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Abstract

Shape from polarization (SfP) benefits from advancements like polarization cam-
eras for single-shot normal estimation, but its performance heavily relies on light
conditions. This paper proposes STPUEL, an end-to-end SfP method to jointly
estimate surface normal and material under unknown environment light. To handle
this challenging light condition, we design a transformer-based framework for en-
hancing the perception of global context features. We further propose to integrate
photometric stereo (PS) priors from pretrained models to enrich extracted features
for high-quality normal predictions. As metallic and dielectric materials exhibit
different BRDFs, SfPUEL additionally predicts dielectric and metallic material
segmentation to further boost performance. Experimental results on synthetic and
our collected real-world dataset demonstrate that STPUEL significantly outperforms
existing SfP and single-shot normal estimation methods. The code and dataset is
available at https://github. com/YouweiLyu/SfPUEL.

1 Introduction

Single-shot surface normal estimation is a fundamental task in 3D reconstruction, which is widely
utilized in diverse fields such as robotics, graphics, and virtual reality. With the aid of a snapshot
polarization camera, surface normal can be obtained from a single-shot polarization image recording
image observations under different polarization states, also known as shape from polarization (SfP).
Benefiting from the passive imaging mechanism, SfP is expected to work under more general
conditions compared to photometric stereo which requires controlled lights. Also, the high-resolution
polarization image allows SfP to recover a more detailed surface shape.

Despite the prominent advantages, 7 and 7 /2-ambiguities are inherent in the azimuth angle estimation
of surface normal from SfP (38)). The m-ambiguity can be partially resolved with handcrafted priors
like shape convexity (38)), but handling the 7 /2-ambiguity related to determining specular and diffuse
reflection types is more challenging. Specular and diffuse reflections can blend at any degree under
divergent environment lights, as shown in Fig. [T[a), which leads to noisy angle of linear polarization
(AoLP) maps. Light information and object geometry entangled in polarization cues make SfP highly
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Figure 1: (a) Rendered images and AoLP of metallic/dielectric spheres suggest SfP challenges under
environment lights: AoLP maps vary with different illumination and material types. (b) STPUEL
predicts surface normal from singe-shot polarized images under unknown environment light. The
visualized results show SfPUEL achieves a better shape prediction over the state-of-the-art method
DeepSfP (4), which is even comparable with the multiview SfP method PANDORA (13).

ill-posed under unknown environment light. In addition, metallic and dielectric surfaces exhibit
different polarization BRDFs under the same illumination, which causes AoLP maps to vary on
different materials, further compounding the normal estimation problem. To avoid the light issue,
previous non-learning-based methods make strong assumptions regarding reflection types (38} [3; [36),
which hardly work under general environment light. Current state-of-the-art methods found that
specific light conditions such as sunny sky (23)), frontal flash illumination (16)), and an unknown
distant light (35) can provide additional constraints to make disambiguation tractable. However, these
controlled light setups undermine the passive imaging merit of SfP. In this paper, we aim to propose a
method for Shape from Polarization under Unknown Environment Light, abbreviated as SfPUEL.

For unknown environment lights, each point on the object’s surface is lit by direct illumination and
reflected light from other points, and the global light and geometry information also blends in the
per-pixel polarization properties. Therefore, we propose to extract the global context features by a
transformer-based framework, which incorporates image-level and pixel-level feature interactions.

Another key observation is the consistency between SfP and PS tasks, which inspires us to integrate
PS priors to enhance the representation ability of global context features. Specifically, SfP and PS
both rely on measurement variations at the same pixel position across multiple images to estimate
the surface normal. Therefore, off-the-shelf PS network backbones and pre-trained weights can be
potentially adopted in the SfP context. On the other hand, the inputs of PS and SfP contain different
physical information. PS relies on radiance variations under different light directions, while SfP
utilizes radiance filtered by different polarizer angles. A polarization-related module is also required
to extract the domain-specific features. Based on these observations, we propose a transformer
by effectively integrating the PS prior from a pretrained model and encoding polarimetric cues
from polarization images. Specifically, we utilize the feature encoder from a recent PS network
SDM-UniPS (26)) as the PS prior extraction module (PSPEM) with fixed weights. To embed the
polarization information, we make a copy of PSPEM as the polarization feature extraction module
(PolFEM) with learnable weights. To integrate polarization information with PS priors, we design
a novel PS and SfP feature fusion block, which takes the degree of linear polarization (DoLP) to
generate the mask probability for conducting two-source masked cross attention.

For the material issue in SfP, previous approaches mostly predict surface normals of dielectric objects
only (3;4; [17). Considering the influence of materials on polarization properties, we propose to
jointly estimate semantic material segmentation (metallic and dielectric) and surface normals from
the global context features. Simultaneous supervision of the two tasks could guide the network to
narrow down the latent space of global context features and boost surface normal predictions.

