
Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay
Mechanisms for Evolving Graph

Zhiqiang Wang 1 Jianghao Wen 1 Jianqing Liang 1

Abstract

Dynamic graph representation learning using
Spiking Neural Networks (SNNs) exploits the
temporal spiking behavior of neurons, offering ad-
vantages in capturing the temporal evolution and
sparsity of dynamic graphs. However, existing
SNN-based methods often fail to effectively cap-
ture the impact of latency in information propaga-
tion on node representations. To address this, we
propose Delay-DSGN, a dynamic spiking graph
neural network incorporating a learnable delay
mechanism. By leveraging synaptic plasticity, the
model dynamically adjusts connection weights
and propagation speeds, enhancing temporal cor-
relations and enabling historical data to influence
future representations. Specifically, we introduce
a Gaussian delay kernel into the neighborhood ag-
gregation process at each time step, adaptively de-
laying historical information to future time steps
and mitigating information forgetting. Experi-
ments on three large-scale dynamic graph datasets
demonstrate that Delay-DSGN outperforms eight
state-of-the-art methods, achieving the best results
in node classification tasks. We also theoretically
derive the constraint conditions between the Gaus-
sian kernel’s standard deviation and size, ensuring
stable training and preventing gradient explosion
and vanishing issues.

1. Introduction
Graph representation learning aims to map graph data,
including nodes, edges, or entire graphs, into a low-
dimensional vector spaces for downstream tasks such as

1 Key Laboratory of Computational Intelligence and Chinese
Information Processing of Ministry of Education, School of Com-
puter and Information Technology, Shanxi University, Taiyuan
030006, Shanxi, China. Correspondence to: Jianqing Liang
<liangjq@sxu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

node classification and link prediction. Real-world graphs,
however, are often dynamic, requiring dynamic graph rep-
resentation learning methods to account for the temporal
dependencies of nodes and edges in order to capture the
graph’s evolving nature and generate more accurate repre-
sentations. This ability is particularly important in dynamic
applications such as social network analysis and traffic flow
prediction.

In recent years, researchers have proposed various meth-
ods to address the dynamic nature of graphs. Random
walk-based methods such as CAWs (Wang et al., 2021) and
NeurTWs (Jin et al., 2022) capture contextual information
from dynamic graphs by sampling random walk sequences
of nodes, thereby enabling node encoding. Methods using
graph neural networks (GNNs) aggregate information from
neighboring nodes based on the graph topology, often incor-
porating different temporal modeling strategies to capture
dynamic graph evolution. For instance, approaches like
JODIE (Kumar et al., 2019), GAEN (Shi et al., 2021) and
CHNN (Yin et al., 2024a) use recurrent neural networks
(RNNs) (Cho et al., 2014) to model temporal dependencies
in graphs, while HTNE (Zuo et al., 2018), M2DNE (Lu
et al., 2019), and TREND (Wen & Fang, 2022) treat time
as a continuous variable, modeling event timings through
temporal point processes. However, these methods often
require extensive sequence extraction or large-scale mem-
ory units, leading to low modeling efficiency in large-scale
dynamic graphs.

As a class of low-power neural networks (Maass, 1997;
Schliebs & Kasabov, 2013; Pfeiffer & Pfeil, 2018), Spiking
Neural Networks (SNNs) utilize Poisson rate coding to con-
vert continuous node features into sparse binary representa-
tions, offering significant advantages in modeling efficiency
for large-scale graphs. Specifically, SNN neurons simplify
internal computation through linear integration, avoiding
complex nonlinear activations and matrix multiplications.
Additionally, SNNs can capture temporal evolution patterns
by accumulating and memorizing historical states, extend-
ing beyond spatial neighborhood-based information transfer.
Recent works, such as SpikeGCN, STFN, SpikeNet, and
Dy-SIGN (Zhu et al., 2022; Xu et al., 2021; Li et al., 2023;
Yin et al., 2024b), combine SNNs with GNNs, employing

1

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

graph convolution layers with SNN neurons to aggregate
neighborhood information and alleviate the computational
complexity associated with matrix multiplications and non-
linear activations in GNNs.

t1 t3

Delay representationNew edge Information forget

t4

t4

Figure 1. Illustration of information dynamics in a social network.
At time t1, two nodes establish a connection without any inter-
action, thus having no immediate impact on their representations
(depicted by unchanged colors). At time t3, the two nodes begin
exchanging information, leading to changes in their representations
(depicted by color updates). Finally, at time t4, additional nodes
participate in information exchange, where node representations
are influenced by both current interactions and decayed historical
information.

Despite progress in dynamic graph representation learning,
significant challenges remain in accurately modeling the
influence of historical information on current and future
node representations, particularly with respect to delay rep-
resentation and historical information forgetting. Existing
methods typically update node representations by aggregat-
ing current-time information, ignoring the possibility that
such information may impact node representations at later
time steps. This phenomenon, known as delay representa-
tion, can be illustrated by the following example in social
networks in Figure 1: at time point t1, a new edge is added
between nodes A and B, but the edge does not immediately
affect the node representations of A and B; instead, the im-
pact manifests at a later time step. This delay effect reflects
the inherent latency in real-world information propagation.
Moreover, as dynamic graphs evolve, node representations
are progressively updated, and earlier historical information
tends to be overshadowed or forgotten due to the influence
of new information. For example, over time, the represen-
tation of node A may be influenced by several neighboring
nodes, causing early neighbors’ information to be diluted or
lost, thereby erasing valuable historical context. Therefore,
effectively modeling delay representation and mitigating his-
torical information forgetting are key challenges in dynamic
graph representation learning.

Inspired by the synaptic plasticity of biological neurons
(Izhikevich, 2006; Bowers, 2017; Hammouamri et al., 2024),
we address the problems of delay representation and his-
torical information forgetting in dynamic graph representa-
tion learning by introducing a synaptic delay mechanism.
Synaptic delay refers to the time it takes for information to
propagate between neurons, which varies due to synaptic

heterogeneity. With this mechanism, changes in topology
do not immediately affect node representations but take ef-
fect after a certain delay. Meanwhile, the presence of this
delay allows historical information to influence node repre-
sentations at the current time step, effectively alleviating the
problem of information forgetting. Neurons can leverage
this heterogeneous delay mechanism to recognize complex
spatiotemporal spike patterns, thereby effectively capturing
the influence of historical information on current and future
node representations.

