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ABSTRACT

A key challenge in interpretability is to decompose model activations into mean-
ingful features. Sparse autoencoders (SAEs) have emerged as a promising tool
for this task. However, a central problem in evaluating the quality of SAEs is the
absence of ground truth features to serve as an evaluation gold standard. Current
evaluation methods for SAEs are therefore confronted with a significant trade-
off: SAEs can either leverage toy models or other proxies with predefined ground
truth features; or they use extensive prior knowledge of realistic task circuits. The
former limits the generalizability of the evaluation results, while the latter lim-
its the range of models and tasks that can be used for evaluations. We introduce
SAGE: Scalable Autoencoder Ground-truth Evaluation, an evaluation framework
for SAEs that enables obtaining high-quality feature dictionaries for diverse tasks
and feature distributions without relying on prior knowledge. Specifically, we lift
previous limitations by showing that ground truth evaluations on realistic tasks
can be automated and scaled. First, we show that we can automatically identify
the cross-sections in the model where task-specific features are active. Second,
we demonstrate that we can then compute the ground truth features at these cross-
sections. Third, we introduce a novel reconstruction method which significantly
reduces the amount of trained SAEs needed for the evaluation. This addresses
scalability limitations in prior work and significantly simplifies the practical eval-
uations. We validate our results by evaluating SAEs on novel tasks on Pythia70M,
GPT-2 Small, and Gemma-2-2B, thus demonstrating the scalability of our method
to state-of-the-art open-source frontier models. These advancements pave the way
for generalizable, large-scale evaluations of SAEs in interpretability research.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide variety
of tasks (Brown et al., 2020; Raffel et al., 2020; Devlin et al., 2019; Radford et al., 2019; Vaswani
et al., 2017). As a result they are increasingly deployed in high stake domains, for example health-
care (Luo et al., 2022), law (Shaheen et al., 2020), and finance (Li et al., 2023). However, the
deployment of LLMs in such critical areas raises significant safety and ethical concerns (Bengio
et al., 2024; Anderljung et al., 2023; Hendrycks & Mazeika, 2022), as their decisions can have pro-
found consequences. This makes it crucial to understand the internal mechanisms and reasoning
processes of these models, to ensure that their outputs are reliable, transparent, and aligned with
human values.

A key challenge in interpreting LLMs is to decompose their internal activations into meaningful and
interpretable features. Recently, sparse autoencoders (SAEs) have emerged as a promising solution
for this task (Black et al., 2022; Cunningham et al., 2023). The quality of SAEs relies heavily on
a range of hyperparameters such as the dictionary size, the sparsity constraint, and the choice of
activation function (Gao et al., 2024). The dictionary size for instance influences the granularity
of features found. This makes it important to strike the right balance between being too broad,
which risks overseeing relevant features; or too specific, generating redundant or overly fragmented
features. Therefore, realistic SAE evaluations—those that assess models on their trained tasks and
within their application context—are critical to ensure that SAEs generalize well beyond synthetic
benchmarks and perform reliably in real-world scenarios.
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Figure 1: A graphical overview of SAGE: Scalable Autoencoder Ground-truth Evaluation. SAGE
scales SAE ground truth evaluation using three key steps: First, we identify attribute cross-sections,
which are the relevant model components responsible for processing specific task-related attributes.
Second, we compute supervised feature dictionaries that approximate ground truth features for our
task. Third, we manipulate model activations using the supervised feature dictionary and an SAE,
and evaluate the downstream effects to assess the SAE’s quality against the approximate ground
truth. We introduce a novel projection-based reconstruction using residual stream SAEs, which
significantly reduces training overhead compared to prior art.

A central obstacle in evaluating SAEs in realistic settings is the lack of ground truth features that
can serve as a gold standard for comparison. This leads to a problematic trade-off: researchers ei-
ther rely on toy models with predefined ground truth features (Karvonen et al., 2024; Sharkey et al.,
2023), which raises concerns about generalizability to real-world tasks; or they employ more real-
istic tasks that require extensive prior knowledge of the task circuit to derive ground truth features
(Makelov et al., 2024), limiting scalability to other tasks or models. As a result, task-specific ground
truth evaluations are currently limited to smaller models, such as GPT-2 Small, where well-studied
tasks like indirect object identification (IOI) (Wang et al., 2023) are available. Nevertheless, ap-
proximate ground truth features have been identified in larger LLMs, including features for refusal
(Arditi et al., 2024), sentiment (Tigges et al., 2023), and toxicity (Turner et al., 2024). Moreover,
recent advances in automated circuit discovery methods have shown promise in automatically and
efficiently identifying task-specific circuits in large LLMs (Conmy et al., 2023; Syed et al., 2023;
Nanda, 2023). This suggests that ground truth evaluations of SAEs may scale to tasks without prior
knowledge and to large frontier models.

Another challenge in scaling SAE evaluations to large frontier models is the need to train multiple
SAEs across various model components (such as the query, key, and value vectors of attention heads)
to fully capture the structure of the task circuit (Makelov et al., 2024). This becomes especially
problematic for larger models, where the computational cost and extensive hyperparameter tuning
required for training a family of SAEs make this approach infeasible at scale.

