
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SAGE: SCALABLE GROUND TRUTH EVALUATIONS
FOR LARGE SPARSE AUTOENCODERS

Anonymous authors
Paper under double-blind review

ABSTRACT

A key challenge in interpretability is to decompose model activations into mean-
ingful features. Sparse autoencoders (SAEs) have emerged as a promising tool
for this task. However, a central problem in evaluating the quality of SAEs is the
absence of ground truth features to serve as an evaluation gold standard. Current
evaluation methods for SAEs are therefore confronted with a significant trade-
off: SAEs can either leverage toy models or other proxies with predefined ground
truth features; or they use extensive prior knowledge of realistic task circuits. The
former limits the generalizability of the evaluation results, while the latter lim-
its the range of models and tasks that can be used for evaluations. We introduce
SAGE: Scalable Autoencoder Ground-truth Evaluation, an evaluation framework
for SAEs that enables obtaining high-quality feature dictionaries for diverse tasks
and feature distributions without relying on prior knowledge. Specifically, we lift
previous limitations by showing that ground truth evaluations on realistic tasks
can be automated and scaled. First, we show that we can automatically identify
the cross-sections in the model where task-specific features are active. Second,
we demonstrate that we can then compute the ground truth features at these cross-
sections. Third, we introduce a novel reconstruction method which significantly
reduces the amount of trained SAEs needed for the evaluation. This addresses
scalability limitations in prior work and significantly simplifies the practical eval-
uations. We validate our results by evaluating SAEs on novel tasks on Pythia70M,
GPT-2 Small, and Gemma-2-2B, thus demonstrating the scalability of our method
to state-of-the-art open-source frontier models. These advancements pave the way
for generalizable, large-scale evaluations of SAEs in interpretability research.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide variety
of tasks (Brown et al., 2020; Raffel et al., 2020; Devlin et al., 2019; Radford et al., 2019; Vaswani
et al., 2017). As a result they are increasingly deployed in high stake domains, for example health-
care (Luo et al., 2022), law (Shaheen et al., 2020), and finance (Li et al., 2023). However, the
deployment of LLMs in such critical areas raises significant safety and ethical concerns (Bengio
et al., 2024; Anderljung et al., 2023; Hendrycks & Mazeika, 2022), as their decisions can have pro-
found consequences. This makes it crucial to understand the internal mechanisms and reasoning
processes of these models, to ensure that their outputs are reliable, transparent, and aligned with
human values.

A key challenge in interpreting LLMs is to decompose their internal activations into meaningful and
interpretable features. Recently, sparse autoencoders (SAEs) have emerged as a promising solution
for this task (Black et al., 2022; Cunningham et al., 2023). The quality of SAEs relies heavily on
a range of hyperparameters such as the dictionary size, the sparsity constraint, and the choice of
activation function (Gao et al., 2024). The dictionary size for instance influences the granularity
of features found. This makes it important to strike the right balance between being too broad,
which risks overseeing relevant features; or too specific, generating redundant or overly fragmented
features. Therefore, realistic SAE evaluations—those that assess models on their trained tasks and
within their application context—are critical to ensure that SAEs generalize well beyond synthetic
benchmarks and perform reliably in real-world scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A graphical overview of SAGE: Scalable Autoencoder Ground-truth Evaluation. SAGE
scales SAE ground truth evaluation using three key steps: First, we identify attribute cross-sections,
which are the relevant model components responsible for processing specific task-related attributes.
Second, we compute supervised feature dictionaries that approximate ground truth features for our
task. Third, we manipulate model activations using the supervised feature dictionary and an SAE,
and evaluate the downstream effects to assess the SAE’s quality against the approximate ground
truth. We introduce a novel projection-based reconstruction using residual stream SAEs, which
significantly reduces training overhead compared to prior art.

A central obstacle in evaluating SAEs in realistic settings is the lack of ground truth features that
can serve as a gold standard for comparison. This leads to a problematic trade-off: researchers ei-
ther rely on toy models with predefined ground truth features (Karvonen et al., 2024; Sharkey et al.,
2023), which raises concerns about generalizability to real-world tasks; or they employ more real-
istic tasks that require extensive prior knowledge of the task circuit to derive ground truth features
(Makelov et al., 2024), limiting scalability to other tasks or models. As a result, task-specific ground
truth evaluations are currently limited to smaller models, such as GPT-2 Small, where well-studied
tasks like indirect object identification (IOI) (Wang et al., 2023) are available. Nevertheless, ap-
proximate ground truth features have been identified in larger LLMs, including features for refusal
(Arditi et al., 2024), sentiment (Tigges et al., 2023), and toxicity (Turner et al., 2024). Moreover,
recent advances in automated circuit discovery methods have shown promise in automatically and
efficiently identifying task-specific circuits in large LLMs (Conmy et al., 2023; Syed et al., 2023;
Nanda, 2023). This suggests that ground truth evaluations of SAEs may scale to tasks without prior
knowledge and to large frontier models.

Another challenge in scaling SAE evaluations to large frontier models is the need to train multiple
SAEs across various model components (such as the query, key, and value vectors of attention heads)
to fully capture the structure of the task circuit (Makelov et al., 2024). This becomes especially
problematic for larger models, where the computational cost and extensive hyperparameter tuning
required for training a family of SAEs make this approach infeasible at scale.

In this work, we introduce SAGE: Scalable Autoencoder Ground-truth Evaluation (see Figure 1), an
evaluation framework for SAEs that enables obtaining high-quality feature dictionaries for diverse
tasks and feature distributions without relying on prior knowledge. Our method scales efficiently to
large frontier models and their associated SAEs. Specifically, we:

1. demonstrate that automated circuit discovery methods can find model components where
task-specific features are linearly represented. This allows for SAE evaluations on new
tasks without requiring manual experimentation or prior knowledge.

2. show that supervised feature dictionaries derived from these components can serve as high-
quality ground truths for evaluating SAEs, enabling a reliable comparison standard for the
evaluation.