To this end, we propose Delay-DSGN, a dynamic spiking
graph neural network with a learnable delay mechanism.
Delay-DSGN integrates the synaptic delay mechanism into
SNNs, so that the aggregated node features are not instan-
taneously transmitted to the neurons. Instead, the model
adaptively learns appropriate delay times between neurons
through a Gaussian delay kernel, enabling delay representa-
tion of features. This effectively mitigating the forgetting of
historical information and generating more accurate node
representation. Our main contributions are as follows:

• We propose Delay-DSGN, a dynamic spiking graph
neural network with a learnable delay mechanism,
which dynamically adjusts connection weights and
spike propagation speeds to achieve more accurate
modeling of dynamic graph evolution.

• We theoretically derive the constraint conditions be-
tween the standard deviation and size of the Gaussian
delay kernel, ensuring that the Delay-DSGN model
avoids gradient explosion and vanishing problems dur-
ing training.

• Extensive experiments validate that Delay-DSGN out-
performs current state-of-the-art methods in node clas-
sification tasks across multiple dynamic graph datasets.

2. Related Work
2.1. Shallow Representation

Early dynamic graph representation learning focused on
shallow encoding methods like matrix/tensor decomposi-
tion and random walks, without leveraging the deep encod-
ing capabilities of graph topology. Matrix decomposition
methods, such as incremental SVD (Chen & Tong, 2015)
and error-bound restart (Zhang et al., 2018), perform joint
factorization of adjacency matrices over multiple time snap-
shots to obtain low-rank representations. Tensor decomposi-
tion introduces a time dimension into the adjacency matrix,
forming a tensor to capture temporal evolution. Common
approaches include CP and Tucker decomposition (Acar &
Yener, 2009). In contrast, random walk methods generate se-
quences of random walks from nodes (i.e., contextual infor-
mation) to learn representations, capturing higher-order de-

2

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

pendencies between nodes. For example, (De Winter et al.,
2018) and (Sandra & Jochen, 2019) employed node2vec
(Grover & Leskovec, 2016) and a variant of DeepWalk
(Perozzi et al., 2014) for random walks over each network
snapshot. Other related methods include DNE (Chen et al.,
2019), tNodeEmbed (Singer et al., 2019), and DynSEM (Yu
et al., 2017). CTDNE (Nguyen et al., 2018), incorporates
temporal factors directly into the sampling process, learning
embeddings with temporal walk sequences.

2.2. GNN-Based Representation

GNNs leverage graph topology to encode node represen-
tations, enhancing the learning of structural information.
By integrating RNNs, static GNNs are extended for dy-
namic process modeling. GC-LSTM (Chen et al., 2022)
and Dyngraph2Seq (Gao et al., 2019) combine GCN (Kipf
& Welling, 2017) with LSTM (Hochreiter & Schmidhu-
ber, 1997). TGN (Rossi et al., 2020) and JODIE (Kumar
et al., 2019) update node hidden states using RNNs units for
representation learning. EvolveGCN (Pareja et al., 2020)
adjusts GNNs weights over time using RNNs to capture
dynamic information in evolving networks. Additionally,
TGAT (Xu et al., 2020) introduces temporal encoding and
self-attention mechanisms to aggregate neighbor node fea-
tures across time, enhancing the understanding of topologi-
cal changes in dynamic graphs. DyRep (Trivedi et al., 2019),
based on temporal point processes, captures both graph-level
and node/edge-level temporal variations. TREND (Wen &
Fang, 2022) uses Hawkes processes to model the impact of
historical events on current ones, analyzing neighborhood
formation effects on nodes through Hawkes conditional in-
tensities.

2.3. SNN-based Representation

To address the high computational cost of dynamic graph
representation learning, researchers have explored applying
low-power SNNs to graph data. STFN (Xu et al., 2021)
and SpikingGCN (Zhu et al., 2022) combine GCN with
SNNs, where GCN aggregates neighborhood information,
and SNNs encode node features as spike signals, simulating
time steps. SpikeGCL (Li et al., 2024) links graph con-
trastive learning with spike. These methods achieve promis-
ing results on static graphs. Additionally, SpikeE (Dold &
Garrido, 2021), R-GCN (Chian et al., 2021), and GRSNN
(Xiao et al., 2024) use spike for knowledge graphs, repre-
senting relationships as spike time differences. Recent work
has extended SNNs to dynamic graphs, such as SpikeNet
(Li et al., 2023) and Dy-SIGN (Yin et al., 2024b). These
approaches leverage the dynamic characteristics of SNNs,
where each graph snapshot corresponds to a time step in the
SNN, capturing the temporal evolution of graphs. Dy-SIGN
extends the concept of implicit fixed-point equilibrium to
graph learning (Gu et al., 2020), addressing evaluation and

training issues in recurrent GNNs, further reducing memory
consumption.

3. Problem Definition
Given a sequence of dynamic graph snapshots
{G1, G2, . . . , GT }, where T represents the total number of
time steps in the dynamic graph, each snapshot is defined
as Gt = {V t, Et, Xt}, where V t and Et are the sets of
nodes and edges in snapshot Gt, respectively, containing all
nodes and edges that have appeared in {G1, . . . , Gt}. The
topology of the graph Gt is represented by the adjacency
matrix At ∈ RN×N , where N is the number of nodes.
Additionally, Xt ∈ RN×d represents the node features at
time step t, where d is the feature dimension of each node.

Our goal is to learn a parameterized model Φ(·; θ) that maps
node features xt at each time step to a fixed-dimensional
embedding Rd (d ≪ input feature dimension), capturing
dynamic node evolution for tasks like temporal node classi-
fication.

4. Delay-DGSN
This section introduces the proposed Delay-DGSN in detail,
as shown in Figure 2. We will introduce the method from
the following three aspects: dynamic graph sampling and
feature encoding, delay convolution and temporal modeling,
and temporal feature aggregation and model optimization.

4.1. Dynamic Graph Sampling and Feature Encoding

In dynamic graph modeling based on SNNs, graph sampling
and node spike feature encoding are fundamental compo-
nents, also integral to Delay-DSGN. To clarify the delay
mechanism in Delay-DSGN, this section briefly introduces
these components. For details, see (Li et al., 2023).