In this work, we introduce SAGE: Scalable Autoencoder Ground-truth Evaluation (see Figure 1), an
evaluation framework for SAEs that enables obtaining high-quality feature dictionaries for diverse
tasks and feature distributions without relying on prior knowledge. Our method scales efficiently to
large frontier models and their associated SAEs. Specifically, we:

1. demonstrate that automated circuit discovery methods can find model components where
task-specific features are linearly represented. This allows for SAE evaluations on new
tasks without requiring manual experimentation or prior knowledge.

2. show that supervised feature dictionaries derived from these components can serve as high-
quality ground truths for evaluating SAEs, enabling a reliable comparison standard for the
evaluation.

3. propose a new method for reconstructing sublayer activations, reducing the evaluation pro-
cess to residual stream SAEs without compromising precision or generalizability. This
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innovation makes it feasible to scale task-specific SAE evaluations to large models by dras-
tically cutting the training overhead.

We apply this framework to existing evaluation benchmarks, validating the quality of our approach
on models such as Pythia 70M (Biderman et al., 2023), GPT-2 Small (Radford et al., 2019), and
GEMMA-2-2B (et al., 2024). Our results demonstrate that our method scales to large, state-of-the-
art frontier LLMs and SAEs. With this approach, we enable researchers to generate task-specific
evaluations for arbitrary SAEs, models, feature distributions, and tasks in a more efficient manner,
paving the way for principled advancements in sparse dictionary learning and large-scale model
interpretability.

2 RELATED WORK

In this section, we highlight some key contributions to the landscape of SAE evaluation methods.

Toy Model Evaluations Sharkey et al. (2023) explore SAE evaluation using synthetic datasets
with predefined ground truth features to assess how well SAEs recover features from superposition.
Their findings demonstrate that a simple SAE with an L1 penalty can effectively separate features in
a controlled, toy model setup, offering a useful benchmark for understanding feature recovery. Kar-
vonen et al. (2024) propose evaluating SAEs using board games like chess and Othello, leveraging
the clear structure of these games to pre-define interpretable features. They introduce two metrics:
Board Reconstruction (the ability to reconstruct game states) and Coverage (the proportion of pre-
defined features correctly captured). While these approaches provide straight-forward evaluations
based on ground truth features, they are domain-specific and may not generalize well to other tasks
and realistic models.

Task-specific SAE Evaluation Makelov et al. (2024) present a principled framework for evalu-
ating SAEs on GPT-2 Small using the IOI task. They compare several unsupervised SAEs with
supervised feature dictionaries to assess their ability to approximate, control, and interpret model
computations. Although this method offers a realistic, task-specific evaluation, it depends on prior
knowledge of the IOI task and is therefore specific for the feature distribution of IOI and GPT-2
Small, limiting its scalability to other tasks and models.

RAVEL Benchmark Huang et al. (2024) introduce RAVEL, a benchmark for evaluating activa-
tion disentanglement methods, including SAEs, in LLMs. RAVEL assesses the ability to isolate
distinct features in polysemantic neurons through interchange interventions. RAVEL’s Disentangle
score measures whether a feature influences a target attribute without altering unrelated attributes,
providing a comprehensive evaluation of feature disentanglement. A limitation of RAVEL is that its
intervention sites are limited to the residual stream above the last entity token, potentially missing
distributed representations across multiple tokens or layers.

3 BACKGROUND

Tasks A task in the context of LLMs is a set of input prompts {pk}k∈N , which are fully defined
over a set of attributes {ai}i∈I that take values in {Si}i∈I , and a set of outputs {yi}k∈N . We say an
LLM completes the task when the model predicts the outputs of the input prompts with a sufficient
accuracy. Therefore, a ”realistic task” for a SAE is a task that is completed by the LLM that the
SAE has been trained on.

Sparse Autoencoders A Sparse Autoencoder consists of two main components: an encoder and
a decoder. The encoder maps the input data to a higher-dimensional latent space, while the decoder
reconstructs the input from this latent space representation. Mathematically, let x ∈ Rd represent
the input vector (for example a residual stream component, an attention head output etc.), where d
is the input dimension and m is the dimension of the latent space.

The encoder function is defined as:

c = f(Wex+ be) (1)
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where We ∈ Rm×d is the weight matrix of the encoder, be ∈ Rm is the bias vector, f is an
element-wise nonlinearity and c ∈ Rm represent the coefficients of feature activations living in the
latent space with m > dmodel.

The decoder reconstructs the input from the latent space representation, by multiplying the decoder
weight matrix, consisting of the feature directions, with the computed feature coefficients:

x̂ = Wdc+ bd (2)

where Wd ∈ Rd×m is the weight matrix of the decoder, bd ∈ Rd is the bias vector, and x̂ is the
reconstructed input.

