
NAVSIM: Data-Driven Non-Reactive
Autonomous Vehicle Simulation and Benchmarking

Daniel Dauner1,2 Marcel Hallgarten1,5 Tianyu Li3 Xinshuo Weng4 Zhiyu Huang4,6

Zetong Yang3 Hongyang Li3 Igor Gilitschenski7,8 Boris Ivanovic4 Marco Pavone4,9
Andreas Geiger1,2 Kashyap Chitta1,2

1University of Tübingen 2Tübingen AI Center 3OpenDriveLab at Shanghai AI Lab
4NVIDIA Research 5Robert Bosch GmbH 6Nanyang Technological University

7University of Toronto 8Vector Institute 9Stanford University

Abstract: Benchmarking vision-based driving policies is challenging. On one
hand, open-loop evaluation with real data is easy, but these results do not reflect
closed-loop performance. On the other, closed-loop evaluation is possible in
simulation, but is hard to scale due to its significant computational demands.
Further, the simulators available today exhibit a large domain gap to real data. This
has resulted in an inability to draw clear conclusions from the rapidly growing body
of research on end-to-end autonomous driving. In this paper, we present NAVSIM,
a middle ground between these evaluation paradigms, where we use large datasets
in combination with a non-reactive simulator to enable large-scale real-world
benchmarking. Specifically, we gather simulation-based metrics, such as progress
and time to collision, by unrolling bird’s eye view abstractions of the test scenes for
a short simulation horizon. Our simulation is non-reactive, i.e., the evaluated policy
and environment do not influence each other. As we demonstrate empirically, this
decoupling allows open-loop metric computation while being better aligned with
closed-loop evaluations than traditional displacement errors. NAVSIM enables
to benchmark driving policies on a large set of challenging scenarios, resulting
in several new insights. We observe that simple methods with moderate compute
requirements such as TransFuser can match recent large-scale end-to-end driving
architectures such as UniAD. Our framework can potentially be extended with new
datasets, data curation strategies, and metrics, and will be continually maintained.
Our code is available at https://github.com/autonomousvision/navsim.

1 Introduction

Autonomous vehicles (AVs) have gained immense research interest due to their potential to change
transportation and improve traffic safety [1, 2]. This has created a large community working on the
development of AV algorithms, which map high-dimensional sensor data to desired vehicle control
outputs. Therefore, measuring and comparing the performance of AV algorithms is a crucial task.

Unfortunately, it is extremely challenging to evaluate driving performance, and the most widely-used
benchmarks today fall short in several respects: (1) the datasets used, such as nuScenes [3], were
created for perception tasks such as object detection. As such, they focus on visual diversity and
label quality instead of the relevance of the data for research on planning. Often, most frames have a
trivial solution of extrapolating the historical driving behavior, leading to “blind” driving policies that
observe only the vehicle’s past trajectory obtaining state-of-the-art performance [4, 5, 6]. (2) Due to
the fact that driving is an inherently multifaceted task where the algorithm must coordinate several
desired properties such as safety, comfort, and progress, the evaluation metric must also balance
potentially conflicting objectives. However, as shown in Fig. 1, existing metrics such as the average
displacement error (ADE) between a predicted and recorded human trajectory often misrepresent
the relative accuracy of trajectories. (3) Since driving involves interactions among multiple agents,

Workshop on Safe and Robust Robot Learning for Operation in the Real World (SAFE-ROL) at CoRL 2024.

https://github.com/autonomousvision/navsim

On Road

ADE: 1.1m ADE: 2.3m ADE: 1.0m ADE: 0.0m

Human No Collision
On Road

No Collision
On Road

No Collision

NAV IM

Figure 1: NAVSIM. Traditional metrics such as the average displacement error (ADE) overlook the
multi-modality of driving. They penalize trajectories that deviate from a recorded human driving log,
even if such a trajectory is safe. Our benchmark evaluates trajectory outputs of sensor-based driving
policies with simulation-based metrics, considering collisions and map compliance.

evaluation must ideally be interactive, e.g., in simulation. Unfortunately, existing simulators with
synthetic sensor data exhibit a significant domain gap to real-world driving. (4) Besides, the lack of
a standardized evaluation setup has led to subtle inconsistencies between metrics in existing work,
leading to unfair comparisons and inaccurate conclusions [5, 7]. Collectively, these problems hinder
progress in the development of AVs, emphasizing the need for more principled benchmarks.

In this work, we take steps towards alleviating these issues. First, we propose a strategy for sampling
interesting driving scenarios and apply it to the largest publicly-available driving dataset [8]. We
obtain, for the first time, over 100k challenging real-world driving scenarios for training and evaluating
sensor-based driving policies. We show that in these scenarios, “blind” driving policies fail to compete
with more principled sensor-based policies. Second, we draw inspiration from the literature of rule-
based planning for AVs [6, 9, 10, 11] to identify a set of diverse, efficient, and principled metrics that
cover multiple facets of the autonomous driving task. Third, we circumvent the need for inaccurate
sensor simulation with domain gaps by simplifying our simulation to a non-reactive one. Given an
observed real-world sensor input, the agent under test commits to a set of actions for a specific time
horizon. Further, these actions are assumed to not affect the future behavior of other agents in the
scene. Under this setting, it is possible to simulate the expected motion of all agents over this time
horizon in a simplified bird’s-eye-view (BEV) abstraction of the scene, and incorporate metrics that
involve interactions, as we observe in Fig. 1. Empirically, we demonstrate that our selected metrics
are well-correlated to the outcomes of closed-loop simulations.

We combine these ideas to propose NAVSIM, a comprehensive tool for AV data curation, simulation,
and benchmarking. We instantiate standardized training and evaluation splits for NAVSIM with
the OpenScene dataset [12], though our framework can be extended to other datasets. With these
splits, we present a detailed analysis of popular end-to-end driving models previously benchmarked
either exclusively on CARLA [13] or nuScenes [3], providing the first direct comparison between
these families of approaches in an independent evaluation setting. Interestingly, we find that the
performances of the best methods developed in both settings are similar, despite a vast difference in
computational requirements for their training.

Contributions. (1) We build NAVSIM, a framework for non-reactive AV simulation, with stan-
dardized protocols for training and testing, data curation tools ensuring broad accessibility. (2)
We develop configurable simulation-based metrics that are well-suited for evaluating sensor-based
motion planning. (3) We reimplement a collection of end-to-end approaches for NAVSIM including
TransFuser, UniAD, and PARA-Drive, showcasing the surprising potential of simple models in our
challenging scenarios.

2

2 Related Work

End-to-End Driving. End-to-end driving streamlines the entire stack from perception to planning
into a single optimizable network. This eliminates the need for manually designing intermediate
representations. Following pioneering work [14, 15, 16], a diverse landscape of end-to-end models
has emerged. For instance, an extensive body of end-to-end approaches focuses on closed-loop
simulators, utilizing single-frame cameras, LiDAR point clouds, or a combination of both for expert
imitation [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. More recently, developing end-to-end models
on open-loop benchmarks has gained traction [5, 7, 28, 29, 30, 31]. Our work introduces a new
evaluation scheme with which we compare end-to-end models from both communities.

Closed-Loop Benchmarking with Simulation. Driving simulators allow us to evaluate autonomous
systems in a closed-loop manner and collect downstream driving statistics, including collision rates,
traffic-rule compliance, or comfort. A broad body of research conducts evaluations in simulators,
such as CARLA [13] or Metadrive [32] with sensor simulation, or nuPlan [8] and Waymax [33]
for data-driven simulation. Unfortunately, ensuring realism when simulating traffic behavior or
sensor data remains a challenging task. To simulate camera or LiDAR sensors, most established
simulators rely on graphics-based rendering methods, leading to an inherent domain gap in terms
of visual fidelity and sensor characteristics. Data-driven simulators for motion planning incorporate
traffic recordings but do not support image or LiDAR-based methods [8, 33, 34]. Data-driven sensor
simulation leverages and adapts real-world sensor data to create new simulations where the vehicle
may move differently, but the rendering quality of existing tools is subpar [35, 36, 37]. Further,
while promising image [38] or LiDAR [39] synthesis approaches exist, efficiently simulating sensors
entirely from data remains an open problem. In this work, we provide an approach for the evaluation
of real sensor data with simulation-based metrics by making a simplifying assumption that the agent
and environment do not influence each other over a short simulation horizon. Despite this strong
assumption, when benchmarking on real data, NAVSIM better reflects planning performance than
established evaluation protocols, as demonstrated through our systematic experimental analysis.