3. propose a new method for reconstructing sublayer activations, reducing the evaluation pro-
cess to residual stream SAEs without compromising precision or generalizability. This

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

innovation makes it feasible to scale task-specific SAE evaluations to large models by dras-
tically cutting the training overhead.

We apply this framework to existing evaluation benchmarks, validating the quality of our approach
on models such as Pythia 70M (Biderman et al., 2023), GPT-2 Small (Radford et al., 2019), and
GEMMA-2-2B (et al., 2024). Our results demonstrate that our method scales to large, state-of-the-
art frontier LLMs and SAEs. With this approach, we enable researchers to generate task-specific
evaluations for arbitrary SAEs, models, feature distributions, and tasks in a more efficient manner,
paving the way for principled advancements in sparse dictionary learning and large-scale model
interpretability.

2 RELATED WORK

In this section, we highlight some key contributions to the landscape of SAE evaluation methods.

Toy Model Evaluations Sharkey et al. (2023) explore SAE evaluation using synthetic datasets
with predefined ground truth features to assess how well SAEs recover features from superposition.
Their findings demonstrate that a simple SAE with an L1 penalty can effectively separate features in
a controlled, toy model setup, offering a useful benchmark for understanding feature recovery. Kar-
vonen et al. (2024) propose evaluating SAEs using board games like chess and Othello, leveraging
the clear structure of these games to pre-define interpretable features. They introduce two metrics:
Board Reconstruction (the ability to reconstruct game states) and Coverage (the proportion of pre-
defined features correctly captured). While these approaches provide straight-forward evaluations
based on ground truth features, they are domain-specific and may not generalize well to other tasks
and realistic models.

Task-specific SAE Evaluation Makelov et al. (2024) present a principled framework for evalu-
ating SAEs on GPT-2 Small using the IOI task. They compare several unsupervised SAEs with
supervised feature dictionaries to assess their ability to approximate, control, and interpret model
computations. Although this method offers a realistic, task-specific evaluation, it depends on prior
knowledge of the IOI task and is therefore specific for the feature distribution of IOI and GPT-2
Small, limiting its scalability to other tasks and models.

RAVEL Benchmark Huang et al. (2024) introduce RAVEL, a benchmark for evaluating activa-
tion disentanglement methods, including SAEs, in LLMs. RAVEL assesses the ability to isolate
distinct features in polysemantic neurons through interchange interventions. RAVEL’s Disentangle
score measures whether a feature influences a target attribute without altering unrelated attributes,
providing a comprehensive evaluation of feature disentanglement. A limitation of RAVEL is that its
intervention sites are limited to the residual stream above the last entity token, potentially missing
distributed representations across multiple tokens or layers.

3 BACKGROUND

Tasks A task in the context of LLMs is a set of input prompts {pk}k∈N , which are fully defined
over a set of attributes {ai}i∈I that take values in {Si}i∈I , and a set of outputs {yi}k∈N . We say an
LLM completes the task when the model predicts the outputs of the input prompts with a sufficient
accuracy. Therefore, a ”realistic task” for a SAE is a task that is completed by the LLM that the
SAE has been trained on.

Sparse Autoencoders A Sparse Autoencoder consists of two main components: an encoder and
a decoder. The encoder maps the input data to a higher-dimensional latent space, while the decoder
reconstructs the input from this latent space representation. Mathematically, let x ∈ Rd represent
the input vector (for example a residual stream component, an attention head output etc.), where d
is the input dimension and m is the dimension of the latent space.

The encoder function is defined as:

c = f(Wex+ be) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where We ∈ Rm×d is the weight matrix of the encoder, be ∈ Rm is the bias vector, f is an
element-wise nonlinearity and c ∈ Rm represent the coefficients of feature activations living in the
latent space with m > dmodel.

The decoder reconstructs the input from the latent space representation, by multiplying the decoder
weight matrix, consisting of the feature directions, with the computed feature coefficients:

x̂ = Wdc+ bd (2)

where Wd ∈ Rd×m is the weight matrix of the decoder, bd ∈ Rd is the bias vector, and x̂ is the
reconstructed input.

The learning objective of a Sparse Autoencoder is to minimize the l2 reconstruction error while
enforcing sparsity in the coefficients using an l1 regularization term. The overall loss function for
training a Sparse Autoencoder therefore combines the reconstruction loss and the sparsity loss:

L(x, x̂, c) = ∥x− x̂∥22 + α∥c∥1 (3)

Supervised feature dictionaries Supervised feature dictionaries, introduced by Makelov et al.
(2024), are feature dictionaries that aim to capture the ground truth features of a specific task. In
contrast to SAEs they are computed in a supervised manner and provide a structured way to disen-
tangle and reconstruct the internal representations of LLMs. As they capture approximate ground
truth features they can serve as a gold standard in evaluating SAEs. We describe the procedure to
compute supervised feature dictionaries from Makelov et al. (2024) in Appendix A.1.

To obtain a supervised feature dictionary for a task, one needs to define the relevant attributes
{ai}i∈I of a task, as well as the values {Si}i∈I that the attributes can take. The IOI task for ex-
ample can be described with an indirect object (io) attribute, a subject attribute, as well as an order
attribute, which described the ordering of the io and subject attributes. Given an internal activation
a(p) over a task prompt p, and the associated supervised feature dictionary for the task, one can
reconstruct the activation a(p) using

a(p) ≈ Ep∼D[a(p)] +
∑
i∈I

uai=v := â (4)

where â is the reconstruction of a(p), and uai=v ∈ Rd is a feature corresponding to the i-th attribute
having value v ∈ Si.

In this formulation the supervised features are not weighted with coefficients. Makelov et al. (2024)
argue that this works well for the IOI task, as name-features work like binary on-off switches. How-
ever, in the general case that does not hold, therefore we propose to compute weights to minimize
the MSE loss between the reconstruction and the activation:

λ∗ = argmin
λ

∥∥∥∥∥a(p)−
(
Ep∼D[a(p)] +

∑
i∈I

λiuai=v

)∥∥∥∥∥
2

2

, (5)

where λi are the optimal weights for the reconstruction. This can be computed using the closed-form
solution:

λ∗ =
(
V TV

)−1
V Ta(p), (6)

where V is the matrix whose columns are the supervised feature vectors.

