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Abstract

Recent emergence of high-throughput drug screening assays sparkled an intensive1

development of machine learning methods, including models for prediction of sen-2

sitivity of cancer cell lines to anti-cancer drugs, as well as methods for generation3

of potential drug candidates. However, the concept of generation of compounds4

with specific properties and simultaneous modeling of their efficacy against cancer5

cell lines has not been comprehensively explored. To address this need, we present6

VADEERS, a Variational Autoencoder-based Drug Efficacy Estimation Recom-7

mender System. The generation of compounds is performed by a novel variational8

autoencoder with a semi-supervised Gaussian Mixture Model (GMM) prior. The9

prior defines a clustering in the latent space, where the clusters are associated10

with specific drug properties. In addition, VADEERS is equipped with a cell line11

autoencoder and a sensitivity prediction network. The model combines data for12

SMILES string representations of anti-cancer drugs, their inhibition profiles against13

a panel of protein kinases, cell lines’ biological features and measurements of14

the sensitivity of the cell lines to the drugs. The evaluated variants of VADEERS15

achieve a high r = 0.87 Pearson correlation between true and predicted drug sensi-16

tivity estimates. We show that the learned latent representations and new generated17

data points accurately reflect the given clustering. In summary, VADEERS offers a18

comprehensive model of drugs’ and cell lines’ properties and relationships between19

them, as well as a guided generation of novel compounds.20

1 Introduction21

Kinase inhibitors are a class of anticancer drugs that target specific mutated kinases and disregulated22

biological processes in tumor cells [1]. As such, they constitute flagship examples of personal-23

ized cancer treatments [2, 3]. Their chemical structure is typically represented as strings termed24

SMILES [4]. In addition, the set of kinase inhibitors is deeply investigated experimentally. They are25

commonly characterized by their inhibition profiles, measuring their strength of inhibition of a panel26

of kinases [5, 6]. In addition, the sensitivity of cancer cell lines to kinase inhibitors was measured27

by large-scale experiments [7, 8, 9]. The molecular features of these cancer cell lines, such as gene28

mutations and gene expression were also profiled [7, 8, 10]. Despite their limitations, cancer cell lines29

commonly act as laboratory proxies for patients’ tumors and it is known that their molecular features30

are key determinants of their response to anticancer drugs [8, 11]. While a number of kinase inhibitor31

drugs is already successfully applied in the clinic, the mechanism of resistance to treatment and a32

large number of cancer mutations that could be additionally targeted to circumvent this resistance33

creates a pressing need for novel drug discovery [12, 13, 14]. Unfortunately, the current pre-clinical34

attempts of proposing novel compounds proves inefficient, as the drug candidates fail further stages35

of clinical trials, yielding the process of novel drug discovery a daunting, time and money consuming36

task [15, 16, 17].37
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Machine learning, in particular deep generative models, transform the field of molecule discovery,38

providing promising drug candidates with with desired chemical properties [18, 19, 20, 21, 22, 23, 24].39

Key problems. This work addresses several important research problems.40

• Existing generative molecule models are not directly applicable to kinase inhibitors. They41

require large amounts of compounds for training, while the number of known kinase inhibitors is42

scarce. Moreover, they do not account for the molecular features of the drugs and of the tumors that43

the drugs are supposed to act on. Drug sensitivity is a function of both compound’s and tumor’s44

features, and it is the relationship between these two feature sets that determines the treatment45

outcome.46

• Existing machine learning models for drug sensitivity prediction are not generative. Combin-47

ing the functionalities of prediction and generation in a single model has the potential to mutually48

strengthen the performance of the model in both tasks, while regularizing the model and preventing49

overfitting to a single task.50

• The data available for the drugs and the cell lines pose a difficult integration problem with51

missing data: for some drugs, only the sensitivity of the cell lines to these drugs was measured52

and not their inhibition profiles, and vice versa. Finally, there exist compounds for which only the53

SMILES strings are known.54

Proposed solutions. In this work, we propose a novel generative framework for simultaneous55

kinase inhibitor discovery and sensitivity prediction. The framework restricts the vast space of56

potential generative model hypotheses by accounting for a large variety of experimental data (Fig.57

1a). Specifically, we cluster the drugs by their inhibitory profiles, and provide the clustering of the58

drugs together with the drugs’ SMILES representations, cell line molecular features, the inhibitory59

profiles and the sensitivity values as input to the model for training. Due to the fact that for some60

drugs the inhibition profiles are not available, the clustering provides only partial cluster labels for the61

drugs, posing a semi-supervised clustering problem. The generative drug module of the framework62

is implemented using SS GMM VAE, a new semi-supervised variational autoencoder (VAE) model63

with a Gaussian mixture model (GMM) prior (Fig. 1b). SS GMM VAE infers representations of the64

drugs’ SMILES and enables generation of specific types of kinase inhibitors, guided by the clustering65

of their inhibitory profiles within the GMM prior. In addition, the framework includes also a cancer66

cell line module for identification of representations of cancer cell lines and a sensitivity prediction67

module that performs the prediction of the sensitivity of the cell lines to the drugs (Fig. 1c, d).68