Open-Loop Benchmarking with Displacement Errors. Open-loop evaluation protocols commonly
measure displacement errors between trajectories of a recorded expert (i.e., of a human driver) and
a motion planner. However, several issues concerning evaluation with displacement errors have
surfaced recently, particularly on the nuScenes dataset [3]. Given that nuScenes does not provide
standardized planning metrics, prior work relied on independent implementations, which led to
inconsistencies when reporting or comparing results [5, 7]. Next, most planning models in nuScenes
receive the human trajectory endpoint as a discrete direction command [5, 7, 28, 29, 30], thereby
leaking ground-truth information into inputs. Moreover, about 75% of the scenarios in nuScenes
involve straight driving [5], leading to simple solutions when extrapolating the ego-motion. For
instance, AD-MLP demonstrates that an MLP on the kinematic ego status (ignoring perception
completely) can achieve state-of-the-art displacement errors [4]. Such blind agents are undeniably
dangerous, which highlights a broader concern: displacement metrics are not correlated to closed-
loop driving [6, 13, 40, 41]. In this work, we address prevalent issues of nuScenes and propose a
standardized driving benchmark with challenging scenarios and an official evaluation server. We
derive a navigation goal from the lane graph instead of the human trajectory to prevent label leakage,
and propose principled simulation-based metrics as an alternative to displacement errors.

3 NAVSIM: Non-Reactive Autonomous Vehicle Simulation

NAVSIM combines the ease of use of open-loop benchmarks such as nuScenes [3] with metrics based
on closed-loop simulators such as nuPlan [8]. In the following, we give a detailed introduction to the
task and metrics that driving agents are challenged with in NAVSIM. Subsequently, we propose a
filtering method to obtain standardized train and test splits covering challenging scenes.

Task description. Driving agents in NAVSIM must plan a trajectory, defined as a sequence of future
poses, over a horizon of h seconds. Their input contains streams of past frames from onboard sensors,

3

such as cameras, LiDAR, as well as the vehicle’s current speed, acceleration, and navigation goal,
jointly termed the ego status. For compatibility with prior work [7, 28, 29, 30], we provide the
navigation goal as a one-hot vector with three categories: left, straight, or right.

Non-Reactive Simulation. Traditional closed-loop benchmarks normally infer planners at high
frequencies (e.g., 10Hz) [8, 13]. However, this requires efficient simulation of all input modalities of
the driving agent, including high-dimensional sensor streams in the case of sensor-based approaches.
To sidestep this, the core idea of NAVSIM is to evaluate driving agents using a non-reactive simulation.
This means driving agents are only employed in the initial frame of each scene. Afterwards, the
planned trajectory is kept fixed for the entire trajectory duration. Over this short horizon, no
environmental feedback is provided to the driving agent, and the NAVSIM evaluation is purely based
on the initial real-world sensor sample. This makes the agent’s task more challenging, limiting
simulations to short horizons. We select a horizon of h = 4 seconds, which has been shown in prior
work to be adequate for closed-loop planning [6]. Despite this limitation, non-reactive simulation
offers a key advantage: unlike traditional open-loop benchmarks, which mainly compare the planned
trajectory to the human driver’s trajectory in a similar setting, it enables the use of simulation
outcomes to compute metrics reflecting safety, comfort, and progress. An LQR controller [42] is
applied at each simulation iteration to calculate steering and acceleration values, and a kinematic
bicycle model [43] propagates the ego vehicle. We execute this pipeline at 10Hz over the 4s trajectory
horizon. In Sec. 4.1, we show that despite our simplifying assumption, our evaluation results in a
much better alignment with closed-loop metrics than traditional open-loop metrics achieve.

PDM Score. NAVSIM scores driving agents in two steps. First, subscores in range [0, 1] are computed
after simulation. Second, these subscores are aggregated into the PDM Score (PDMS) ∈ [0, 1]. It is
named after the Predictive Driver Model (PDM) [6], a state-of-the-art rule-based planner which uses
this scoring function to evaluate trajectory proposals during closed-loop simulation in nuPlan. The
metric is also an efficient reimplementation of the nuPlan closed-loop score metric [8]. In NAVSIM,
the PDMS can be adapted by adding or removing subscores, changing aggregation parameters, or
making subscores more challenging, e.g., by adapting their internal thresholds. It is calculated per
frame and averaged across frames. In this work, we use the following aggregation of subscores:

PDMS =

(∏
m∈{NC,DAC}

scorem

)
︸ ︷︷ ︸

penalties

×

(∑
w∈{EP,TTC,C} weightw × scorew∑

w∈{EP,TTC,C} weightw

)
︸ ︷︷ ︸

weighted average

. (1)

Subscores are categorized by their importance as penalties or terms in a weighted average. A penalty
punishes inadmissible behavior such as collisions with a factor < 1. The weighted average aggregates
subscores for other objectives such as progress and comfort. In the following, we briefly describe
each subscore. More details can be found in Appendix B.

Penalties. Avoiding collisions and staying on the road is imperative for motion planning as it
ensures traffic rule compliance and the safety of pedestrians and road users. Thus, failing to drive
with no collisions (NC) with road users (vehicles, pedestrians, and bicycles) or infractions with
regard to drivable area compliance (DAC) result in hard penalties of scoreNC = 0 or scoreDAC = 0
respectively. This results in a PDMS of 0 for the current scene. We ignore certain collisions that are
not considered "at-fault" in the non-reactive environment, e.g. when the ego vehicle is static. For
collisions with static objects, we apply a softer penalty of scoreNC = 0.5.

Weighted Average. The weighted average accounts for ego progress (EP), time-to-collision (TTC),
and comfort (C). The ego progress subscore scoreEP represents the agent progress along the route
center as a ratio to an approximated safe upper bound from the PDM-Closed planner [6]. PDM-Closed
obtains a possible progress value without collisions or off-road driving with a search-based strategy
based on trajectory proposals. The final ratio is clipped to [0, 1] while discarding low or negative
progress scores if the upper bound is below 5 meters. Next, the TTC subscore ensures that driving
agents respect the safety margins to other vehicles. Defaulting to a value of 1, this subscore is set to 0
if for any simulation step within the 4s horizon, the ego-vehicle’s time-to-collison, when projected
forward with a constant velocity and heading, is less than a certain threshold. Finally, the comfort

4

Human Constant Vel.
0.00

0.25

0.50

0.75

1.00

(a) PDMS

non-filtered
filtered

0 20 40

Longitudinal Endpoint [m]

0%

10%

20%

(b) Longitudinal Frequency

−4 −2 0 2 4

Lateral Endpoint [m]

1%

10%

100%
(c) Lateral Frequency

Figure 2: Filtering. (a) We consider challenging scenes where maintaining a constant velocity and
heading fails compared to the human driver. (b) Our filtering primarily removes scenes with static or
fast longitudinal movement and (c) leads to more diversity in lateral movement (log-scale).

subscore is obtained by comparing the acceleration and jerk of the trajectory to predetermined
thresholds. Following the cost weights used by the PDM-Closed planner and the 2023 nuPlan
challenge, we set the coefficients of the weighted average as weightEP = 5, weightTTC = 5, and
weightC = 2. We find this selection reasonable and robust to changes.

3.1 Generating Standardized and Challenging Train and Test Splits

Dataset. The NAVSIM framework is agnostic to the choice of driving dataset. We choose Open-
Scene [12], a redistribution of nuPlan [8], the largest annotated public driving dataset. OpenScene
includes 120 hours of driving at a reduced frequency of 2Hz typically considered by end-to-end
planning algorithms, resulting in a 10× reduction of data storage requirements compared to nuPlan
from over 20 TB to 2 TB. Our agent input, based on OpenScene, comprises eight cameras, each with
a resolution of 1920× 1080 pixels, and a merged LiDAR point cloud from five sensors. The input
includes the current time-step and optionally 3 past frames, totaling 1.5s at 2Hz. In principle, any
driving dataset that provides annotated HD maps, object bounding boxes, and sensor data can be
converted into this format and thus be used with NAVSIM.

Filtering for challenging scenes. A majority of human driving data involves trivial situations such
as being stationary or straight driving at a near constant speed. These can be solved efficiently by
simple heuristics, e.g., as depicted in Fig. 2 (a), the baseline of maintaining a constant velocity
and heading achieves a PDMS of 79% on the OpenScene dataset, where human-level performance
corresponds to 91%. In NAVSIM, we propose the use of a filtered dataset to remove frames with
(1) near-trivial solutions and (2) significant annotation errors. We remove highly simplistic scenes
by detecting if the previously mentioned constant velocity agent exceeds a PDMS of 0.8. Similarly,
we remove scenes in which the human trajectory results in a PDMS of less than 0.8. This ensures
that an acceptable solution exists to these difficult scenarios and filters out noisy annotations such as
inaccurate bounding boxes. These thresholds can be adjusted based on the desired filtered dataset
size. The resulting scenarios are challenging, which is underlined by the score of the constant velocity
agent dropping to 22%, whereas the human expert achieves a score of 95%. The higher ratio of
non-trivial scenarios, such as turning, also results in endpoints being less distant longitudinally when
nonzero, and more evenly distributed laterally, as seen in Fig. 2 (b-c). We employ this filtering strategy
to provide standardized splits for training and testing, called navtrain and navtest, with 103k
and 12k samples respectively. This curated data serves as a benchmark accessible as a standalone
download option with a moderate storage demand given its large scale and diversity (450 GB).

