
Online Estimation via Offline Estimation:
An Information-Theoretic Framework

Dylan J. Foster
dylanfoster@microsoft.com

Yanjun Han
yanjunhan@nyu.edu

Jian Qian
jianqian@mit.edu

Alexander Rakhlin
rakhlin@mit.edu

Abstract
The classical theory of statistical estimation aims to estimate a parameter of interest
under data generated from a fixed design (“offline estimation”), while the contempo-
rary theory of online learning provides algorithms for estimation under adaptively
chosen covariates (“online estimation”). Motivated by connections between esti-
mation and interactive decision making, we ask: is it possible to convert offline
estimation algorithms into online estimation algorithms in a black-box fashion? We
investigate this question from an information-theoretic perspective by introducing a
new framework, Oracle-Efficient Online Estimation (OEOE), where the learner can
only interact with the data stream indirectly through a sequence of offline estimators
produced by a black-box algorithm operating on the stream. Our main results settle
the statistical and computational complexity of online estimation in this framework.

1. Statistical complexity. We show that information-theoretically, there exist
algorithms that achieve near-optimal online estimation error via black-box
offline estimation oracles, and give a nearly-tight characterization for minimax
rates in the OEOE framework.

2. Computational complexity. We show that the guarantees above cannot
be achieved in a computationally efficient fashion in general, but give a
refined characterization for the special case of conditional density estimation:
computationally efficient online estimation via black-box offline estimation
is possible whenever it is possible via unrestricted algorithms.

Finally, we apply our results to give offline oracle-efficient algorithms for
interactive decision making.

1 Introduction
Consider a general framework for statistical estimation specified by a tuple (X ,Y,Z,K,F), which
we will show encompasses classification, regression, and conditional density estimation. The learner
is given a parameter space F (typically a function class), where each parameter f ∈ F is a map
from the space of covariates X to the space of values Z . For an integer T ≥ 1, the learner is
given a dataset (x1, y1), . . . , (xT , yT ), where x1, . . . , xT are covariates and y1, . . . , yT are outcomes
generated via yt ∼ K(· | f⋆(xt)), where f⋆ ∈ F is an unknown target parameter that the learner
wishes to estimate; here K is a probability kernel that assigns to each value z ∈ Z a distribution
K(· | z) on the space of outcomes Y . We adopt the shorthand K(z) = K(· | z) throughout.

The classical theory of statistical estimation typically assumes that the covariates x1, . . . , xT are an ar-
bitrary fixed design, and is concerned with estimating the target parameter f⋆ ∈ F well in-distribution
[64, 40, 62]. Formally, for a loss function D : Z×Z → R≥0 on the space of values Z , the goal of the
learner is to output an estimator f̂ based on (x1, y1), . . . , (xT , yT ) such that the in-distribution error

EstOff
D (T ) :=

∑T

t=1
D
(
f̂(xt), f⋆(xt)

)
(1)

is small; we refer to this as an offline estimation guarantee. Canonical examples include:

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



• Classification (i.e., distribution-free PAC learning [38, 63]), where Z = Y = {0, 1},
K(f⋆(x)) = 1f⋆(x),1 and D0/1

(
f̂(x), f⋆(x)

)
= 1{f̂(x) ̸= f⋆(x)} is the 0/1-loss.

• Regression with a well-specified model [62, 66], where Z = Y = R, K(f⋆(x)) = N (f⋆(x), σ2),
and Dsq

(
f̂(x), f⋆(x)

)
= (f̂(x)− f⋆(x))2 is the square loss.

• Conditional density estimation [12], where Y is an arbitrary alphabet, Z = ∆(Y),
K(f⋆(x)) = f⋆(x), and D2

H(·, ·) is squared Hellinger distance; see Appendix C for details.

In parallel to statistical estimation, the contemporary theory of online learning [17, 49] provides
estimation error algorithms that support adaptively chosen sequences of covariates, a meaningful
form of out-of-distribution guarantee. Here, the examples (xt, yt) arrive one at a time. For each step
t ∈ [T ], the learner produces an estimator f̂ t : X → Z based on the data (x1, y1), . . . , (xt−1, yt−1)
observed so far. The covariate xt is then chosen in an arbitrary fashion, and the outcome is generated
via yt ∼ K(f⋆(xt)) and revealed to the learner. The quality of the estimators is measured via2

EstOn
D (T ) :=

∑T

t=1
D
(
f̂ t(xt), f⋆(xt)

)
. (2)

We refer to this as an online estimation guarantee; classical examples include online classification in
the mistake-bound model [41], online regression [51], and online conditional density estimation [11].
Online estimation provides a non-trivial out-of-distribution guarantee, as it requires (on average) that
the learner achieves non-trivial estimation performance on covariates xt that can be arbitrarily far
from the previous examples x1, . . . , xt−1. This property has many applications in algorithm design,
notably in the context of interactive decision making, where it has recently found extensive use for
problems including contextual bandits [25, 58, 24], reinforcement learning [27, 28], and imitation
learning [56, 55].

