Under Review - Extended Abstract Track 1-33, 2025 Symmetry and Geometry in Neural Representations

A Dendritic-Inspired Network Science Generative Model for
Topological Initialization of Connectivity in Sparse Artificial
Neural Networks

Diego Cerrettil?? DIEGOCERRETTI02@GMAIL.COM
Yingtao Zhang!? ZHANGYINGTAO1024@GMAIL.COM
Carlo Vittorio Cannistracil»?3* KALOKAGATHOS.AGON@GMAIL.COM

L Center for Complex Network Intelligence (CCNI)f
2Dept. of Computer Science, 3Dept. of Biomedical Engineering, Tsinghua University

Editors: List of editors’ names

Abstract

To address the inefficiency of traditional artificial neural networks, we develop the Dendritic
Network Model (DNM), a technique for generating sparse, biologically-inspired architec-
tures.
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1. Introduction

Artificial neural networks (ANNs) have demonstrated remarkable potential in various fields;
however, their size, often comprising billions of parameters, poses challenges for both eco-
nomic viability and environmental sustainability. Biological neural networks, on the con-
trary, can efficiently process information using ultra-sparse structures (Drachman, 2005;
Walsh, 2013). A central component of the brain’s architecture is the dendritic tree, the
primary receptive surface of the neuron (Cuntz et al., 2010). Current approaches that aim
to integrate the dendritic structure in modern ANNs are often limited to fixed, mathemat-
ically defined structures. Therefore, we identify a critical gap in the field: the lack of a
flexible, principled framework for generating and testing dendritic topologies.

To address this, we introduce the Dendritic Network Model (DNM), a novel genera-
tive technique for creating sparse, biologically-inspired network architectures. The DNM
constructs a flexible dendritic-inspired network topology grounded in the principles of net-
work science rather than direct morphological imitation. The model’s parametric approach
enables the systematic exploration of the relationship between network structure and func-
tionality.
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2. The Dendritic Network Model

2.1. Biological Inspiration and Principles

The architecture of the Dendritic Network Model (DNM) is inspired by the structure of
biological neurons. In the nervous system, neurons process information through complex,
branching extensions called dendrites, which act as the primary receivers of synaptic signals.
Inspired by this phenomenon, the DNM shapes each sandwich layer (a bipartite subnetwork
that links the input nodes of a layer to their output nodes) in a way that output neurons
are connected to distinct groups of input neurons with multiple dendritic branches (Figure
1). In the DNM, an output neuron’s connections are organized into distinct clusters called
dendrites. Each branch connects the output neuron to a consecutive batch of input neu-
rons. These connected blocks are separated by ”inactive spaces”, which are groups of input
neurons that remain unconnected to that specific output neuron. All of an output neuron’s
branches must be formed within a localized receptive window, a predefined segment of the
input layer. This method results in a structured and clustered connectivity pattern, moving
away from random, unstructured sparsity.

2.2. Parametric Specification

By parametrizing the core biological features of DNM, like the number of dendrites for
each output neuron, the size of the receptive windows, the distribution of synapses across
dendrites, and the degree distribution across output neurons, the DNM provides a flexible
framework for generating network topologies that are sparse, structured, and biologically
plausible. Figure 4 shows how the connectivity of an MLP is shaped by the DNM.

Sparsity (s) The sparsity parameter (s) defines the percentage of potential connections
between the input and output layers that are absent, controlling the trade-off between
computational cost and representational power.

Dendritic Distribution The dendritic distribution governs the number of branches that
connect each output neuron to the input layer, which can be seen as the number of distinct
input regions a neuron integrates information from. The central parameter for this is M,
which defines the mean number of dendrites per output neuron. This distribution can
be implemented in one of three ways. The simplest is a fixed distribution, where every
output neuron has exactly M dendrites. Alternatively, a non-spatial distribution introduces
stochasticity by sampling the number of dendrites for each output neuron from a probability
distribution (e.g., Gaussian or uniform) with a mean of M. Finally, a spatial distribution
makes the number of dendrites for each neuron dependent on its position within the layer.
Using a Gaussian or inverted Gaussian profile, this configuration implies that some neurons
integrate signals from many distinct input regions (a high dendrite count), while others
connect to fewer, more focused regions (a low dendrite count).

Receptive Field Width Distribution The receptive field width distribution determines
the size of the receptive field for each output neuron, mirroring the concept of receptive
fields in biology. This process is governed by a mean parameter, «, which specifies the
average percentage of consecutive input neurons on the input layer from which an output
neuron can sample connections. This distribution can be configured in several ways: a



fixed distribution assigns an identical window size « to all output neurons; a non-spatial
distribution introduces variability by drawing each neuron’s window size from a probability
distribution (e.g., Gaussian or uniform) centered on «; and a spatial distribution links the
window size to the neuron’s position in its layer, allowing for configurations where receptive
windows are, for instance, wider at the center and narrower at the edges.

Degree Distribution The degree distribution samples the number of incoming connec-
tions for each output neuron. This can be configured using a fixed distribution, where every
output neuron is allocated the same degree. To introduce heterogeneity, a non-spatial dis-
tribution can be used to sample the degree for each neuron from a probability distribution.
Finally, a spatial distribution allows the degree to vary based on the neuron’s position, for
instance, by creating highly connected, hub-like neurons at the center of the layer. The
mean degree is set by the layer size and target sparsity.

Synaptic Distribution Once an output neuron’s total degree is determined, the synaptic
distribution allocates these connections among its various dendritic branches. The allocation
can be fixed, where each dendrite receives an equal number of synapses. Alternatively, a
non-spatial distribution can introduce random variability in synapse counts per dendrite.
A spatial distribution can also be applied, making the number of synapses dependent on
a dendrite’s topological location, for example by assigning more connections to central
branches versus outer ones. This distribution has a mean of W, where N, is the size
of the input layer.

Layer Border Wiring Pattern The DNM includes a setting to control how connections
are handled at the boundaries of the input layer. The default behavior is a wrap-around
topology, where the input layer is treated as a ring. This means a receptive window for a
neuron near one edge can wrap around to connect to neurons on the opposite edge, ensuring
all neurons have a similarly structured receptive field. Alternatively, a bounded pattern can
be enforced. In this mode, receptive windows are strictly confined within the layer’s physical
boundaries. If a receptive field extends beyond the first or last input neuron, it is clamped
to the edge. This enforces a more stringent locality, which we analyze further in Appendix I.

2.3. Network Topology and Geometric Characterization

The parametric nature of the DNM allows for the generation of a vast landscape of network
topologies.! In this section, we explore this landscape by systematically varying the model’s
key hyperparameters and analyzing the resulting structural changes. We employ both visual
analysis and quantitative measures grounded in network science to provide a comprehensive
geometric characterization of the generated networks.