Circuit Discovery Circuit discovery methods aim to identify a subgraph of edges in a model’s
computational graph that solves a given task in an understandable manner (Wang et al., 2023).
The process involves quantifying the causal importance of computational edges using intervention
techniques.

Let xclean be a clean input, xcorr a corrupt input, L a metric (e.g., logit difference), and E a com-
putational edge between an upstream and downstream component in the transformer. The causal
importance of edge E is quantified by:

L(xclean|do(E = ecorr))− L(xclean) (7)

where do(E = ecorr) denotes corrupting edge E. Corrupting an edge means that only the interac-
tion between the upstream and downstream components is affected: the activation of the upstream

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

component under xclean is replaced by its activation under xcorr at the point where the downstream
component processes this activation, while other computations remain unchanged.

This manual approach is computationally intensive, requiring two forward passes for each edge (one
for the corrupt activation, one for patching). To address this, Nanda (2023) introduced ”attribution
patching”, which uses a first-order Taylor expansion to approximate the patching effect:

L(xclean|do(E = ecorr))− L(xclean) ≈ (ecorr − eclean) ·
∂L(xclean|do(E = eclean))

∂eclean
(8)

This method requires only two forward passes (for clean and corrupt activations) and one backward
pass (for gradients) to approximate the patching effect for every computational edge in the graph.
Syed et al. (2023) demonstrated that this approach is not only more efficient than manual patching,
but can outperform traditional patching techniques in circuit discovery. For edges in the model, the
activations are obtained based on the upstream activation, and the gradients of the edge are obtained
based on the downstream component.

However, attribution patching can face issues with zero gradients: Attribution patching uses a linear
approximation of the change of metric L, however there is no guarantee that the metric L changes
linearly with respect to a specific activation in the model. Integrated gradients (Sundararajan et al.,
2017), a method that tackles this problem by taking into account several gradients of intermediate
activations between the clean and corrupt activation, improves the approximation results (Marks
et al., 2024; Hanna et al., 2024):

∆L ≈ (ecorr − eclean) ·
1

m

m∑
k=1

∂L(xclean|do(E = eclean +
k
m (ecorr − eclean)))

∂eclean
(9)

where ∆L = L(xclean|do(E = ecorr))− L(xclean).

For scenarios where the counterfactual differs only in small, causally specific aspects, Hanna et al.
(2024) showed that the computationally cheaper clean-corrupt method performs comparably:

∆L ≈ (ecorr − eclean) ·
(
1

2

∂L(xclean|do(E = eclean))

∂eclean
+

1

2

∂L(xcorr|do(E = ecorr))

∂ecorr

)
(10)

This clean-corrupt method is therefore employed in this work.

4 METHODOLOGY

In this section, we describe our approach to scaling supervised feature dictionary evaluations.

Discovering Cross-Sections The cross-sections of a circuit are the locations in the computational
graph where a task-relevant feature is active. Therefore, supervised feature dictionaries are obtained
at these locations to capture the approximate ground truth features. Cross-sections are also critical
for conducting the actual evaluation, as manipulating the activations at these points is expected to
have the most significant downstream effect on task performance, allowing us to assess the impact
of task-relevant features on the overall functionality of the LLM. As Makelov et al. (2024) derives
the cross-sections for the IOI task based on prior work of Wang et al. (2023), this does not work in
the general case.

We propose to use attribution-based circuit discovery methods, to find the attribute cross-sections,
the cross-sections for each attribute of the task, using the following procedure: Consider an at-
tribute ai. To find the relevant cross-sections for the attribute, we sample pairs of inputs for the task
(xclean, xcorr) where each xcorr differs in the value of the attribute ai compared to xcorr. Then we per-
form a forward pass and a backward pass with respect to the metric L (for example logit difference)
for each xclean and xcorr and cache the activations and gradients of all components in the computa-
tional graph. Then we can obtain an approximation of the patching effect with equation 10 for each
computational edge in the model and each input pair. We average the score of each edge over all
input pairs, to get a robust approximation for the cross-sections across many examples of the task.
The average score gives us an approximation for the effect on the logit difference, when patching in
an activation of an example that differs only in attribute ai. Thus, a large score for an edge indicates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

that the feature uai=v is active in the activation of the upstream component and processed by the
downstream component.

We obtain a group of cross-sections for each attribute in {ai}i∈I by taking the top n edges with
the largest average attribution score. Then, we separate the cross-sections with a positive attribution
score, and those with a negative attribution score. This is because we want to evaluate SAEs and the
supervised feature dictionary based on their downstream effect on the logits, thus we want cross-
section groups with a similar effect.

Derive Supervised Feature Dictionaries After we found the attribute cross-sections for which we
expect our desired features to be linearly represented in the activations of the upstream components,
we obtain the supervised feature dictionaries.

Projection-Based Reconstruction with Residual Stream SAEs To evaluate SAEs in the context
of a specific task, we need to apply them to the task’s cross-sections to find the task-specific features.
Previous work by Makelov et al. (2024) directly used the relevant key, query, and value vectors of
attention heads in the IOI circuit as cross-sections. Therefore, for the evaluation they required a
trained SAE for each key, query, and value subspace of each attention head that they use as a cross-
section. Training these SAEs requires extensive training and challenging hyperparameter tuning. In
a first step, to address this training overhead, we only apply SAEs and supervised feature dictionaries
to the upstream components of our cross-sections, typically the attention head output. However, this
still requires a trained SAE for each attention head that is part of a cross-section. Therefore, we
propose a reconstruction method based solely on residual stream SAEs, allowing evaluations with
only a handful of residual stream SAEs.