To validate the effectiveness of our method under different material types, we further collect a
real-world dataset as a complement to existing SfP datasets ). Specifically, our dataset contains
4 dielectric and 2 metallic objects, which are captured under diverse environment illuminations. For
quantitative evaluation, the ground truth (GT) surface normals are also calibrated. To summarize, the
main contributions of this paper are as follows:



* We introduce SfPUEL, a transformer-based framework to solve shape from polarization
under general unknown environment light via global context feature extraction;

* We jointly utilize polarimetric cue and the representative pretrained priors from PS to solve
S{P for the first time;

* We solve SfP together with metallic and dielectric material segmentation, which further
boosts surface normal prediction.

2 Related works

Shape from Polarization In the single perspective setup, manually designed constraints, such
as the surface smooth assumption (46; 47) and shape convexity (381225 3)) could narrow down the
solution space of SfP. Besides, incorporating shading information by formulating the imaging process
of polarimetric observations as linear equations (47) or PDEs (34)) also helps the disambiguation.
Introducing perspective projection in the polarization image formation model can help to determine
the normal direction of a plane (10). Studies show the polarization information is easily affected by
light conditions (19), and the polarization property pattern under specific illumination can provide
extra constraints for normal and SVBRDF optimization (8} [17; 255 235 [35). To complement the
affected polarization cues under different illumination and enhance the model performance, we
propose a transformer-based network with the aid of photometric stereo priors from pretrained
models.

Shape from Polarization with Additional Measurements Polarimetric measurements could be
incorporated with additional information for normal estimation with mitigated ambiguity. Coarse
depth maps obtained by the ToF camera assist in predicting accurate surface normal (27). With
observations from additional perspectives, the azimuth ambiguity could be effectively resolved
by tangent space consistency (9) and disparities (21). On the other hand, polarization cues also
benefit multi-view stereo performance by generating accurate correspondence between two views (2))
especially on texture-less (13}/39) and specular-dominant regions (37)). Recently, a coordinate-based
neural representation approach is proposed for multi-view polarimetric inverse rendering (15).

Single-image-based Normal Estimation and Generation Surface normal estimation from a
single RGB image is exceedingly challenging. Handcrafted priors (29)) are designed to relieve the
ill-posedness of the problem. With the advent of deep learning, considering global illumination (31)
and introducing inductive biases such as normal probability distributions (5)) and neighboring normal
relations (6) in network design helps to prevent training bias and further improve model performance.
Inspired by the generative abilities of diffusion models, researchers propose generation techniques to
jointly estimate depth and normal maps (18) from a single image, or generate novel views by taking a
single image as a visual prompt for 3D reconstruction (32;48)). Compared to generation approaches,
our method could produce reliable normal predictions with better fidelity, thanks to incorporating
polarimetric measurements.

3 Prerequisites of Polarization

A polarization image can be obtained by attaching a polarizer with angle ¢ to a camera. The image
measurement received by the camera sensor is given by
Tnax + Imi Tnax — I
I,,y — max min + max min COS2(’[9 _ 1/})7 (1)
2 2

in which Ijax/min 1S the maximum/minimum intensity received by the sensor after a polarizer, and
1) denotes the oscillation orientation of the polarized components. Stokes vectors represent the
polarization status of taken images, denoted as S = [S, S1, S2, S3] . Sp represents the intensity of
perceived light, and Sy, .So denote polarized components in the orientations of 0° and 45°, respectively.
The Stokes vectors can be computed via polarization images:

S = [({oo + Luso + Igoe + I1350) /2, Loo — Iggo, Iaso — I135°]T 2)

Similar to previous SfP methods, we only use the first three components of a Stokes vector since
linear polarizers are used for polarization acquisition.
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Figure 2: Network structure of the proposed SfPUEL.

Following the pBRDF model (8)), two important polarization properties can be utilized for normal
estimation, i.e., AoLP and DoLP. AoLP denotes the oscillation orientation of linear polarization,
correlated with the azimuth angle of surface normal. DoLP is the proportion of polarization compo-
nents that reflects the zenith angle of the surface normal and the material refractive index. These two
polarization properties can be computed using Stokes vectors:

2 2
DoLp = Vo1 £5% 3)

1 S
AoLP = 3 arctang —2, S

S

4 Method

4.1 Network Architecture

SfPUEL aims to estimate surface normal and material segmentation under environment illumination
by taking as input polarization images, image intensities (Sp), AoLP and DoLP maps, and the
object mask. Fig. 2] presents the framework structure of SfPUEL, which can be divided into two
parts. The first part Pol&PS Feature Extractor consists of the polarization feature extraction module
(PolFEM) module and the photometric stereo prior extraction module (PSPEM), which encode
the information from the two fields, respectively. We propose a novel DoLP cross-attention block
to fuse the intermediate features from the two modules. The preceded Global Context Extractor
adopts the image-level and pixel-level attention mechanisms to generate the global context features.
The prediction heads finally predict material segmentation and normal vectors with two MLPs,
respectively.