Figure 2 illustrates this topological diversity by comparing a baseline random network
with several DNM configurations in a 3-layered MLP of dimensions 98 x 196 x 196, with
90% sparsity. Each panel displays the network’s coalescent embedding (Cacciola et al.,
2017) in hyperbolic space, its adjacency matrix, and a direct bipartite graph representa-
tion, alongside key network science metrics: characteristic path length (L), modularity (Q),

1. To facilitate an intuitive exploration of this landscape, we have developed an interactive web application
where readers can adjust the model’s parameters and visualize the resulting network structures. The
application is available at: https://dendritic-network-model.streamlit.app/
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structural consistency (o.), and the power-law exponent of the degree distribution (7). The
coalescent embedding method and the metrics adopted are detailed in Appendix A. The
baseline random network (Figure 2a) exhibits a lack of clear structure, which is quantified
by low modularity and structural consistency (@ = 0.14, o, = 0.04). The high value of
~ and the uniform scattering of nodes in the hyperbolic embedding confirm the absence
of any scale-free organization. Figure 2b represents a DNM network with M = 3, a = 1,
and all distributions fixed. This model generates highly structured and modular networks,
as evidenced by the high modularity (Q = 0.64) and structural consistency (0. = 0.76).
Similar measures are found when setting a spatial Gaussian synaptic distribution (Figure
2d, Q = 0.54, 0. = 0.74), because this configuration does not alter the structure of the
network much, as highlighted by the adjacency matrix depicted. A key finding is that by
setting a spatial Gaussian degree distribution (Figure 2c), the DNM generates a hierarchi-
cal structure. Indeed, the power law exponent yielded (v = 2.30) falls within the typical
range for scale-free networks (7 < 3). This property is clearly evidenced by the emergence
of a tree-like structure in the hyperbolic embedding. This analysis shows that DNM is a
highly flexible framework that can produce a wide spectrum of network architectures. This
ability to controllably generate diverse network geometries is fundamental for analyzing the
relationship between network structure and computational function in ANNs. In Appendix
F we detail the experiments performed. The results show that DNM can effectively boost
the performance of both static and dynamic sparse training methods on various tasks. To
understand which network structures are inherently best suited for specific tasks, we analyze
the topologies of the top-performing models from our static sparse training experiments.
Static sparse training is ideal for this analysis because its fixed topology allows us to link
network structure to task performance directly. Figure 3 shows the adjacency matrices of
these models, their direct bipartite graph representations, and their key metrics in network
science. For image classification on MNIST and Fashion MNIST, the optimal network’s
topology is identical. This network is scale-free (7 < 3) and exhibits a short characteristic
path length. Also on EMNIST, the best-performing network exhibits a power-law degree
distribution. Finally, we obtain contrasting results when assessing the network adopted for
CIFAR-10 classification. Its high v parameter indicates that this network lacks hub nodes,
possibly hinting that for more complex datasets like CIFAR-10, a more distributed and
less hierarchical connectivity pattern is advantageous. Appendix C gives a more detailed
analysis of the best parameter combinations for the tests performed. Overall, this analysis
reveals a compelling relationship between task complexity and optimal network topology.
While simpler, more structured datasets like MNIST and EMNIST benefit from scale-free,
hierarchical architectures that can efficiently integrate global features through hub neurons,
the more complex CIFAR-10 dataset favors a flatter, more distributed architecture.

3. Conclusion

DNM is a highly flexible tool capable of producing a wide spectrum of network architectures,
from modular to hierarchical and scale-free, by systematically adjusting its core parameters.
At extreme sparsity levels, DNM consistently outperforms alternative topological initializa-
tion methods in both static and dynamic sparse training regimes.
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Figure 1: The Dendritic Network Model. Traditional models (top) treat neurons as
simple integrators, ignoring the structure of synaptic inputs. In contrast, our brain-inspired
approach (bottom) organizes connections into dendritic branches, creating a structured
topology where distinct groups of inputs are processed locally.
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Figure 2: A random network (a) compared with various DNM configurations (b-d) for an
MLP of size 98 x 196 x 196 with 90% sparsity. Each panel shows an embedding in hyperbolic
space (left), the first layer’s adjacency matrix (top right), a bipartite graph representation
(bottom right), and key network science metrics: characteristic path length (L), modularity
(Q), structural consistency (o.), and the power law exponent of the degree distribution (7).

Appendix A. Glossary of Network Science

In this section, we introduce the basic notions of network science mentioned in this article.
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Table 1: Image classification accuracy of statically trained, 99% sparse MLPs with different
initial network topologies, compared to the fully-connected (FC) model. The scores are
averaged over 3 seeds + their standard errors. Bold values denote the best performance
amongst initialization methods different from CSTI and SNIP.

Static Sparse Training

MNIST Fashion MNIST EMNIST CIFARI10
FC 98.78+0.02 90.88+0.02 87.13+0.04 62.85+0.16
CSTI 98.0740.02 88.52+0.14 84.66+0.13 52.64+0.30
SNIP 97.59£0.08 87.85+0.22 84.084+0.08 61.81+0.58
Random 96.72+0.04 87.34+0.11 82.66+0.08  55.28+0.09
BSW 97.3240.02 88.18+0.18 82.94£0.06 56.54+0.15
BRF 96.85+0.01 87.41£0.13 82.98£0.02 54.73+0.07
Ramanujan 96.51+0.17 86.45+0.15 81.80+0.13  55.05+0.40
DNM 97.8240.03 89.1940.01 84.76+0.13 61.63+0.18

Table 2: Image classification on MNIST, Fashion MNIST, EMNIST, and CIFAR-10 of the
SET model on MLPs with 99% sparsity over various topological initialization methods,
compared to the fully-connected (FC) model. The scores indicate the accuracy of the mod-
els, averaged over 3 seeds + their standard errors. Bold values denote the best performance
amongst initialization methods different from CSTI and SNIP. Sparse models that surpass
the fully connected network are marked with ”*”.

SET

MNIST Fashion MNIST EMNIST CIFAR10
FC 98.784+0.02 90.88+0.02 87.13+0.04  62.85+0.16
SNIP 98.3140.05 89.4940.05 86.44+0.09  64.26+0.14
CSTI 98.47+0.02 89.91+0.11 86.66+0.06  65.05+0.14
Random 98.144+0.02 89.00+0.09 86.31+0.08  62.70+0.11
BSW 98.2540.02 89.25+0.03 86.26+0.08  63.66+0.07*
BRF 98.254+0.01 89.4440.01 86.20+0.04  62.64+0.10
Ramanujan 97.96+0.05 89.16+0.07 85.80+£0.03  62.58+0.20
DNM 98.40+0.02 89.78+0.09 86.521+0.02 65.671+0.18*

Scale-Free Network A Scale-Free Network (Barabdsi and Albert, 1999) is characterized
by a highly uneven distribution of degrees amongst the nodes. A small number of nodes,
called hubs, have a very high degree, and a large number of nodes have very few connections.
The degree distribution of scale-free networks follows a power law trend P(k) ~ k7, where
v is a constant smaller than 3. In contrast, nodes in random networks are distributed
following a Binomial distribution.
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Table 3: Image classification on MNIST, Fashion MNIST, EMNIST, and CIFAR-10 of the
Rigl. model on MLPs with 99% sparsity over various topological initialization methods,
compared to the fully-connected (FC) model. The scores indicate the accuracy of the mod-
els, averaged over 3 seeds + their standard errors. Bold values denote the best performance
amongst initialization methods different from CSTI and SNIP. Sparse models that surpass
the fully connected network are marked with ”*”.