4 Experiments

In this section, we present the results of our experiments aimed at answering the following questions:
(1) Can non-reactive open-loop simulation provide sufficient correlation to closed-loop metrics? (2)
What new conclusions do experiments on NAVSIM provide compared to prior benchmarks?

5

0.0 0.2 0.4 0.6 0.8 1.0

CLS (f=10Hz, d=15s)

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a)

PDMS learned
PDMS rule-based
OLS learned
OLS rule-based

d=4s d=8s d=15s
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(b)

f=2Hz f=10Hz

(c) PDMS Rank
PDMS Linear
OLS Rank
OLS Linear

h=2s h=4s h=6s h=8s
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(d)

reactive non-reactive

(e)

Figure 3: Closed-Loop Alignment. (a) For each planner, we show open-loop metrics (OLS, PDMS)
together with the corresponding closed-loop score (CLS). The trendlines depicting correlations are fit
linearly to all (learned and rule-based) planners. Moreover, we analyze different (b) CLS durations d,
(c) planning frequencies f , (d) PDMS horizons h, and (e) closed-loop background agent behaviors.

4.1 Alignment Between Open-Loop and Closed-Loop Evaluation

Open-loop metrics should ideally be aligned with closed-loop metrics in their evaluation of different
driving algorithms. In this section, we benchmark a large set of planners to analyze the alignment of
closed-loop metrics with traditional distance-based open-loop metrics and the proposed PDMS.

Benchmark. Studying the relation of closed-loop and open-loop metrics necessitates access to a
fully reactive simulator. To stay compatible with the dataset, we use the nuPlan simulator [8], which
enables simulation for privileged planners with access to ground-truth perception and HD map inputs.
Similar to PDMS, nuPlan combines weighted averages and multiplied penalties in two official scores:
the open-loop score (OLS) aggregates displacement and heading errors with a multiplied miss-rate,
and the closed-loop score (CLS) implements similar metrics from Section 3. Including PDMS, all
metrics are in [0, 1] with higher scores indicating better performance.

Due to the heavy computational requirements of closed-loop simulation, we evaluate on the navmini
split. This is a new split we create for rapid testing, with 396 scenarios in total that are independent of
both navtrain and navtest but filtered using the same strategy (Section 3.1) and hence similarly
distributed. We note that nuPlan offers two kinds of background agents: reactive agents along lane
centers based on the Intelligent Driver Model (IDM) [44], and non-reactive agents replayed from the
dataset, which we employ unless otherwise stated. While reactive simulations of longer or dynamic
lengths are generally desirable, e.g. to evaluate long-term decisions, enabling this requires dedicated
solutions to long-horizon simulation that are not currently available in nuPlan [34]. Therefore, we
default to a fixed closed-loop simulation duration of d = 15s, and a planning frequency of f = 10Hz,
which are the standard closed-loop simulation settings in nuPlan [8].

Motion Planners. Open-loop metrics favor learned planners while rule-based approaches perform
well in closed-loop evaluation in nuPlan [6]. We use a combination of both planner types in this
experiment to cover different performance levels. In total, we include 37 rule-based planners with 2
constant velocity and 8 constant acceleration models, 15 IDM planners [44], and 12 PDM-Closed
variants [6] which differ in hyperparameters for trajectory generation. For learned planning, we
evaluate Urban Driver models [45] of 2 model sizes and 2 training lengths, and PlanCNN [46] models
with 15 input combinations of the BEV raster, ego status, centerline, and navigation goal. We train
all models on {25%, 50%, 100%} of navtrain and an equally sized uniformly sampled subset of
OpenScene, giving 114 learned planners. See Appendix D.1 material for additional details.

6

Method Ego Stat. Image LiDAR Video NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
Constant Velocity ✓ 68.0 57.8 50.0 100 19.4 20.6
Ego Status MLP ✓ 93.0 77.3 83.6 100 62.8 65.6

LTF [24] ✓ ✓ 97.4 92.8 92.4 100 79.0 83.8
TransFuser [24] ✓ ✓ ✓ 97.7 92.8 92.8 100 79.2 84.0
UniAD [29] ✓ ✓ ✓ 97.8 91.9 92.9 100 78.8 83.4
PARA-Drive [7] ✓ ✓ ✓ 97.9 92.4 93.0 99.8 79.3 84.0

Human 100 100 100 99.9 87.5 94.8

Table 1: Navtest Benchmark. We show the no at-fault collision (NC), drivable area compliance
(DAC), time-to-collision (TTC), comfort (Comf.), and ego progress (EP) subscores, and the PDM
Score (PDMS), as percentages. Relying on the ego status is insufficient for competitive results. While
sensor agents improve, the gap to human performance highlights our benchmark’s challenges.

Results. The alignment between metrics is presented in Fig. 3 (a-e). Compared to OLS, we
consistently observe better closed-loop correlation for PDMS, in terms of Spearman’s (rank) and
Pearson’s (linear) correlation coefficients. As shown in (a), PDMS can capture the closed-loop
properties of both learned and rule-based planners, whereas distance-based open-loop metrics show
a clear misalignment. Decreasing the CLS duration in (b) from d = 15s to d = 4s further raises
the correlation of PDMS and OLS, as the simulation horizon more closely matches the open-loop
counterparts. Interestingly, we observe a higher correlation of open-loop metrics in (c) when reducing
the planning frequency to 2Hz. We expect a lower planning frequency to mitigate cumulative errors
and enhance the controller’s stability in simulation, leading to more precise trajectory execution.
Moreover, we observe an increase in correlation for longer PDMS horizons in (d), ranging from
h = 2s to h = 8s. While predicting the future motion over 8s is challenging in uncertain scenarios,
our results indicate the value of long horizons when evaluating motion planners. Lastly, replacing
the non-reactive background agents with reactive IDM vehicles during closed-loop simulation in (e)
has little effect on the correlation, possibly due to the similar difficulty of both tasks [6]. We present
additional results on the metric alignment in Appendix E.1.

4.2 Analysis of the State of the Art in End-to-End Autonomous Driving

In this section, we benchmark a collection of end-to-end architectures, which previously achieved
state-of-the-art performance on existing open- or closed-loop benchmarks.

Methods. As a lower bound, we consider the (1) Constant Velocity baseline detailed in Section 3.1.
We include an (2) Ego Status MLP as a second "blind" agent, which leverages an MLP for trajectory
prediction given only the ego velocity, acceleration and navigation goal. As an established architecture
on CARLA, we evaluate our reimplementation of (3) TransFuser [24], which uses three cropped
and downscaled forward-facing cameras, concatenated into a 1024 × 256 image, and a rasterized
BEV LiDAR input for predicting waypoints. It performs 3D object detection and BEV semantic
segmentation as auxiliary tasks. We then consider (4) Latent TransFuser (LTF) [24], which shares
the same architecture as TransFuser but replaces the LiDAR input with a learned embedding, hence
requiring only camera inputs. Moreover, we provide two state-of-the-art end-to-end architectures
for open-loop trajectory prediction on nuScenes. (5) UniAD [29] incorporates a wide range of
tasks, such as mapping, tracking, motion, and occupancy prediction in a semi-sequential architecture,
which processes feature representations through several transformer decoders culminating in a
trajectory planning module. (6) PARA-Drive [7] uses the same auxiliary tasks, but parallelizes
the network architecture, and the auxiliary task heads are trained in parallel with a shared encoder.
Both UniAD and PARA-Drive use a BEVFormer backbone [47], which encodes the eight surround-
view 1920 × 1080 camera images over four temporal frames into a BEV feature representation.
Implementation details for all methods are provided in Appendix D.2.

Results. We show our results on navtest in Table 1. The Constant Velocity model is a lower
bound, as the agent is used to identify trivial driving scenes excluded from the benchmark. The Ego
Status MLP achieves a PDMS of 65.6, showing the value of the acceleration and navigation goal for

7

avoiding collisions and driving off-road. However, we observe a clear gap between agents relying
solely on the ego status and those considering sensor data, in contrast to results on nuScenes [5]. All
sensor agents achieve a PDMS of over 83, where TransFuser and PARA-Drive marginally perform
best, with a PDMS of 84.0. Surprisingly, the camera-only LTF achieves similar results (83.8). UniAD
reaches a PDMS of 83.4, which, together with PARA-Drive, do not surpass the performance of
TransFuser and LTF, despite the need for more demanding training, e.g., 80 GPUs for 3 days to train
PARA-Drive versus 1 GPU for 1 day for TransFuser on the navtrain split. Due to the definition
of at-fault collisions, which discard certain rear-collisions into the ego vehicle, we suspect that
surround-view cameras used by UniAD and PARA-Drive, and LiDAR input of TransFuser, are less
important than the wide-angle front camera which is the only input of LTF. The 10 PDMS discrepancy
to the human operator demonstrates that navtest poses challenges even to well-studied end-to-end
architectures. Specifically, the drivable area compliance (DAC) and ego progress (EP) subscores
remain the most challenging. Notably, EP cannot be solved purely by human imitation, given that the
maximum progress estimate used for normalization is based on a privileged rule-based motion planner.
Interestingly, all agents achieve near-perfect comfort scores, indicating that smooth acceleration and
jerk profiles are learned naturally from human imitation. We refer to Appendix E.2 for additional
experiments and ablations of the end-to-end driving methods.