Pol&PS Feature Extractor SDM-UniPS (26) has demonstrated appealing performance and flexi-
bility on normal estimation under natural lighlﬂ Thus, our PSPEM adopts its encoder backbone that
is composed of ConvNeXt-T (33) to produce representative PS prior features at four stages with the
dimensions of (96, 192, 384, 768). The four stages of features are then fused with an aggregation
module, i.e., UPerNet (51). The weights of PSPEM are frozen in the training course. To obtain
features from the polarimetric measurements, we make a copy of PSPEM as the PolFEM backbone so
that the hierarchical polarization features are aligned with the PS prior features for fusion. PoIFEM
encodes features from individual input polarization images in a share-weighted manner, which lacks
information interactions between images. Thus, we further add a polarization encoding block to
obtain features from DoLP and AoLP maps. The AoLP map is encoded by (cos 21, sin 2¢)) to be
contiguous in the representation space (30). This encoding block contains six cascaded convolutional
blocks and a zero convolutional layer. Each 2D convolution in the convolutional block has a 3x3
kernel. The zero convolutional layer consists of a kernel size of 1 and a stride of 1 with all weights
initialized as zero at the start of training. The additional encoded polarization features are fused with

'We employ SDM-UniPS$ (26) to provide the PS priors since SDM-UniPS (26) and our method are based on
the environment light setting.
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Figure 3: The structure of the DoLP cross attention block for combining polarization and PS features,
encourages the network to concentrate on polarization features with high fidelity.

features generated from the PolFEM shallow layer by addition. Pol&PS Feature Extractor produces
d;-dimensional feature map Fpops € RFExhwxdi where k denotes the number of input polarization
images and h, w are height and width of the original input images, respectively.

Feature Fusion with DoLP Cross-attention Block In Pol&PS Feature Extractor, we use four
DoLP cross-attention blocks to fuse the intermediate features from PolFEM and PSPEME| DoLP
is defined as the ratio of the polarization intensity to the total light intensity. In the context of SfP,
low DoLP values suggest the desired polarization signals are relatively low compared to unpolarized
intensities, and these weak polarization signals can be easily affected by noise in the imaging process.
The network is expected to focus on polarization cues in high-fidelity regions but not fit on unreliable
information. Therefore, we propose the masked cross-attention block for the spatial interaction of
polarization and PS features. The structure of the DoLP cross-attention block is illustrated in Fig.[3]
DoLP is activated by an exponential function to get the mask probability and then generate the
attention mask. For the hierarchical feature fusion in Pol&PS Feature Extractor, we take the feature
from PolFEM as the key K and value V, and the feature from PSPEM as the query (. We then use
the DoLP cross attention to integrate the fused features from two sources, which is given by:

Ztused = @ + Norm(Mask(Q oK, ’y(p))) -V, )

where o denotes the spatial interaction between the query and the key and - denotes the matrix multi-
plication. To ensure network efficiency, We employ the efficient additive attention mechanism (44)
with linear complexity regarding the number of pixels. The Mask(A, p) operation randomly masks
the elements in the attention matrix A with a probability of p. v(p) generates the mask probability by
given the DoLP value p, which is defined as:

e~

—_— 5
670‘/7—{-]_7 ()

1(p) =
in which the hyperparameter v modulates the decay rate of the mask probability as DoLP increases.
We empirically set o to 3 in our implementation. V' is multiplied by the normalized masked attention
matrix and then added with () to derive the fused feature.

Global Context Extractor Global Context Extractor takes features Fpyps from Pol&PS Feature
Extractor and produces the global context features by successively conducting image-level and pixel-
level attention. The features Fpops are extracted from individual images in a share-weighted manner,
without any image-level interaction, while polarization properties such as AoLP and DoLP are
calculated by the four polarization images. To enrich the extracted features in the image dimension,
we pass JFpops through the image attention block, which contains five multi-head self-attention blocks
and feed-forward networks. We adopt the light-axis attention module of the SDM-UniPS (26) and its
weights in the image-axis attention block. After five interactions in the image axis, we acquire ds-
dimensional enhanced features Fo,, € R¥*"* 42 To reduce the image dimension and generate the
pixel-corresponding features, we introduce per-pixel geometry queries for cross attention with Fepp.
The geometry query is a learnable embedding like positional coding. For information interaction over
the image, we use the pixel-level attention mechanism in pixel-sampling Transformer (26) to extract

2Fig.[2|displays only one DoLP cross-attention block just for better visualization.
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Figure 4: Capture setup and overview of our real-world dataset. The environment light map is placed
at the up-right corner of each object image.

the global context features. The aggregated global context features are denoted as Fgp, € Rhwxds
After getting Fgp, we adopt two two-layer MLPs with ReLLU activation functions to estimate the
material type logits m and the surface normal orientation 1 in a per-pixel manner, respectively. We
find that jointly estimating material segmentation and surface normals helps to improve the normal
accuracy.

