corresponding
lower bounds is an interesting avenue for further research.
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A STANDARD RESULTS FROM LEARNING THEORY AND DATA-DRIVEN
ALGORITHM DESIGN

The pseudo-dimension is frequently used to analyze the learning theoretic complexity of real-valued function classes. The
formal definition is stated here for convenience.

Definition 1 (Shattering and Pseudo-dimension, Anthony and Bartlett [1999]). Let F be a set of functions mapping from X
to R, and suppose that S = {x1, . . . , xm} ⊆ X . Then S is pseudo-shattered by F if there are real numbers r1, . . . , rm such
that for each b ∈ {0, 1}m there is a function fb in F with sign(fb(xi)− ri) = bi for i ∈ [m]. We say that r = (r1, . . . , rm)
witnesses the shattering. We say that F has pseudo-dimension d if d is the maximum cardinality of a subset S of X that is
pseudo-shattered by F , denoted Pdim(F) = d. If no such maximum exists, we say that F has infinite pseudo-dimension.

Pseudo-dimension is a real-valued analogue of VC-dimension, and is a classic complexity notion in learning theory due
to the following theorem which implies the uniform convergence sample complexity for any function in class F when
Pdim(F) is finite.

Theorem A.1 (Uniform convergence sample complexity via pseudo-dimension, Anthony and Bartlett [1999]). Suppose
H is a class of real-valued functions with range in [0, H] and finite Pdim(F). For every ϵ > 0 and δ ∈ (0, 1), the sample

complexity of (ϵ, δ)-uniformly learning the classH is O
((

H
ϵ

)2 (
Pdim(F) log

(
H
ϵ

)
+ log

(
1
δ

)))
.

Uniform learning is closely related to the notion of PAC (probably approximately correct) learning, indeed (ϵ, δ)-uniform
learning corresponds to (ϵ/2, δ)-PAC learning Mohri et al. [2018].

We also need the following lemma from data-driven algorithm design.

Lemma A.2. (Lemma 2.3, Balcan [2020], Lemma 3.8 Balcan et al. [2021a]) Suppose that for every problem instance
D ∈ D, the function LD(ρ) : R→ R is piecewise constant with at most N pieces. Then the family {Lρ(·)} over instances
in D has pseudo-dimension O(logN).

The follwing theorem is due to Bartlett et al. [2022] and is useful in obtaining some of our pseudodimension bounds.

Theorem A.3 (Bartlett et al. [2022]). Suppose that each function f ∈ F is specified by n real parameters. Suppose that for
every x ∈ X and r ∈ R, there is a GJ algorithm Γx,r that given f ∈ F , returns "true" if f(x) ≥ r and "false" otherwise.
Assume that Γx,r has degree ∆ and predicate complexity Λ. Then, Pdim(F) = O(n log(∆Λ)).

B PROOFS FROM SECTION 3

Proposition 3.1 (restated) The splitting criteria gTSALLIS
2,1 (P ), gTSALLIS

1
2 ,2

(P ) and limα→1 g
TSALLIS
α,1 (P ) correspond to Gini

impurity, the Kearns and Mansour [1996] objective and the entropy criterion respectively.
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Proof of Proposition 3.1. Setting α = 2, β = 1 immediately yields the expression for Gini impurity. Plugging α = 1
2 , β = 2

yields

gTSALLIS
1
2 ,2

(P ) =
C

− 1
2

1−

(
c∑

i=1

√
pi

)2


= 2C

 c∑
i=1

pi + 2
∑
i̸=j

√
pipj − 1


= 4C

∑
i ̸=j

√
pipj .

For c = 2, gTSALLIS
1
2 ,2

(P ) = 4C
√
p1(1− p1) which matches the splitting function of Kearns and Mansour [1996]. Also taking

the limit α→ 1 gives

gTSALLIS
α→1,β (P ) = lim

α→1

C

α− 1

1−

(
c∑

i=1

pi
α

)β


= −Cβ

(
c∑

i=1

pαi

)β−1( c∑
i=1

pαi ln pi

)

= −Cβ

(
c∑

i=1

pi ln pi

)
.