5 Discussion

We present NAVSIM, a framework for non-reactive AV simulation. We address several shortcomings
of existing driving benchmarks and propose standardized but configurable simulation-based metrics
for benchmarking driving policies. For accessibility, we provide downloadable challenging scenario
splits and simple data curation methods. We show that our evaluation protocol is better aligned to
closed-loop driving and benchmark an established set of end-to-end planning baselines. We hope that
NAVSIM can serve as an accessible toolkit for AV researchers that bridges the gap between simulated
and real-world driving.

Need for Reactive Simulation. While we show improvements over displacement errors, several
aspects of driving remain unaddressed by evaluation in NAVSIM. A high PDMS does not always imply
a high CLS, since our framework does not consider reactiveness or the compounding accumulation
of errors in closed-loop simulation. Moreover, as in CLS, rear-end collisions into the ego vehicle
are currently not classified as "at-fault", resulting in little importance given to the scene behind the
vehicle in NAVSIM. In the future, data-driven sensor or traffic simulation could alleviate these issues,
once such methods mature and become computationally tractable. Given these limitations of the
current framework, we strongly encourage the use of graphics-based closed-loop simulators, such as
CARLA [13], as complementary benchmarks to NAVSIM when developing planning algorithms.

Simplicity of Metrics. As a starting point, NAVSIM offers both interpretable open-loop subscores
and a scalarizing function, which lets us provide a final score and ranking of competing approaches.
In the future, multi-objective evaluation and other aggregation functions might be required. Moreover,
closed-loop metrics also face problems, i.e., PDMS inherits several weaknesses of nuPlan’s CLS.
Both scores do not regard certain traffic rules (e.g., stop-sign or traffic light compliance) or concepts
such as transit and fuel efficiency. We aim to improve the subscore definitions (e.g. the at-fault
collision logic) and add more subscores during aggregation.

Call for Datasets. Certain limitations of the nuPlan dataset persist in NAVSIM, such as missing
classes in the label space, minor errors in camera parameters, or noise in poses and 3D annotations.
Our analysis might favor methods that are robust to such inconsistencies. In addition, the lack of
road elevation data in our representation presents a challenge for integrating scenarios based on 3D
annotations. We aim to support more datasets in the future, and advocate for more open dataset
releases by the community for accelerating progress in autonomous driving.

8

Acknowledgments

This work was supported by the ERC Starting Grant LEGO-3D (850533), the DFG EXC number
2064/1 - project number 390727645, the German Federal Ministry of Education and Research:
Tübingen AI Center, FKZ: 01IS18039A and the German Federal Ministry for Economic Affairs
and Climate Action within the project NXT GEN AI METHODS. We thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Daniel Dauner and
Kashyap Chitta. We also thank HuggingFace for hosting our evaluation servers, the team members
of OpenDriveLab for their organizational support, as well as Napat Karnchanachari and his team
from Motional for open-sourcing their dataset and providing us the private test split used in the 2024
NAVSIM Challenge.

References
[1] J. Janai, F. Güney, A. Behl, and A. Geiger. Computer Vision for Autonomous Vehicles: Problems,

Datasets and State of the Art, volume 12. Foundations and Trends in Computer Graphics and
Vision, 2020.

[2] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li. End-to-end autonomous driving:
Challenges and frontiers. arXiv.org, 2306.16927, 2023.

[3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2020.

[4] J.-T. Zhai, Z. Feng, J. Du, Y. Mao, J.-J. Liu, Z. Tan, Y. Zhang, X. Ye, and J. Wang. Rethinking
the open-loop evaluation of end-to-end autonomous driving in nuscenes. arXiv.org, 2305.10430,
2023.

[5] Z. Li, Z. Yu, S. Lan, J. Li, J. Kautz, T. Lu, and J. M. Alvarez. Is ego status all you need for
open-loop end-to-end autonomous driving? In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2024.

[6] D. Dauner, M. Hallgarten, A. Geiger, and K. Chitta. Parting with misconceptions about
learning-based vehicle motion planning. In Proc. Conf. on Robot Learning (CoRL), 2023.

[7] X. Weng, B. Ivanovic, Y. Wang, Y. Wang, and M. Pavone. Para-drive: Parallelized architecture
for real-time autonomous driving. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2024.

[8] N. Karnchanachari, D. Geromichalos, K. Seang Tan, N. Li, C. Eriksen, S. Yaghoubi,
N. Mehdipour, G. Bernasconi, W. Kit Fong, Y. Guo, and H. Caesar. Towards learning-based plan-
ning: The nuPlan benchmark for real-world autonomous driving. In Proc. IEEE International
Conf. on Robotics and Automation (ICRA), 2024.

[9] A. Sauer, N. Savinov, and A. Geiger. Conditional affordance learning for driving in urban
environments. In Proc. Conf. on Robot Learning (CoRL), 2018.

[10] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, and Q. Kong. Baidu
apollo EM motion planner. arXiv.org, 1807.08048, 2018.

[11] A. Sadat, M. Ren, A. Pokrovsky, Y. Lin, E. Yumer, and R. Urtasun. Jointly learnable behavior
and trajectory planning for self-driving vehicles. In Proc. IEEE International Conf. on Intelligent
Robots and Systems (IROS), 2019.

[12] O. Contributors. Openscene: The largest up-to-date 3d occupancy prediction benchmark in
autonomous driving. https://github.com/OpenDriveLab/OpenScene, 2023.

9

https://github.com/OpenDriveLab/OpenScene

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In Proc. Conf. on Robot Learning (CoRL), 2017.

[14] D. Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems (NeurIPS), 1988.

[15] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-
fort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end learning for self-driving
cars. arXiv.org, 1604.07316, 2016.

[16] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. M. Allen, V. D. Lam, A. Bewley, and
A. Shah. Learning to drive in a day. arXiv.org, abs/1807.00412, 2018.

[17] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl. Learning by cheating. In Proc. Conf. on Robot
Learning (CoRL), 2019.

[18] K. Chitta, A. Prakash, and A. Geiger. Neat: Neural attention fields for end-to-end autonomous
driving. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2021.

[19] A. Prakash, K. Chitta, and A. Geiger. Multi-modal fusion transformer for end-to-end au-
tonomous driving. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2021.

[20] D. Chen, V. Koltun, and P. Krähenbühl. Learning to drive from a world on rails. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2021.

[21] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao. Trajectory-guided control prediction for end-
to-end autonomous driving: A simple yet strong baseline. In Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[22] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. In Proc. Conf. on Robot Learning (CoRL), 2022.

[23] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu. Reasonnet: End-to-end driving
with temporal and global reasoning. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2023.

[24] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger. TransFuser: Imitation with
transformer-based sensor fusion for autonomous driving. IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), 2023.

[25] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li. Think twice before driving: Towards
scalable decoders for end-to-end autonomous driving. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2023.

[26] J. Zhang, Z. Huang, and E. Ohn-Bar. Coaching a teachable student. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2023.

[27] B. Jaeger, K. Chitta, and A. Geiger. Hidden biases of end-to-end driving models. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2023.

[28] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao. ST-P3: End-to-end vision-based autonomous
driving via spatial-temporal feature learning. In Proc. of the European Conf. on Computer
Vision (ECCV), 2022.

[29] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang, L. Lu, X. Jia,
Q. Liu, J. Dai, Y. Qiao, and H. Li. Planning-oriented autonomous driving. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2023.

10

[30] B. Jiang, S. Chen, Q. Xu, B. Liao, J. Chen, H. Zhou, Q. Zhang, W. Liu, C. Huang, and X. Wang.
VAD: Vectorized scene representation for efficient autonomous driving. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), 2023.

[31] T. Ye, W. Jing, C. Hu, S. Huang, L. Gao, F. Li, J. Wang, K. Guo, W. Xiao, W. Mao, et al.
Fusionad: Multi-modality fusion for prediction and planning tasks of autonomous driving.
arXiv.org, 2023.

[32] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou. Metadrive: Composing diverse
driving scenarios for generalizable reinforcement learning. IEEE Trans. on Pattern Analysis
and Machine Intelligence (PAMI), 45(3):3461–3475, 2022.