The learning objective of a Sparse Autoencoder is to minimize the l2 reconstruction error while
enforcing sparsity in the coefficients using an l1 regularization term. The overall loss function for
training a Sparse Autoencoder therefore combines the reconstruction loss and the sparsity loss:

L(x, x̂, c) = ∥x− x̂∥22 + α∥c∥1 (3)

Supervised feature dictionaries Supervised feature dictionaries, introduced by Makelov et al.
(2024), are feature dictionaries that aim to capture the ground truth features of a specific task. In
contrast to SAEs they are computed in a supervised manner and provide a structured way to disen-
tangle and reconstruct the internal representations of LLMs. As they capture approximate ground
truth features they can serve as a gold standard in evaluating SAEs. We describe the procedure to
compute supervised feature dictionaries from Makelov et al. (2024) in Appendix A.1.

To obtain a supervised feature dictionary for a task, one needs to define the relevant attributes
{ai}i∈I of a task, as well as the values {Si}i∈I that the attributes can take. The IOI task for ex-
ample can be described with an indirect object (io) attribute, a subject attribute, as well as an order
attribute, which described the ordering of the io and subject attributes. Given an internal activation
a(p) over a task prompt p, and the associated supervised feature dictionary for the task, one can
reconstruct the activation a(p) using

a(p) ≈ Ep∼D[a(p)] +
∑
i∈I

uai=v := â (4)

where â is the reconstruction of a(p), and uai=v ∈ Rd is a feature corresponding to the i-th attribute
having value v ∈ Si.

In this formulation the supervised features are not weighted with coefficients. Makelov et al. (2024)
argue that this works well for the IOI task, as name-features work like binary on-off switches. How-
ever, in the general case that does not hold, therefore we propose to compute weights to minimize
the MSE loss between the reconstruction and the activation:

λ∗ = argmin
λ

∥∥∥∥∥a(p)−
(
Ep∼D[a(p)] +

∑
i∈I

λiuai=v

)∥∥∥∥∥
2

2

, (5)

where λi are the optimal weights for the reconstruction. This can be computed using the closed-form
solution:

λ∗ =
(
V TV

)−1
V Ta(p), (6)

where V is the matrix whose columns are the supervised feature vectors.

Circuit Discovery Circuit discovery methods aim to identify a subgraph of edges in a model’s
computational graph that solves a given task in an understandable manner (Wang et al., 2023).
The process involves quantifying the causal importance of computational edges using intervention
techniques.

Let xclean be a clean input, xcorr a corrupt input, L a metric (e.g., logit difference), and E a com-
putational edge between an upstream and downstream component in the transformer. The causal
importance of edge E is quantified by:

L(xclean|do(E = ecorr))− L(xclean) (7)

where do(E = ecorr) denotes corrupting edge E. Corrupting an edge means that only the interac-
tion between the upstream and downstream components is affected: the activation of the upstream
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component under xclean is replaced by its activation under xcorr at the point where the downstream
component processes this activation, while other computations remain unchanged.

This manual approach is computationally intensive, requiring two forward passes for each edge (one
for the corrupt activation, one for patching). To address this, Nanda (2023) introduced ”attribution
patching”, which uses a first-order Taylor expansion to approximate the patching effect:

L(xclean|do(E = ecorr))− L(xclean) ≈ (ecorr − eclean) ·
∂L(xclean|do(E = eclean))

∂eclean
(8)

This method requires only two forward passes (for clean and corrupt activations) and one backward
pass (for gradients) to approximate the patching effect for every computational edge in the graph.
Syed et al. (2023) demonstrated that this approach is not only more efficient than manual patching,
but can outperform traditional patching techniques in circuit discovery. For edges in the model, the
activations are obtained based on the upstream activation, and the gradients of the edge are obtained
based on the downstream component.

However, attribution patching can face issues with zero gradients: Attribution patching uses a linear
approximation of the change of metric L, however there is no guarantee that the metric L changes
linearly with respect to a specific activation in the model. Integrated gradients (Sundararajan et al.,
2017), a method that tackles this problem by taking into account several gradients of intermediate
activations between the clean and corrupt activation, improves the approximation results (Marks
et al., 2024; Hanna et al., 2024):

∆L ≈ (ecorr − eclean) ·
1

m

m∑
k=1

∂L(xclean|do(E = eclean +
k
m (ecorr − eclean)))

∂eclean
(9)

where ∆L = L(xclean|do(E = ecorr))− L(xclean).

For scenarios where the counterfactual differs only in small, causally specific aspects, Hanna et al.
(2024) showed that the computationally cheaper clean-corrupt method performs comparably:

∆L ≈ (ecorr − eclean) ·
(
1

2

∂L(xclean|do(E = eclean))

∂eclean
+

1

2

∂L(xcorr|do(E = ecorr))

∂ecorr

)
(10)

This clean-corrupt method is therefore employed in this work.

4 METHODOLOGY

In this section, we describe our approach to scaling supervised feature dictionary evaluations.

Discovering Cross-Sections The cross-sections of a circuit are the locations in the computational
graph where a task-relevant feature is active. Therefore, supervised feature dictionaries are obtained
at these locations to capture the approximate ground truth features. Cross-sections are also critical
for conducting the actual evaluation, as manipulating the activations at these points is expected to
have the most significant downstream effect on task performance, allowing us to assess the impact
of task-relevant features on the overall functionality of the LLM. As Makelov et al. (2024) derives
the cross-sections for the IOI task based on prior work of Wang et al. (2023), this does not work in
the general case.