For β = 1, this corresponds to the entropy criterion.

Proposition 3.2 (restated) (α, β)-Tsallis entropy has the following properties for any α ∈ R+, β ∈ Z+, α /∈ (1/β, 1)

1. (Symmetry) For any P = {pi}, Q = {pπ(i) for some permutation π over [c], gTSALLIS
α,β (Q) = gTSALLIS

α,β (P ).

2. gTSALLIS
α,β (P ) = 0 at any vertex pi = 1, pj = 0 for all j ̸= i of the probability simplex P .

3. (Concavity) gTSALLIS
α,β (aP + (1− a)Q) ≥ agTSALLIS

α,β (P ) + (1− a)gTSALLIS
α,β (Q) for any a ∈ [0, 1].

Proof of Proposition 3.2. Properties 1 and 2 are readily verified. We further show that (α, β)-Tsallis entropy is concave for
α, β > 0, αβ ≥ 1.

First consider the case α ≥ 1. We use the fact that the univariate function f(x) = xθ is convex for all θ ≥ 1. For any
a ∈ [0, 1], P = {pi}ci=1, Q = {qi}ci=1,

gTSALLIS
α,β (aP + (1− a)Q) =

C

α− 1

1−

(
c∑

i=1

(api + (1− a)qi)
α

)β


≥ C

α− 1

1−

(
c∑

i=1

api
α + (1− a)qαi

)β


=
C

α− 1

1−

(
a

c∑
i=1

pi
α + (1− a)

c∑
i=1

qαi

)β


≥ C

α− 1

1−
a( c∑

i=1

pi
α

)β

+ (1− a)

(
c∑

i=1

qαi

)β


= agTSALLIS
α,β (P ) + (1− a)gTSALLIS

α,β (Q).



It remains to consider the case 0 < α ≤ 1/β. In this case, we apply the reverse Minkowski’s inequality and use that αβ ≤ 1
to establish concavity.

gTSALLIS
α,β (aP + (1− a)Q) =

C

α− 1

1−

(
c∑

i=1

(api + (1− a)qi)
α

)β


≥ C

α− 1

1−

( c∑
i=1

(api)
α

) 1
α

+

(
c∑

i=1

((1− a)qi)
α

) 1
α

αβ


=
C

α− 1

1−

a

(
c∑

i=1

pi
α

) 1
α

+ (1− a)

(
c∑

i=1

qαi

) 1
α

αβ


≥ C

α− 1

1−
a( c∑

i=1

pi
α

) 1
α ·αβ

+ (1− a)

(
c∑

i=1

qαi

) 1
α ·αβ


= agTSALLIS

α,β (P ) + (1− a)gTSALLIS
α,β (Q).

To prove Theorem 3.3, we state below a simple helpful lemma, which is a simple consequence of the Rolle’s Theorem.

Lemma B.1 (e.g. Lemma 26 in Balcan and Sharma [2021]). The equation
∑n

i=1 aie
bix = 0 where ai, bi ∈ R has at most

n− 1 distinct solutions x ∈ R.

We will now restate and prove Theorem 3.3.

Theorem 3.3 (restated) Suppose α > 0 and β ∈ [B]. For any ϵ, δ > 0 and any distribution D over problem instances
with n examples, O( 1

ϵ2 (t(log |F|+ log t+ c log(B + c)) + log 1
δ )) samples drawn from D are sufficient to ensure that with

probability at least 1− δ over the draw of the samples, the parameters α̂, β̂ learned by ERM over the sample have expected
loss that is at most ϵ larger than the expected loss of the best parameters α∗, β∗ = argminα>0,β≥1ED∼DL(TF,(α̂,β̂),t, D)
over D. Here t is the size of the decision tree, F is the node function class used to label the nodes of the decision tree and c
is the number of label classes.