In this paper, we investigate the relative power of online and offline estimation through a new
information-theoretic perspective. It is well known that any algorithm for online estimation can
be used as-is to solve offline estimation through online-to-batch conversion, a standard technique
in learning theory and statistics [3, 9, 16, 61, 36, 8]. The converse is less apparent, as online
estimation requires non-trivial algorithm design techniques that go well beyond classical estimators
like least-squares or maximum likelihood [17]. In the case of regression with a finite class F ,
least squares achieves optimal offline estimation error EstOff

D (T ) ≤ O(log|F|),3 and while it is
possible to achieve a similar rate EstOn

D (T ) ≤ O(log|F|) for online estimation, this requires Vovk’s
aggregating algorithm or exponential weights [65]; directly applying least squares or other standard
offline estimators leads to vacuous guarantees. This leads us to ask: Is it possible to convert offline
estimation algorithms into online estimation algorithms in a black-box fashion?

Computationally speaking, this question has practical significance, since online estimation algorithms
are typically far less efficient than their offline counterparts (the classical exponential weights algo-
rithm maintains a separate weight for every f ∈ F , which is exponentially less memory-efficient than
empirical risk minimization). In fact, at first glance this seems like a purely computational question:
if the learner has access to an offline estimator, nothing is stopping them (information-theoretically)
from throwing the estimator away and using the data to run an online estimation algorithm.4 Yet, for
aforementioned applications in interactive decision making [25, 58, 24, 27, 28, 56, 55], estimation
algorithms—particularly online estimators—play a deeper information-theoretic role, and can be
viewed as compressing the data stream into a succinct, operational representation that directly
informs downstream decision making. With these applications in mind, the first contribution of
this paper is to introduce a new protocol, Oracle-Efficient Online Estimation, which provides an
information-theoretic abstraction of the role of online versus offline estimation, analogous to the
framework of information-based complexity in optimization [43, 60, 48, 2] and statistical query
complexity in theoretical computer science [13, 37, 21, 22].

1We use 1y to indicate the delta distribution that places probability mass 1 on y.
2For technical reasons, it is also common to consider randomized estimators where f̂ t ∼ µt, and measure

error by EstOn
D (T ) :=

∑T
t=1 Ef̂t∼µt

[
D
(
f̂ t(xt), f⋆(xt)

)]
.

3We consider unnormalized estimation error in Eq. (1), following the convention of online learning. For
normalized estimation error, we have 1

T
EstOff

D (T ) ≤ log|F|
T

, following the convention of statistical estimation.
4Related computational questions have already been studied, with negative results [14, 33].
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Protocol 1 Oracle-Efficient Online Estimation (OEOE)

1: for t = 1, . . . , T do
2: Learner receives estimator f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1) from offline est. oracle.

3: Based on x1, . . . , xt−1 and f̂ 1, . . . , f̂ t, learner produces an estimator f̄ t ∈ ZX , which may
be randomized according to a distribution µt.

4: Based on µt, nature selects covariate xt ∈ X and outcome yt ∼ K(f⋆(xt)), but does not
directly reveal them to the learner.

1.1 Our protocol: oracle-efficient online estimation
In the Oracle-Efficient Online Estimation (OEOE) framework, the aim is to perform online estima-
tion in the sense of Eq. (2), with the twist that the learner does not directly observe the outcomes
y1, . . . , yT ; rather, they interact with the environment indirectly through a sequence of offline estima-
tors produced by a black-box algorithm operating on the historical data. We formalize this black-box
algorithm as an estimation oracle AlgOff = {Algt

Off}
T
t=1 (e.g., Foster and Rakhlin [26]), which is a

mapping from histories to estimators that enjoy bounded offline estimation error.

Definition 1.1 (Offline estimation oracle). An offline estimation oracle AlgOff = {Algt

Off}
T
t=1

for a statistical estimation instance (X ,Y,Z,K,F) and loss D is a mapping Algt

Off : (X ×
Y)t−1 → (X → Z) such that for any sequence (x1, y1), . . . , (xT , yT ) with yt ∼ K(f⋆(xt)),
the sequence of estimators f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1) satisfies EstOff

D (t) :=∑t−1
s=1 D

(
f̂ t(xs), f⋆(xs)

)
≤ βOff for all t ∈ [T ] almost surely; we allow xt to be selected adaptively

based on y1, . . . , yt−1 and f̂ 1, . . . , f̂ t−1. We refer to βOff ≥ 0 as the offline estimation parameter.