[33] C. Gulino, J. Fu, W. Luo, G. Tucker, E. Bronstein, Y. Lu, J. Harb, X. Pan, Y. Wang, X. Chen,
J. D. Co-Reyes, R. Agarwal, R. Roelofs, Y. Lu, N. Montali, P. Mougin, Z. Yang, B. White,
A. Faust, R. McAllister, D. Anguelov, and B. Sapp. Waymax: An accelerated, data-driven
simulator for large-scale autonomous driving research. In Advances in Neural Information
Processing Systems (NeurIPS), 2023.

[34] K. Chitta, D. Dauner, and A. Geiger. Sledge: Synthesizing driving environments with generative
models and rule-based traffic. In Proc. of the European Conf. on Computer Vision (ECCV),
2024.

[35] A. Amini, I. Gilitschenski, J. Phillips, J. Moseyko, R. Banerjee, S. Karaman, and D. Rus.
Learning robust control policies for end-to-end autonomous driving from data-driven simulation.
IEEE Robotics and Automation Letters (RA-L), 2020.

[36] A. Amini, T.-H. Wang, I. Gilitschenski, W. Schwarting, Z. Liu, S. Han, S. Karaman, and D. Rus.
Vista 2.0: An open, data-driven simulator for multimodal sensing and policy learning for
autonomous vehicles. In Proc. IEEE International Conf. on Robotics and Automation (ICRA),
2022.

[37] T.-H. Wang, A. Amini, W. Schwarting, I. Gilitschenski, S. Karaman, and D. Rus. Learning
interactive driving policies via data-driven simulation. In Proc. IEEE International Conf. on
Robotics and Automation (ICRA), 2022.

[38] A. Tonderski, C. Lindström, G. Hess, W. Ljungbergh, L. Svensson, and C. Petersson. NeuRAD:
Neural rendering for autonomous driving. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2024.

[39] S. Manivasagam, I. A. Bârsan, J. Wang, Z. Yang, and R. Urtasun. Towards zero domain gap: A
comprehensive study of realistic lidar simulation for autonomy testing. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV), pages 8272–8282, 2023.

[40] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy. On offline evaluation of vision-based
driving models. In Proc. of the European Conf. on Computer Vision (ECCV), 2018.

[41] M. Bansal, A. Krizhevsky, and A. S. Ogale. Chauffeurnet: Learning to drive by imitating the
best and synthesizing the worst. In Proc. Robotics: Science and Systems (RSS), 2019.

[42] N. Lehtomaki, N. Sandell, and M. Athans. Robustness results in linear-quadratic gaussian based
multivariable control designs. IEEE Trans. on Automatic Control (TAC), 1981.

[43] R. Rajamani. Vehicle dynamics and control. Springer Science & Business Media, 2011.

[44] M. Treiber, A. Hennecke, and D. Helbing. Congested traffic states in empirical observations
and microscopic simulations. Physical review E, 2000.

[45] O. Scheel, L. Bergamini, M. Wolczyk, B. Osiński, and P. Ondruska. Urban driver: Learning to
drive from real-world demonstrations using policy gradients. In Proc. Conf. on Robot Learning
(CoRL), 2021.

11

[46] K. Renz, K. Chitta, O.-B. Mercea, S. Koepke, Z. Akata, and A. Geiger. Plant: Explainable
planning transformers via object-level representations. In Proc. Conf. on Robot Learning
(CoRL), 2022.

[47] Z. Li, W. Wang, H. Li, E. Xie, C. Sima, T. Lu, Y. Qiao, and J. Dai. BEVFormer: Learning
bird’s-eye-view representation from multi-camera images via spatiotemporal transformers. In
Proc. of the European Conf. on Computer Vision (ECCV), 2022.

[48] A. Patil, S. Malla, H. Gang, and Y.-T. Chen. The h3d dataset for full-surround 3d multi-object
detection and tracking in crowded urban scenes. In Proc. IEEE International Conf. on Robotics
and Automation (ICRA), 2019.

[49] Creative Commons. Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional Public License. https://creativecommons.org/licenses/by-nc-sa/4.0. Accessed: 2024-06-
12.

[50] Motional. Dataset License Agreement for Non-Commercial Use. https://www.nuscenes.org/
terms-of-use. Accessed: 2024-06-12.

[51] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proc. of the International
Conf. on Learning Representations (ICLR), 2019.

[52] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems
(NeurIPS), pages 5998–6008, 2017.

[54] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end object
detection with transformers. In Proc. of the European Conf. on Computer Vision (ECCV), 2020.

[55] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of the
International Conf. on Learning Representations (ICLR), 2015.

12

https://creativecommons.org/licenses/by-nc-sa/4.0
https://www.nuscenes.org/terms-of-use
https://www.nuscenes.org/terms-of-use

± 2mNavigation Goal: Turn Right

Ego-Vehicle

Centerline

s = 20m

Figure 4: Navigation Goal. Given the map, we extract a route centerline (gray) to interpolate a goal
point at a distance s = 20m (orange) from the rear axle of the ego-vehicle (red). The navigation goal
is classified as a right turn, as the lateral distance exceeds 2m to the right.

A Inconsistencies in nuScenes Planning Benchmarks

Designing a consistent and standardized evaluation pipeline is crucial to ensure fair comparisons
in benchmarks. However, due to the lack of a standardized evaluation setup on nuScenes [3] for
end-to-end driving, there has been inconsistency in prior work [4, 29, 30]. Specifically, although
the same metrics, such as ADE or collision rates, have been reported, the underlying evaluation
protocols1 often differ. These differences include how metric results are averaged over timestamps,
which objects are filtered during metric calculation, which frames are considered masked during
evaluation, and what resolution of the BEV grid is used to calculate collisions. Such subtle differences
can lead to inaccurate conclusions, which emphasizes the importance of our NAVSIM benchmark
with principled and standardized evaluation.

B Implementation Details: NAVSIM

This section provides additional details regarding the metrics and evaluation of NAVSIM.

B.1 Task Description for Driving Agents

Keyframe-Based Evaluation. Simulating high-dimensional sensor streams for cameras or LiDAR
can be cumbersome. Therefore, in NAVSIM, the trajectory planned by the driving agent is kept
fixed in the initial frame of the scene for the entire simulation horizon h of 4s. Unlike traditional
closed-loop benchmarks that only use a small initial segment of the trajectory before replanning [6],
NAVSIM uses the trajectory as a whole for evaluation. Therefore, agents need to anticipate the
movement of surrounding agents and plan accordingly. We simulate the trajectory with a controller
and motion model (see Sec. B.2).

Sensor Input. Autonomous vehicles require sensor setups to capture details regarding their envi-
ronment. At every time step, an agent in NAVSIM has access to 8 surround-view cameras, each
with an image resolution of 1920 × 1080 pixels. Agents may additionally receive a point cloud
merged from 5 LiDAR sensors mounted on the vehicle. While recent literature in open-loop planning
has shifted away from using LiDAR [7, 29, 30], processing multi-view imagery during training
and testing significantly increased compute requirements. We include LiDAR to enable exploration
for more efficient architectures, utilizing fewer or lower-resolution camera inputs. Besides these
sensors, agents have access to the ego velocity, acceleration, and navigation goal. This information
is accessible for the current time step and 3 past frames, which are 0.5 seconds apart. Note that
privileged information, such as the HD map, is only used in NAVSIM to unroll the simulation and
compute metrics but is not accessible to the driving agents.

1For details on inconsistencies in nuScenes end-to-end driving evaluation, please refer to PARA-Drive [7].

13

Navigation Goal. To disambiguate driver intention, we provide a discrete directional command as a
one-hot vector (i.e., left, straight, right, and unknown). The command is based on the centerline in [6],
which extracts the lane-center segments along the route using Dijkstra’s algorithm on the map. We
interpolate along the centerline for s = 20m from the ego position and classify the direction as left
or right if the interpolated point exceeds a lateral threshold of ±2m, as shown in Fig. 4. Otherwise,
the direction is categorized as straight. Finally, it is set to unknown if the route is not available. The
navigation goal in NAVSIM does not incorporate information about obstacles or human operator
behavior, unlike previous benchmarks [28, 29, 30] based on nuScenes [3].

B.2 Predictive Driver Model Score (PDMS)

Metric Weight Range

No at-fault Collision (NC) - {0, 1
2 , 1}

Drivable Area Compl. (DAC) - {0, 1}
Time to Collision (TTC) 5 {0, 1}
Ego Progress (EP) 5 [0, 1]
Comfort (C) 2 {0, 1}

Table 2: PDMS. Subscores with weights and ranges.

Similar to established closed-loop bench-
marks [8, 13], NAVSIM evaluates the driv-
ing performance of agents with a single ag-
gregated score called Predictive Driver Model
Score (PDMS) ∈ [0, 1]. This scoring func-
tion closely resembles nuPlan’s closed-loop
score (CLS) [8] and originates from the PDM-
Closed planner, the winner of the 2023 nuPlan
competition. The non-reactive simulation and
metrics for PDMS are highly optimized due
to the strict run-time requirements of the nuPlan challenge. We use a frequency of 10Hz for the
simulation and scoring pipeline. As OpenScene provides frames at 2Hz, we interpolate agent bound-
ing boxes to a resolution of 10Hz. As observed in previous work [3, 48], we find that upsampling
the temporal resolution is sufficient for scoring, and beneficial given the substantial reduction in
storage requirements. In the following, we provide further details on the simulation and the subscores,
summarized in Table 2.