We propose to use attribution-based circuit discovery methods, to find the attribute cross-sections,
the cross-sections for each attribute of the task, using the following procedure: Consider an at-
tribute ai. To find the relevant cross-sections for the attribute, we sample pairs of inputs for the task
(xclean, xcorr) where each xcorr differs in the value of the attribute ai compared to xcorr. Then we per-
form a forward pass and a backward pass with respect to the metric L (for example logit difference)
for each xclean and xcorr and cache the activations and gradients of all components in the computa-
tional graph. Then we can obtain an approximation of the patching effect with equation 10 for each
computational edge in the model and each input pair. We average the score of each edge over all
input pairs, to get a robust approximation for the cross-sections across many examples of the task.
The average score gives us an approximation for the effect on the logit difference, when patching in
an activation of an example that differs only in attribute ai. Thus, a large score for an edge indicates
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that the feature uai=v is active in the activation of the upstream component and processed by the
downstream component.

We obtain a group of cross-sections for each attribute in {ai}i∈I by taking the top n edges with
the largest average attribution score. Then, we separate the cross-sections with a positive attribution
score, and those with a negative attribution score. This is because we want to evaluate SAEs and the
supervised feature dictionary based on their downstream effect on the logits, thus we want cross-
section groups with a similar effect.

Derive Supervised Feature Dictionaries After we found the attribute cross-sections for which we
expect our desired features to be linearly represented in the activations of the upstream components,
we obtain the supervised feature dictionaries.

Projection-Based Reconstruction with Residual Stream SAEs To evaluate SAEs in the context
of a specific task, we need to apply them to the task’s cross-sections to find the task-specific features.
Previous work by Makelov et al. (2024) directly used the relevant key, query, and value vectors of
attention heads in the IOI circuit as cross-sections. Therefore, for the evaluation they required a
trained SAE for each key, query, and value subspace of each attention head that they use as a cross-
section. Training these SAEs requires extensive training and challenging hyperparameter tuning. In
a first step, to address this training overhead, we only apply SAEs and supervised feature dictionaries
to the upstream components of our cross-sections, typically the attention head output. However, this
still requires a trained SAE for each attention head that is part of a cross-section. Therefore, we
propose a reconstruction method based solely on residual stream SAEs, allowing evaluations with
only a handful of residual stream SAEs.

Consider a residual stream SAE with encoder weights We and decoder weights Wd. The residual
stream at layer l can be expressed recursively as:

x(l) = x(l−1) + Layerl−1(x
(l−1))

This relationship allows us to express the residual stream at layer l as a sum of all previous layer
outputs:

x(l) = x(0) +

l∑
j=1

Layerj−1(x
(j−1)),

where x(0) is the output of the embedding and positional encoding.

Each layer’s output, Layerj(x
(j)), can be further decomposed into the outputs of attention heads and

MLP components:

Layerj(x
(j)) =

H∑
k=1

hk(x
(j)) + MLP(x(j)).

Thus, the residual stream at any layer l can be represented as:

x(l) = x(0) +

l∑
j=1

(
H∑

k=1

hk(x
(j)) + MLP(x(j))

)
.

The SAE is trained on this linear combination of attention head and MLP outputs. Therefore, if
a specific attention head hk at layer j writes in an important (i.e. task-specific) direction on the
residual stream at layer l, the residual stream SAE must reconstruct this direction to reconstruct the
residual stream at layer l.

Applying the residual stream encoder at layer l yields:

c(l) = f(Wex
(l) + be)

where c(l) are the coefficients of the SAE features for the residual stream at layer l.

The decoder reconstruction x̂(l) is given by:

x̂(l) = Wdc
(l) + bd =

m∑
i=1

fic
(l)
i + bd

6
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where fi is a feature in Wd and m is the dimension of the SAE.

To obtain the reconstruction for a sublayer activation hk(x
(j)), we measure the alignment between

each active feature fi (i.e. c(l)i > 0) and hk(x
(j)) using the dot product:

αi = hk(x
(j)) · fi

We select all features for the reconstruction of hk(x
(j)) for which αi is greater than or equal to

the average across all α (alternatively one could use a fixed threshold), yielding a set of features
{ft}t∈T that are represented in a similar direction as hk(x

(j)). To obtain coefficients {ct}t∈T for a
good reconstruction of the sublayer activation, we minimize the mean squared error:∥∥∥∥∥hk(x

(j))−
T∑

t=1

ftct

∥∥∥∥∥
2

This leads to the closed-form solution:

c = (F⊤F)−1F⊤hk(x
(j))

where F ∈ Rd×T is the matrix of selected features and c ∈ RT is the vector of coefficients.

Based on our procedure of discovering cross-sections, we make the assumption that the sublayer
activations of the upstream components of the cross-sections contain linear representations of task-
relevant features uai=v that have a significant effect on the logits. Thus, a good residual stream
SAE for the task has to reconstruct this feature. Our method aims to find these features through the
alignment filter process and provide a good reconstruction of the sublayer activation with respect to
the task if the SAE is suitable for the task. With this approach we are able to perform edits on the
task circuit with the same precision as previous methods, while significantly reducing the training
overhead.