Consider a residual stream SAE with encoder weights We and decoder weights Wd. The residual
stream at layer l can be expressed recursively as:

x(l) = x(l−1) + Layerl−1(x
(l−1))

This relationship allows us to express the residual stream at layer l as a sum of all previous layer
outputs:

x(l) = x(0) +

l∑
j=1

Layerj−1(x
(j−1)),

where x(0) is the output of the embedding and positional encoding.

Each layer’s output, Layerj(x
(j)), can be further decomposed into the outputs of attention heads and

MLP components:

Layerj(x
(j)) =

H∑
k=1

hk(x
(j)) + MLP(x(j)).

Thus, the residual stream at any layer l can be represented as:

x(l) = x(0) +

l∑
j=1

(
H∑

k=1

hk(x
(j)) + MLP(x(j))

)
.

The SAE is trained on this linear combination of attention head and MLP outputs. Therefore, if
a specific attention head hk at layer j writes in an important (i.e. task-specific) direction on the
residual stream at layer l, the residual stream SAE must reconstruct this direction to reconstruct the
residual stream at layer l.

Applying the residual stream encoder at layer l yields:

c(l) = f(Wex
(l) + be)

where c(l) are the coefficients of the SAE features for the residual stream at layer l.

The decoder reconstruction x̂(l) is given by:

x̂(l) = Wdc
(l) + bd =

m∑
i=1

fic
(l)
i + bd

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where fi is a feature in Wd and m is the dimension of the SAE.

To obtain the reconstruction for a sublayer activation hk(x
(j)), we measure the alignment between

each active feature fi (i.e. c(l)i > 0) and hk(x
(j)) using the dot product:

αi = hk(x
(j)) · fi

We select all features for the reconstruction of hk(x
(j)) for which αi is greater than or equal to

the average across all α (alternatively one could use a fixed threshold), yielding a set of features
{ft}t∈T that are represented in a similar direction as hk(x

(j)). To obtain coefficients {ct}t∈T for a
good reconstruction of the sublayer activation, we minimize the mean squared error:∥∥∥∥∥hk(x

(j))−
T∑

t=1

ftct

∥∥∥∥∥
2

This leads to the closed-form solution:

c = (F⊤F)−1F⊤hk(x
(j))

where F ∈ Rd×T is the matrix of selected features and c ∈ RT is the vector of coefficients.

Based on our procedure of discovering cross-sections, we make the assumption that the sublayer
activations of the upstream components of the cross-sections contain linear representations of task-
relevant features uai=v that have a significant effect on the logits. Thus, a good residual stream
SAE for the task has to reconstruct this feature. Our method aims to find these features through the
alignment filter process and provide a good reconstruction of the sublayer activation with respect to
the task if the SAE is suitable for the task. With this approach we are able to perform edits on the
task circuit with the same precision as previous methods, while significantly reducing the training
overhead.

Evaluations Based on the cross-sections, supervised feature dictionaries and projection-based
SAE reconstruction, one can perform downstream tests on the SAEs and supervised feature dictio-
naries. In the scope of this work we aim to validate that our supervised feature dictionaries capture
high quality approximations of ground truth features. Therefore, we reimplement Test 1 and Test
2 from Makelov et al. (2024) to evaluate our supervised feature dictionaries against several open-
source SAEs across various models. As supervised feature dictionaries pass test 3 (interpretability
test) tautologically, we do not reimplement the test in the scope of this work, but an evaluation based
on this test is equally possible with our framework. For a detailed description of Test 1 and Test 2
refer to Appendix A.2.

Makelov et al. (2024) perform targeted edits on specific components of the IOI circuit for task 2,
utilizing prior knowledge based on findings from Wang et al. (2023). In contrast, our framework
avoids relying on prior knowledge. Instead, we leverage the attribute cross-sections to guide our
editing choices. Each cross-section group is derived by computing attribution scores for a specific
attribute ai. Consequently, we focus on editing only the features associated with attribute ai when
evaluating that particular cross-section group in Test 2. By making edits targeted at ai, we expect the
most significant downstream impact on the model’s predictions for the corresponding cross-section
group, providing a strong indicator of how effectively our supervised feature dictionaries can be
applied to modify the features of ai.

5 EXPERIMENTS

In this section we apply our SAGE framework to different tasks, models and feature distributions
to demonstrate its scalability. We use two tasks: First, we apply our framework to the IOI task
as a comparative baseline to the IOI evaluations of Wang et al. (2023). Second, we introduce an
induction task across multiple feature distributions as a running example and apply our evaluation
framework to it. We explain the setup of both tasks in detail in Appendix A.5. For the evaluations
we use several open-source SAEs from the “sae lens” library (Joseph Bloom, 2024). For Pythia
70M Biderman et al. (2023), we evaluate the “pythia-70m-deduped-res-sm” SAE with a dimension

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

of 32k, for GPT-2 Small Radford et al. (2019), we compare “gpt2-small-resid-post-v5-32k” with a
dimension of 32k against “gpt2-small-resid-post-v5-128k” with a dimension of 128k. Lastly, for
Gemma-2-2B et al. (2024) we compare the “gemma-scope-2b-pt-res-canonical” with dimensions
16k against the version with dimension 65k from Gemma-scope (Lieberum et al., 2024).

The induction task is based on the induction mechanism in LLMs (Olsson et al., 2022): induction
heads recognize patterns in the input token sequence and predict tokens based on this pattern. The
induction mechanism has several desirable properties: First, it enables applying the same task across
all tested models for direct comparison as this task is implemented in most LLMs. Second, induc-
tion heads predict tokens based on patterns in the input sequence, allowing flexible token feature
distributions for diverse evaluations.

5.1 HYPERPARAMETERS AND PREPROCESSING

Discover Cross-Sections For the cross-section discovery we have to decide which model com-
ponents, component locations and how many patching examples to use for the calculation of the
average attribution score. For the metric we choose logit difference between the io and subject
token for the IOI task, and the ind2 and ind1 token for the induction task.