RigL

MNIST Fashion MNIST EMNIST CIFAR10
FC 98.780.02 90.88-£0.02 87.13+0.04  62.85+0.16
SNIP 98.75-:0.04 89.89+0.01 87.34+0.03  63.79:+£0.23
CSTI 98.76:0.02 90.14-0.10 87.414£0.01  60.52+0.31
Random  98.61-£0.01 89.53+0.04 86.99+0.09  64.24-+0.07*
BSW 98.71£0.06 89.850.07 87.18+0.07*  65.06=0.19%
BRF 98.65+0.03 89.760.09 87.08+0.05  64.33+£0.16*
Ramanujan 98.42-:0.03 89.80-+0.07 87.09+0.04  64.31-£0.08*
DNM 98.7540.04  90.084-0.09  87.2840.28* 65.68+0.01*

Table 4: Image classification on CIFAR-10 of the CHTs and CHTss models on MLPs with
99% sparsity, compared to the fully-connected (FC) model. The scores indicate the accuracy
of the models, averaged over 3 seeds + their standard errors. Bold values denote the best
performance amongst initialization methods different from CSTI.

CSTI BSW BRF
FC 62.85+0.16

CHTs 69.77+0.06 66.96+0.24 66.96+0.24 64.96+0.17 67.19+0.17 68.761+0.11
CHTss 71.2940.14 66.89+0.23 66.89+0.23 64.964+0.17 67.37+0.12 68.504+0.21

Random Ramanujan DNM

Watts-Strogatz Model and Small-World Network A Small-World Network (Watts
and Strogatz, 1998) is characterized by a small average path length. This property implies
that any two nodes can communicate through a short chain of connections. The Watts-
Strogatz (Watts and Strogatz, 1998) model is well known for its high clustering and short
path lengths. This network is modelled by a parameter S between 0 and 1 that can determine
its level of clustering. When /3 takes low values (8 ~ 0), the WS network is a highly clustered
lattice. On the other hand, when 3 approaches 1, the network becomes a random small-
world graph. Intermediate values of 5 can generate a clustered network that maintains
small-world connectivity.

Formally, a network is small-world when the path of length L between two randomly
chosen nodes grows proportionally to the logarithm of the number of nodes (N) in the
network, that is:

L o logN. (1)

11
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Table 5: Image classification on MNIST, Fashion MNIST, and EMNIST of the CHTs and
CHT'ss models on MLPs with 99% sparsity over various topological initialization methods,
compared to the fully-connected (FC) model. The scores indicate the accuracy of the mod-
els, averaged over 3 seeds + their standard errors. Bold values denote the best performance
amongst initialization methods different from CSTI. The performances that surpass CSTI
are marked with ”*”,

MNIST Fashion MNIST EMNIST
CHTs CHTss CHTs CHTss CHTs CHTss

FC 98.78=+0.02 90.88+0.02 87.13+0.04
CSTI 98.81£0.04  98.83+0.02  90.934+0.03  90.81+0.11  87.82+0.04 &87.52+0.04
Random 98.57+£0.04 98.61+0.03  90.424+0.03  90.304+0.10 87.12+0.13  &87.20+0.09
BSW 98.57£0.04  98.61£0.04 90.464+0.06 90.46+0.06 87.12+0.13  87.20+0.09
BRF 98.47+£0.03  98.47+0.03  90.044+0.12  90.04+0.12 87.03+0.07 &87.03+0.07
Ramnujan 98.57+0.03  98.574+0.03  89.82+0.14  98.7840.08  87.244+0.08  87.24+0.08
DNM 98.664+0.03 98.90+0.01* 90.68+0.09 90.884-0.03* 87.40+0.04 87.5540.01%

Table 6: Performance comparison on Multi30k en-de and IWSLT en-de translation tasks
with varying sparsity levels (95% and 90%). BLEU scores (higher is better) are averaged
over 3 seeds £ standard error. Bold indicates best performance for given sparsity and
initialization; * denotes scores surpassing the fully connected model.

Multi30k IWSLT
0.95 0.90 0.95 0.90
FC 31.384+0.38 24.4840.30

CHTsP 28.94+0.57 29.81+0.37 21.15+0.10 21.92+0.17
CHTsP 30.544+0.42 31.45+0.35*% 22.094+0.14 23.52+0.24

CHTss®  32.0340.29* 32.86+0.16%  24.51+0.02* 24.31+0.04
CHTss® 32.6240.28* 33.0040.31%* 24.43£0.14 24.20+0.07

DDNM initialization. BBRF initialization.

Structural Consistency Structural consistency (Lii et al., 2015) is an index based on the
first-order matrix perturbation of the adjacency matrix, which represents the predictability
of the network structure. A perturbation set AF is randomly sampled from the original
link set E. Identifying as E* the links ranked as the top L according to the structural
perturbation method (Lii et al., 2015), with L = |AE|, the structural consistency o. is
calculated as: .

0= ELO2EL (2)

Modularity Modularity (Newman, 2006) quantifies the tendency of nodes in the network
to form distinct communities (or clusters). This measure ranges from -1 to 1. A high
modularity score (close to 1) hints at the presence of dense connections between nodes within
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Table 7: Performance comparison on machine translation tasks across the WMT en-de
dataset with varying final sparsity levels (95% and 90%). Contrary to the BRF model,
the DNM model’s parameters were transferred from the best-performing combinations of
previous tests, avoiding any parameter search. Entries are BLEU scores (higher is better),
averaged over 3 seeds + standard error. Bold values denote the best performance for a
given sparsity and initialization.

WMT
0.95 0.90
FC 25.52

CHTsB 20.94+0.63  22.40+0.06
CHTs® 21.3440.20 22.564+0.14

CHTss®  23.73+£0.43  24.61+0.14
CHTssP® 24.5240.12  24.4040.15

Model

DDNM initialization. BBRF initialization.

L=9.11
Q=063
0. =0.11
y=292

Figure 3: Representation of the best performing DNM models on image clas-
sification. The figure compares the best performing DNM architectures on MNIST and
Fashion MNIST (a), EMNIST (b), and CIFARI10 (c). Each panel shows the network’s adja-
cency matrix (top) and the network’s layerwise representation (bottom). Furthermore, each
panel exhibits the network’s topological measures: characteristic path length L, modularity
(@), structural consistency (o), and the power law exponent of the degree distribution (7).

communities, but sparse connections between nodes belonging to different communities. A
modularity score close to 0, in contrast, suggests that the network lacks any community
organization and the interaction between nodes is essentially uniform. When modularity
approaches -1, the network exhibits an anticommunity structure. This means that nodes
are strongly connected across the network, and there is little differentiation into separate
groups. In other words, a negative modularity represents a cohesive network. The formula
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Figure 4: Representations of the network’s topology obtained by varying a DNM parameter

while keeping all others fixed.



\ / Layer Border Wiring Patter \

Wrap-around Bounded

Sparsity

s =60% s =95%

-
N
N

(a) Effect of the dendritic distribution on the (b) Effect of the layer border setting on the
network topology. network topology.

Figure 5: Representations of the network’s topology obtained by varying a DNM parameter
while keeping all others fixed.

to compute the modularity (Q) is:

Q= — > [Aij - ];Z:,Z] 5(ci, ¢5), (3)

©2m &
()

where A represents the network’s adjacency matrix, and k; and k; are the degrees of nodes
i and j, respectively. d(c;,c;) is the Kronecker delta function, which equals one if i and j
are in the same community, else it equals 0.

Characteristic path length The characteristic path length is computed as the average
node-pairs length in the network; it is a measure associated with the network’s small-
worldness (Cannistraci and Muscoloni, 2022). The characteristic path length (L) is derived
by:

1 .
L:n(n—l)'%d(z’])’ (4)

where n is the number of nodes in the network, and d(i,j) is the shortest path length between
node i and node j.