For the graph sampling, the dynamic graph is divided
into snapshots over fixed time intervals, with each snap-
shot corresponding to a time step t. At each time step
t, the graph sampler performs neighbor sampling Gt and
∆G = Gt −Gt−1. For each target node v, T sets of neigh-
bor nodes {N1, N2, . . . , N t} are sampled on each graph
snapshot. This division method helps capture both global
structural information and fine-grained temporal node infor-
mation. After neighbor sampling, the feature aggregation for
the sampled neighbor set N t

v is performed through a graph
convolution layer, generating the hidden representation ht

v

of node v at time step t:

ht
v = ht

vWv ⊕ AGG(ht
uWu, u ∈ N t

v), (1)

where, when t = 0, the initial hidden representation is the
node feature xv; Wv and Wu are learnable weight matrices;
the aggregation function AGG is average aggregation; ⊕

3

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

Integrate
Leaky

Neighborhood Sample

. .

0

1
..

..
1

1
0

0

neuron1

neuron2

. . .

. . .

FC (Temporal pooling)

ˆ(,)Loss y y

neuron1

Prediction

Delay kernel

neuron2

Graph Snapshot Sequence

Aggregation

LIF neuron

GNN_1 Delay SNN SNN Classification

Aggregation

LIF neuron Aggregation

. .

C
onv1

GNN_2

Delay=1

Figure 2. An overview of the Delay-DSGN. The dynamic graph is divided into fixed-interval snapshots. For each snapshot, second-order
neighbors are sampled, and GNN aggregates neighbor information, while SNN encodes the information into spike representations. In the
Delay-SNN layer, the model adaptively adjusts the center of the Gaussian delay kernel to capture varying temporal delay characteristics,
generating node-level delay representations. A multi-timescale fusion mechanism further integrates representations across different time
steps, ultimately producing the final embeddings for downstream tasks.

denotes vector addition.

For the node spike feature encoding, after generating the
hidden representations of nodes through neighbor aggrega-
tion, the LIF (Leaky Integrate-and-Fire) neuron mechanism
is utilized to convert the float-valued representation into
sparse spike representation stv. This process generates a
set of spike representations for the node over T time steps:
{s1v, s2v, . . . , sTv }. This spike encoding not only retains the
essential information of the node features but also reduces
computational complexity through sparsification.

4.2. Delay Convolution and Temporal Modeling

Delay convolution and temporal modeling are core to Delay-
DGSN, capturing temporal dependencies and historical in-
fluences on node representations through delay convolution
and the LIF neuron mechanism.

4.2.1. DELAY CONVOLUTION KERNEL

Inspired by temporal convolution in CNNs, Delay-DGSN
uses a delay convolution kernel of size Ks, with Ks − 1 as
the maximum delay step. To maintain the sequence length
after convolution, the node feature spike sequence s

(j,t)
v

(where j is a node feature) is zero-padded on the left by
Ks − 1 steps:

˜
s
(j,t)
v = [0, 0, . . . , 0, s(j,t)v], (2)

To implement temporal shifts, Delay-DGSN uses a Gaussian
kernel function to construct the delay convolution kernel

kij , defined as:

kij [n] = wij exp

(
−(n− (Ks − dij − 1))2

2σ2

)
, (3)

where dij ∈ [0,Ks − 1] and wij are the synaptic delay and
weight between neurons i and j; σ ∈ R∗ is the standard
deviation; and n ∈ [0, . . . ,Ks − 1] denotes the temporal
delay index of the kernel. The introduction of the Gaussian
kernel aims to smoothly model the delay effect at different
time steps. By learning dij , the model can dynamically
adjust the center of the Gaussian kernel, accurately captur-
ing information under different time delays. The learned
delays have a certain degree of interpretability, as detailed in
Appendix B. The synaptic weight wij further enhances the
model’s ability to adaptively adjust the importance of each
synapse, improving the model’s expressiveness and flexi-
bility. The delay convolution kernel kij is then convolved

with the padded spike sequence
˜

s
(j,t)
v to produce the delay

feature input:

I(j,t)v = kij ∗
˜

s
(j,t)
v , (4)

This delay representation preserves current spike informa-
tion while integrating historical spikes, with the delay convo-
lution kernel weighting contributions across time, enriching
the node representation with temporal dynamics.

4.2.2. TEMPORAL MODELING

The delay features obtained from Equation (4) are fed into
LIF neurons for dynamic membrane potential updates and

4

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

spike generation. The LIF neuron simulates the basic be-
havior of biological neurons, and its computation can be
expressed as:

Integrate: V (i,t)
v = βV (i,t−1)

v + (1− β)
∑
j

I(j,t)v , (5)

Fire: S(i,t)
v = Θ(V (i,t)

v − V
(i,t−1)
th), (6)

Rest: V (i,t)
v = V (i,t)

v − S(i,t)
v V

(i,t−1)
th , (7)

Update: V (i,t)
th = γS(i,t)

v + τth, V
(i,t−1)
th (8)

where V
(i,t)
v represents the membrane potential of neuron i

for node v at time step t, and β is the leakage constant con-
trolling the decay between the current input and historical
information. Θ denotes the step function, and V

(i,t−1)
th is

the threshold of neuron i at the previous time step. When
V

(i,t)
v − V

(i,t−1)
th > 0, the membrane potential exceeds

the threshold, triggering a spike, S(i,t)
v = 1; otherwise,

S
(i,t)
v = 0. We adopt a soft reset mechanism, which, com-

pared to hard reset, retains part of the voltage exceeding
the threshold, thereby preserving more information. The
neuron’s threshold is updated adaptively, as proposed in
SpikeNet, by adjusting the decay factors γ and τth.

By combining delay convolution with the LIF neuron mech-
anism, Delay-DGSN generates node representations rich in
temporal information. Delay convolution integrates spike
information across time steps using a Gaussian kernel, while
LIF neurons refine it through dynamic membrane updates.
The resulting node representation ztv incorporates both cur-
rent and historical information from the past Ks − 1 steps,
effectively modeling temporal dynamics. Learnable delay
parameters dij further allow adaptive adjustments, enabling
Delay-DGSN to handle complex temporal dependencies in
dynamic graphs with greater flexibility and expressiveness.