Non-Reactive Simulation. The simulation ensures that a driving agent is evaluated on vehicle
movement that is kinematically feasible. Given that the trajectory of a driving agent provides poses
with time steps, we first interpolate the trajectory to the simulation frequency of 10Hz. Over the
simulation horizon of h = 4s, we execute a Linear Quadratic Regulator (LQR) [42] controller
to calculate acceleration and steering values and propagate the ego pose with a kinematic bicycle
model [43]. We use the same controller parameters of PDM-Closed and nuPlan [6, 8].

No at-fault Collisions (NC). The background agents in NAVSIM are non-reactive and do not consider
motion behavior that deviates from the human operator. Therefore, the NC metric penalizes collisions
classified as at-fault. Such at-fault cases are (1) collisions with a stationary bounding box, (2) ego-
front collisions with any detected entity, and (3) ego-side collisions when the ego-vehicle is in an
intersection or multiple lanes. The collision metric additionally distinguishes between vulnerable
agents (vehicles, pedestrians, bicycles) and static classes (e.g., traffic cones, generic objects), with the
score given by:

scoreNC =

1 no at-fault collision,
0.5 one at-fault collision with static class,
0 otherwise.

(2)

Drivable Area Compliance (DAC). Vehicles must remain in drivable areas to ensure traffic law
compliance and pedestrian safety. In NAVSIM, drivable areas include lanes, intersections, or parking
areas. If any corner of the ego-vehicle bounding box leaves the drivable area, the metric assigns a
multiplied penalty of scoreDAC = 0, or scoreDAC = 1 upon compliance.

Ego Progress (EP). The ego progress metric ensures that the vehicle is advancing along the intended
route as specified by the navigation goal. Specifically, the progress result scoreEP represents the
agent progress as a ratio to an approximated safe upper bound. We use a search-based strategy with
trajectory proposals of PDM-Closed [6], the SoTA planner on the benchmark, to identify this upper

14

bound. The ratio is clipped to [0, 1] while discarding low or negative progress scores, e.g., if the
upper bound is below 5 meters.

Time to Collision (TTC). The TTC score ensures that the ego vehicle maintains a safe distance from
other actors and avoids near collisions. In NAVSIM, TTC is the minimum time in any iteration until
the ego vehicle collides with a bounding box. At each simulated iteration, the metric projects the
ego-vehicle with a constant velocity and heading with a step size of 0.3s and checks for collisions.
Certain collisions are discarded, e.g., if the bounding box is behind the ego vehicle. The result is
either scoreTTC = 1, if TTC > 0.9s, or scoreTTC = 0 otherwise.

Comfort (C). This comfort metric verifies that several kinematic statistics, such as acceleration
and jerk, are within predefined thresholds. We use the same statistics and thresholds as the nuPlan
framework [8], which were determined based on the human driver. If the planner complies with all
thresholds, the result is scoreC = 1, otherwise scoreC = 0.

Additional Subscores. We implemented additional subscores for PDMS, such as driving direction
compliance and speed limit compliance. However, we observed technical issues or little impact of
these subscores with their initial implementations and have excluded the metrics from the main study.
We also experimented with traffic light infractions but faced difficulties with the annotations. The
nuPlan dataset applies several post-processing steps on the traffic light states [8], e.g., to fill labels or
to ensure consistency on intersections. While this post-processing provides complete traffic lights for
all actors in the scene, we frequently encountered false traffic light infractions by the human operator
and, therefore, did not include the subscore in PDMS. We aim to extend the PDMS with improved
subscores in future NAVSIM versions.

C Dataset & Data Splits

This section discusses the supported data for NAVSIM and the associated licenses. Additionally, we
offer a comprehensive overview of the data splits and curation.

C.1 Dataset Support of OpenScene

NAVSIM provides initial support for the OpenScene v1.1 dataset [12], a collection of 120h driving
data derived from the nuPlan dataset [8]. OpenScene reduces the temporal frequency of sensor and
annotation data to 2Hz, thereby significantly reducing storage demands. As such, OpenScene is
distributed under Creative Commons Attribution Non-Commercial Share Alike 4.0 (CC BY-NC-SA
4.0) [49] and nuPlan’s Dataset License Agreement for Non-Commercial Use [50]. The licensing
covers all available splits in OpenScene. We refer to nuPlan’s terms of use [50] for information on
the privacy policy or takedown request regarding privacy concerns. We thank the nuPlan team from
Motional for their consent to the re-distribution of OpenScene and orginzational support.

In the future, we aim to extend the support for more datasets in NAVSIM. Such datasets ideally
provide sensor data as driving policy input, with tracked traffic entities in BEV (e.g., bounding boxes)
and a semantic HD map for evaluation. We hope more datasets are openly released to the community,
allowing for diverse and challenging benchmarks.

C.2 Dataset Splits & Curation in NAVSIM

Dataset Splits. We summarize all splits used in NAVSIM in Table 3. The OpenScene dataset provides
several data splits, such as trainval for training and validating driving policies, test as split for
regular testing, and mini for lightweight demonstrations (see “Standard” in Table 3). Each split
consists of (1) log files for annotations, the ego status, or metadata and (2) sensor data providing
surround view camera images and LiDAR point clouds. For NAVSIM, we provide fixed filtering
options for challenging scenarios on the respective standard splits, called navtrain, navtest, and
navmini. These filtering options do not require additional downloads and can be applied to the
OpenScene splits. We recommend the usage of navtrain and navtest as standardized training

15

Name Logs Sensors Config parameters

Standard
trainval 14 GB >2000 GB train_test_split=trainval

test 1 GB 217 GB train_test_split=test
mini 1 GB 151 GB train_test_split=mini

NAVSIM
navtrain - 445 GB* train_test_split=navtrain
navtest - - train_test_split=navtest
navmini - - train_test_split=navmini

Table 3: Dataset Splits. Available data splits and storage requirements of OpenScene (i.e., standard)
and the filtering options for NAVSIM. We provide standalone downloads for the leaderboard split
and the navtrain sensors (*requiring 300GB when excluding past frames).

Split Agent NC DAC TTC Comf. EP PDMS

trainval Const. Velocity 93.1 89.7 88.8 100 73.3 78.7
Human 99.4 97.0 97.9 99.9 84.7 90.9

navtrain Const. Velocity 68.6 59.3 47.8 100 21.1 22.4
Human 100 100 100 99.9 88.0 94.9

Table 4: Challenging Scenes. We show the PDMS and subscores for the constant velocity baseline
and human operator on the trainval and navtrain splits.

and evaluation protocols, e.g., when benchmarking in research papers. Given the storage demands
of sensors in trainval, we provide a separate download only for the frames needed in navtrain.
These navtrain sensor frames require only 445GB of storage or 300GB when a driving agent does
not require past sensor frames. Curation & Filtering. As mentioned in the main paper, we filter the
dataset to remove frames with (1) near-trivial solutions or (2) annotation errors that provide problems
during evaluation. For (1), we define trivial frames as situations where the constant velocity baseline
achieves a PDMS of more than 80. We find this strategy effective in filtering frames that do not require
active decision-making or intervention, as the constant velocity model (with straight driving) can be
interpreted as an action-repeat policy. In (2), we remove frames where the human operator achieves a
PDMS of less than 80. These failures are often due to false collisions with erroneous bounding boxes
or off-road infractions, given the over-approximated ego extent. We present the PDMS results of the
constant velocity agent and human operator in Table 4. The PDMS of 78.7 of the constant velocity
baseline on trainval indicates that most frames have trivial solutions. After filtering in navtrain,
the constant velocity PDMS drops to 22.4, whereas the human operator improves (i.e., 94.9 vs. 90.9).
Thus, we ensure that the human operators provide a valid expert for imitation in terms of PDMS.

D Baselines

In this section, we provide further details on the implementation of the baselines and experiments.

D.1 Baselines for Alignment Between Open-Loop and Closed-Loop Evaluation

Experimental Setting. To benchmark open-loop and closed-loop metrics, we use the nuPlan
simulator as a reactive environment. We simulate short scenarios with a duration of d = 15s and
frequency of f = 10Hz, where a planner outputs a new trajectory. As is the default in nuPlan, all
planners must output a trajectory over the horizon of 8s, with positions and orientation values. The
closed-loop score (CLS) is calculated over the complete simulation (i.e., d = 15s), whereas the open-
loop score (OLS) and PDMS are computed on the first frame of each scenario. For implementation
details on CLS and OLS, we refer to [8]. In the following, we outline details of the motion planners
used in the main paper.