Coalescent Embedding Coalescent embedding (Muscoloni et al., 2017) is a class of
machine learning algorithms used for unsupervised dimensionality reduction and embed-
ding complex networks in a geometric space, often hyperbolic. This method maps high-
dimensional information on a low-dimensional embedding while maintaining the essential
topological features of the network. This embedding reveals latent structures of the sys-
tem, like hierarchical and scale-free structures. In this article, coalescent embedding maps
the networks that have latent hyperbolic geometry onto the two-dimensional hyperbolic
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space. The approach involves 4 steps: 1) links are pre-weighted with topological rules that
approximate the underlying network geometry (Cannistraci and Muscoloni, 2022); 2) non-
linear dimensionality reduction; 3) generation of angular coordinates; 4) generation of radial
coordinates.

This process is illustrated in Figure 2, which showcases the results of applying a specific
coalescent embedding pipeline to four different synthetic networks. The embeddings shown
were generated without any initial link pre-weighting (step 1). For the non-linear dimen-
sionality reduction (step 2), the Isomap (Balasubramanian and Schwartz, 2002) algorithm
was used. Finally, the angular coordinates (step 3) were determined using Equidistant
Adjustment (EA), a process that preserves the relative order of the nodes while arranging
them at perfectly uniform angular intervals.

A.1. Sparse Topological Initialization Methods

As mentioned, in dynamic sparse training (DST), a neural network is trained with a sparse
topology that evolves throughout the learning process. The initial arrangement of the
connections is critically important. This starting structure determines the initial pathways
for information flow and acts as the foundational scaffold upon which the network learns
and evolves. A well-designed initial topology can significantly improve a model’s final
performance and training efficiency, whereas a poor starting point can severely hinder its
ability to learn effectively. The principal topological initialization approaches for dynamic
sparse training are grounded in network science theory, where three basic generative models
for monopartite sparse artificial complex networks are the Erds-Rényi (ER) model (Erdés
and Rényi, 1960), the Watts-Strogatz (WS) model (Watts and Strogatz, 1998), and the
Barabési-Albert (BA) model (Barabési and Albert, 1999). Since the standard WS and BA
models are not directly designed for bipartite networks, they were recently extended into
their bipartite counterparts and termed as Bipartite Small-World (BSW) and Bipartite
Scale-Free (BSF) (Zhang et al., 2024b), respectively. BSW generally outperforms BSF
for dynamic sparse training (Zhang et al., 2024b). The Correlated Sparse Topological
Initialization (CSTI) (Zhang et al., 2024a) is a physics-informed topological initialization
method that considers the links with the strongest Pearson correlations between nodes and
features in the input layer. The Bipartite Receptive Field (BRF) network model (Zhang
et al., 2025) generates networks with brain-like receptive field connectivity. This is the
first attempt to mimic the structure of brain connections in a sparse network initialization
model.

Appendix B. Hyperparameter Settings and Implementation Details

Our experimental setup is designed to replicate the conditions in Zhang et al. (2025). Con-
figurations are assessed on validation sets before being tested on separate test sets. All
reported scores are the average of three runs using different random seeds, presented with
their corresponding standard errors.

16



B.1. MLP for Image Classification

Models are trained for 100 epochs using Stochastic Gradient Descent (SGD) with a learning
rate of 0.025, a batch size of 32, and a weight decay of 5 x 10~%. All sparse models are
trained at a 99% sparsity level. For dynamic methods, we used SET, CHTs and CHTss.
The regrowth strategy for CHTs and CHTss is CH2_L3n (Muscoloni et al., 2018). The
CHTss model begins with an initial sparsity of 50% and gradually increases to the final
99% target using an s-shaped scheduler. For our DNM, we conduct a grid search over
its key hyperparameters. We tested a mean dendrite count (M) of 3, 7, and 21. For
the dendritic, degree, window width, and synaptic distributions, we searched across fixed,
spatial Gaussian, and spatial inverted Gaussian options. The mean window width («) was
fixed at 1.0. For the BSW baseline, the rewiring probability is searched in the set {0.0, 0.2,
0.4, 0.6, 0.8, 1.0}. For the BSF baseline, we searched the randomness parameter r over the
same set of values, and also tested both fixed and uniform degree distributions.

B.2. Transformer for Machine Translation

We use a standard 6-layer Transformer architecture with 8 attention heads and a model
dimension of 512. The dimension of the feed-forward network is set to 1024 for Multi30k
and 2048 for IWSLT14 and WMT17. All models are trained using the Adam optimizer
(Kingma and Ba, 2014) with the inoam learning rate schedule. Dataset-specific training
parameters are as folows:

e Multi30k: Trained for 5,000 steps with a learning rate of 0.25, 1000 warmup steps,
and a batch size of 1024.

e ITWSLT14: Trained for 20,000 steps with a learning rate of 2.0, 6000 warmup steps,
and a batch size of 10240.

e WMT17: Trained for 80,000 steps with a learning rate of 2.0, 8000 warmup steps, and
a batch size of 12000.

We evaluated models at final sparsity levels of 90% and 95%. The CHTss models started
from a denser state (50% sparsity) and decayed to the target sparsity. For Multi30k and
IWSLT14, we performed a comprehensive hyperparameter search. The search for IWSLT14
included a mean dendrite count M € {3,7,21} and various combinations of fixed and
spatial distributions for all DNM parameters. For WMT17, to assess generalization, we
did not perform a new search. Instead, we directly applied the best-performing DNM
configuration identified from the IWSLT14 experiments. This configuration used M=7 with
a fixed dendritic distribution, alongside spatial Gaussian or inverse-Gaussian distributions
for degree, window width, and synapses.

Appendix C. Sensitivity Tests

We provide sensitivity tests for DNM hyperparameters. First, we focus on the analysis of
CHTs and CHTss on MLPs for image classification at 99% sparsity. Next, we study the
parametric configurations for the CHTs and CHTss model on the Multi30k translation task
at 90% sparsity. For each task, we vary one parameter at a time, keeping the others fixed
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to a specific configuration. We calculate the coefficient of variation (CV) of the scores to
quantify the sensitivity of the model to each parameter. A low CV indicates that the model’s
performance is relatively stable across different settings of that parameter, suggesting low
sensitivity. Conversely, a high CV suggests that the model’s performance is more variable
and sensitive to changes in that parameter. We average each parameter’s CV across various
parametric configurations to obtain a robust measure of sensitivity. Next, we analyse the
top 5% best-performing configurations for each task to understand the commonalities in
the optimal settings. This method not only helps us understand which parameters are most
influential but also guides future configurations for similar tasks.

Table 8: Sensitivity Analysis Results for CHTs and CHTss on MNIST, EMNIST, Fashion
MNIST, CIFAR-10 for Image Classification. The table presents the average coefficient of
variation (CV) for each DNM parameter across different configurations at 99% sparsity
level. A higher CV indicates greater sensitivity of the model’s performance to changes in
that parameter.