Loss Functions To supervise normal estimation, we adopt the cosine similarity 108s Lomal t0
penalize the cosine distance between the ground truth and predicted normal vectors. The widely used
cross-entropy 10ss Lmaterial 1S employed for supervising two-class material type predictions. We use
coefficients \,, and A, to balance the two loss functions in the training process. The total loss for
supervising SfPUEL framework is denoted as follows:

L= )\nﬁnormal + Amﬁmateriab (6)

4.2 Dataset

Synthetic Data Generation Ba er al. (4) create the SfP dataset consisting of polarization images
and the ground truth normal maps, but the limited amount of data (less than 300) captured in only
three different environment illumination can easily lead to transformer-based model overfitting. Since
there is no large-scale SfP dataset under environment light available, we create a synthetic dataset
by Mitsuba?2 (41) to enable model training and validation. We collect 2,074 high-quality SVBRDFs,
799 HDR environment maps (I} 43)), and 244 object meshes (T} 43} [50; [14) for data synthesis. We
use 1,983 SVBRDFs, 651 environment maps, and 200 object meshes as the source data to generate
the training dataset composed of 20,000 sets of images with the resolution of 512x512, and the
remaining materials are adopted for rendering 1,000 validation data with the same resolution as
training ones.

During the data generation, several augmentation approaches are employed to enrich the data
distribution. For augmentation of object shape, we smooth the macro-structure of the mesh model
with 3 different levels using Blender and then increase the model’s fine-grained details by applying
various displacements on the mesh. For augmentation of SVBRDF, we randomly change the value of
diffuse albedo in HSV space and shift and scale the UV map of the object to generate richer texture
on the object. We also scale the mean of the roughness map to mimic various material appearances.

Real Data Acquisition Deschaintre ef al. (16), Ngo et al. (40), and Lyu et al. (35)) only provide
polarization data taken under the controlled light conditions, and the test data in DeepSfP only
contains dielectric objects. Therefore, we create a real-world SfP dataset consisting of 6 dielectric
and metallic objects. We capture polarization images under 6 different light conditions, including
indoor and outdoor scenes. We use Lucid Triton RGB polarization camereﬂgand RICOH THETA SC2
to record the panoramic image as the calibrated environment light. The camera rig, objects, and the
environment light are shown in Fig.[d] For a quantitative evaluation of SfP under environment light,

*https://thinklucid.com/product/triton-5-mp-polarization-camera/



Table 1: Quantitative evaluation of SfP and
single-image-based methods on the synthetic
data.

Angular error (°) | Accuracy (%) 1 Material

Method Iy joan Median RMSE 11.25° 22.5° 30.0° | Accuracy

SfPW (30] [34.62 29.28 41.59 17.7 422 538
DeepSfP @1(20.60 1673 2576 365 67.6 7838
. . ot : : UNE@  [37.96 3346 4462 150 367 474
Figure 5: Quahtatlve evaluat.lon Qf our material  pocPe 15007 1756 sael 307 696 801 i
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thetic data.
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Figure 6: Qualitative evaluation of our method compared to the state-of-the-art SfP and single-image-
based approaches on the synthetic data. The number below each result represents mean angular error.

we obtain the “ground truth” normal map for each object image following the acquisition pipeline
proposed in (45).

4.3 Implementation Details

Our model is implemented with PyTorch (42). We initialize PoIFEM with the weights of SDM-
UniPS (26)) feature encoder for facilitating model training. We adopt the AdamW optimizer with
parameters $; = 0.9, 81 = 0.99, and weight decay of 0.05. We set the batch size of 8 and trained
the framework for 50 epochs on our large-scale synthetic dataset. The initial learning rate is set to
1x10~% and is halved every 10 epochs. During the training stage, We randomly crop the input images
with the resolution of 512x512 to patches of 128 x 128 for augmentation. The hyperparameters \,,
and A, are set to 0.1 and 1, respectively. All experiments are conducted on Ubuntu 20.04 LTS with
four NVIDIA RTX 3090 cards, where the training process takes about 40 hours.