Proof of Theorem 3.3. Since the loss is completely determined by the final decision tree TF,(α,β),t, it suffices to bound
the number of different algorithm behaviors as one varies the hyperparameters α, β in Algorithm 1. As the tree is grown
according to the top-down algorithm, suppose the number of internal nodes is τ < t. There are τ + 1 candidate leaf
nodes to split and |F| candidate node functions, for a total of (τ + 1)|F| choices for (l, f). For any of

(
(τ+1)|F|

2

)
pair

of candidates (l1, f1) and (l2, f2), the preference for which candidate is ‘best’ and selected for splitting next is governed
by the splitting functions Gα,β(Tl1→f1) and Gα,β(Tl2→f2). This preference flips across boundary condition given by∑

l∈leaves(Tl1→f1
) w(l)gα,β({pi(l)}) =

∑
l∈leaves(Tl2→f2

) w(l)gα,β({pi(l)}). Most terms (all but three) cancel out on both
sides as we substitute a single leaf node by an internal node on both LHS and RHS. The only unbalanced terms correspond
to deleted leaves l1, l2 and newly introduced leaves la1 , l

b
1, l

a
2 , l

b
2, i.e.∑

l∈{la1 ,lb1,l2}

w(l)gα,β({pi(l)}) =
∑

l∈{la2 ,lb2,l1}

w(l)gα,β({pi(l)}),

where gα,β(·) = gTSALLIS
α,β (·), the (α, β)-Tsallis entropy. Note that here w(l) is a constant for a fixed problem instance (inde-

pendent of the parameters α, β given the structure of the tree). For integer β, by the multinomial theorem, (
∑c

i=1 pi(l)
α)β

consists of at most
(
β+c−1

c

)
distinct terms. By Rolle’s theorem (more preciely, Lemma B.1), the number of distinct solutions

of the above equation in α is O((β + c)c). Thus, for any fixed β and fixed partial decision tree built in τ rounds, the number
of critical points of α at which the argmax in Line 3 of Algorithm 1 changes is at most O(|F|2τ2(β + c)c) and a fixed
leaf node is split and labeled by a fixed f for any interval of α induced by these critical points. Using a simple inductive
argument over the number of rounds t of Algorithm 1, this corresponds to at most O(Πt

τ=1|F|2τ2(β + c)c) critical points



across which the algorithmic behaviour (sequence of choices of node splits in Algorithm 1) can change as α is varied for a
fixed β. Adding up over β ∈ [B], we get O(

∑B
β=1 |F|2tt2t(β + c)ct), or at most O(B|F|2tt2t(B + c)ct) critical points.

This implies a bound of O(t(log |F|+ log t+ c log(B + c)) on the pseudodimension of the loss function class by using
Lemma A.2. Finally, an application of Theorem A.1 completes the proof.

Theorem 3.4 (restated) Suppose γ ∈ (0, 1]. For any ϵ, δ > 0 and any distribution D over problem instances with n
examples, O( 1

ϵ2 (t(log |F|+ log t) + log 1
δ )) samples drawn from D are sufficient to ensure that with probability at least

1− δ over the draw of the samples, the parameter γ̂ learned by ERM over the sample is ϵ-optimal, i.e. has expected loss at
most ϵ larger than that of the optimal parameter over D.

Proof of Theorem 3.4. The loss is completely determined by the final decision tree TF,γ,t. It suffices to bound the
number of different algorithm behaviors as one varies the hyperparameter γ in Algorithm 1. As the tree is grown ac-
cording to the top-down algorithm, suppose the number of internal nodes is τ < t. There are τ + 1 candidate leaf
nodes to split and |F| candidate node functions, for a total of (τ + 1)|F| choices for (l, f). For any of