MNIST EMNIST Fashion MNIST CIFAR-10
Parameter CHTs CHTss CHTSs CHTss CHTs CHTss CHTSs CHTss
Degree Dist 0.001538 0.001538 0.001419 0.009172 0.003379 0.017639 0.017639 0.017639
Rec Field Width Dist  0.000506 0.000506 0.001585 0.006154 0.001205 0.005381 0.005381 0.005381
Dendritic Dist 0.000525 0.000525 0.001265 0.003620 0.001136 0.004983 0.004983 0.004983
Synaptic Dist 0.000464 0.000464 0.000989 0.002538 0.000964 0.004306 0.004306 0.004306

Dynamic Sparse Training for Image Classification We analyse the sensitivity of
DNM parameters for the initialization of CHTs and CHTss models on MLPs for image
classification at 99% sparsity. The analysis is performed over MNIST, Fashion MNIST,
EMNIST, and CIFAR-10. The sensitivity analysis, summarized in Table 8, evaluates the
impact of DNM initialization parameters for CHTs and CHTss models at 99% sparsity. A
key finding is the significantly heightened sensitivity of the CHT'ss model compared to CHT's,
a disparity that amplifies with increasing dataset complexity from MNIST to CIFAR-10.
Across all benchmarks, the Degree Distribution consistently emerges as the most critical
parameter, highlighting the paramount importance of initial network connectivity. Follow-
ing in descending order of influence are the Receptive Field Width, Dendritic, and Synaptic
distributions. These results underscore that while both architectures show similar robust-
ness on simpler tasks, the effective deployment of the CHTss model on more challenging
problems is critically dependent on the precise calibration of its initial topological structure.
Analyzing the top 5% best-performing configurations, we observe similar trends across vari-
ous datasets (Figure 7). The most relevant findings is that a spatial gaussian receptive field
width distribution is constantly preferred.
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Figure 6: Sensitivity analysis of various DNM hyperparameter distributions.

Dynamic Sparse Training for Machine Translation We focus on the analysis of
DNM for the initialization of the CHTss model on Multi-30k for machine translation. Both
at 90% and 95% sparsity, the calculated coefficients of variation do not surpass 0.01. This
indicates that the model’s performance is relatively stable across different settings of each
parameter, suggesting low sensitivity (Table 9). At both sparsity levels, the dendritic dis-
tribution appears to be the most sensitive, whereas M and « are the most stable. Analyzing
the top 5% best-performing configurations, we observe that spatial distributions generally
outperform fixed distributions (Figure 7).

Appendix D. Modelling Dendritic Networks

The Dendritic Network Model (DNM) generates the sparse connectivity matrix of sandwich
layers by iteratively building connections for each output neuron based on the principles of
dendritic branching and localized receptive fields. The generation process can be broken
down into the following steps:

1. Determine the degree of each output neuron in the layer based on one of the three
distribution strategies (fixed, non-spatial, spatial). A probabilistic rounding and ad-
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Table 9: Sensitivity Analysis Results for CHTss on Multi30k for Machine Translation. The
table presents the average coefficient of variation (CV) for each DNM parameter across
different configurations at 90% and 95% sparsity levels. A higher CV indicates greater
sensitivity of the model’s performance to changes in that parameter.

Parameter Average Coefficient of Variation (CV)
90% 95%
Dendritic distribution 0.010643 0.009340
Degree distribution 0.010270 0.008436
Receptive Field Width Distribution 0.009830 0.009103
Synaptic distribution 0.009663 0.009310
M 0.008959 0.007806
@ 0.008210 0.007461

Note: Higher CV indicates greater impact on performance.

justment mechanism ensures that no output neuron is disconnected and the sampled
degrees sum precisely to the target total number of connections of the layer.

2. Next, for each output neuron j, define a receptive field. This is done by topologically
mapping the output neuron’s position at a central point in the input layer and estab-
lishing a receptive window around this center. The size of this window is controlled
by the parameter «; € [0, 1], which determines the fraction of the input layer that the
neuron can connect to. «; itself can be fixed or sampled from a spatial or non-spatial
distribution.

3. For each output neuron, determine the number of dendritic branches, M; to be used
to connect it to the input layer. Again, M; is determined based on one of the three
configurations (fixed for all neurons, or sampled from a distribution that could depend
on the neuron’s position in the layer).

4. Place the M; dendrites as dendritic centers within the neuron’s receptive window,
spacing them evenly across the window.

5. The neuron’s total degree, obtained from step 1, is distributed across its M; dendrites
according to a synaptic distribution (fixed, spatial, or non-spatial). For each dendrite,
connections are formed with the input neurons that are spatially closest to its center.

6. Finally, the process ensures connection uniqueness and adherence to the precise degree
constraints.

Appendix E. Dynamic Sparse Training (DST)

E.1. Dynamic Sparse Training

Dynamic sparse training (DST) is a subset of sparse training methodologies that allows
for the evolution of the network’s topology during training. Sparse Evolutionary Train-
ing (SET) (Mocanu et al., 2018) is the pioneering method in this field, which iteratively
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Figure 7: Sensitivity analysis of the DNM parameters for CHTss initialization over Trans-
former models for machine translation on Multi30k at 90% sparsity.

removes links based on the absolute magnitude of their weights and regrows new connec-
tions randomly. Subsequent developments have expanded upon this method by refining the
pruning and regrowth steps. One such advancement was proposed by Deep R (Bellec et al.,
2017), a method that evolves the network’s topology based on stochastic gradient updates
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combined with a Bayesian-inspired update rule. RigL (Evci et al., 2020) advanced the field
further by leveraging the gradient information of non-existing links to guide the regrowth
of new connections. MEST (Yuan et al., 2021) is a method that exploits information on
the gradient and the weight magnitude to selectively remove and randomly regrow new
links, similarly to SET. MEST introduces the EM&S technique that gradually decreases
the density of the network until it reaches the desired sparsity level. Top-KAST (Jayaku-
mar et al., 2020) maintains a constant sparsity level through training, iteratively selecting
the top K weights based on their magnitude and applying gradients to a broader subset
of parameters. To avoid the model being stuck in a suboptimal sparse subset, Top-KAST
introduces an auxiliary exploration loss that encourages ongoing adaptation of the mask.
A newer version of RigL, sRigl. (Lasby et al., 2023), adapts the principles of the original
model to semi-structured sparsity, speeding up the training from scratch of vision mod-
els. CHT (Zhang et al., 2024b) is the state-of-the-art (SOTA) dynamic sparse training
framework that adopts a gradient-free regrowth strategy that relies solely on topological
information (network shape intelligence). This model suffers from two main drawbacks: it
has time complexity O(N - d?) (N node network size, d node degree), and it rigidly selects
top link prediction scores, which causes suboptimal link removal and regrowth during the
early stages of training. For this reason, this model was evolved into CHTs (Zhang et al.,
2025), which adopts a flexible strategy to sample connections to remove and regrow, and
reduces the time complexity to O(N?). The same authors propose a sigmoid-based gradual
density decay strategy, namely CHTss (Zhang et al., 2025), which proves to be the state-of-
the-art dynamic sparse training method over multiple tasks. CHTs and CHTss can surpass
fully connected MLP, Transformer, and LLM models over various tasks using only a small
fraction of the networks’ connections.