This definition simply asserts that the estimators f̂ t produced by the offline estimation oracle satisfy
the guarantee in Eq. (1), even when the covariates are selected adaptively. Examples include
standard algorithms like least-squares for regression and maximum likelihood for conditional density
estimation, which guarantee βOff ≤ O(log|F|) with high probability whenever F is a finite class; see
Appendix C.1 for further background.5 Throughout the paper, we assume for simplicity that βOff > 0
is known in advance.

With this definition, we present the Oracle-Efficient Online Estimation protocol in Protocol 1. In the
protocol, a learner aims to perform online estimation, but at each step t, the only information available
is the covariates x1, . . . , xt−1 and the estimators f̂ 1, . . . , f̂ t generated by an offline estimation oracle
satisfying Definition 1.1; the outcomes y1, . . . , yT are not directly observed. Based on this infor-
mation, the learner produces a new estimator f̄ t such that the online estimation error EstOn

D (T ) =∑T
t=1 Ef̄∼µt

[
D
(
f̄(xt), f⋆(xt)

)]
in Eq. (2) is minimized.6 An algorithm is termed oracle-efficient

if it attains low online estimation error (2) in the OEOE framework. Note that while the learner
cannot directly observe the outcomes y1, . . . , yT , the covariates x1, . . . , xT are observed; we prove
that without this ability, it is impossible to achieve non-trivial estimation performance (Section 3) .

The OEOE framework abstracts away the property that oracle-efficient algorithms implicitly interact
with the environment through a compressed, potentially lossy channel (the estimation oracle AlgEst).
We believe this property merits deeper investigation: it is shared by essentially all algorithms from
recent research that reduces interactive decision making and reinforcement learning to estimation
oracles [25, 58, 27, 28, 56, 55], yet the relative power of offline oracles and analogously defined
online oracles is poorly understood in this context. By providing an information-theoretic abstraction
to study oracle-efficiency, the OEOE framework plays a role similar to information-based complexity
in optimization [43, 60, 48, 2] and statistical query complexity in theoretical computer science
[13, 37, 21, 22], both of which provide rich frameworks for designing and evaluating iterative
algorithms that interact with the environment in a structured fashion. We expect that this abstraction
will find broader use for more complex domains (e.g., decision making and active learning) as a
means to guide algorithm design and prove lower bounds against natural classes of algorithms.

5Most algorithms only ensure that the guarantee in Definition 1.1 holds with high probability. We assume
an almost sure bound to simplify exposition, but our results trivially extend. Likewise, our results immediately
extend to handle the case in which βOff is allowed to grow as a (sublinear) function of t.

6For technical reasons, we allow the learner to randomize the estimator f̄ t via a distribution µt.
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Let us first build some intuition. Familiar readers may recognize that the classical halving algorithm
for binary classification (e.g., Cesa-Bianchi and Lugosi [17]) can be viewed as oracle-efficient in
our framework. Specifically, for binary classification with Y = Z = {0, 1} and loss function
D0/1

(
f̂(x), f⋆(x)

)
= 1

{
f̂(x) ̸= f⋆(x)

}
, the halving algorithm can use any offline oracle with

βOff = 0 to achieve EstOn
D (T ) = O(log|F|), which is optimal. However, little is known for noisy

oracles with βOff > 0, or more general outcome spaces and loss functions (e.g., regression or density
estimation). In addition, the halving algorithm—while oracle-efficient—is computationally inefficient,
as it requires maintaining an explicit version space. This leads us to restate our central question
formally, in two parts:

1. Can we design oracle-efficient algorithms with near-optimal online estimation error (2), up to
polynomial factors (for general instances (X ,Y,Z,K,F) and βOff > 0)?

2. Can we do so in a computationally efficient fashion?

1.2 Contributions
For a general class of losses D, referred to as metric-like, we settle the statistical and computational
complexity of performing online estimation via black-box offline estimation oracles up to mild gaps,
answering questions (1) and (2) above.

Statistical complexity. Our first result concerning statistical complexity focuses on finite classes
F , where the optimal rates for offline and online estimation with standard losses D(·, ·) both scale
as Θ(log|F|). For this setting, we show (Theorem 3.1) that there exists an oracle-efficient online
estimation algorithm that achieves EstOn

D (T ) = O((βOff + 1)min{log|F|, |X |}) in the OEOE
framework, and that this is optimal (Theorem 3.2). This provides an affirmative answer to question (1),
and characterizes the statistical complexity of oracle-efficient online estimation with finite classes F .