(
(τ+1)|F|

2

)
pair

of candidates (l1, f1) and (l2, f2), the preference for which candidate is ‘best’ and selected for splitting next is gov-
erned by the splitting functions Gγ(Tl1→f1) and Gγ(Tl2→f2). This preference flips across boundary condition given by∑

l∈leaves(Tl1→f1
) w(l)gγ({pi(l)}) =

∑
l∈leaves(Tl2→f2

) w(l)gγ({pi(l)}). Most terms (all but three) cancel out on both
sides as we substitute a single leaf node by an internal node on both LHS and RHS. The only unbalanced terms correspond
to deleted leaves l1, l2 and newly introduced leaves la1 , l

b
1, l

a
2 , l

b
2, i.e.∑

l∈{la1 ,lb1,l2}

w(l)gγ({pi(l)}) =
∑

l∈{la2 ,lb2,l1}

w(l)gγ({pi(l)}).

Recall gγ({pi}) := C (Πipi)
γ
, which implies that the above equation has six (i.e. O(1)) terms. By Rolle’s theorem, the

number of distinct solutions of the above equation in γ is O(1). Thus, the number of critical points of γ at which the argmax
in Line 3 of Algorithm 1 changes is at most O(|F|2τ2) and a fixed leaf node is split and labeled by a fixed f for any interval
of γ induced by these critical points. Over t rounds, this corresponds to at most O(Πt

τ=1|F|2τ2) = O(|F|2tt2t) critical
points across which the algorithmic behaviour (sequence of choices of node splits in Algorithm 1) can change as γ is varied.
This implies a bound of O(t(log |F| + log t)) on the pseudodimension of the loss function class using Lemma A.2. An
application of Theorem A.1 completes the proof.

Theorem 3.5 (restated) Suppose σ, ϕ > 0. For any ϵ, δ > 0 and any distributionD over problem instances with n examples,
O( 1

ϵ2 (log t+ log 1
δ )) samples drawn from D are sufficient to ensure that with probability at least 1− δ over the draw of the

samples, the parameters σ̂, ϕ̂ learned by ERM over the sample have expected loss that is at most ϵ larger than the expected
loss of the best parameters. Here t denotes an upper bound on the size of the decision tree.

Proof of Theorem 3.5. Fix the dataset D and fix the random coins z used to generate the initial tree Tz,σ,ϕ. We will use
the piecewise loss structure to bound the Rademacher complexity, which would imply uniform convergence guarantees by
applying standard learning-theoretic results.

First, we establish a piecewise structure of the dual class loss for fixed prior randomization z′, ℓDz (σ, ϕ) =
Ez′L(T (Tz,σ,ϕ, z

′, ω), D). Notice that the expected value under the remaining randomization z′ is fixed, once the generated
tree Tz,σ,ϕ is fixed. We first give a bound on the number of pieces of distinct trees generated as σ, ϕ are varied. The decision
whether a node τi is split is governed by whether pSPLIT(τ) = σ(1+dτi)

−ϕ > zi. Thus, we get at most t−1 2D curves in σ, ϕ
across which the splitting decision may change. The curves are clearly monotonic. We further show that any pair of curves
intersect in at most one point. Indeed, if σ(1 + dτi)

−ϕ = zi and σ(1 + dτj )
−ϕ = zj , then ϕ′ = log(zj/zi)/ log

(
1+dτi

1+dτj

)
and σ′ = zi(1 + dτi)

ϕ′
is the unique point provided ϕ′ > 0. Thus the set of all curves intersects in at most

(
t−1
2

)
< t2

points. Since the curves are planar, the number of pieces in the dual loss function (or the number of distinct trees) is also
O(t2). The above argument easily extends to a collection of N problem instances, with a total of at most O(t2N2) pieces
where distinct trees are generated across the instances.