Appendix F. Experiments
F.1. Experimental Setup

To test the basic advantage of DNM over other initialization methods, we evaluate it for
static sparse training using MLPs for image classification tasks on the MNIST (LeCun
et al., 2002), Fashion MNIST (Xiao et al., 2017), EMNIST (Cohen et al., 2017), and CI-
FAR10 (Krizhevsky, 2009) datasets. To further validate our approach, we replicate the
tests on CHTs (Zhang et al., 2025) and CHTss, which are the state-of-the-art dynamic
sparse training (DST) methods. We use the SET (Mocanu et al., 2018) dynamic sparse
training method as a baseline, which regrows new connections randomly. Finally, we test
DNM for initialization of the CHTs and CHTss, on Transformers for machine translation
tasks on the Multi30k en-de (Elliott et al., 2016), IWSLT14 en-de (Cettolo et al., 2012),
and WMT17 (Bojar et al., 2017) datasets. For MLP training, we sparsify all layers except
the final layer, as it would lead to disconnected output neurons, and connections in the final
layer are relatively fewer compared to the previous layers. For Transformers, we apply DST
to all linear layers, excluding the embedding and final generator layer. The hyperparameter
settings of the experiments are detailed in Appendix B. Furthermore, we conduct a series
of sensitivity tests on the hyperparameters of the DNM in Appendix C.
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Baseline methods We compare the DNM network with the baseline approaches in the
literature. On static sparse training, we compare DNM with the Erdds-Rényi (ER) model
(Erdés and Rényi, 1960), the Bipartite Small World (BSW) (Zhang et al., 2024b) and
Bipartite Receptive Field (BRF) (Zhang et al., 2025) initialization techniques. We use
CSTI (Zhang et al., 2024a) as the baseline model, although this comparison is inherently
unfair due to its feature-informed nature. For dynamic sparse training, we compare DNM
with BRF, BSW, and CSTI. Finally, for tests on Transformer models, we compare DNM
with the BRF initialization.

F.2. MLP for Image Classification

Static sparse training As an initial evaluation of DNM’s performance, we compare it
to other topological initialization methods for static sparse training for image classification
tasks. On all benchmarks, DNM outperforms the baseline models, as shown in Table 1.
Analyzing the best-performing DNM networks is crucial to understanding the relationship
between network topology and task performance. This aspect is assessed in Section 2.3.

Dynamic sparse training We first test DNM on the baseline dynamic sparse training
method, SET, which regrows links randomly. As shown in Table 2, DNM outperforms the
other sparse initialization methods of MLPs (99% sparsity) over all the datasets tested. The
model’s performance is comparable to the input-informed CSTI, highlighting that DNM’s
high degree of freedom can match a topology induced by data features.

Tables 4 and 5 repeat the previous tests on the state-of-the-art DST methods, CHTs
and CHTss. The results confirm our conclusion: not only DNM exhibits high performance
for this task, but it can also surpass the input-informed CSTI method.

F.3. Transformer for Machine Translation

We assess the Transformer’s performance on a machine translation task across three datasets.
We take the best performance of the model on the validation set and report the BLEU score
on the test set. Beam search, with a beam size of 2, is employed to optimize the evaluation
process. On the Multi30k and IWSLT datasets, we conducted a thorough hyperparameter
search to find the best settings for our DNM model. For the WMT dataset, however, we
simply used the best settings found in the previous tests. This approach was to verify
that DNM performs well even without extensive, dataset-specific tuning. DNM markedly
improves the performance of the CHTs algorithm (Table 10, 11). However, its impact on
CHTss is similar to the BRF baseline. This is expected, as CHTss’s gradual decay mecha-
nism starts from a dense 50% state, where the initial network structure is less critical and
the topological advantages of DNM are less pronounced.

Appendix G. Baseline Methods

We describe in detail the models compared in our experiments.
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Table 10: Performance comparison on Multi30k en-de and IWSLT en-de translation tasks
with varying sparsity levels (95% and 90%). BLEU scores (higher is better) are averaged
over 3 seeds *+ standard error. Bold indicates best performance for given sparsity and
initialization; * denotes scores surpassing the fully connected model.

Multi30k IWSLT
0.95 0.90 0.95 0.90
FC 31.38+0.38 24.484+0.30

CHTsP 28.94+0.57 29.81+0.37 21.15+0.10 21.92+0.17
CHTsP 30.544+0.42 31.45+0.35*% 22.094+0.14 23.52+0.24

CHTss®  32.0340.29* 32.864+0.16% 24.51+0.02*% 24.3140.04
CHTss®  32.6240.28* 33.0040.31%* 24.43+0.14 24.20+0.07

DDNM initialization. BBRF initialization.

Table 11: Performance comparison on machine translation tasks across the WMT en-de
dataset with varying final sparsity levels (95% and 90%). Contrary to the BRF model,
the DNM model’s parameters were transferred from the best-performing combinations of
previous tests, avoiding any parameter search. Entries are BLEU scores (higher is better),
averaged over 3 seeds £ standard error. Bold values denote the best performance for a
given sparsity and initialization.

WMT
0.95 0.90
FC 25.52

CHTs® 20.94+0.63 22.4040.06
CHTsP  21.3440.20 22.56+0.14

CHTssP  23.7340.43 24.61+0.14
CHTss®  24.5240.12  24.40+0.15

Model

DDNM initialization. BBRF initialization.

G.1. Sparse Network Initialization

Bipartite Scale-Free (BSF) The Bipartite Scale-Free network (Zhang et al., 2024b) is
an extension of the Barabasi-Albert (BA) model (Barabési and Albert, 1999) to bipartite
networks. We detail the steps to generate the network. 1) Generate a BA monopartite
network consisting of m + n nodes, where m and n are the numbers of nodes of the first
and second layer of the bipartite network, respectively. 2) Randomly select m and n nodes
to assign to the two layers. 3) Count the number of connections between nodes within the
same layer (frustrations). If the two layers have an equal number of frustrations, match
each node in layer 1 with a frustration to a node in layer 2 with a frustration, randomly.
Apply a single rewiring step using the Maslov-Sneppen randomization (MS) procedure for
every matched pair. If the first layer counts more frustrations, randomly sample a subset
of layer 1 with the same number of frustrations, and repeat step 1. For each remaining
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frustration in layer 1, sequentially rewire the connections to the opposite layer using the
preferential attachment method from step 1. If the second layer has more frustrations than
the first, apply the opposite procedure. The resulting network will be bipartite and exhibit
a power-law distribution with exponent v = 2.76.

Bipartite Small-World (BSW) The Bipartite Small-World network (Zhang et al.,
2024b) is an extension of the Watts-Strogatz model to bipartite networks. It is modelled
as follows: 1) Build a regular ring lattice with a number of nodes N = #L1 + #Lo, with
L1 > Lo, where Ly and Lo represent the nodes in the first and second layers of the bipartite
network, respectively. 2) Label the N nodes in a way such that for every L; node posi-
tioned in the network, # L, /# Lo nodes from L9 are placed at each step. Then, at each step,
establish a connection between an L; node and the K/2 closest Ly neighbours in the ring
lattice. 3) For every node, take every edge connecting it to its K/2 rightmost neighbors,
and rewire it with a probability 3, avoiding self-loops and link duplication. When g = 1,
the generated network corresponds to a random graph.

Correlated Sparse Topological Initialization (CSTI) The Correlated Sparse Topo-
logical Initialization (CSTI) (Zhang et al., 2024b) initializes the topology of the layers that
interact directly with the input features. The construction of CSTI follows four steps. 1)
Vectorization: Denoting as n the number of randomly sampled input data from the train-
ing set and as M the number of valid features with variance different from zero among these
samples, we build an n x M matrix. 2) Feature selection: We perform feature selection
by calculating the Pearson Correlation for each feature. Hence, we construct a correlation
matrix. 3) Connectivity selection: Next, we construct a sparse adjacency matrix, with
entries ”1” corresponding to the top-k% values from the correlation matrix (where the value
of k depends on the desired sparsity level). A scaling factor x determines the dimension
of the hidden layer. 4) Assembling topologically hubbed network blocks: Finally,
the selected adjacency matrix masks the network to form the initialized topology for each
sandwich layer.