S Experiments

To verify the effectiveness of SfPUEL, we compare with state-of-the-art SfP methods, where
SfPW (30) is designed for scene-level normal recovery, and DeepSfP (4) performs normal esti-
mation under natural illumination. We also include single-shot RGB-based surface normal estimation
methods UNE (5), DSINE (6), and the generation method One-2-3-45 (32). We first compare our
method with the baselines on our synthetic and real-world datasets. Then, we conduct ablation studies
by removing each module one after another in SfPUEL to evaluate the effectiveness of our proposed
method.

For quantitative evaluations, we adopt six metrics: i.e., mean and median angle error, root-mean-
square error (30) (lower denotes better results), and angular accuracy percentage (higher denotes better
results) between our estimated and the GT surface normals. We also evaluate material predictions
using the classification accuracy percentage (“Material Accuracy”, higher denotes better).



Table 2: Quantitative evaluation on our real-world data and the PANDORA (15) dataset.

Our Real-world Dataset ‘ PANDORA Dataset (15)
Method Angular error (7) | Accuracy (%) T Angular error (°) | Accuracy (%) T
Mean Median RMSE 11.25° 22.5° 30.0° | Mean Median RMSE 11.25° 22.5° 30.0°

SPW (30) 3629 3143 4297 10.8 347 522 | 41.08 34.05 4992 11.8 341 465
DeepSfP (4) | 21.98  20.05 25.46 20.2 589 775 | 2277 19.18 2751 26.7 593 738
UNE (5) 36.46 3226 4226 7.96 28.7 456 | 4670 4281 53.65 6.31 21.1 32.4
DSINE (6) | 21.61 19.77  25.06 28.4 654 776 | 1775 1500  21.81 38.9 740 853
SfPUEL 11.16  9.464  13.94 61.2 922 969 | 16.89 13.83  20.99 42.8 76.5  86.2

SfPW (30) DeepSfP (4)  One-2-3-45 (32) UNE (3) DSINE (6) SfPUEL GT

Input

Figure 7: Qualitative results of our method on real data compared to the state-of-the-art approaches.
The number below each normal map represents mean angular error.

5.1 Evaluation on Synthetic Data

As shown in Fig. ] our framework produces high-quality normal maps by taking single-view
polarization images even if metallic and dielectric objects coexist in the scene. Our method also
predicts reliable material labels on the pixel level. The material prediction accuracy is up to 97.8% as
summarized in Table[T}

We evaluate the performance of our method compared to two learning-based SfP and four single-
image-based approaches. The quantitative results are summarized on 1,000 synthetic samples
including dielectric and metallic objects, as listed in Table [T} The qualitative comparisons are
displayed in Fig. [} Our method outperforms all other approaches in both qualitative and quantitative
evaluation. STPW (30) is proposed to estimate surface normal of scene-level objects, so it produces
good results on the Boat scene in Fig. [6] but cannot generalize well on Armadillo. DeepSfP (4)
produces blurry normal maps, while our method could recover more satisfactory results with finer
details. The single-image-based methods UNE (5) and One-2-3-45 (32) solely rely on the RGB
information and generate a coarse shape, losing high-frequency details. The recent normal estimation
approach DSINE (6) is capable of producing generally satisfactory results but lags behind our method
in terms of detail recovery.

5.2 [Evaluation on Real Data

To evaluate the generalization ability and performance of existing methods and SfPUEL, we utilize
our real-world dataset and the 105 sets of images under 35 views of 3 objects released by PAN-
DORA (15) as the benchmark for quantitative comparisons. Since no ground-truth normal is available
in PANDORA (135)), we take the normal maps estimated by PANDORA (15) as the reference. Quanti-
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Figure 8: Qualitative results of ablation study on KETTLE (metallic) and ROOSTER (dielectric).

tative evaluation results are provided in Table 2] on the two datasets. We also visualize qualitative
results of the surface normal estimation on our dataset, as shown in Fig.

As shown in Fig.[7] SfPW (30) fails to estimate the rough shape of the objects on real data. DeepSfP (4)
and UNE (5) successfully produce the outline of the objects but rarely recover the geometric details,
such as the texture of OWL and PINEAPPLE surfaces. DSINE (6)) generates the comparable normal
prediction but struggles to get the accurate shape of reflective objects like BIRD. Our method, which
takes polarization images in a single view, outperforms the state-of-the-art SfP approaches and
faithfully recovers normal maps on objects with different shapes and material types.