4.3. Temporal Feature Aggregation and Model
Optimization

The delay convolution primarily addresses the problem of
weighted aggregation of historical information within a sin-
gle time step. In dynamic graphs, topological changes (such
as the evolution of communities in social networks) often
span multiple time steps. Therefore, aggregating informa-
tion from only a single time step is insufficient to fully
capture these complex topological variations. By integrat-
ing node representations across different time steps into a
unified feature, it becomes possible to better model these
long-term dependencies and intricate topological evolutions.
In addition, this approach compensates for the information
loss caused by the spiking activation characteristics in SNNs.
Specifically, the model stacks the node representations ztv
across all time steps to form a feature matrix Zv ∈ Rd×T

that incorporates temporal dimension information. Then, a

trainable weight matrix Wp ∈ Rd×T is applied to perform
weighted pooling along the temporal dimension, enabling
weighted fusion of features from different time steps:

Zv ·Wp =

T∑
t=1

Zi,t ⊙Wi,t, (9)

where i ∈ [1, d] denotes the i-th feature, and Wi,t represents
the importance of feature i at different time steps. The final
result Zv · Wp ∈ Rd is obtained by performing element-
wise multiplication between Zv and Wp, followed by row-
wise summation. The aggregation process fuses temporal
information into a unified representation, which is fed into a
fully connected layer to generate node classification results.

During optimization, Delay-DGSN uses a temporal regu-
larization term to penalize discrepancies between feature
representations at different time steps, reducing noise from
insignificant temporal fluctuations. The regularization term
R is defined as:

R =

T∑
t=1

∥ztv − zt−1
v ∥2, (10)

where ztv and zt−1
v are the node representations at time

steps t and t− 1, respectively. This regularization enhances
robustness by smoothing consecutive node representations,
focusing on meaningful long-term trends over short-term
noise. Finally, Delay-DGSN is optimized with cross-entropy
loss as the objective function. The overall loss function is:

L = LCE + λR, (11)

where LCE is the cross-entropy loss and λ is the regulariza-
tion coefficient.

5. Theoretical Analysis
In the Delay-DGSN model, the Gaussian delay kernel is
used to capture the temporal dependencies between nodes.
To ensure that the model effectively controls the gradient
flow during training and avoids issues such as gradient ex-
plosion and vanishing gradients, the following theorem pro-
vides the necessary conditions for the standard deviation σ
and kernel size Ks of the Gaussian delay kernel.
Theorem 5.1 (Gradient Stability and Gaussian Delay Kernel
Condition). In the Delay-DGSN model, assume the loss
function L is differentiable with respect to the output ht

i of
feature i at time step t, and the model uses a Gaussian delay
kernel kij [n] with standard deviation σ and kernel size Ks.
The Gaussian delay kernel has the form:

kij [n] = exp

(
− (n− µij)

2

2σ2

)
, (12)

where µij = Ks − dij − 1, and dij is the learnable de-
lay parameter. Let Wmax = maxi,j |wij | and Kmax =

5

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

maxi
∑F

j=1 |wij |, where F is the total feature dimension. If
the Gaussian delay kernel’s standard deviation σ and kernel
size Ks satisfy the following condition:

σ ≥

√√√√ (Ks − 1)2

8 ln
(

Kmax

Wmax

) , (13)

then, during the backpropagation process, the gradient of
the spike sequence s

(t−n)
j with respect to the loss function

∂L

∂s
(t−n)
j

satisfies the following bound for any pair of features

i and j: ∣∣∣∣∣ ∂L

∂s
(t−n)
i

∣∣∣∣∣ ≤ C ·
F∑

j=1

∣∣∣∣∣ ∂L∂ht
j

∣∣∣∣∣ , (14)

where the constant C is given by:

C =

F∑
j=1

|wij | · exp
(
− (Ks − 1− n′ − µij)

2

2σ2

)
, (15)

Proof. The proof of this theorem involves deriving the gra-
dient bounds under the assumption of Gaussian delay kernel
behavior and utilizing the properties of temporal spike se-
quences in the Delay-DGSN model. Full details can be
found in the Appendix A.

Under the given conditions, this theorem ensures Delay-
DGSN effectively controls gradient propagation, preventing
explosion or vanishing. It also guides parameter selection
for the Gaussian delay kernel, enabling accurate temporal
modeling and stable training.

6. Experiments
6.1. Datasets

To evaluate the effectiveness of Delay-DSGN, we selected
three large-scale datasets, which are commonly used for
validating dynamic graph representation learning models.
These datasets are DBLP (Lu et al., 2019), Tmall (Lu et al.,
2019), and Patent (Hall et al., 2001), as listed in Table 1.

Table 1. The statistics of datasets.

DBLP Tmall Patent

Nodes 28,085 577,314 2,738,012
Edges 236,894 4,807,545 13,960,811

Time steps 27 186 25
Classes 10 5 6

The DBLP, from a computer science research database, rep-
resents authors as nodes, with edges indicating collabora-
tions, and papers classified into 10 categories. The Tmall,

based on Tmall sales records, is a bipartite user-product
graph with edges representing purchases, and the top five
product categories as labels. The Patent, from the U.S.
patent database, has nodes for patents, edges for citations,
and six main categories. For Tmall and Patent, time win-
dows of 10 and 2 generate 19 and 13 graph snapshots, re-
spectively. Table 1 summarizes the dataset statistics.

6.2. Evaluation Metrics

To comprehensively evaluate the classification performance
of the model, we use two commonly used metrics: F1-
macro and F1-micro. F1-macro calculates the average of
precision and recall across all classes, making it suitable for
imbalanced datasets. Its formula is:

F1macro =
1

n

n∑
i=1

2PiRi

Pi +Ri
, (16)

where Pi and Ri represent the precision and recall of class
i, and n is the total number of classes.

F1-micro, on the other hand, computes the overall precision
and recall across all classes, making it suitable for balanced
datasets. Its formula is:

F1micro =
2PmicroRmicro

Pmicro +Rmicro
, (17)

where Pmicro and Rmicro are the aggregated precision and
recall across all classes.

6.3. Experimental Setup

To demonstrate the superiority of the Delay-DSGN, we
compare it with 8 existing methods. These include static
graph-based methods DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover & Leskovec, 2016), dynamic graph meth-
ods based on point processes M2DNE (Lu et al., 2019) and
HTNE (Zuo et al., 2018), RNN-based methods EvolveGCN
(Pareja et al., 2020), attention-based methods TGAT (Xu
et al., 2020), and two spiking methods SpikeNet (Li et al.,
2023), Dy-SIGN (Yin et al., 2024b).

The experimental follows the same settings with (Li et al.,
2023). For each training ratio (i.e., 40%,60%, and 80%),
we compute the F1-macro and F1-micro scores. The hidden
dimension for all methods is set to 128, the batch size is
1024, and the total number of training epochs is 100.