SNIP SNIP (Lee et al., 2018) is a static sparse initialization method that prunes con-
nections based on their sensitivity to the loss function. The sensitivity of a connection is
defined as the absolute value of the product of its weight and the gradient of the loss with
respect to that weight, evaluated on a small batch of training data. Connections with the
lowest sensitivity are pruned until the desired sparsity level is reached. This method allows
for the identification of important connections before training begins, enabling the training
of sparse networks from scratch.

Ramanujan Graphs Ramanujan Graphs (Lubotzky et al., 1988) are a class of optimal
expander graphs that exhibit excellent connectivity properties. They are characterized by
their spectral gap, which is the difference between the largest and second-largest eigenvalues
of their adjacency matrix. A larger spectral gap indicates better expansion properties,
meaning that the graph is highly connected and has a small diameter. Ramanujan graphs are
constructed using deep mathematical principles from number theory and algebraic geometry.
They are known for their optimal expansion properties, making them ideal for applications
in network design, error-correcting codes, and computer science. In this article, we use
bipartite Ramanujan graphs as a sparse initialization method for neural networks.
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In our experiments, we built bipartite Ramanujan graphs as a theoretically-grounded
initialization method, following the core principles outlined by Kalra et al.. Drawing in-
spiration from the findings of Marcus et al. (2013), which prove the existence of bipartite
Ramanujan graphs for all degrees and sizes, we constructed these graphs as follows:

e Generate d random permutation matrices, where d is the desired degree of the graph.
Each permutation matrix represents a perfect matching, which is a set of edges that
connects each node in one layer to exactly one node in the other layer without any
overlaps.

e Iteratively combine these matchings. In each step, deterministically decide whether
to add or subtract the successive matching to the current adjacency matrix. This
decision is made by minimizing a barrier function that ensures that the eigenvalues
remain within the Ramanujan bounds.

Bipartite Receptive Field (BRF) The Bipartite Receptive Field (BRF) Zhang et al.
(2025) is the first sparse topological initialization model that generates brain-network-like
receptive field connectivity. The BRF directly generates sparse adjacency matrices with a
customized level of spatial-dependent randomness according to a parameter r € [0,1]. A
low value of r leads to less clustered topologies. As r increases towards 1, the connectivity
patterns tend to be generated uniformly at random. Specifically, when r tends to 0, BRF
builds adjacency matrices with links near the diagonal (adjacent nodes from the two layers
are linked), whereas when r increases 1, this structure tends to break.

Mathematically, consider an N x M bipartite adjacency matrix M; j,_, ,, ,_,  y, Where
M represents the input size and n represents the output size. Each entry m; ; of the matrix
is set to 1 if node ¢ from the input layer connects to node j of the output layer, and 0
otherwise. Define the scoring function

Si’j =d' ", (5)

where
dij = min{|i — j|,[(i = M) = j|,[i = (j = N)|} (6)

is the distance between the input and output neurons. S;; represents the distance of an
entry of the adjacency matrix from the diagonal, raised to the power of 1;”. When the
parameter r tends to zero, the scoring function becomes more deterministic; when it tends
to 1, all scores S; ; become more uniform, leading to a more random adjacency matrix.

The model is enriched by the introduction of the degree distribution parameter. The
Bipartite Receptive Field with fixed sampling (BRFf) sets the degree of all output neurons
to be fixed to a constant value. The Bipartite Receptive Field with uniform sampling, on
the other hand, samples the degrees of output nodes from a uniform distribution.

G.2. Dynamic Sparse Training (DST)

SET (Mocanu et al., 2018) At each training step, SET removes connections based on
weight magnitude and randomly regrows new links.

RigL (Evci et al., 2020) At each training step, Rigl. removes connections based on
weight magnitude and regrows new links based on gradient information.
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CHTs and CHTss (Zhang et al., 2025) Cannistraci-Hebb Training (CHT)(Muscoloni
et al., 2022) is a brain-inspired gradient-free link regrowth method. It predicts the existence
and the likelihood of each nonobserved link in a network. The rationale is that in complex
networks that have a local-community structure, nodes within the same community tend to
activate simultaneously (”fire together”). This co-activation encourages them to form new
connections among themselves ("wire together”) because they are topologically isolated.
This isolation, caused by minimizing links to outside the community, creates a barrier that
reinforces internal signaling. This strengthened signaling, in turn, promotes the creation
of new internal links, facilitating learning and plasticity within the community. CHTs
enhances this gradient-free regrowth method by incorporating a soft sampling rule and a
node-based link-prediction mechanism. CHTss further refines this process by integrating
a sigmoid gradual density decay strategy, which lowers the sparsity of a network through
epochs.

Appendix H. Impact of initial sparsity on DNM performance

As demonstrated in Subsection 77, DNM’s impact on CHT'ss is similar to the BRF baseline.
This is expected, since CHTss’s gradual decay mechanism starts from a dense 50% state,
where the initial network structure is less critical and the topological advantages of DNM
are less pronounced. To prove that at higher sparsities DNM can largely outperform BRF,
we tested both models on the Multi30k translation task at 95% final sparsity and various
initial sparsity levels (Table 12, Figure 8). As expected, when starting from a sparser state,
DNM outperforms BRF by a larger margin. This suggests that DNM is particularly effective
when the initial network structure plays a more significant role in determining performance,
as is the case at higher sparsity levels. To further validate this, we fixed DNM’s parametric
configuration across initial sparsity levels, using the best performing parametric configura-
tion found from the experiment conducted in Subsection ?7. The results (Table 13, Figure
9) confirm that DNM consistently outperforms BRF across all tested initial sparsity levels,
with the performance gap widening as the initial sparsity increases. This reinforces the con-
clusion that DNM'’s structured approach to sparse connectivity is particularly advantageous
in scenarios where the initial network topology is crucial for learning efficacy.

Table 12: Comparison of DNM and BRF initializations on CHTss for machine translation
on the Multi-30k en-de dataset at 95% final sparsity. The results for both DNM and BRF
correspond to those of the best-performing parametric configurations of the models for each
initial sparsity. The initial sparsity level is varied, taking values 0.50, 0.60, 0.75, 0.90. The
entries represent the BLEU scores, averaged over 3 seeds + the standard error.

With parameter search
| 050 0.60 0.75 0.90

DNM | 32.71+0.35 32.71£0.43 32.284+0.29 31.45+0.35
BRF | 32.86+0.16 32.16+0.14  31.20£0.36  29.81+0.37
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BLEU Score vs. Initial Sparsity for BRF and DNM

33.5

I

—$— BRF
T —$— DNM

32.5 A

32.0 A

31.5 4

31.0 A

BLEU Score

30.5 A

30.0 A

29.5

29.0 T T T T T T T T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
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Figure 8: CHTss with varying initial sparsity and fixed DNM parameters. The
figure compares the performance of DNM and BRF initializations for CHT'ss over various
initial sparsity levels for machine translation tasks on Multi-30k at 90% final sparsity. The
results for both DNM and BRF correspond to those of the best performing parametric
configurations of the models for each initial sparsity. The entries represent the BLEU
scores, averaged over 3 seeds.
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BLEU Score vs. Initial Sparsity for BRF and DNM
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Figure 9: CHTss with varying initial sparsity. The figure compares the performance
of DNM and BRF initializations for CHT'ss over various initial sparsity levels for machine
translation tasks on Multi-30k at 90% final sparsity. DNM’s parametric configuration is
fixed across initial sparsity levels, using the best performing parametric configuration found
from the experiment performed in Subsection 7?7. BREF’s performances are chosen taking
the best performing parametric configurations. The entries represent the BLEU scores,
averaged over 3 seeds.
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Table 13: Comparison of DNM and BRF initializations on CHTss for machine translation
on the Multi-30k en-de dataset at 95% final sparsity. DNM’s parametric configuration is
fixed across initial sparsity levels, using the best performing parametric configuration found
from the experiment performed in Subsection ?7?7. BREF’s performances are chosen taking
the best performing parametric configurations. The initial sparsity level is varied at steps of
0.05 between 0.55 and 0.90. The entries represent the BLEU scores, averaged over 3 seeds.