Let ρ1, . . . , ρm denote a collection of parameter values, with one parameter from each of the m = O(N2t2) pieces
induced by all the dual class functions ℓDi

zi
(·) for i ∈ [N ], i.e. across problems in the sample {D1, . . . , DN} for some fixed

randomizations. LetH = {fρ : (D, z) 7→ lDz (ρ) | ρ ∈ R+ × R+} be a family of functions on a given sample of instances
S = {Di, zi}Ni=1. Since the function fρ is constant on each of the m pieces, we have the empirical Rademacher complexity,



R̂(H, S) : = 1

N
Eσ

[
sup
fρ∈H

N∑
i=1

σifρ(Di, zi)

]

=
1

N
Eσ

[
sup
j∈[m]

N∑
i=1

σifρj
(Di, zi)

]

=
1

N
Eσ

[
sup
j∈[m]

N∑
i=1

σivij

]
,

where σ = (σ1, . . . , σm) is a tuple of i.i.d. Rademacher random variables, and vij := fρj
(Di, zi). Note that v(j) :=

(v1j , . . . , vNj) ∈ [0, H]N , and therefore ||v(j)||2 ≤ H
√
N , for all j ∈ [m]. An application of Massart’s lemma Massart

[2000] gives

R̂(H, S) = 1

N
Eσ

[
sup
j∈[m]

N∑
i=1

σivij

]

≤ H

√
2 logm

N

≤ H

√
4 logNt

N
.

Standard Rademacher complexity bounds [Barlett et al. 2002] now imply the desired sample complexity bound.

Theorem 3.6 (restated) Suppose p ∈ [0, 1]. For any ϵ, δ > 0 and any distribution D over problem instances with n
examples, O( 1

ϵ2 (t(log |F|+ n) + log 1
δ )) samples drawn from D are sufficient to ensure that with probability at least 1− δ

over the draw of the samples, the Tweedle power parameter p̂ learned by ERM over the sample is ϵ-optimal.

Proof (of Theorem 3.6). The loss is completely determined by the final decision tree TF,p,t. It suffices to bound the
number of different algorithm behaviors as one varies the hyperparameter p in Algorithm 1. As the tree is grown
according to the top-down algorithm, suppose the number of internal nodes is τ < t. For any of

(
(τ+1)|F|

2

)
pair

of candidates (l1, f1) and (l2, f2), the preference for which candidate is ‘best’ and selected for splitting next is gov-
erned by the splitting functions Gp(Tl1→f1) and Gp(Tl2→f2). This preference flips across boundary condition given by∑

l∈leaves(Tl1→f1
) w(l)gp({pi(l)}) =

∑
l∈leaves(Tl2→f2

) w(l)gp({pi(l)}). The expression simplifies and the only remaining
terms correspond to deleted leaves l1, l2 and newly introduced leaves la1 , l

b
1, l

a
2 , l

b
2, i.e.

∑
l∈{la1 ,lb1,l2}

w(l)gp({pi(l)}) =∑
l∈{la2 ,lb2,l1}

w(l)gp({pi(l)}).

Recall gp({pi}) gives an equation in O(|yl|) = O(n) terms. By Rolle’s theorem, the number of distinct solutions of the
above equation in p is O(n). Thus, the number of critical points of p at which the argmax in Line 3 of Algorithm 1 changes
is at most O(|F|2τ2n) and a fixed leaf node is split and labeled by a fixed f for any interval of p induced by these critical
points. Over t rounds, this corresponds to at most O(Πt

τ=1|F|2τ2n) = O(|F|2tt2tnt) critical points across which the
algorithmic behaviour (sequence of choices of node splits in Algorithm 1) can change as p is varied. This implies a bound of
O(t(log |F|+ log t+ n)) = O((log |F|+ n)) on the pseudodimension of the loss function class using Lemma A.2, since
t ≤ n. An application of Theorem A.1 completes the proof.

C PROOFS FROM SECTION 4

Theorem 4.1 (restated) Suppose α̃ ∈ R≥0 and t denote the size of the unpruned tree. For any ϵ, δ > 0 and any distribution
D over problem instances with n examples, O( 1

ϵ2 (log t+ log 1
δ )) samples drawn from D are sufficient to ensure that with

probability at least 1− δ over the draw of the samples, the mininum cost-complexity pruning parameter learned by ERM
over the sample is ϵ-optimal.