Evaluations Based on the cross-sections, supervised feature dictionaries and projection-based
SAE reconstruction, one can perform downstream tests on the SAEs and supervised feature dictio-
naries. In the scope of this work we aim to validate that our supervised feature dictionaries capture
high quality approximations of ground truth features. Therefore, we reimplement Test 1 and Test
2 from Makelov et al. (2024) to evaluate our supervised feature dictionaries against several open-
source SAEs across various models. As supervised feature dictionaries pass test 3 (interpretability
test) tautologically, we do not reimplement the test in the scope of this work, but an evaluation based
on this test is equally possible with our framework. For a detailed description of Test 1 and Test 2
refer to Appendix A.2.

Makelov et al. (2024) perform targeted edits on specific components of the IOI circuit for task 2,
utilizing prior knowledge based on findings from Wang et al. (2023). In contrast, our framework
avoids relying on prior knowledge. Instead, we leverage the attribute cross-sections to guide our
editing choices. Each cross-section group is derived by computing attribution scores for a specific
attribute ai. Consequently, we focus on editing only the features associated with attribute ai when
evaluating that particular cross-section group in Test 2. By making edits targeted at ai, we expect the
most significant downstream impact on the model’s predictions for the corresponding cross-section
group, providing a strong indicator of how effectively our supervised feature dictionaries can be
applied to modify the features of ai.

5 EXPERIMENTS

In this section we apply our SAGE framework to different tasks, models and feature distributions
to demonstrate its scalability. We use two tasks: First, we apply our framework to the IOI task
as a comparative baseline to the IOI evaluations of Wang et al. (2023). Second, we introduce an
induction task across multiple feature distributions as a running example and apply our evaluation
framework to it. We explain the setup of both tasks in detail in Appendix A.5. For the evaluations
we use several open-source SAEs from the “sae lens” library (Joseph Bloom, 2024). For Pythia
70M Biderman et al. (2023), we evaluate the “pythia-70m-deduped-res-sm” SAE with a dimension
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of 32k, for GPT-2 Small Radford et al. (2019), we compare “gpt2-small-resid-post-v5-32k” with a
dimension of 32k against “gpt2-small-resid-post-v5-128k” with a dimension of 128k. Lastly, for
Gemma-2-2B et al. (2024) we compare the “gemma-scope-2b-pt-res-canonical” with dimensions
16k against the version with dimension 65k from Gemma-scope (Lieberum et al., 2024).

The induction task is based on the induction mechanism in LLMs (Olsson et al., 2022): induction
heads recognize patterns in the input token sequence and predict tokens based on this pattern. The
induction mechanism has several desirable properties: First, it enables applying the same task across
all tested models for direct comparison as this task is implemented in most LLMs. Second, induc-
tion heads predict tokens based on patterns in the input sequence, allowing flexible token feature
distributions for diverse evaluations.

5.1 HYPERPARAMETERS AND PREPROCESSING

Discover Cross-Sections For the cross-section discovery we have to decide which model com-
ponents, component locations and how many patching examples to use for the calculation of the
average attribution score. For the metric we choose logit difference between the io and subject
token for the IOI task, and the ind2 and ind1 token for the induction task.

We choose to focus our evaluation on the attention heads and obtain attribution scores for edges
between attention heads (attention head output as upstream node and the q, k and v input to attention
heads as downstream nodes). We only consider locations in the model that are at the last attribute
token position or later. This is because attributes like order can only be fully linearly represented
after the last attribute token. Lastly, we choose to average the attribution scores across 250 task
prompts that are sampled from the task datasets. For each task prompt we also sample one corrupted
example differing in one attribute. Therefore, we have a total of 250 task prompt pairs to obtain the
attribute cross-sections from.

Filter Cross-Sections Next, we need to decide which cross-section to consider for the evaluation
based on the obtained attribution scores. As the attribution scores are only approximations, we
perform the following validation step to select the attribute cross-sections for the evaluation:

1. Select the top n cross-sections for each cross-section group
2. Corrupt increasing subsets of the cross-section groups by patching the mean ablation of the

upstream node in the input of the downstream node (edge mean ablation) and measure the
change in the logit difference

3. For each cross-section group select the subset with the largest change in logit difference
and drop cross-section groups that caused a change in logit difference below τ

In our experiments we choose 300 cross-sections for GPT-2 Small and Pythia 70M, and top 1600
cross-sections for Gemma-2-2B. We dropped cross-section groups whose change in logit difference
was below 60% of the mean change across all cross-section groups. Refer to Appendix A.3 to find
the results of this selection procedure for each model and task.

Supervised Dictionaries We train each supervised feature dictionaries on 10000 task prompts. We
test how accurate our models completes the tasks across the sampled training data on 250 examples.
For all experiments our models achieved at least 95% accuracy.

Evaluations We perform the evaluations with Test 1 and Test 2 across 250 task examples, sampled
from the test dataset of each task. For Test 2 we perform 0, 4, 8 and 16 edits. We also test the
accuracy of our models in predicting the correct token for the test set and also achieve over 95%
accuracy for all models and tasks.