We choose to focus our evaluation on the attention heads and obtain attribution scores for edges
between attention heads (attention head output as upstream node and the q, k and v input to attention
heads as downstream nodes). We only consider locations in the model that are at the last attribute
token position or later. This is because attributes like order can only be fully linearly represented
after the last attribute token. Lastly, we choose to average the attribution scores across 250 task
prompts that are sampled from the task datasets. For each task prompt we also sample one corrupted
example differing in one attribute. Therefore, we have a total of 250 task prompt pairs to obtain the
attribute cross-sections from.

Filter Cross-Sections Next, we need to decide which cross-section to consider for the evaluation
based on the obtained attribution scores. As the attribution scores are only approximations, we
perform the following validation step to select the attribute cross-sections for the evaluation:

1. Select the top n cross-sections for each cross-section group
2. Corrupt increasing subsets of the cross-section groups by patching the mean ablation of the

upstream node in the input of the downstream node (edge mean ablation) and measure the
change in the logit difference

3. For each cross-section group select the subset with the largest change in logit difference
and drop cross-section groups that caused a change in logit difference below τ

In our experiments we choose 300 cross-sections for GPT-2 Small and Pythia 70M, and top 1600
cross-sections for Gemma-2-2B. We dropped cross-section groups whose change in logit difference
was below 60% of the mean change across all cross-section groups. Refer to Appendix A.3 to find
the results of this selection procedure for each model and task.

Supervised Dictionaries We train each supervised feature dictionaries on 10000 task prompts. We
test how accurate our models completes the tasks across the sampled training data on 250 examples.
For all experiments our models achieved at least 95% accuracy.

Evaluations We perform the evaluations with Test 1 and Test 2 across 250 task examples, sampled
from the test dataset of each task. For Test 2 we perform 0, 4, 8 and 16 edits. We also test the
accuracy of our models in predicting the correct token for the test set and also achieve over 95%
accuracy for all models and tasks.

5.2 SAGE ON THE IOI TASK

We first apply SAGE to the IOI task to demonstrates that SAGE reproduces the evaluation results
of previous methods that relied on prior knowledge of the IOI circuit and trained SAEs for all
circuit components, compared to SAGE, which only uses residual stream SAEs. The evaluation
results for Test 1 and Test 2 on GPT-2 small are shown in Figure 2. Test 1 demonstrates that our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: The figure to the left shows the scores for Test 1: (left) Sufficiency and (right) Necessity.
The figure to the right is showing the results of Test 2.

supervised feature dictionary provides a strong approximation of the IOI features leading to excellent
reconstructions of the cross-section activations, as it achieves sufficiency and necessity scores above
0.95. The 128k-dimension variant of the SAEs performs better than the 32k-dimension variant, but
both fall short when compared to the supervised feature dictionary. In Test 2, the supervised feature
dictionary demonstrated excellent sparse controllability with over 90% edit success across all cross-
section groups. Similarly to the results of Makelov et al. (2024) for their full-distribution SAEs, we
find that both SAEs struggle with sparse controllability, particularly when editing the subject and
order features in the according cross-section groups, where even 16 feature edits fail to significantly
influence the model’s predictions. The 128k SAE demonstrates improvement for the io-increase
group but still underperforms compared to the supervised dictionary, while the 32k variant does not
improve.

Therefore, this experiment has shown that SAGE can discover high-quality, approximate ground
truth feature dictionaries across the identified cross-sections for each feature of the IOI task, without
relying on prior knowledge of the IOI task. We were able to evaluate SAEs on these cross-sections
solely based on residual stream SAEs, while achieving comparable results to those reported by
Makelov et al. (2024). Our results only differ in that editing the subject feature in the subject-
increase group results in prediction flips. This discrepancy arises because Makelov et al. (2024)
mainly focuses on editing the subject features in the inhibitor heads, whereas our method edits the
subject feature in the cross-sections where patching increases the logit difference most. Thus, our
edits of the subject feature in these cross-sections seem to effectively reduce the inhibitory signal
instead of replacing it, causing the prediction to flip to a general token such as ”the”.

5.3 SAGE ON THE INDUCTION TASK

Next, we apply SAGE to the induction task, using the name feature distribution from the IOI task,
across GPT-2 small, Pythia 70M, and Gemma-2-2B models. Our results validate that SAGE can
scale to new tasks, with unknown circuits, new feature distributions, and state-of-the-art LLMs like
Gemma-2-2B. Refer to Appendix A.4, for experiment results using the induction task with other
feature distributions on GPT-2 Small. The evaluation results for Test 1 and Test 2 are shown in Fig-
ure 3. For all three models, the supervised feature dictionary achieves excellent approximations of
the induction task features, with necessity and sufficiency scores exceeding 0.9. It also demonstrates
strong sparse controllability, achieving over 80% success in feature edits, consistently outperforming
both the 32k and 128k SAEs. The SAEs with larger dimensions generally outperform the smaller
SAEs across most evaluation metrics. For GPT-2 small, we observe frequent prediction flips in
the ind1-increase, ind2-reduce, and order-increase cross-section groups. The 128k-dimension SAE
shows improvement with more feature edits in the ind2-reduce group, though it still vastly under-
performs compared to the supervised dictionary. The 32k-dimension SAE also shows improvement
with more edits in the ind2-reduce cross-section group, but not as good as the 128k variant. In the
other groups more edits do not lead to improvements. For Pythia 70M, all cross-section groups
lead to notable prediction flips. The 128k-dimension SAE improves with increasing edits for the
ind2-increase and ind2-reduce groups, but struggles to match the performance of the supervised
dictionary. The results for the ind1 and order groups demonstrate minimal improvement with more
feature edits, with both SAEs falling short of the supervised dictionary’s accuracy across all groups.
For Gemma-2-2B, we also see the primary prediction flips for the edits of the ind2-reduce cross-
section group. However, increasing the number of edits has a more notable effect with 0% of correct

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Pythia 70M

GPT-2 Small

Gemma-2-2B

Figure 3: Evaluation results for the induction task on Pythia 70M, GPT-2 Small, and Gemma-2-2B.
On the left are the scores for Test 1: (left) Sufficiency and (right) Necessity, and on the right are the
results of Test 2.

predictions without edits, compared to 40% to 50% success rate for 16 edits. The 65k version out-
performs the 16k version, and most notably the 65k version is able to perform the correct edit for
25% of the examples using only 2 edits compared to around 5% for the 16k variant. Thus, the 65k
variant seems to find features in the activations that approximate the name features, used for the
induction task, better than those of the 16k variant.