Constant Kinematics. We consider 2 constant velocity baselines when interpolating the vehicle
state on the longitudinal axis of the ego vehicle or the lane centerline [6], respectively. We extend

16

the constant velocity planner with 4 acceleration values (i.e. {±1,±2} ms−2) along the longitudinal
ego-axis and the centerline, totaling 8 constant acceleration baselines.

IDM Planner. For the alignment study, we include the Intelligent Driver Model (IDM) [44] planner
from nuPlan [8]. By default, the planner uses a fallback target velocity of v0 = 10ms−1, a desired
gap to the leading vehicle of s0 = 1m, a headway time of T = 1.5s, a maximum acceleration of
a = 1ms−2, a maximum deceleration (positive) of b = 3ms−2, and a map radius of r = 40m. We
vary the default setting and consider 2 fallback target velocities v0 ∈ {5, 15}ms−1, 2 desired leading
gaps s0 ∈ {0.1, 5}m, 2 headway times T ∈ {0, 3}s, 2 acceleration parameters a ∈ {4, 6}ms−2,
2 maximum deceleration’s b ∈ {4, 6}ms−2, and 2 map radii of r ∈ {1, 10}m. Lastly, we add 1
‘aggressive’ driver profile (v0 = 15ms−1, s0 = 0.1m, T = 0s, a = 6ms−2, b = 3ms−2) and 1
‘passive’ setting (v0 = 8ms−1, s0 = 5m, T = 3s, a = 1ms−2, b = 6ms−2) to the study. With all
configurations, we include a total of 15 IDM planners.

PDM-Closed. Additionally to the default PDM-Closed planner [6], which evaluates 5 target speeds
{10, 40, 60, 80, 100}% of the speed-limit combined with 3 lateral offsets ({−1, 0, 1}m), we include
a variant with only a single offset of 0m and two with only a single target speed of 100% and
200% of the speed-limit respectively. We also test one version that uses only a single sample obtained
by combining an offset of 0m from the centerline with a target speed of 100% of the speed-limit.
Moreover, we evaluate three versions that simulate proposals over {1, 2, 8}s instead of the default 4s.
Finally, we individually drop trajectory scoring metrics for no-collision, drivable area compliance,
and driving direction compliance individually and all at once. In total, this results in 12 variants of
the PDM-closed planner.

Urban Driver. We consider the Urban Driver open-loop implementation [45], that is provided
in nuPlan. Specifically, we train the model with 2 embedding sizes (128 and 256) on 6 datasets
({25%, 50%, 100%} of navtrain and an equal-sized non-filtered set) and evaluate 2 checkpoints at
different epochs (i.e., after 2 and 100 epochs), resulting in a total of 24 Urban Driver models. We
train all models for 100 epochs on a single NVIDIA 3090 GPU with an AdamW optimizer [51], an
L1-loss, a batch size of 64, and a learning rate of 1e−4 that is divided by 10 after 50 and 75 epochs.
Training a single Urban Driver model takes about 1 day.

PlanCNN. For the study, we modify a PlanCNN model [46], to receive all 15 input combinations
of a BEV raster, the kinematic ego status (velocity and acceleration), the navigation goal, and the
centerline according to [6]. We use a ResNet-50 [52] to encode the BEV raster and apply linear layers
to project all input features to a vector of size 512. We concatenate the feature vectors and apply an
MLP (with 2 hidden layers and a hidden state size of 512) to regress the output trajectory. All models
are trained on {25%, 50%, 100%} of navtrain and an equal-sized non-filtered set, resulting in 90
PlanCNN variants. We use a single NVIDIA 2080Ti GPU and train for 100 epochs with the AdamW
optimizer [51], an L1-loss function, a batch size of 64, and a learning rate of 1e−4 that is divided by
10 after 50 and 75 epochs. The training process takes about 1 day per model.

D.2 Baselines for End-to-End Autonomous Driving

TransFuser. We base our TransFuser [24] implementation on carla_garage2, with several modifi-
cations to the original architecture. First, we stitch the front-view camera (cam_f0) and cropped side
cameras (cam_l0, cam_r0) to a single 1024× 256 input image (approx. FOV of 140◦), to replace
a single wide-angle camera available in CARLA [13]. To offer a lightweight sensor baseline, we
apply ResNet-34 [52] on the LiDAR and image grid. We tokenize the resulting BEV feature grid,
concatenate a linear projection of the ego status (incl. velocity, acceleration, navigation goal), and
forward the features as keys and values in a Transformer decoder [53]. The decoder has 3 layers
and uses a dimensionality of dmodel = 256 for input-output features, dffn = 1024 for Feed Forward
Networks (FFNs), and has 8 attention heads. We use 30 learnable queries for vehicle detection and
1 learnable ego query for trajectory regression. We apply a bounding box regression head on the
vehicle queries for detection according to DETR [54]. We use a simple FFN on the resulting ego

2https://github.com/autonomousvision/carla_garage

17

https://github.com/autonomousvision/carla_garage

Constant IDM
PDM-Closed

PlanCNN
UrbanDriver

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(a) PDMS Rank
PDMS Linear
OLS Rank
OLS Linear

0.0 0.5 1.0

CLS

0.0

0.5

1.0

PD
M

S

(b)

Constant
IDM
PDM-Closed
PlanCNN
UrbanDriver

0.0 0.5 1.0

CLS

0.0

0.5

1.0

O
L

S

(c)

Figure 5: Planner-Level Alignment of Metrics. We report the correlation coefficients between open-
loop metrics (OLS, PDMS) and the closed-loop score (CLS) for the five planner types considered in
our study. The PDMS is better correlated to the CLS for every planner type.

query for the ego trajectory prediction. Moreover, we ignore the depth and semantic segmentation
heads of TransFuser since no labels are available in NAVSIM for these tasks. However, we maintain
the BEV segmentation head on the front-facing 32m × 64m to predict the rasterized drivable area,
walkways, lane centerlines, static objects, vehicles, and pedestrians. We apply an L1-loss on the ego
trajectory, a Hungarian matching loss on the vehicle detection’s (i.e., consisting of a cross-entropy
and L1-loss), and a cross-entropy loss on the BEV segmentation. By default, we train the TransFuser
model for 100 epochs on navtrain with a single NVIDIA A5000 GPU, which takes about 1 day.
We use an Adam optimizer [55], a batch size of 96, and a constant learning rate of 1e−4. We refer to
the NAVSIM repository for additional details (see Sec. B).

Latent TransFuser (LTF). For LTF [24], we replace the LiDAR input grid with a learned tensor of
the same shape. Since only a front-facing image is provided to LTF, we adapt the object detection
auxiliary tasks only to detect bounding boxes in front of the ego vehicle (i.e., in the 32m × 64m area).
The remaining training parameters and configurations are equivalent to those of TransFuser.

UniAD. We reproduce UniAD [29] using its official codebase3. It takes inputs from the 8 surround-
view cameras, at a resolution of 1920×1080 for each image. The ego status (incl. velocity and
acceleration) is input to the BEV encoder. We extend the length of the temporal input frames and the
trajectory planning frames to 3 and 8, respectively, to match the NAVSIM settings. The frame lengths
for occupancy forecasting are also aligned. For detection, we filter the training labels based on the
visibility with the LiDAR sensor. In the mapping module, we select 2 classes (pedestrian crossing
and road boundary) as thing classes and 1 stuff class (i.e., drivable area). The backbone of UniAD is
replaced with a ResNet-50 [52], while the other model settings remain the same. For the training
strategy, we first train a 3D detection model, BEVFormer [47], on navtrain for better parameter
initialization. This BEVFormer is initialized with a corresponding pre-trained BEVFormer on the
nuScenes dataset [3]. We then train the UniAD in an end-to-end manner, combining stage 1 and stage
2 of the original UniAD training scheme. The gradient back-propagation of the image backbone is
stopped to reduce memory cost. The UniAD is trained for 14 epochs with all modules, including
losses for tracking, mapping, motion prediction, occupancy forecasting, and planning. The batch size
is set to 1 per GPU across 96 GPUs, with a learning rate of 2e−4 for convergence stability. Other
hyper-parameters remain unchanged. The entire training process takes 3 days.

PARA-Drive. Similar to the UniAD adaptation, we train PARA-Drive [7] following the NAVSIM
settings. Both training of the UniAD and PARA-Drive share the use of the same BEVFormer pre-
trained weights on the NAVSIM dataset. The primary differences between UniAD and PARA-Drive
lie in the architecture design as in [7]. The batch size is set to 1 per GPU, and we use 10 nodes for
training, each with 8 NVIDIA A100, with a total of 80 GPUs for about 3.5 days of training.

3https://github.com/OpenDriveLab/UniAD

18

https://github.com/OpenDriveLab/UniAD

E Additional Results

In this section, we provide supplementary results on the experiments of the main paper.

E.1 Alignment Between Open-Loop and Closed-Loop Evaluation

For this subsection, we present additional results for the alignment study between the open- and
closed-loop metrics. We consider the PDMS with an evaluation horizon of h = 4 and the OLS of
nuPlan (as open-loop metrics) in comparison to the CLS of nuPlan [8].