5.3 Ablation Study

We conduct ablative experiments on our real-world dataset to analyze the importance of each design
in SfPUEL. The quantitative evaluation is listed in Table[3|and the visual results are shown in Fig.[8]

PS Priors First, we verify the consistency between SfP and PS tasks, i.e., the PS model could
provide useful priors for SfP tasks, which inspires us to design the architecture of STPUEL. We test
SDM-UniPS (26) by taking as input 1) only one polarization image; 2) four different polarization
images. The quantitative results are listed in “SDM-UniPS w/ 1 pol.” and “SDM-UniPS w/ 4 pol.”
of Table 3] When SDM-UniPS is fed only with one polarization image, the normal result is still
plausible, as shown in ‘SDM-UniPS/1pol.” of Fig.[8] This result suggests that the pretrained model
could provide informative features for normal estimation solely from RGB information. As the
number of input polarization images increases, the mean angular error of normal prediction decreases
from 19.46° to 15.73°, indicating that the PS network SDM-UniPS (26) is generalizable to produce
reasonable normal predictions from different polarization images, and its pretrained weights can
potentially boost the performance of SfP.

PolFEM Then we validate the necessity of introducing PolFEM to encode the polarization feature
rather than directly finetuning PSPEM in Pol&PS Feature Extractor. As shown in “w/o PolFEM”, the
performance of finetuning PSPEM is worse than SfPUEL, since the training process affects the PS
priors from the pretrained model.

DoLP Cross-attention Block We validate the effectiveness of the DoL.P-guided mask mechanism
in the cross-attention block by removing the Mask operation, i.e., directly using the vanilla cross
attention for polarization and PS feature fusion. Quantitative results in the “vanilla cross attn” row
show that this strategy helps to enhance the generalization ability on the real data.

Material Segmentation Our framework simultaneously estimates material segmentation and the
normal orientation at each pixel. We retrain the framework disabling the material estimation MLP,
and the quantitative results are listed in the “w/o material est” row. The performance degenerates
especially on the metallic KETTLE, demonstrating the benefit of incorporating material segmentation.

Injection of Additional Polarization Information In PolFEM, we add the polarization encoder
to complement polarization information from computed DoLP and encoded AoLP maps. After
removing this module and retaining the model, we find angular error metrics marginally increase and
two accuracy indices drop on the real-world dataset. The polarization encoder has a lightweight CNN
with about 0.14M parameters, so we keep this structure to boost the performance of our framework.

4 Additional visualization results on our real-world dataset and the PANDORA (13)) dataset are provided in
the supplementary material.
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Table 3: Ablation study on our real-world dataset.

Angular error (°) | Accuracy (%) 1

Settings Mean Median RMSE 11.25° 22.5° 30.0°

SDM-UniPS w/ 1 pol. 19.46 1824 22.34 29.4 64.0 827
SDM-UniPS w/ 4 pol. 1573 13.53 18.97 429 774 885

w/o PolFEM 12.11 10.55 14.71 57.0 90.2  96.0

vanilla cross attn 11.86  10.14 14.79 59.3 89.8 957

w/o material est 12.02 1048 14.58 56.4 89.0  96.1

w/o pol enc 11.33 9.83 13.95 61.7 91.2  96.7 . . : :

SIPURL 116 946 1394 c12 922 969 Figure 9: Qualitative results of our method on

the objects with rough surfaces.

6 Limitations

Compared to UNE (5) and DSINE (6), our method additionally requires a mask as input to annotate
object regions like previous SfP approaches DeepSfP (4) and polarNet (17). We use Segment
Anything Model (28) to generate the object mask in our experiments. In the data generation pipeline,
we render the synthetic dataset using unpolarized environmental maps since large-scale polarized
environment light data have not yet been collected. Resorting to polarimetric measurements, STPUEL
can produce appealing normal maps on dielectric and metallic objects with reflective surfaces, but
the performance can degenerate as polarization information gets invalid. Surfaces with complicated
micro-structures, e.g., rough stone and fabric, can depolarize the reflected light, where our method
can fail to work. As shown in Fig. [0] The DoLP of the two objects are near zero and the AoLP
maps are noisy and less informative. The diffuse characteristics of rough sanded surfaces and fabric
materials greatly mitigate the normal dependency on the polarization properties and degrade SfP
performance, in line with previous studies (7;[35). The over-exposed regions in images also affect
polarization cues, which lead to artifacts in results such as estimated normals on the back of BIRD

in Fig.[]
7 Conclusion

This paper presents STPUEL, an SfP framework to estimate surface normal and material segmentation
from single-shot polarized images captured under unknown environment light. SfP encounters
challenges of spatially varying mixed reflections under environment illumination. To handle this
problem, we design a transformer-based framework to explore the global context features. Insightfully
considering the consistency between SfP and PS, we propose integrating priors from PS pretrained
models into the SfP task for the first time. In addition, considering the BRDF divergence of metallic
and dielectric objects, we propose to jointly estimate per-pixel material types with normal vectors,
which further improves normal predictions and extends our method to diverse material types. The
synthetic and our collected real-world dataset including metallic and dielectric objects demonstrate
that STPUEL significantly surpasses existing methods.
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- Supplementary Material -

A Difference between Dielectric and Metallic Materials

We separate the material type into dielectric and metallic, due to polarization properties tightly
correlated to these two material types. Polarimetric BRDFs (8 [24)) are derived from Fresnel equations,
and Fresnel analysis is also the main technique to distinguish dielectric from metallic materials. Early
works (49) estimated dielectric/metallic types by polarization information, which insight us to
categorize material as the two types.