All in all, we have shown with this experiment that the SAGE framework can successfully scale
SAE ground truth evaluations to new tasks, models and feature distributions, finding high quality
supervised feature dictionaries, requiring only residual stream SAEs.

6 CONCLUSION AND FUTURE WORK

This paper introduces the SAGE framework, which enables to scale SAE ground truth evaluations to
new models and task. To this end we have proposed a fully automated approach, while significantly
reducing the training overhead of previous methods, using our novel projection-based reconstruc-
tion technique. We have demonstrated the scalability of SAGE by evaluating several SAEs on Pythia
70M, GPT-2 Small, and Gemma-2-2B with a new task using different feature distributions. Future
work includes expanding task diversity by incorporating tasks with more high-level features and
covering larger feature distributions. The current approach is constrained by the effectiveness of at-
tribution patching in identifying attribute cross-sections. Thus, future research on improved discov-
ery methods would further enhance our technique. Another potential extension is the incorporation
of additional activation disentanglement methods beyond SAEs, such as PCA or Distributed Align-
ment Search, to provide a more comprehensive evaluation. In summary, SAGE enables large-scale
SAE evaluations on realistic tasks, marking a significant advancement toward generalizable SAE
assessments in interpretability research.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Markus Anderljung, Joslyn Barnhart, Anton Korinek, Jade Leung, Cullen O’Keefe, Jess Whittle-
stone, Shahar Avin, Miles Brundage, Justin Bullock, Duncan Cass-Beggs, Ben Chang, Tantum
Collins, Tim Fist, Gillian Hadfield, Alan Hayes, Lewis Ho, Sara Hooker, Eric Horvitz, Noam
Kolt, Jonas Schuett, Yonadav Shavit, Divya Siddarth, Robert Trager, and Kevin Wolf. Frontier
ai regulation: Managing emerging risks to public safety. arXiv, abs/2307.03718, 2023. URL
https://arxiv.org/abs/2307.03718.

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. arXiv, abs/2406.11717,
2024. URL https://arxiv.org/abs/2406.11717.

Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yu-
val Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, Jeff Clune,
Tegan Maharaj, Frank Hutter, Atılım Güneş Baydin, Sheila McIlraith, Qiqi Gao, Ashwin Acharya,
David Krueger, Anca Dragan, Philip Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, and
Sören Mindermann. Managing extreme ai risks amid rapid progress. Science, 384(6698):842–
845, 2024. doi: 10.1126/science.adn0117. URL https://www.science.org/doi/abs/
10.1126/science.adn0117.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Sid Black, Lee Sharkey, Leo Grinsztajn, Eric Winsor, Dan Braun, Jacob Merizian, Kip Parker,
Carlos Ramón Guevara, Beren Millidge, Gabriel Alfour, and Connor Leahy. Interpreting neural
networks through the polytope lens. arXiv, abs/2211.12312, 2022. URL https://arxiv.
org/abs/2211.12312.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 16318–16352. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv, abs/2309.08600, 2023. URL
https://arxiv.org/abs/2309.08600.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

11

https://arxiv.org/abs/2307.03718
https://arxiv.org/abs/2406.11717
https://www.science.org/doi/abs/10.1126/science.adn0117
https://www.science.org/doi/abs/10.1126/science.adn0117
https://arxiv.org/abs/2211.12312
https://arxiv.org/abs/2211.12312
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://arxiv.org/abs/2309.08600
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gemma Team et al. Gemma 2: Improving open language models at a practical size. ArXiv,
abs/2408.00118, 2024. URL https://api.semanticscholar.org/CorpusID:
270843326.

Leo Gao, Tom Dupr’e la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. ArXiv,
abs/2406.04093, 2024. URL https://api.semanticscholar.org/CorpusID:
270286001.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. arXiv, abs/2403.17806, 2024. URL https:
//arxiv.org/abs/2403.17806.

Dan Hendrycks and Mantas Mazeika. X-risk analysis for ai research. arXiv, abs/2206.05862, 2022.
URL https://arxiv.org/abs/2206.05862.

Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. Ravel: Evaluating in-
terpretability methods on disentangling language model representations. arXiv, abs/2402.17700,
2024. URL https://arxiv.org/abs/2402.17700.

David Chanin Joseph Bloom. Saelens. https://github.com/jbloomAus/SAELens, 2024.

Adam Karvonen, Benjamin Wright, Can Rager, Rico Angell, Jannik Brinkmann, Logan Riggs
Smith, Claudio Mayrink Verdun, David Bau, and Samuel Marks. Measuring progress in dictio-
nary learning for language model interpretability with board game models. In ICML 2024 Work-
shop on Mechanistic Interpretability, 2024. URL https://openreview.net/forum?id=
qzsDKwGJyB.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A
survey. In Proceedings of the Fourth ACM International Conference on AI in Finance, ICAIF
’23, pp. 374–382, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400702402. doi: 10.1145/3604237.3626869. URL https://doi.org/10.1145/
3604237.3626869.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv, abs/2408.05147, 2024. URL https:
//arxiv.org/abs/2408.05147.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
BioGPT: generative pre-trained transformer for biomedical text generation and mining. Brief-
ings in Bioinformatics, 23(6):bbac409, 09 2022. ISSN 1477-4054. doi: 10.1093/bib/bbac409.
URL https://doi.org/10.1093/bib/bbac409.