Proof of Theorem 4.1. Fix a dataset D. Then there are critical values of α̃ given by α̃0 = 0 < α̃1 < α̃2 · · · <∞ such that
the optimal pruned tree Tk is fixed for over any interval [α̃k, α̃k+1) for k ≥ 0. Furthermore, the optimal pruned trees form
a sequence of nested sub-trees T0 = T ⊃ T1 ⊃ . . . (Breiman et al. [1984], Chapter 10). Thus, the behavior of the min
cost-complexity pruning algorithm is identical over at most t intervals, and the loss function is piecewise constant with at
most t pieces. The rest of the argument is similar to the proof of Theorem 3.3, and we obtain a pseudo-dimension bound of
O(log t) using Lemma A.2. An application of Theorem A.1 implies the stated sample complexity.

Theorem 4.2 (restated) Suppose c1, c2 ∈ R≥0 and t denote the size of the unpruned tree. For any ϵ, δ > 0 and any
distribution D over problem instances with n examples, O( 1

ϵ2 (log t+ log 1
δ )) samples drawn from D are sufficient to ensure

that with probability at least 1− δ over the draw of the samples, the pessimistic pruning parameters learned by ERM over
the sample is ϵ-optimal.

Proof of Theorem 4.2. For a fixed dataset D, the c1, c2 parameter space can be partitioned by at most t algebraic curves of
degree 3 that determine the result of the pessimistic pruning test. We use a general result on the pseudodimension bound in
data-driven algorithm design due to Bartlett et al. [2022] when the loss can be computed by evaluating rational expressions
to obtain a O(log t) on the pseudodimension. The result is stated below for convenience.

In this theorem, our above arguments show that there is a GJ algorithm, i.e. an algorithm which only computes and compares
rational (ratios of polynomials) functions of its inputs, for computing the loss function. Here the number of real parameters
n = 2, the maximum degree of any computed expression is ∆ = 3 and the total number of distinct predicates that need to
be evaluated to compute the loss for any value of the parameters is Γ = t. Plugging into Theorem A.3 yields a bound of
O(log t) on the pseudo-dimension, and the result follows from Theorem A.1.

D PROOFS FROM SECTION 5

Theorem 5.1 (restated) Suppose α > 0, β ∈ [B], α̃ ≥ 0. For any ϵ, δ > 0 and any distribution D over problem instances
with n examples, O( 1

ϵ2 (t(log |F|+ log t+ c log(B + c)) + log 1
δ )) samples drawn from D are sufficient to ensure that with

probability at least 1− δ over the draw of the samples, the parameters learned by ERM for Lη are ϵ-optimal.

Proof of Theorem 5.1. As argued in the proof of Theorems 3.3, there is a bound of O(B|F|2tt2t(B+ c)ct) on the number of
distinct algorithmic behavior of the top-down learning algorithm in growing a tree of size t as the parameters α, β are varied.
Further, as argued in the proof of Theorem 4.1, for each of these learned trees, there are at most t distinct pruned trees as α̃
is varied. Overall, this corresponds to O(B|F|2tt2t+1(B + c)ct) distinct behaviors, which implies the claimed sample com-
plexity bound using standard tools from learning theory and data-driven algorithm design (Lemma A.2, Theorem A.1).

E ADDITIONAL EXPERIMENTS

We include further experiments below for the interested reader. In the following we observe that the explainability-accuracy
frontier depends on the splitting criterion, and further examine the tuning of (α, β)-Tsallis entropy on additional datasets.

E.1 EXPLAINABILITY-ACCURACY FRONTIER

We study the effect of varying α (for fixed β = 1) and β (for fixed α = 1.5) on the explainability-accuracy trade-off. We
fix η = 0.01, and obtain the plot by varying the amount of pruning by changing the complexity parameter α̃ in min-cost
complexity pruning.

We perform this study for Iris and Wine datasets in Figure 4. We observe that for a given accuracy, the best (smallest)
explanation (size) could be obtained for different different splitting criteria (corresponding to setting of α, β). In particular,
different criteria can dominate in different regimes of size and η. Therefore, simultaneously tuning splitting criterion and
pruning as in Theorem 5.1 is well-motivated.