6.4. Experimental Results

6.4.1. PERFORMANCE COMPARISON

Table 2 summarizes the classification results on the DBLP,
Tmall, and Patent across various training ratios. Delay-
DSGN achieves state-of-the-art performance in dynamic
graph representation learning, consistently outperforming

6

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

Table 2. Results of node classification tasks. The results are averages from five runs with different random seeds, with the best results
highlighted in bold. (Tr.ratio: training ratio, - denotes time-consuming.)

Metric Tr.ratio DeepWalk Node2Vec HTNE M2DNE EvolveGCN TGAT SpikeNet Dy-SIGN Delay-SGN

DBLP

Ma-F1
40% 67.08 66.07 67.68 69.02 67.22 71.18 70.88 70.94±0.1 72.32±0.4
60% 67.17 66.81 68.24 69.48 69.78 71.74 71.98 72.07±0.1 74.16±0.3
80% 67.12 66.93 68.36 69.75 71.20 72.15 74.65 74.67±0.5 76.54±0.4

Mi-F1
40% 66.53 66.80 68.53 69.23 69.12 71.10 71.98 71.90±0.1 72.56±0.2
60% 66.89 67.37 68.57 69.47 70.43 71.85 72.35 72.61±0.4 74.44±0.3
80% 66.38 67.31 68.79 69.71 71.32 73.12 74.86 74.96±0.2 76.87±0.5

Tmall

Ma-F1
40% 67.08 54.37 54.81 57.75 53.02 56.90 58.84 57.48±0.1 60.25±0.1
60% 67.17 54.55 54.89 57.99 54.99 57.61 61.13 60.94±0.2 62.56±0.3
80% 67.12 54.58 54.93 58.47 55.78 58.01 62.40 61.89±0.1 64.02±0.2

Mi-F1
40% 66.53 60.41 62.53 64.21 59.96 62.05 63.52 62.93±0.3 64.32±0.1
60% 66.89 60.56 62.59 64.38 61.19 62.92 64.84 64.10±0.3 66.20±0.2
80% 66.38 60.66 62.64 64.65 61.77 63.32 66.10 65.82±0.2 67.88±0.4

Patent

Ma-F1
40% 67.08 69.01 - - 79.67 81.51 83.53 83.57±0.3 83.72±0.1
60% 67.17 69.08 - - 79.76 81.56 83.85 83.77±0.2 84.01±0.1
80% 67.12 68.99 - - 80.13 81.57 83.90 83.91±0.2 84.20±0.1

Mi-F1
40% 66.53 68.14 - - 79.39 80.79 83.48 83.50±0.2 83.66±0.1
60% 66.89 68.20 - - 79.75 80.81 83.80 83.47±0.1 83.97±0.1
80% 66.38 68.10 - - 80.01 80.93 83.88 83.90±0.2 84.15±0.1

all baseline methods. For instance, on the DBLP, it achieves
an Mi-F1 score of 76.87% at an 80% training ratio, out-
performing the second-best method, Dy-SIGN, by 2.21%.
On the Tmall, Delay-DSGN achieves an Mi-F1 score of
67.88%, 4.56% higher than TGAT. On the large-scale Patent,
it delivers the best Ma-F1 score of 84.20%, showcasing its
scalability and robustness.

While dynamic methods like HTNE and M2DNE improve
upon static approaches by incorporating temporal informa-
tion, their high computational complexity limits their scala-
bility. As shown in Table 2, these methods fail to produce
results on the large Patent due to excessive training costs. In
contrast, Delay-DSGN leverages sparse binary representa-
tions and an efficient synaptic delay mechanism, enabling
it to model temporal dependencies accurately while main-
taining computational efficiency, making it well-suited for
large-scale, real-world dynamic graphs.

6.4.2. ABLATION STUDY

To further investigate the impact of the delay mechanism in
Delay-DSGN and evaluate the effectiveness of spike-delay
learning for dynamic graph representation, we designed
the following ablation experiments. We compared Delay-
DSGN with two baseline models: the fixed random delay
model and the no-delay model. The fixed random delay
model initializes the delay values randomly at the begin-
ning of training and keeps them constant throughout. The
no-delay model removes the delay module and adjusts the
hidden layer structure by increasing the number of neurons
to ensure that all models have the same parameter count and

start training from the same weight initialization. Each con-
dition was run five times, and the average result is reported.

The results in Figure 3 show that the Delay-DSGN model
with the delay module performs better across all datasets,
validating the importance of the delay mechanism in model-
ing long-term dependencies in dynamic graphs.

DBLP Tmall Patent
0

1

2

3

Lo
g 1

0(s
ec

/ep
oc

h)

Delay-SGN
SpikeNet
TGAT
Dy-SIGN
EvolveGCN

Figure 4. Comparison of training times for different methods on
the DBLP, Tmall, and Patent. The training durations are presented
in units of log10(seconds/epoch).

6.4.3. TIME EFFICIENCY

To validate the computational efficiency of SNN-based
methods, we compared the training time of Delay-DSGN
with other dynamic graph methods (Dy-SIGN, SpikeNet,
EvolveGCN, and TGAT). All experiments were run on a
Titan RTX GPU, and we compared the time cost per train-
ing epoch. As shown in Figure 4, the SNN-based methods
significantly reduce training time. By using sparse binary

7

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

40% 60% 80%
0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

M
ac

ro
-F

1

DBLP
Delay-SGN
Fix Delay
No Delay

40% 60% 80%
0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

M
ac

ro
-F

1

Tmall
Delay-SGN
Fix Delay
No Delay

40% 60% 80%
0.830

0.832

0.834

0.836

0.838

0.840

0.842

M
ac

ro
-F

1

Patent
Delay-SGN
Fix Delay
No Delay

40% 60% 80%
0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

M
icr

o-
F1

DBLP
Delay-SGN
Fix Delay
No Delay

40% 60% 80%
0.62

0.63

0.64

0.65

0.66

0.67

0.68

M
icr

o-
F1

Delay-SGN
Fix Delay
No Delay

40% 60% 80%
0.830

0.832

0.834

0.836

0.838

0.840

0.842

M
icr

o-
F1

Patent
Delay-SGN
Fix Delay
No Delay

Figure 3. Results of the delay mechanism ablation study. The six figures respectively show the classification performance of Delay-DSGN
compared to other delay mechanisms (fixed random delay, no delay) on the DBLP, Tmall, and Patent under different training set
proportions.

activation functions instead of continuous real-valued acti-
vations in traditional GNNs, SNNs effectively reduce com-
putational complexity. As a result, SNN-based methods
have a clear advantage in terms of computational efficiency.
Although Delay-DSGN introduces the delay module, which
increases the number of parameters, this has a negligible
impact on the overall training time. Compared to other SNN
methods such as SpikeNet and Dy-SIGN, Delay-DSGN
maintains comparable training times while achieving supe-
rior classification performance. These results demonstrate
that Delay-DSGN maintains the computational efficiency
of SNNs while providing significant performance improve-
ments.