No DNM parameter search
‘ 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

DNM | 32.25 32.41 31.95 31.53 31.55 31.43 30.92 30.42
BRF | 32.31 3216 31.79 3144 3137 31.05 30.80 29.88

Appendix I. Analysis of the Bounded Layer Border Wiring Pattern

To investigate the impact of the layer border wiring pattern setting, we compare the default
wrap-around topology with the bounded topology. We tested the bounded configuration
on the same image classification tasks as the default, at 99% sparsity using static sparse
training (Table 14), SET (Table 15), CHTs (Table 16), and CHTss (Table 17). Overall,
the performance of the bounded model is comparable to that of the default wrap-around
model, with some variations across datasets and training methods. The bounded model
outperforms the default on Fashion MNIST and CIFAR10 when using static sparse training
and SET, while the default has a slight edge on MNIST and EMNIST. For CHTs and CHTss,
the results are mixed, with each model excelling in different datasets. These findings suggest
that while strict locality can be beneficial in certain contexts, the flexibility of wrap-around
connections may provide advantages in others. The choice of wiring pattern should thus be
informed by the specific characteristics of the task and dataset at hand.

Table 14: Comparison of wrap-around and bounded topology performances for static sparse
training of MLPs. The entries represent the accuracy for image classification over different
datasets at 99% sparsity, averaged over 3 seeds =+ their standard error.

Static Sparse Training
‘ MNIST EMNIST Fashion MNIST CIFAR10

Bounded 97.64+0.10  84.00+0.06 89.19+0.01 61.63+0.18
Wrap-around | 97.824+0.03 84.76+0.13 88.474+0.03 59.0440.17

Appendix J. Transferability of Optimal Topologies

A critical question for our generative model of network topology is whether its principles are
generalizable across different tasks. To investigate this, we conducted a transfer learning
experiment to assess if an optimal topology discovered on a simpler task could be effectively
applied to more complex ones. This tests the hypothesis that the DNM can capture fun-
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Table 15: Comparison of wrap-around and bounded topology performances for SET initial-
ization on MLPs. The entries represent the accuracy for image classification over different
datasets at 99% sparsity, averaged over 3 seeds =+ their standard error.

SET
‘ MNIST EMNIST Fashion MNIST CIFAR10
Bounded 98.40+£0.02 86.52+0.02 89.78+0.09 65.67+0.18
Wrap-around | 98.36+0.05  86.50+0.06 89.75+0.04 64.81+£0.01

Table 16: Comparison of wrap-around and bounded topology performances for CHTs initial-
ization on MLPs. The entries represent the accuracy for image classification over different
datasets at 99% sparsity, averaged over 3 seeds + their standard error.

CHTs
‘ MNIST EMNIST Fashion MNIST CIFARI10
Bounded 98.66+0.03 &87.3540.00 90.68+0.09 68.031+0.14
Wrap-around | 98.624+0.01 87.40+0.04 90.62+0.16 68.76+0.11

Table 17: Comparison of wrap-around and bounded topology performances for CHTss
initialization on MLPs. The entries represent the accuracy for image classification over
different datasets at 99% sparsity, averaged over 3 seeds + their standard error.

CHTss
‘ MNIST EMNIST Fashion MNIST CIFARI10
Bounded 98.66+0.03 87.37+£0.04 90.68=+0.09 68.03+0.14

Wrap-around | 98.90+0.01 87.55+0.01 90.88+0.03 68.50+0.21

damental structural priors beneficial for a class of problems, such as image classification,
thereby reducing the need for extensive hyperparameter searches on every new dataset.

Experimental Design We identified the best-performing DNM hyperparameter config-
uration from the static sparse training experiments on the MNIST dataset, as analyzed in
Section 2.3. This configuration, which generates a scale-free, hierarchical network, was then
used directly to initialize MLP models for the more challenging EMNIST, Fashion MNIST,
and CIFAR-10 datasets. We then compared its performance against the other baseline ini-
tialization methods and against the DNM models whose hyperparameters were specifically
tuned for each target task ("DNM (Task-Specific Best)”).

Results The results, summarized in Table 18, demonstrate the remarkable effectiveness
of the transferred topology. On EMNIST and CIFAR10, the DNM (Transferred) model sig-
nificantly outperforms the random, BSW, BRF, and Ramanujan initializations. On Fashion
MNIST, however, BSW slightly outperforms it. Its performance is only marginally lower
than that of the task-specific DNM.
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Table 18: Performance of the transferred DNM topology on static sparse training at 99%
sparsity. The "DNM (Transferred)” model uses the single best hyperparameter configura-
tion found on MNIST for all three target tasks. Its performance is compared to baselines
and to the best task-specific DNM configuration. Scores are the accuracy averaged over 3
seeds + standard error. Bold values denote the best performance.

Static Sparse Training
Fashion MNIST EMNIST CIFAR10

FC 90.884+0.02 87.13+£0.04 62.85+0.16
CSTI 88.52+0.14 84.66+0.13  52.64+0.30
SNIP 87.8540.22 84.08+0.08 61.81+0.58
Random 87.34+0.11 82.661+0.08 55.28+0.09
BSW 88.18+£0.18 82.94+0.06 56.54+0.15
BRF 87.41£0.13 82.98+0.02 54.73+0.07
Ramanujan 86.45+0.15 81.80+0.13 55.05+0.40
DNM (Fine-tuned) 89.19+0.01 84.76+0.13 61.63+0.18
DNM (Transferred) 87.98+0.06 83.67£0.06 58.70£0.42

Discussion This experiment strongly suggests that the structural principles identified by
DNM as optimal for MNIST serve as a powerful and generalizable prior for other image
classification tasks. The ability to transfer a high-performing topology with minimal perfor-
mance loss has significant practical implications, as it can drastically reduce the computa-
tional cost associated with architecture search for new applications. This finding reinforces
the idea that bio-inspired, structured initialization is not merely a task-specific trick but a
robust strategy for building efficient sparse networks.

Appendix K. Reproduction statement

All experiments were conducted on NVIDIA A100 80GB GPUs. MLP and Transformer
models were trained using a single GPU. The code to reproduce the experiments will be
made publicly available upon publication.

Appendix L. Claim of LLM Usage

The authors declare that Large Language Models (LLMs) were used in the writing process
of this manuscript. However, the core idea and principles of the article are entirely original
and were not generated by LLMs.

Appendix M. Limitations and Future Challenges

This study may be limited by the lack of widespread adoption of the hardware needed to
speed up sparse training with unstructured sparsity. Nonetheless, several companies are
releasing devices that support unstructured sparsity in training (Thangarasa et al., 2023;
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Kurtz et al., 2020). For future work, we aim to develop methods for building a physics-
informed DNM model that can automatically detect the best parameter setting based on
the input information. This would allow us to extend the rationale of CSTI to Transformers
and LLMs.
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