Figure 4: Accuracy-explainability frontier for different α or different β, as the pruning parameter α̃ is varied.

E.2 (α, β)-TSALLIS ENTROPY

We consider several additional datasets from the UCI repository and examine the best setting of (α, β) in the splitting
criterion. The results are depicted in Figure 5 and summarized below.

Seeds Charytanowicz et al. [2012] involves 3 classes of wheat, and has 210 instances with 7 attributes each. The splitting
criterion proposed by Kearns and Mansour [1996] seems to work best here. Note that the original work only studied binary
classification, and seeds involves three label classes and therefore our experiment involves a natural generalization of Kearns
and Mansour [1996] to gTSALLIS

1
2 ,2

(·).

Cryotherapy Khozeimeh et al. [2018] has 90 instances with 7 real or integral attributes and contains the binary label of
whether a wart was suffessfully treated using cryotherapy. Here α = 0.5 with β = 4 is one of the best settings, indicating
usefulness of varying the β exponent in the KM96 criterion.

Glass identification German [1987] involves classification into six types of glass defined in terms of their oxide content.
There are 214 instances with 9 real-valued features. Interestingly, the best performance is observed when both α and β are
larger than their typical values in popular criteria. For example, (α, β) = 2.45, 6 works well here.

Algerian forest fires involves binary classification with 12 attributes and 244 instances. Gini entropy by itself does poorly, but
augmented with the β-parameter the performance improves significantly and beats other candidate approaches for β = 8.

Human activity detection using smartphones Reyes-Ortiz et al. [2012] is a 6-way classification dataset consisting of
smartphone accelerometer and gyroscope readings corresponding to different activities, with 10299 instances with 561
features. Smaller values of α work better on this dataset, and the dependence on β is weaker.

E.3 PRUNING EXPERIMENTS

We will examine the effectiveness of learning to prune by comparing the accuracy of pruning using the learned parameter
α̃ in the mininum cost-complexity pruning algorithm family with other baseline methods studied in the literature. Prior
literature on empirical studies on pruning methods has shown that different pruning methods can work best for different
datasets Mingers [1989a], Esposito et al. [1997]. This indicates that a practitioner should try out several pruning methods in
order to obtain the best result for given domain-specific data. Here we will show that a well-tuned pruning from a single



Figure 5: Average test accuracy (proportional to brightness) of (α, β)-Tsallis entropy based splitting criterion across
additional datasets.

Dataset Acc(Unpruned) Acc(α̃∗) in MCCP Acc(REP) Acc(TDP) Acc(BUP)
Iris 80.03 97.37 96.67 90.00 93.33
Digits 84.44 89.42 86.67 83.61 88.89
Breast cancer 87.72 93.71 92.98 91.23 92.11
Wine 80.56 94.44 91.67 88.89 86.11

Table 2: A comparison of the mean test accuracy of decision trees obtained using different pruning methods.

algorithm family can be competitive, and allows us to automate this process of manual selection of the pruning algorithm.

We perform our experiments on benchmark datasets from the UCI repository, including Iris, Wine, Breast Cancer and Digits
datasets. We split the datasets into train-test sets, using 80% instances for training and 20% for testing. In each case, we
build the tree using entropy as the splitting criterion. We compare the mean accuracy on the test sets over 50 different splits
for the following methods:

• Unpruned, that is no pruning method is used.

• α̃∗ in MCCP. Min-cost complexity pruning using the best parameter α̃∗ for the dataset.

• REP, Reduced error pruning method of Quinlan [1987].

• TDP, Top-down pessimistic pruning method of Quinlan [1986].

• BUP, Bottom-up pessimistic pruning method of Mansour [1997].

We report our findings in Table 2. We observe that the learned pruning method has a better mean test accuracy than other
baseline methods on the tested datasets.
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