6.4.4. PARAMETER SENSITIVITY ANALYSIS

This section explores the effect of the maximum delay time
dm and standard deviation σ on the performance of the
Delay-DSGN model. In the experiments, we set dm to {1,
3, 5, 7, 9} and σ to {0.25, 0.5, 0.75, 1, 2}, while keeping
other parameters fixed.

The results in Figure 6 show that when dm = 1, the model
performs similarly to the no-delay model, as the Gaussian
kernel has minimal influence. As dm increases, if σ is set
too small, the model overly focuses on the spike information
at delayed time steps, causing information loss. Conversely,
if σ is too large, the weights of the delay kernel become too
smooth, leading the model to assign almost equal impor-
tance to information across all time steps, losing its selective

1 3 5 7 9

dm

2
1

0.
75

0.
5

0.
25

72.05 71.06 72.05 71.93 71.46

71.91 72.56 72.40 72.15 72.61

72.04 72.70 72.38 72.43 72.85

72.10 72.43 71.99 72.70 72.83

71.88 71.62 71.24 70.18 70.84
71.0

71.5

72.0

72.5

73.0

(a) DBLP

1 3 5 7 9

dm

2
1

0.
75

0.
5

0.
25

63.53 63.57 62.59 62.96 62.73

63.61 63.94 63.86 63.84 64.07

63.57 63.82 64.06 64.07 64.15

63.59 63.64 64.20 63.75 64.32

63.32 63.55 63.06 62.79 63.39
62.5

63.0

63.5

64.0

64.5

(b) Tmall

Figure 5. Parameter experiment results on the DBLP and Tmall
under different settings of dm and σ. In the heatmap, the color bar
represents the performance score, with darker colors indicating
higher performance.

memory ability. Therefore, a moderate value of σ can retain
important time step information while considering contri-
butions from neighboring time steps. Larger dm values
increase the receptive field of the delay kernel, allowing
the model to better capture multi-step temporal dependen-
cies in dynamic graphs. Experimental results on the DBLP
and Tmall confirm that larger dm and moderate σ settings
significantly improve model performance.

7. Conclusion and Future Work

This paper proposes the Delay-DSGN, which introduces a
learnable delay mechanism inspired by biological synaptic

8

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

plasticity. This approach successfully enhances the temporal
correlation of information propagation between nodes and
preserves historical information, effectively overcoming the
challenges faced by existing dynamic graph representation
methods that fail to model information propagation delays.
The experimental results demonstrate that Delay-DSGN
outperforms eight state-of-the-art methods across multiple
large-scale dynamic graph datasets in node classification
tasks. More importantly, we provide theoretical conditions
for selecting the standard deviation and kernel size of the
Gaussian delay kernel, ensuring that the model avoids gra-
dient explosion and vanishing issues during training. Future
work will focus on further exploring the delay mechanism to
improve the model’s adaptability and performance on more
complex and diverse dynamic graph datasets.

Acknowledgement
This work is supported by the National Natural Sci-
ence Foundation of China (Nos. 62272285, 62376142,
U21A20473).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Acar, E. and Yener, B. Unsupervised multiway data analysis:

A literature survey. IEEE Transactions on Knowledge
and Data Engineering, 21(1):6–20, 2009.

Bowers, J. S. Parallel distributed processing theory in the
age of deep networks. Trends in Cognitive Sciences, 21
(12):950–961, 2017.

Chen, C. and Tong, H. Fast eigen-functions tracking on
dynamic graphs. In Proceedings of the 2015 SIAM In-
ternational Conference on Data Mining, pp. 559–567,
2015.

Chen, C., Tao, Y., and Lin, H. Dynamic network embed-
dings for network evolution analysis. arXiv preprint
arXiv:1906.09860, 2019.

Chen, J., Wang, X., and Xu, X. Gc-lstm: Graph convolu-
tion embedded lstm for dynamic network link prediction.
Applied Intelligence, 52(7):7513–7528, 2022.

Chian, V. C., Hildebrandt, M., Runkler, T., and Dold, D.
Learning through structure: towards deep neuromorphic
knowledge graph embeddings. In International Confer-
ence on Neuromorphic Computing, pp. 61–70, 2021.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing, pp. 1724–1734, 2014.

De Winter, S., Decuypere, T., Mitrović, S., Baesens, B., and
De Weerdt, J. Combining temporal aspects of dynamic
networks with node2vec for a more efficient dynamic link
prediction. In IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp.
1234–1241, 2018.

Dold, D. and Garrido, J. S. Spike: spike-based embeddings
for multi-relational graph data. In International Joint
Conference on Neural Networks, pp. 1–8, 2021.

Gao, Y., Wu, L., Homayoun, H., and Zhao, L. Dyn-
graph2seq: Dynamic-graph-to-sequence interpretable
learning for health stage prediction in online health fo-
rums. IEEE International Conference on Data Mining,
pp. 1042–1047, 2019.

Grover, A. and Leskovec, J. Node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864, 2016.

Gu, F., Chang, H., Zhu, W., Sojoudi, S., and El Ghaoui, L.
Implicit graph neural networks. In Advances in Neural
Information Processing Systems, volume 33, pp. 11984–
11995, 2020.

Hall, B. H., Jaffe, A. B., and Trajtenberg, M. The nber patent
citation data file: lessons, insights and methodological
tools. Technical report, National Bureau of Economic
Research, 2001.

Hammouamri, I., Khalfaoui-Hassani, I., and Masquelier, T.
Learning delays in spiking neural networks using dilated
convolutions with learnable spacings. In International
Conference on Learning Representations, 2024.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput, 9(8):1735–1780, 1997.

Izhikevich, E. M. Polychronization: Computation with
spikes. Neural Comput, 18(2):245–282, 2006.

Jin, M., Li, Y.-F., and Pan, S. Neural temporal walks:
Motif-aware representation learning on continuous-time
dynamic graphs. In Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 19874–19886, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations, 2017.

9

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic
embedding trajectory in temporal interaction networks.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1269–1278, 2019.