5.2 SAGE ON THE IOI TASK

We first apply SAGE to the IOI task to demonstrates that SAGE reproduces the evaluation results
of previous methods that relied on prior knowledge of the IOI circuit and trained SAEs for all
circuit components, compared to SAGE, which only uses residual stream SAEs. The evaluation
results for Test 1 and Test 2 on GPT-2 small are shown in Figure 2. Test 1 demonstrates that our
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Figure 2: The figure to the left shows the scores for Test 1: (left) Sufficiency and (right) Necessity.
The figure to the right is showing the results of Test 2.

supervised feature dictionary provides a strong approximation of the IOI features leading to excellent
reconstructions of the cross-section activations, as it achieves sufficiency and necessity scores above
0.95. The 128k-dimension variant of the SAEs performs better than the 32k-dimension variant, but
both fall short when compared to the supervised feature dictionary. In Test 2, the supervised feature
dictionary demonstrated excellent sparse controllability with over 90% edit success across all cross-
section groups. Similarly to the results of Makelov et al. (2024) for their full-distribution SAEs, we
find that both SAEs struggle with sparse controllability, particularly when editing the subject and
order features in the according cross-section groups, where even 16 feature edits fail to significantly
influence the model’s predictions. The 128k SAE demonstrates improvement for the io-increase
group but still underperforms compared to the supervised dictionary, while the 32k variant does not
improve.

Therefore, this experiment has shown that SAGE can discover high-quality, approximate ground
truth feature dictionaries across the identified cross-sections for each feature of the IOI task, without
relying on prior knowledge of the IOI task. We were able to evaluate SAEs on these cross-sections
solely based on residual stream SAEs, while achieving comparable results to those reported by
Makelov et al. (2024). Our results only differ in that editing the subject feature in the subject-
increase group results in prediction flips. This discrepancy arises because Makelov et al. (2024)
mainly focuses on editing the subject features in the inhibitor heads, whereas our method edits the
subject feature in the cross-sections where patching increases the logit difference most. Thus, our
edits of the subject feature in these cross-sections seem to effectively reduce the inhibitory signal
instead of replacing it, causing the prediction to flip to a general token such as ”the”.

5.3 SAGE ON THE INDUCTION TASK

Next, we apply SAGE to the induction task, using the name feature distribution from the IOI task,
across GPT-2 small, Pythia 70M, and Gemma-2-2B models. Our results validate that SAGE can
scale to new tasks, with unknown circuits, new feature distributions, and state-of-the-art LLMs like
Gemma-2-2B. Refer to Appendix A.4, for experiment results using the induction task with other
feature distributions on GPT-2 Small. The evaluation results for Test 1 and Test 2 are shown in Fig-
ure 3. For all three models, the supervised feature dictionary achieves excellent approximations of
the induction task features, with necessity and sufficiency scores exceeding 0.9. It also demonstrates
strong sparse controllability, achieving over 80% success in feature edits, consistently outperforming
both the 32k and 128k SAEs. The SAEs with larger dimensions generally outperform the smaller
SAEs across most evaluation metrics. For GPT-2 small, we observe frequent prediction flips in
the ind1-increase, ind2-reduce, and order-increase cross-section groups. The 128k-dimension SAE
shows improvement with more feature edits in the ind2-reduce group, though it still vastly under-
performs compared to the supervised dictionary. The 32k-dimension SAE also shows improvement
with more edits in the ind2-reduce cross-section group, but not as good as the 128k variant. In the
other groups more edits do not lead to improvements. For Pythia 70M, all cross-section groups
lead to notable prediction flips. The 128k-dimension SAE improves with increasing edits for the
ind2-increase and ind2-reduce groups, but struggles to match the performance of the supervised
dictionary. The results for the ind1 and order groups demonstrate minimal improvement with more
feature edits, with both SAEs falling short of the supervised dictionary’s accuracy across all groups.
For Gemma-2-2B, we also see the primary prediction flips for the edits of the ind2-reduce cross-
section group. However, increasing the number of edits has a more notable effect with 0% of correct
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Pythia 70M

GPT-2 Small

Gemma-2-2B

Figure 3: Evaluation results for the induction task on Pythia 70M, GPT-2 Small, and Gemma-2-2B.
On the left are the scores for Test 1: (left) Sufficiency and (right) Necessity, and on the right are the
results of Test 2.

predictions without edits, compared to 40% to 50% success rate for 16 edits. The 65k version out-
performs the 16k version, and most notably the 65k version is able to perform the correct edit for
25% of the examples using only 2 edits compared to around 5% for the 16k variant. Thus, the 65k
variant seems to find features in the activations that approximate the name features, used for the
induction task, better than those of the 16k variant.

All in all, we have shown with this experiment that the SAGE framework can successfully scale
SAE ground truth evaluations to new tasks, models and feature distributions, finding high quality
supervised feature dictionaries, requiring only residual stream SAEs.