0.0

0.5

C
or

r.
(d

=1
5) Rank

Linear

NC DAC TTC EP C
0.0

0.5

C
or

r.
(d

=4
)

Figure 6: Correlation of Subscores.

Subscores. In Fig. 6, we show the correlations of subscores
given the PDMS and CLS implementations. Despite the
longer duration for closed-loop simulation (d = 15s), we ob-
serve that PMDS is able to approximate statistics across all
subscores. Drivable-area compliance (DAC), ego progress
(EP), or comfort (C) appear easier to approximate over the
PDMS horizon of h = 4s, compared to the collision-based
metrics (i.e. NC, TTC). However, we observe higher cor-
relations for collision metrics with a reduced closed-loop
duration (d = 4s). Generally, the PDMS submetrics pro-
vide valuable scores for benchmarking despite the strong
assumption of a non-reactive trajectory planner.

50% 100%
0.0

0.2

0.4

0.6
C

L
S

(f
=2

H
z)

filtered
non-filtered

Figure 7: Training Split CLS.

Filtered Training. In Fig. 7, we show the CLS results for
the learned planners from Section D.1. We compare the
box plots when training on {50%, 100%} of the filtered
navtrain split and an equal sized non-filtered split, given
a planning frequency f = 2Hz, that yielded the highest
scores for learned agents. For 100% training data, we ob-
serve minor differences in performance, where navtrain
indicates higher variance, whereas the unfiltered split re-
sults in a wider range (indicated by the whiskers). The
PlanCNN variant, which omits the ego status, achieves the
highest CLS results on both training splits (i.e., 0.65 vs.
0.67). Moreover, when using 50% of training data, the planners perform worse when trained on the
navtrain split. We conclude that training on filtered data does not necessarily benefit a learned
planner but does not harm performance when given a sufficient training size.

Additionally, we present our benchmark results for privileged planning in Fig. 8, where we show the
scatter plots for different CLS durations d (4s to 15s), planning frequencies f (10Hz vs. 2Hz), and
evaluation horizons h of PDMS (2s to 8s).

Planner-Level Alignment. The imbalanced distribution of different types of planners in our study
may introduce biases into the overall correlations presented in Fig. 3. To address this, we visualize
the individual correlations of each planner type in Fig. 5. The correlation values vary depending on
metric range and variance of each planner type. Nevertheless, when examining each type individually,
the PDMS is better correlated to the CLS than the OLS, and is always positively correlated.

E.2 Revisiting the State of the Art in End-to-End Autonomous Driving

Analyzing TransFuser. In Table 5, we compare several training settings for TransFuser. For
the three training seeds in configs A1-A3, we observe a standard deviation of ± 0.56 in PDMS,
which is relatively small compared to variance among training seeds for closed-loop simulations in
CARLA [13]. Further, unlike CARLA, NAVSIM is deterministic, and we obtain identical scores
when repeating evaluations of a deterministic driving agent. Discarding velocity and acceleration
(B1) lowers PDMS by 1.5− 2.6, whereas only removing the acceleration (B2) lowers the score by
1.0− 2.1. We conclude that while TransFuser benefits from the ego status, it is not purely relying

19

Config Parameter Setting NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
A1

Default config
Seed 1 98.0 91.3 94.2 100 78.1 83.3

A2 Seed 2 97.7 92.8 92.8 100 79.2 84.0
A3 Seed 3 97.9 93.0 93.1 100 79.3 84.4

B1 Ego status Goal only 96.8 91.9 91.3 98.6 77.3 81.8
B2 Goal and velocity only 96.7 92.3 91.0 100 77.8 82.3

C1
Camera FOV

60◦ (1 camera) 96.7 90.2 90.9 100 75.8 80.3
C2 160◦ (3 cameras) 97.6 91.4 92.7 100 78.1 82.8
C3 240◦ (5 cameras) 97.8 92.5 93.0 100 79.2 84.1

D1
LiDAR range

F:16, B:16, L:16, R:16 96.9 88.3 91.2 100 74.6 79.1
D2 F:64, B:32, L:32, R:32 97.8 92.7 93.4 100 79.3 84.3
D3 F:64, B:64, L:64, R:64 96.8 90.3 91.5 100 76.5 81.0

E1 Supervision No BEV segmentation 97.4 90.5 92.2 100 77.1 81.6
E2 No 3D detection 97.8 92.7 92.9 100 79.2 84.0

Table 5: TransFuser Ablations. The default configuration, which obtains the best results, uses the
navigation goal, velocity, and acceleration as ego status inputs. Its camera FOV is around 140◦ and
LiDAR range is 32m to the front (F), back (B), left (L), and right (R). It uses both auxiliary tasks.

ID Track Motion Occ. Plan NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
A ✓ ✓ ✓ ✓ 97.8 92.0 93.7 99.7 78.3 83.6
B ✓ ✓ ✓ 97.9 92.4 93.0 99.8 79.3 84.0
C ✓ ✓ 97.1 91.5 91.5 99.7 78.2 82.3
D ✓ 97.1 90.9 92.0 99.8 77.0 81.9

Table 6: PARA-Drive ablations on the effectiveness of each task. We assess the impact of the
auxiliary tasks in PARA-Drive on the navtest split. The default configuration, which excludes
occupancy prediction, has the highest PDMS.

on the kinematic state for planning. Next, only considering the front camera (C1) with a 60◦ FOV
leads to a small drop in almost all subscores, compared to our default setting of three cropped and
concatenated images with a FOV of 140◦. However, expanding the FOV with additional cameras
does not result in substantially improved scores. Interestingly, restricting the LiDAR range to 16m
in all directions (D1), results in a score of 79, which is lower than dropping LiDAR altogether (see
LTF in Table 1). Expanding the LiDAR range to 64m in the forward direction (D2) or all directions
(D3) does not provide significant improvements. We suspect that changes in the LiDAR range overly
simplify or complicate the auxiliary 3D object detection and BEV semantic segmentation tasks, which
operate in the LiDAR coordinate frame, hindering effective imitation learning. We check the impact
of the auxiliary tasks by excluding them, where performance drops without BEV Segmentation (E1).

Analyzing PARA-Drive. We study the performance influence of auxiliary tasks for PARA-Drive in
Table 6. All auxiliary tasks (A), including tracking, motion forecasting, and occupancy prediction,
lead to a PDMS of 83.6. Interestingly, we observe the highest PDMS (i.e., 84.0) when excluding the
occupancy prediction (B) and thus use this setting by default in the main paper. However, our results
indicate the value of the motion prediction heads, with a PDMS reduction of 1.7 when left out (C).
Only training for the downstream planning task, i.e., further removing tracking in (D), we observe the
lowest PDMS of 81.9 on navtest. We conclude that auxiliary tasks are beneficial for planning in
NAVSIM but emphasize that further studies are needed to improve performance across the subscores.

20

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

d=4s, h=4s, f=10Hz

PDMS learned
PDMS rule-based
OLS learned
OLS rule-based

0.00 0.25 0.50 0.75 1.00

d=4s, h=2s, f=10Hz

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

d=8s, h=4s, f=10Hz

0.00 0.25 0.50 0.75 1.00

d=8s, h=4s, f=10Hz

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

d=15s, h=4s, f=10Hz

0.00 0.25 0.50 0.75 1.00

d=15s, h=6s, f=10Hz

0.00 0.25 0.50 0.75 1.00

CLS

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

d=15s, h=4s, f=2Hz

0.00 0.25 0.50 0.75 1.00

CLS

d=15s, h=8s, f=10Hz

Figure 8: Closed-Loop Alignment. We visualize the open-loop metrics (OLS, PDMS) against the
closed-loop score (CLS) of the privileged planners. On the left column, we vary the CLS duration
d (4s to 15s) and planning frequency f (10Hz vs. 2Hz). The right column shows different PDMS
horizons h (2s to 8s). (Default: d = 15s, h = 4s, f = 10Hz).

21

	Introduction
	Related Work
	NAVSIM: Non-Reactive Autonomous Vehicle Simulation
	Generating Standardized and Challenging Train and Test Splits

	Experiments
	Alignment Between Open-Loop and Closed-Loop Evaluation
	Analysis of the State of the Art in End-to-End Autonomous Driving

	Discussion
	Inconsistencies in nuScenes Planning Benchmarks
	Implementation Details: NAVSIM
	Task Description for Driving Agents
	Predictive Driver Model Score (PDMS)

	Dataset & Data Splits
	Dataset Support of OpenScene
	Dataset Splits & Curation in NAVSIM

	Baselines
	Baselines for Alignment Between Open-Loop and Closed-Loop Evaluation
	Baselines for End-to-End Autonomous Driving

	Additional Results
	Alignment Between Open-Loop and Closed-Loop Evaluation
	Revisiting the State of the Art in End-to-End Autonomous Driving