The difference between dielectric and metallic materials can be analyzed via the polarimetric BRDF
(pBRDF) (8). The Fresnel terms FE(GO; n) and FX(04; ) in the pBRDF are depend on the refractive
index (RI) n (8). n is a real number for dielectric materials, while it is a complex number consisting
of an imaginary part denoted as the extinction coefficient (EC) for metallic materials (11).

We provide visual comparisons between di-

. . ; (a) (b) (c)
electric and metallic materials, as shown
in Fig.[I0] Fig.[I0|displays three synthetic
spheres with (a) a dielectric surface with
white diffuse albedo; (b) a dielectric surface
with black diffuse albedo; (c) a metallic sur-
face made of chromium. The three spheres
have the same RI (in real number) and rough-
ness and are rendered under the same illu-
mination. The white dielectric sphere in
Fig.[I0fa) differs from the metallic sphere
in image appearance and angle of linear po-
larization (AoLP) distribution. The black
dielectric sphere in Fig. [[0(b) has a simi-
lar reflective appearance and an AoLP map
to the metallic sphere in Fig. [I0c), but the
degree of linear polarization (DoLP) of the Dielectric  Dielectric ~ Metallic
dielectric sphere is much higher than that agig =1 agir =0 EC=3.3
of the metallic sphere. The differences in RI=3.2 RI=3.2 RI=3.2
AoLP patterns and DoLP magnitudes can
guide the dielectric/metallic material seg-
mentation. This is also why we categorize
materials as dielectric and metallic and intro-
duce material segmentation to boost normal
estimation.

DoLLP Image

AoLP

Figure 10: Visual comparisons of appearance and po-
larization properties between dielectric and metallic
spheres. agir denotes diffuse albedo, RI and EC are
measured at the wavelength of 587.6 nm.

B Efficiency of Network Initialization with SDM-UniPS Weights

We initialize the Polarization Feature Extraction module (PolFEM) and the image-level attention
module in Global Context Extractor with the pretrained weights from SDM-UniPS (26). To evaluate
the impact of network initialization on framework performance, we initialized these two modules of
SfPUEL with Xavier initialization (20) and trained the framework with the same strategy discussed
in Sec. 4.3 of the main paper. We find that the network struggled to converge even after being trained
for over 80 epochs on the synthetic dataset. It suggests that initializing SfPUEL with the pretrained
weights from SDM greatly facilitates the training process.

C Ground Truth Normal Acquisition

In our real dataset, polarization images and the ground truth normal maps of 6 objects are provided
for quantitative evaluation. We acquire the GT normal maps following the guideline of (45). We
use EinScan-SP V2 SPECS Desktop 3D Scanner to scan the objects and generate the object meshes.
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The six objects in our dataset and the scanned meshes are displayed in Fig.[TT} We calibrate the
polarization camera to get camera intrinsic parameters (52), then conduct the image-mesh alignment
to get the camera extrinsic parameters, and finally render the “ground truth” normal in Blender (12).

Figure 11: Six objects in our dataset and the corresponding scanned meshes.

D Material Estimation Results

To further validate STPUEL on material estimation, we provide more results on synthetic and real-
world data, as shown in Fig. [I2]and Fig. [I3] respectively.

Input SfPUEL material GT material SfPUEL normal GT normal

Figure 12: Material estimation of our method on the synthetic data, where red denotes dielectric
material and green denotes metallic material.

Image

Material

Figure 13: Material segmentation results of our method on the real-world data. Green and red denote
metallic and dielectric materials, respectively.

15



E Model Size and Inference Time

We compare the model size (#Param) and test running time of the state-of-the-art methods (i.e.,
StPW (30), DeepSfP (4), UNE (5), DSINE (6), and One-2-3-45 (32)) and our model. The test time
of each method is calculated by processing a single test sample with a resolution of 512, and these
experiments are conducted on the same device (Ubuntu 20.04 LTS with an NVIDIA RTX 3090 card).
The results are listed in Table[d One-2-3-45 (32) has the most parameters and takes the longest time
in the inference stage. The test time of our method is slightly longer than other single-shot-based
methods since the current model has not been optimized for computational efficiency. Adopting
advanced lightweight attention mechanisms like efficient additive attention (44) in Global Context
Extractor may help to reduce our model’s computation complexity.