6 CONCLUSION AND FUTURE WORK

This paper introduces the SAGE framework, which enables to scale SAE ground truth evaluations to
new models and task. To this end we have proposed a fully automated approach, while significantly
reducing the training overhead of previous methods, using our novel projection-based reconstruc-
tion technique. We have demonstrated the scalability of SAGE by evaluating several SAEs on Pythia
70M, GPT-2 Small, and Gemma-2-2B with a new task using different feature distributions. Future
work includes expanding task diversity by incorporating tasks with more high-level features and
covering larger feature distributions. The current approach is constrained by the effectiveness of at-
tribution patching in identifying attribute cross-sections. Thus, future research on improved discov-
ery methods would further enhance our technique. Another potential extension is the incorporation
of additional activation disentanglement methods beyond SAEs, such as PCA or Distributed Align-
ment Search, to provide a more comprehensive evaluation. In summary, SAGE enables large-scale
SAE evaluations on realistic tasks, marking a significant advancement toward generalizable SAE
assessments in interpretability research.
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A APPENDIX

A.1 SUPERVISED FEATURE DICTIONARIES

Makelov et al. (2024) give two primary ways to derive supervised feature dictionaries at cross-
sections, MSE feature dictionaries and mean feature dictionaries. We use MSE feature dictionaries,
as they are recommended in the general case. They can be obtained using the following method:

Step 1: Define the Dataset and Model Components Let D = {pk}k∈N be the dataset of input
prompts. Let a(pk) ∈ Rd be the activation of a model component for prompt pk. Let {ai}i∈I be
the set of attributes that describe the task, where each attribute ai : D → Si is instantiated with a
specific value from Si for each prompt in the dataset.

Step 2: Center the Activations Compute the mean activation over the dataset:

ā =
1

N

N∑
k=1

a(pk).

Center the activations by subtracting the mean:

ã(pk) = a(pk)− ā.

Step 3: Encode the Attribute Values For each attribute ai and value v ∈ Si, define an indicator
function 1ai(pk)=v that equals 1 if the attribute ai of prompt pk equals v, and 0 otherwise.

Construct the attribute matrix C ∈ RN×m where m =
∑I

i=1 |Si|. Each column of C corresponds
to an indicator function 1ai(pk)=v for a particular ai and v.

Step 4: Solve the Least-Squares Problem The goal is to learn feature vectors uai=v ∈ Rd for
each attribute ai and value v by solving the following least-squares problem:

argmin
uai=v

1

N

N∑
k=1

∥∥∥∥∥ã(pk)−∑
i∈I

uai=ai(pk)

∥∥∥∥∥
2

2

In matrix form, the problem is:

min
U

1

N

∥∥∥Ã− CU
∥∥∥2
2

where:

• Ã ∈ RN×d is the matrix of centered activations.

• C ∈ RN×m is the attribute matrix.

• U ∈ Rm×d is the matrix of feature vectors, with rows uai=v .

Step 5: Solve the System The solution to this least-squares problem is given by:

U∗ =
(
CTC

)+
CT Ã

where
(
CTC

)+
is the Moore-Penrose pseudoinverse of CTC.

Step 6: Obtain the Final Feature Vectors Each row of U∗ corresponds to a feature vector uai=v

for a specific attribute ai and value v.

A.2 EVALUATION TESTS

In this section, we describe two of the evaluation tests proposed by Makelov et al. (2024) that we use
to show that the ground truth features obtained with our approach, can be used for SAE evaluations.
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Test 1: Sufficiency and Necessity This test evaluates whether the feature dictionary’s reconstruc-
tions are sufficient and necessary for the model to perform the task. For sufficiency, the test involves
replacing the activations of a cross-section group with their reconstructions from the SAE and the
supervised feature dictionary. Then the effect on the logit difference is measured, by calculating
the average logit difference across all clean runs Lc, all runs where the activations of the relevant
components are exchanged with their reconstruction Ls, and all runs where we patch in the mean
activations, as an in-distribution baseline of a reconstruction that does not capture any task-relevant
features Lm. A score of the sufficiency of the reconstructions can then be obtained as:

|Ls − Lm|
|Lc − Lm|

For necessity, the test involves assessing whether the features captured by the feature dictionary are
necessary for the model performance. To do this, instead of patching in reconstruction, we aim to
delete the relevant features from the components in our set by replacing each cross-section activation
a with ā+ (a− â). We obtain the average logit difference of the output logits of all clean runs Lc,
all runs where the relevant activations are replaced with the difference between the clean activations
and their reconstructions Ln, and the in-distribution baseline Lm. A score of the necessity of the
reconstructions can be obtained as:

1− |Ln − Lm|
|Lc − Lm|

This formulation directly captures how much of the original information is lost when the recon-
structed activations are removed, providing a measure of how necessary the dictionary features are
for the model’s task performance.