On the most general level, the proposed framework can be thought of as an extension of a recom-69

mender system with side information [25, 26, 27, 28, 29] with a generative model. In our particular70

application, in the generative recommender system the objects correspond to drugs from the family71

of kinase inhibitors, users to cancer cell lines, while the scores correspond to the sensitivity of the72

cell lines to the drugs. Hence the name of the framework, i.e. Variational Autoencoder-based Drug73

Efficacy Estimation Recommender System (VADEERS).74

Key contributions. This work offers the following key novel contributions:75

• VADEERS, an integrative framework that combines i) generation of kinase inhibitor drugs with ii)76

finding their representations, iii) modeling of cancer cell lines and their representations, and iv)77

prediction of cancer cell line sensitivity to drugs (Fig. 1e).78

• SS GMM VAE, which is trainable with partial cluster labels. We introduce a novel formulation of79

the prior, which, in contrast to previous GMM VAEs, enables semi-supervised cluster inference80

without an additional inference model. Thanks to SS GMM VAE, VADEERS is able to generate81

novel drugs having specific types of inhibitory profiles and readily predict their their sensitivity82

profile on cancer cell lines.83

2 Results84

We evaluated three versions of the proposed model, differing by the way the drug module was85

implemented: i) a classical VAE with the standard normal prior ("Vanilla VAE"), ii), the SS GMM86

VAE, however, only weights πk’s and components’ means µk’s were the trainable parameters of the87

GMM prior, while components’ covariance matrices Σk’s were fixed as identity matrices, iii) the SS88
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Figure 1: Framework’s overview. (a) Data types used for training. (b) Drug module. (c) Cancer cell line module.
(d) Sensitivity prediction module. Sensitivity prediction module takes concatenation of drug module’s encoder
output, i.e. mean vector, and cancer cell line module’s latent vector as input. (e) Key framework’s functionalities.

Table 1: IC50 and IP prediction performance for VADEERS with different versions of the drug module (top
three rows), and two other models as reported in the corresponding works (bottom two rows). The models of Liu
et al. and Koras et al. lack the generative ability and do not perform inference of inhibition profiles, hence the
lack of corresponding metrics.

Model IC50 RMSE IC50 Pearson IP RMSE

VADEERS w. Vanilla VAE 1.33± 0.022 0.87± 0.006 1.13± 0.109
VADEERS w. SS GMM VAE constrained 1.33± 0.023 0.87± 0.006 1.09± 0.062
VADEERS w. SS GMM VAE unconstrained 1.34± 0.012 0.87± 0.004 1.04± 0.030
Liu et al. [30] − 0.89 −
Koras et al. [31] − 0.82 −

GMM VAE, in its least constrained version, where all parameters of the GMM, including Σk’s, were89

trainable ("SS GMM VAE unconstrained").90
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Figure 2: True and generated inhibition profiles visualized in 2D. (a) The true IPs for the 117 available drugs.
(b) 900 IPs generated from the Vanilla VAE. (c) IPs generated from the SS GMM VAE constrained model. 300
samples are drawn. (d) IPs generated from the SS GMM VAE unconstrained model. Again, 300 samples are
drawn per-component. Colors correspond to guiding label or a corresponding GMM component.
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3 Conclusions91

In this work, we propose VADEERS, a multi-task framework for generation of novel drugs with spe-92

cific types of inhibition profiles and simultaneous drug sensitivity prediction. The framework exploits93

a novel SS GGM VAE model that enables semi-supervised clustering of the drugs’ representaions94

in the latent space. We showed that the framework achieves state-of-the-art sensitivity prediction95

performance, and preserves a given clustering structure of the drugs both in the latent space and in96

the space of the predicted inhibitory profiles.97

One of the limitations of the proposed model is its inability to generate data points with totally98

arbitrary features. Namely, the model allows to generate new data points with properties that strictly99

reflect the clustering observed in the training data. In principle, this could be bypassed by performing100

various operations on multiple generated data points, however, testing this hypothesis was not in the101

scope of this analysis. Another important limitation corresponds to the analyzed data; a different102

choice of data for drugs’ representations (e.g. representing SMILES strings as graphs) and guiding103

data might be more suitable for generating molecule candidates, which, at least in theory, could be104

synthesized. Both above aspects are directions of future work regarding this study.105

This work introduces several general concepts important for drug sensitivity modeling and compound106

generation. The proposed SS GMM VAE model is generic and not limited only to modeling107

compounds. The notion of optimizing latent space with guiding labels can potentially be beneficial108

and improve the performance of generative models also in other applications. Moreover, the proposed109

model offers additional functionality not exploited in this study. For example, setting the number of110

Gaussian components K greater than number of unique labels G might lead to identification of novel111

subgroups of samples, not limited to the original choice of guiding labels. In summary, VADEERS112

opens new avenues in integrative modeling of cancer data and generation of anticancer compounds.113
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