Li, J., Yu, Z., Zhu, Z., Chen, L., Yu, Q., Zheng, Z., Tian,
S., Wu, R., and Meng, C. Scaling up dynamic graph
representation learning via spiking neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 8588–8596, 2023.

Li, J., Zhang, H., Wu, R., Zhu, Z., Wang, B., Meng, C.,
Zheng, Z., and Chen, L. A graph is worth 1-bit spikes:
When graph contrastive learning meets spiking neural
networks. In International Conference on Learning Rep-
resentations, 2024.

Lu, Y., Wang, X., Shi, C., Yu, P. S., and Ye, Y. Temporal
network embedding with micro- and macro-dynamics.
In Proceedings of the 28th ACM International Confer-
ence on Information and Knowledge Management, pp.
469–478, 2019.

Maass, W. Networks of spiking neurons: the third genera-
tion of neural network models. Neural networks, 10(9):
1659–1671, 1997.

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K.,
Koh, E., and Kim, S. Continuous-time dynamic network
embeddings. In Proceedings of the ACM Web Conference,
pp. 969–976, 2018.

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T.,
Kanezashi, H., Kaler, T., Schardl, T., and Leiserson, C.
Evolvegcn: Evolving graph convolutional networks for
dynamic graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 5363–5370,
2020.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: On-
line learning of social representations. In Proceedings
of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710,
2014.

Pfeiffer, M. and Pfeil, T. Deep learning with spiking neu-
rons: Opportunities and challenges. Frontiers in Neuro-
science, 12:774, 2018.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Sajjad, H. P., Docherty, A., and Tyshetskiy, Y. Efficient
representation learning using random walks for dynamic
graphs. arXiv preprint arXiv:1901.01346, 2019.

Sandra, M. and Jochen, D. W. Dyn2vec: Exploiting dy-
namic behaviour using difference networks based node
embeddings for classification. In Proceedings of the In-
ternational Conference on Data Science, pp. 149–200,
2019.

Schliebs, S. and Kasabov, N. Evolving spiking neural net-
work—a survey. Evolving Systems, 4:87–98, 2013.

Shi, M., Huang, Y., Zhu, X., Tang, Y., Zhuang, Y., and
Liu, J. Gaen: Graph attention evolving networks. In
Proceedings of the 30th International Joint Conference
on Artificial Intelligence, pp. 1541–1547, 2021.

Singer, U., Guy, I., and Radinsky, K. Node embedding
over temporal graphs. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pp.
4605–4612, 2019.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. Dyrep:
Learning representations over dynamic graphs. In Inter-
national Conference on Learning Representations, 2019.

Wang, Y., Chang, Y.-Y., Liu, Y., Leskovec, J., and Li, P.
Inductive representation learning in temporal networks
via causal anonymous walks. In International Conference
on Learning Representations, 2021.

Wen, Z. and Fang, Y. Trend: Temporal event and node dy-
namics for graph representation learning. In Proceedings
of the ACM Web Conference, pp. 1159–1169, 2022.

Xiao, M., Zhu, Y., He, D., and Lin, Z. Temporal spiking
neural networks with synaptic delay for graph reasoning.
In International Conference on Machine Learning, pp.
54341–54362, 2024.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K.
Inductive representation learning on temporal graphs. In
International Conference on Learning Representations,
2020.

Xu, M., Wu, Y., Deng, L., Liu, F., Li, G., and Pei, J. Ex-
ploiting spiking dynamics with spatial-temporal feature
normalization in graph learning. In Proceedings of the
30th International Joint Conference on Artificial Intelli-
gence, pp. 3207–3213, 2021.

Yin, N., Feng, F., Luo, Z., Zhang, X., Wang, W., Luo, X.,
Chen, C., and Hua, X.-S. Dynamic hypergraph convolu-
tional network. In Proceedings of the IEEE 38th Interna-
tional Conference on Data Engineering, pp. 1621–1634,
2022.

Yin, N., Shen, L., Xiong, H., Gu, B., Chen, C., Hua, X.-S.,
Liu, S., and Luo, X. Messages are never propagated alone:
Collaborative hypergraph neural network for time-series
forecasting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(4):2333–2347, 2024a.

10

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

Yin, N., Wang, M., Chen, Z., De Masi, G., Xiong, H., and
Gu, B. Dynamic spiking graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pp. 16495–16503, 2024b.

Yu, W., Cheng, W., Aggarwal, C. C., Chen, H., and Wang,
W. Link prediction with spatial and temporal consistency
in dynamic networks. In Proceedings of the 26th Inter-
national Joint Conference on Artificial Intelligence, pp.
3343–3349, 2017.

Zhang, Z., Cui, P., Pei, J., Wang, X., and Zhu, W. Timers:
Error-bounded svd restart on dynamic networks. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, pp. 224–231, 2018.

Zhou, L., Yang, Y., Ren, X., Wu, F., and Zhuang, Y. Dy-
namic network embedding by modeling triadic closure
process. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 32, pp. 571–578, 2018.

Zhu, Z., Peng, J., Li, J., Chen, L., Yu, Q., and Luo, S.
Spiking graph convolutional networks. In Proceedings
of the 31th International Joint Conference on Artificial
Intelligence, pp. 2434–2440, 2022.

Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., and Wu, J. Em-
bedding temporal network via neighborhood formation.
In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 2857–2866, 2018.

11

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

A. Proof of Theorem 5.1
A.1. Notation

• L: Loss function.

• ht
j : Output of feature j at time step t.

• s
(t−n)
i : Spike firing sequence of feature i at time step t− n.

• kij [n]: Gaussian delay kernel value from feature i to j, with delay steps Ks − 1− n.

• wij : Synaptic weight from feature i to feature j.

• σ: Standard deviation of the Gaussian delay kernel, controlling the diffusion of delayed signals.

• Ks: Size of the Gaussian delay kernel, with Ks − 1 indicating the maximum delay steps.

• dij : Delay steps between features i and j, a learnable parameter in the model.

• Kmax: Maximum value of the sum of absolute synaptic weights for any feature i, i.e., Kmax = maxi
∑F

j=1 |wij |.

• Wmax: Maximum absolute synaptic weight, i.e., Wmax = max(i,j) |wij |.

• F : Total number of features.

• C: Upper bound constant for gradient propagation, defined as the sum of the product of synaptic weights and Gaussian
delay kernel values.