Test 2: Sparse Controllability This test evaluates the extent to which features in the learned dic-
tionary can be used to sparsely control the model’s behaviour by editing specific attributes of the
input prompts. Let task prompts ps and pt differ in exactly one attribute. Let a(ps) and a(pt) repre-
sent the activations of cross-sections of the task for each task prompt. Let â(ps) and â(pt) represent
the respective reconstructions of the activations using the feature dictionary (SAE or supervised).
We aim to determine whether modifying each activation a(ps) using the features used for the recon-
structions â(ps) and â(pt) across all relevant cross-sections can flip the prediction of the model to
what it would predict under the activations a(ps). Formally, the problem is expressed as:

min
R⊆S,A⊆T,|R∪A|≤k

∥∥∥∥∥a(ps)−∑
i∈R

αiui +
∑
i∈A

βiui − a(pt)

∥∥∥∥∥
2

2

,

where S and T are the sets of active features ui in the reconstructions â(ps) and â(pt) respectively,
and αi, βi > 0 are their coefficients. The problem of finding the optimal sparse edit for the SAE
features is NP-complete, as it can be reduced to the Subset Sum problem (Makelov et al., 2024).

The ground truth edit is replacing a(ps) with a(pt). Editing with the supervised feature dictionary
works by subtracting the feature uaj=sv from a(ps) and adding uaj=st , where aj is the attribute we
wish to edit and sv is the value it takes in ps and st is the value for the attribute in pt.

As already explained, finding the optimal edit for the SAE setting is NP-complete. Makelov et al.
(2024) use a greedy algorithm to approximate the optimization problem by exchanging a fixed num-
ber of features, such that the activation a(ps) gets closer to a(pt):

1. Obtain the features us
1, u

s
2, ...,u

s
m and their coefficients cs1, c

s
2, ..., c

s
m that we obtain from

the reconstruction of a(ps). Similarly obtain and ut
1, u

t
2, ...,u

t
m and the coefficients

ct1, c
t
2, ..., c

t
m for a(pt).

2. In the next step, we iterate over all pairs of features and apply the edit a′(ps) = a(ps) −
csi · us

i + ctj · ut
j and calculate the distance between a′(ps) and a(pt).

3. We select the edit that makes both activations most similar and repeat that procedure for
the specified number of edits.
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A.3 CROSS-SECTION GROUPS: SELECTION RESULTS

GPT-2 Small & IOI task

GPT-2 Small & induction task

Pythia 70M & induction task

Gemma-2-2B & induction task

Figure 4: Shown are the results of the selection procedure described in the Experiment section. The
plot on the left shows on the x-axis the subset size of the different cross-section groups. On the
y-axis it shows the change in logit difference, when mean-ablating the cross-sections of each subset.
The plot on the right shows which cross-section groups were filtered out (shown in red) because
their change in logit difference was below 60% of the average change in logit difference across all
cross-section groups.
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A.4 DIFFERENT FEATURE DISTRIBUTIONS

GPT-2 Small and the induction task with animal features

GPT-2 Small and the induction task with country features

GPT-2 Small and the induction task with number features

Figure 5: Results of Test 1 and Test 2 for the induction task, with different feature distributions (10
tokens of the according feature category each).

A.5 EVALUATION TASKS

IOI Task We set up the IOI task to be defined over the attributes indirect object (io), subject, and
order. As values for the io and subject attribute we choose a set of ten single-token names from
the IOI name distribution. As values for the order attribute we choose {abb, bab}. To initialize IOI
prompts, we use three IOI templates (slightly altered from Wang et al. (2023) to align the token
positions). The following two templates with the according io and subject orderings are used to
train the supervised feature dictionaries:

Then, {io} and {subject} had a long argument. {subject} gave a drink to

Then, {subject} and {io} had a long argument. {subject} gave a drink to

Then, {io} and {subject} went to the store. {subject} gave an apple to

Then, {subject} and {io} went to the store. {subject} gave an apple to

To run the evaluation tests, we use the following template:

Then, {io} and {subject} went to the cafe. {subject} gave the cake to

Then, {subject} and {io} went to the cafe. {subject} gave the cake to

Induction Task For the induction task we use the following algorithm to sample token patterns
for which the model can perform induction with low cross-entropy:
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Algorithm 1 Induction Sequence Sampling

Require: Model M , Vocabulary V , threshold τ > 0
Ensure: Induction sequence s

1: CE←∞ ▷ Initialize cross-entropy to a large value
2: while CE > τ do
3: r ← sequence of n tokens from V
4: T ← m target tokens from V
5: CE← [] ▷ Initialize cross-entropy list
6: for all t ∈ T do
7: x← r + t+ r ▷ Create induction sequence
8: ℓ←M(x) ▷ Compute logits for sequence
9: CE += − log(softmax(ℓ)[t]) ▷ Add cross-entropy

10: end for
11: if mean(CE) ≤ τ then
12: return r
13: end if
14: end while

We set up the induction task with three attributes: ind1, ind2, and order. The attribute ind2 is
the output of the induction task, ind1 is the previous token for ind2 and used to define two separate
orderings that are captured with the attribute order. Therefore, the task consists of two token features
ind1 and ind2, for which a feature distribution can be freely defined, and a high level order attribute.
Note that this is different from the IOI order attribute, as the ordering for the induction task differs
significantly. Based on these attributes we define the following prompt templates for the induction
task:

{seq} {ind2},{ind1},{ind2},{ind1} {seq} {ind2},{ind1}, → {ind2}
{seq} {ind1},{ind1},{ind2},{ind2} {seq} {ind1},{ind1}, → {ind2}

Then we can sample two training sequences to instantiate {seq}, and one test sequence.
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