Aleksandar Makelov, Georg Lange, and Neel Nanda. Towards principled evaluations of sparse
autoencoders for interpretability and control. ArXiv, abs/2405.08366, 2024. URL https://
api.semanticscholar.org/CorpusID:269762043.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
arXiv, abs/2403.19647, 2024. URL https://arxiv.org/abs/2403.19647.

Neel Nanda. Attribution patching: Activation patching at industrial scale. 2023.
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

12

https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270286001
https://api.semanticscholar.org/CorpusID:270286001
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2206.05862
https://arxiv.org/abs/2402.17700
https://github.com/jbloomAus/SAELens
https://openreview.net/forum?id=qzsDKwGJyB
https://openreview.net/forum?id=qzsDKwGJyB
https://doi.org/10.1145/3604237.3626869
https://doi.org/10.1145/3604237.3626869
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://doi.org/10.1093/bib/bbac409
https://api.semanticscholar.org/CorpusID:269762043
https://api.semanticscholar.org/CorpusID:269762043
https://arxiv.org/abs/2403.19647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020. ISSN 1532-4435.

Zein Shaheen, Gerhard Wohlgenannt, and Erwin Filtz. Large scale legal text classifica-
tion using transformer models. ArXiv, abs/2010.12871, 2020. URL https://api.
semanticscholar.org/CorpusID:225066882.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of superposition with sparse
autoencoders. 2023.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
pp. 3319–3328. JMLR.org, 2017.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. In NeurIPS Workshop on Attributing Model Behavior at Scale, 2023. URL https:
//openreview.net/forum?id=tiLbFR4bJW.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv, abs/2310.15154, 2023. URL https://arxiv.
org/abs/2310.15154.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Activation addition: Steering language models without optimization.
arXiv, abs/2308.10248, 2024. URL https://arxiv.org/abs/2308.10248.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In
The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=NpsVSN6o4ul.

13

https://api.semanticscholar.org/CorpusID:225066882
https://api.semanticscholar.org/CorpusID:225066882
https://openreview.net/forum?id=tiLbFR4bJW
https://openreview.net/forum?id=tiLbFR4bJW
https://arxiv.org/abs/2310.15154
https://arxiv.org/abs/2310.15154
https://arxiv.org/abs/2308.10248
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 SUPERVISED FEATURE DICTIONARIES

Makelov et al. (2024) give two primary ways to derive supervised feature dictionaries at cross-
sections, MSE feature dictionaries and mean feature dictionaries. We use MSE feature dictionaries,
as they are recommended in the general case. They can be obtained using the following method:

Step 1: Define the Dataset and Model Components Let D = {pk}k∈N be the dataset of input
prompts. Let a(pk) ∈ Rd be the activation of a model component for prompt pk. Let {ai}i∈I be
the set of attributes that describe the task, where each attribute ai : D → Si is instantiated with a
specific value from Si for each prompt in the dataset.

Step 2: Center the Activations Compute the mean activation over the dataset:

ā =
1

N

N∑
k=1

a(pk).

Center the activations by subtracting the mean:

ã(pk) = a(pk)− ā.

Step 3: Encode the Attribute Values For each attribute ai and value v ∈ Si, define an indicator
function 1ai(pk)=v that equals 1 if the attribute ai of prompt pk equals v, and 0 otherwise.

Construct the attribute matrix C ∈ RN×m where m =
∑I

i=1 |Si|. Each column of C corresponds
to an indicator function 1ai(pk)=v for a particular ai and v.

Step 4: Solve the Least-Squares Problem The goal is to learn feature vectors uai=v ∈ Rd for
each attribute ai and value v by solving the following least-squares problem:

argmin
uai=v

1

N

N∑
k=1

∥∥∥∥∥ã(pk)−∑
i∈I

uai=ai(pk)

∥∥∥∥∥
2

2

In matrix form, the problem is:

min
U

1

N

∥∥∥Ã− CU
∥∥∥2
2

where:

• Ã ∈ RN×d is the matrix of centered activations.

• C ∈ RN×m is the attribute matrix.

• U ∈ Rm×d is the matrix of feature vectors, with rows uai=v .

Step 5: Solve the System The solution to this least-squares problem is given by:

U∗ =
(
CTC

)+
CT Ã

where
(
CTC

)+
is the Moore-Penrose pseudoinverse of CTC.

Step 6: Obtain the Final Feature Vectors Each row of U∗ corresponds to a feature vector uai=v

for a specific attribute ai and value v.

A.2 EVALUATION TESTS

In this section, we describe two of the evaluation tests proposed by Makelov et al. (2024) that we use
to show that the ground truth features obtained with our approach, can be used for SAE evaluations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Test 1: Sufficiency and Necessity This test evaluates whether the feature dictionary’s reconstruc-
tions are sufficient and necessary for the model to perform the task. For sufficiency, the test involves
replacing the activations of a cross-section group with their reconstructions from the SAE and the
supervised feature dictionary. Then the effect on the logit difference is measured, by calculating
the average logit difference across all clean runs Lc, all runs where the activations of the relevant
components are exchanged with their reconstruction Ls, and all runs where we patch in the mean
activations, as an in-distribution baseline of a reconstruction that does not capture any task-relevant
features Lm. A score of the sufficiency of the reconstructions can then be obtained as:

|Ls − Lm|
|Lc − Lm|

For necessity, the test involves assessing whether the features captured by the feature dictionary are
necessary for the model performance. To do this, instead of patching in reconstruction, we aim to
delete the relevant features from the components in our set by replacing each cross-section activation
a with ā+ (a− â). We obtain the average logit difference of the output logits of all clean runs Lc,
all runs where the relevant activations are replaced with the difference between the clean activations
and their reconstructions Ln, and the in-distribution baseline Lm. A score of the necessity of the
reconstructions can be obtained as:

1− |Ln − Lm|
|Lc − Lm|

This formulation directly captures how much of the original information is lost when the recon-
structed activations are removed, providing a measure of how necessary the dictionary features are
for the model’s task performance.