A.2. Proof Process

Step 1: Apply the Chain Rule to Expand the Gradient

By the chain rule, the gradient of the loss function L with respect to the spike firing sequence s
(t−n)
i is expressed as:

∂L

∂s
(t−n)
i

=
∑
j∈F

∂L

∂ht
j

·
∂ht

j

∂s
(t−n)
i

, (18)

where:

• ∂L
∂ht

j
is the gradient of the loss function with respect to the output of feature j at time step t.

•
∂ht

j

∂s
(t−n)
i

represents the impact of a spike fired by feature i at time step t− n on the output of feature j at time step t.

Step 2: Calculate ∂ht
j

∂s
(t−n′)
i

In the Delay-DSGN model, the output ht
j of feature j at time step t is defined as:

ht
j =

∑
i∈F

Ks−1∑
n=0

wij · kij [Ks − 1− n] · s(t−n)
i , (19)

Thus, for a specific n = n′, the impact of the spike fired by feature i at time step t− n′ on the output of feature j at time
step t is:

∂ht
j

∂s
(t−n′)
i

=
∑
j∈F

wij · kij [Ks − 1− n′], (20)

12

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

where the Gaussian delay kernel kij [n] is defined as:

kij [n] = exp

(
−(n− µij)

2

2σ2

)
, µij = Ks − dij − 1, (21)

Step 3: Bound the Gradient

Substituting the above results into the gradient expression, we get:

∣∣∣∣∣ ∂L

∂s
(t−n)
i

∣∣∣∣∣ =
∣∣∣∣∣∣

F∑
j=1

∂L

∂ht
j

·
F∑

j=1

wij · kij [Ks − 1− n′]

∣∣∣∣∣∣ , (22)

Using the triangle inequality and the properties of absolute values, we obtain:

∣∣∣∣∣ ∂L

∂s
(t−n)
i

∣∣∣∣∣ ≤
F∑

j=1

∣∣∣∣∣ ∂L∂ht
j

∣∣∣∣∣ ·
F∑

j=1

|wij | · kij [Ks − 1− n′], (23)

Define the constant C as:

C =

F∑
j=1

|wij | · kij [Ks − 1− n′] =

F∑
j=1

|wij | · exp
(
−(Ks − 1− n′ − µij)

2

2σ2

)
, (24)

Thus, the gradient is bounded by:

∣∣∣∣∣ ∂L

∂s
(t−n)
i

∣∣∣∣∣ ≤ C ·
F∑

j=1

∣∣∣∣∣ ∂L∂ht
j

∣∣∣∣∣ , (25)

Step 4: Ensure C is Bounded to Prevent Gradient Explosion and Vanishing

To prevent C from becoming too large or too small, and avoid gradient explosion or vanishing, we impose appropriate
constraints on the Gaussian delay kernel’s standard deviation σ and kernel size Ks.

Preventing Gradient Explosion:

Since Wmax = max(i,j) |wij | and Kmax = maxi
∑F

j=1 |wij |, and also
∑F

j=1 |wij | ≤ Kmax, we have:

C =

F∑
j=1

|wij | · exp
(
−(Ks − 1− n′ − µij)

2

2σ2

)
≤

F∑
j=1

|wij | ≤ Kmax, (26)

This guarantees that C will not exceed Kmax, preventing gradient explosion.

Preventing Gradient Vanishing:

To prevent C from being too small, we ensure that the value of the Gaussian delay kernel at the boundaries of the delay
range (i.e., n = 0 and n = Ks − 1) is above a threshold ϵ, i.e.,

exp

(
−(n− µij)

2

2σ2

)
≥ ϵ, (27)

Assuming the delay center µij is at the center of the kernel, i.e., µij =
Ks−1

2 , the maximum distance between n and µij is:

13

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

|n− µij | ≤
Ks − 1

2
, (28)

Thus, to ensure that the Gaussian delay kernel’s value does not fall below ϵ at the boundaries n = 0 and n = Ks − 1, we
require:

exp

(
−
(
Ks−1

2

)2
2σ2

)
≥ ϵ, (29)

Taking the natural logarithm of both sides:

−(Ks − 1)2

8σ2
≥ ln(ϵ), (30)

Solving for σ:

σ2 ≥ (Ks − 1)2

8(− ln(ϵ))
, (31)

Thus,

σ ≥

√
(Ks − 1)2

8(− ln(ϵ))
, (32)

To ensure that ϵ accounts for the influence of all feature dimensions, we set:

ϵ =
Kmax

Wmax
, (33)

Therefore:

σ ≥

√
(Ks − 1)2

8(− ln(ϵ))
=

√√√√ (Ks − 1)2

8 ln
(

Wmax

Kmax

) , (34)

This ensures that the standard deviation σ of the Gaussian delay kernel is sufficiently large to prevent the kernel values from
becoming too sharp, thus avoiding the gradient vanishing issue.

B. Interpretability of Delay
In our model, the delay parameters are initialized randomly following a normal distribution within a predefined range. This
initialization strategy ensures that the model begins with a diverse set of potential delay values, allowing it to explore various
temporal dependencies during training. For instance, when the maximum delay is constrained to 5 time units, the initial
delay values are sampled from a normal distribution defined over the interval [0, 5].

After training on the DBLP, we observe that the learned delay distribution slightly shifts to the right compared to the initial
distribution. This shift indicates that in academic settings, interactions and influences often take longer to materialize,
reflecting the typically slower pace at which scholarly collaborations develop and propagate through the network. In contrast,
when evaluating the model on the Tmall, the learned delay distribution exhibits a slight leftward skew. This behavior aligns
well with the nature of online consumer behavior, where users tend to respond quickly to items or promotions, resulting in
shorter interaction delays. The Patent exhibits larger delays, with a more uniform distribution toward the right, suggesting
that the impact of patents generally takes a longer time to diffuse and manifest. Despite sharing the same initialization

14

Delay-DSGN: A Dynamic Spiking Graph Neural Network with Delay Mechanisms for Evolving Graph

distribution, the model consistently learns dataset-specific delay values across multiple training runs, demonstrating its
ability to adapt to inherent temporal characteristics.

0 1 2 3 4 5
Value

0.0

0.2

0.4

0.6

0.8

De
ns

ity

DBLP Max-Delay = 5
Initialization Delay
Post-Training

(a) DBLP

0 1 2 3 4 5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Tmall Max-Delay = 5
Initialization Delay
Post-Training

(b) Tmall

0 1 2 3 4 5
Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Patent Max-Delay = 5
Initialization Delay
Post-Training

(c) Patent

Figure 6. The probability density histograms of the initial and trained models across three datasets.

15