Table 4: Model size and computational costs comparisons.
Method  SfPW (30) DeepSfP (4) One-2-3-45 (32) UNE (5) DSINE (6) SfPUEL

#Param 42.5M 10.8M 1.29G 72.4M 72.6M 141M
Test time 571s 1.06s 136s .319s 423s 1.61s

F Normal Estimation on Real Data

In the main paper, we display the normal predictions of SfPUEL on 4 objects compared to the
state-of-the-art methods. In this section, we provide normal results on the rest two objects in Fig.[T4]
In addition, we compare STPUEL to PANDORA (15)), the multi-view 3D reconstruction method
taking polarization images, as well as SfP (30; 4), 3D generation approach One-2-3-45 (32), and
single-image-based approaches (5} [6) on the real data released by (15). The qualitative results
are shown in Fig.[T5] Our method outperforms previous SfP and single-shot normal estimation
approaches. Taking as input single-view polarization images, STPUEL also produces comparable
results against the multi-view method (I5). Moreover, Fig. [I6] provides an additional qualitative
evaluation on four more objects to show the generalization ability of our method.

Input SfPW (30) DeepSfP (4) One-2-3-45 (32) UNE (3) DSINE (6) SfPUEL

T 392 21.99 37.50 18.46 12.99

Figure 14: Qualitative results of our method on real data compared to the state-of-the-art approaches.
The number below each normal map represents mean angular error.

G Network Details

In this section, we introduce more details about the SFTPUEL network. STPUEL consists of two main
parts: Pol&PS Feature Extractor and Global Context Extractor. Pol&PS Feature Extractor takes
as input angle of linear polarization (AoLP) and degree of linear polarization (DoLP) maps, image
intensities, polarization images, and the mask, which has two parallel branches: the polarization
feature extraction module (PolFEM) and the photometric stereo prior extraction module (PSPEM).
PolFEM and PSPEM produce features corresponding to individual input images in a shared-weight
manner. The backbone of PoIFEM has the same structure as that of PSPEM, and ConvNeXt-T (33)) is
adopted as the image encoder in the two branches. Pyramid Pooling Module (PPM) of UPerNet (51)
is used for fusing hierarchical features from Image Encoder. In PolFEM, we propose to extract
features directly from polarization properties using the polarization encoder. For efficient feature
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SfPW (30)

DeepSfP (4)  One-2-3-45 (32) UNE (5) DSINE (6) SfPUEL PANDORA (15)

~—~

|

29.06 53.89 29.17

Figure 15: Visual results of our method against previous approaches, including SfPW (30),
DeepSfP (4), One-2-3-45 (32), UNE (5), DSINE (6) and PANDORA (15). The number below
each result denotes mean angular error.

Image

Normal

Figure 16: Qualitative evaluation of our method on additional four real-world objects.

fusion between PolFEM and PSPEM, we introduce the DoLP cross-attention block in PSPEM. The
polarization features encoded from PolFEM are taken as the query, and the PS features from PSPEM
are taken as the key and the value in the cross-attention block. After two-source feature fusion,
the extracted features Fpyps from Pol&PS Feature Extractor are fed to 5 cascaded image-level self-
attention blocks. The image-axis self-attention block has a vanilla transformer structure composed
of multi-head self-attention blocks, layer normalization, and feed-forward networks, producing
image-level enhanced feature F.,,. Then, F.,, are sampled spatially, and we use cross-attention to
query per-pixel features and conduct pixel-level self-attention to generate the global context features.
Finally, the global features are fed into two MLPs to predict normal vectors and material logits.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contributions and the scope of the proposed method have been
elaborated in the abstract and introduction.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations of our method regarding the model input
and the application scope at the end of Sec.[3]

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have elaborated all details regarding the proposed network in Sec. We
additionally provide more details about the submodules in the network to ensure our work
can be reproduced.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have included the URL to the data and code of this paper in the abstract.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the implementation details including hyperparameters,
optimizer type, and training details in Sec.[4.3]

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have evaluated our method with 6 different error matrices, which are
sufficient to demonstrate the statistical significance of the experiments.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

11.

12.

13.

14.

15.

Answer: [Yes]

Justification: We have provided the hardware information to conduct all the experiments in
our paper, and the model complexity and execution time is reported in the supplementary
material.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research in the paper conform with the NeurIPS Code of Ethics in every
respect.

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of this work.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no risks for misuse.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have listed the license names of the used assets and cited related papers.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have provided the link to the dataset related to this paper.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects
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