Test 2: Sparse Controllability This test evaluates the extent to which features in the learned dic-
tionary can be used to sparsely control the model’s behaviour by editing specific attributes of the
input prompts. Let task prompts ps and pt differ in exactly one attribute. Let a(ps) and a(pt) repre-
sent the activations of cross-sections of the task for each task prompt. Let â(ps) and â(pt) represent
the respective reconstructions of the activations using the feature dictionary (SAE or supervised).
We aim to determine whether modifying each activation a(ps) using the features used for the recon-
structions â(ps) and â(pt) across all relevant cross-sections can flip the prediction of the model to
what it would predict under the activations a(ps). Formally, the problem is expressed as:

min
R⊆S,A⊆T,|R∪A|≤k

∥∥∥∥∥a(ps)−∑
i∈R

αiui +
∑
i∈A

βiui − a(pt)

∥∥∥∥∥
2

2

,

where S and T are the sets of active features ui in the reconstructions â(ps) and â(pt) respectively,
and αi, βi > 0 are their coefficients. The problem of finding the optimal sparse edit for the SAE
features is NP-complete, as it can be reduced to the Subset Sum problem (Makelov et al., 2024).

The ground truth edit is replacing a(ps) with a(pt). Editing with the supervised feature dictionary
works by subtracting the feature uaj=sv from a(ps) and adding uaj=st , where aj is the attribute we
wish to edit and sv is the value it takes in ps and st is the value for the attribute in pt.

As already explained, finding the optimal edit for the SAE setting is NP-complete. Makelov et al.
(2024) use a greedy algorithm to approximate the optimization problem by exchanging a fixed num-
ber of features, such that the activation a(ps) gets closer to a(pt):

1. Obtain the features us
1, u

s
2, ...,u

s
m and their coefficients cs1, c

s
2, ..., c

s
m that we obtain from

the reconstruction of a(ps). Similarly obtain and ut
1, u

t
2, ...,u

t
m and the coefficients

ct1, c
t
2, ..., c

t
m for a(pt).

2. In the next step, we iterate over all pairs of features and apply the edit a′(ps) = a(ps) −
csi · us

i + ctj · ut
j and calculate the distance between a′(ps) and a(pt).

3. We select the edit that makes both activations most similar and repeat that procedure for
the specified number of edits.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 CROSS-SECTION GROUPS: SELECTION RESULTS

GPT-2 Small & IOI task

GPT-2 Small & induction task

Pythia 70M & induction task

Gemma-2-2B & induction task

Figure 4: Shown are the results of the selection procedure described in the Experiment section. The
plot on the left shows on the x-axis the subset size of the different cross-section groups. On the
y-axis it shows the change in logit difference, when mean-ablating the cross-sections of each subset.
The plot on the right shows which cross-section groups were filtered out (shown in red) because
their change in logit difference was below 60% of the average change in logit difference across all
cross-section groups.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.4 DIFFERENT FEATURE DISTRIBUTIONS

GPT-2 Small and the induction task with animal features

GPT-2 Small and the induction task with country features

GPT-2 Small and the induction task with number features

Figure 5: Results of Test 1 and Test 2 for the induction task, with different feature distributions (10
tokens of the according feature category each).

A.5 EVALUATION TASKS

IOI Task We set up the IOI task to be defined over the attributes indirect object (io), subject, and
order. As values for the io and subject attribute we choose a set of ten single-token names from
the IOI name distribution. As values for the order attribute we choose {abb, bab}. To initialize IOI
prompts, we use three IOI templates (slightly altered from Wang et al. (2023) to align the token
positions). The following two templates with the according io and subject orderings are used to
train the supervised feature dictionaries:

Then, {io} and {subject} had a long argument. {subject} gave a drink to

Then, {subject} and {io} had a long argument. {subject} gave a drink to

Then, {io} and {subject} went to the store. {subject} gave an apple to

Then, {subject} and {io} went to the store. {subject} gave an apple to

To run the evaluation tests, we use the following template:

Then, {io} and {subject} went to the cafe. {subject} gave the cake to

Then, {subject} and {io} went to the cafe. {subject} gave the cake to

Induction Task For the induction task we use the following algorithm to sample token patterns
for which the model can perform induction with low cross-entropy:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1 Induction Sequence Sampling

Require: Model M , Vocabulary V , threshold τ > 0
Ensure: Induction sequence s

1: CE←∞ ▷ Initialize cross-entropy to a large value
2: while CE > τ do
3: r ← sequence of n tokens from V
4: T ← m target tokens from V
5: CE← [] ▷ Initialize cross-entropy list
6: for all t ∈ T do
7: x← r + t+ r ▷ Create induction sequence
8: ℓ←M(x) ▷ Compute logits for sequence
9: CE += − log(softmax(ℓ)[t]) ▷ Add cross-entropy

10: end for
11: if mean(CE) ≤ τ then
12: return r
13: end if
14: end while

We set up the induction task with three attributes: ind1, ind2, and order. The attribute ind2 is
the output of the induction task, ind1 is the previous token for ind2 and used to define two separate
orderings that are captured with the attribute order. Therefore, the task consists of two token features
ind1 and ind2, for which a feature distribution can be freely defined, and a high level order attribute.
Note that this is different from the IOI order attribute, as the ordering for the induction task differs
significantly. Based on these attributes we define the following prompt templates for the induction
task:

{seq} {ind2},{ind1},{ind2},{ind1} {seq} {ind2},{ind1}, → {ind2}
{seq} {ind1},{ind1},{ind2},{ind2} {seq} {ind1},{ind1}, → {ind2}

Then we can sample two training sequences to instantiate {seq}, and one test sequence.

18

	Introduction
	Related Work
	Background
	Methodology
	Experiments
	Hyperparameters and Preprocessing
	SAGE on the IOI task
	SAGE on the induction task

	Conclusion and Future Work
	Appendix
	Supervised Feature Dictionaries
	Evaluation Tests
	Cross-Section groups: selection results
	Different Feature Distributions
	Evaluation Tasks