In the general OEOE framework, the learner can use the entire history of offline estimators f̂ 1, . . . , f̂ t

and covariates x1, . . . , xt−1 to produce the online estimator f̄ t for step t. As a secondary result, we
study a restricted class of memoryless oracle-efficient algorithms that choose f̄ t only based on the
most recent offline estimator f̂ t, and show (Theorem 3.3) that it is impossible for such algorithms to
achieve low online estimation error.

Lastly, we give a more general approach to deriving oracle-efficient reductions (Theorem D.1) that is
based on delayed online learning [67, 42, 35, 47]. Using this result, we give a characterization of
learnability with infinite classes for binary classification in the OEOE framework (Theorem D.2),
proving that finite Littlestone dimension is necessary and sufficient for oracle-efficient learnability.

Computational complexity. On the computational side, we provide a negative answer to question
(2), showing (Theorem 4.1) that under standard conjectures in computational complexity, there do
not exist polynomial-time algorithms with non-trivial online estimation error in OEOE framework.
In spite of this negative result, we provide a fine-grained perspective for the statistical problem of
conditional density estimation, a general task that subsumes classification and regression and has
immediate applications to reinforcement learning and interactive decision making [27, 28]. Here
we show, perhaps surprisingly (Theorem 4.2), that online estimation in the OEOE framework is no
harder computationally than online estimation with arbitrary, unrestricted algorithms. This result is
salient in light of the applications we discuss below.

Implications for interactive decision making. As the preceding discussion has alluded to, our
interest in studying oracle-efficient online estimation is largely motivated by a connection to the prob-
lem of interactive decision making. Foster et al. [27, 28], Foster and Rakhlin [26] propose a general
framework for interactive decision making called Decision Making with Structured Observations
(DMSO), which subsumes contextual bandits, bandit problems with structured rewards, and reinforce-
ment learning with general function approximation. They show that for any decision making problem
in the DMSO framework, there exists an algorithm that, given access to an online estimation algorithm
(or, “oracle”) for conditional density estimation for an appropriate class F , it is possible to achieve
near-optimal regret. The results above critically make use of online estimation oracles, as they require
achieving low estimation error for adaptively chosen sequences of covariates, and it is natural to ask
whether similar guarantees can be achieved using only offline estimation oracles. However, positive re-
sults are only known for certain special cases [18–20, 58], with scant results for reinforcement learning
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in particular. In this context, our results have the following implication (Corollary E.1): Information-
theoretically, it is possible to achieve near-optimal regret for any interactive decision making problem
using an algorithm that accesses the data stream only through offline estimation oracles.

Additional results. Due to space constraints, the following results are deferred to the appendix:
(i) detailed examples for our statistical estimation framework (Appendix C); (ii) additional results
concerning statistical complexity of the OEOE framework (Appendix D); and (iii) detailed results
for our application to interactive decision making (Appendix E).

2 Preliminaries
Unless otherwise stated, our results assume the loss function D has metric-like structure.

Definition 2.1 (Metric-like loss). A loss function D : Z ×Z → [0, 1] is metric-like on the set Z if
it is symmetric and satisfies (i) D(z1, z2) ≥ 0 for any z1, z2 ∈ Z and D(z, z) = 0 for all z ∈ Z; and
(ii) D(z1, z2) ≤ CD · (D(z1, z3)+D(z3, z2)) for all z1, z2, z3 ∈ Z , for an absolute constant CD ≥ 1.

Throughout the paper, we focus on three canonical applications, outlined in the introduction: Classi-
fication with the indicator loss D0/1 (CD = 1), regression with the square loss Dsq (CD = 2), and
conditional density estimation with squared Hellinger distance D2

H (CD = 2). See Appendix C for
detailed examples and discussion. (omitted for space).

Finite versus infinite classes. The majority of our results focus on finite classes F . We believe
this captures the essential difficulty of the problem, but we expect that most of our sample complexity
results (which typically scale with log |F|) can be extended to infinite classes by combining our
techniques with appropriate notions of complexity for the function class (Littlestone dimension for
classification, sequential Rademacher complexity, and sequential covering numbers [50, 41, 52]).
For the canonical settings of classification, regression, and conditional density estimation, there exist
algorithms that achieve EstOff

D (T ) = O(log|F|) and EstOn
D (T ) = O(log|F|) for arbitrary finite

classes; see Appendix C for details.

We defer additional notation and related work to Appendices A and B

3 Statistical complexity of oracle-efficient online estimation
This section presents our main results concerning the statistical complexity of oracle-efficient online
estimation. In Section 3.1, we focus on finite classes F and present an oracle-efficient algorithm
that achieves near-optimal online estimation error (Theorem 3.1). We then provide a lower bound
that shows that our reduction is near optimal (Theorem 3.2). In Section 3.2, we turn our attention to
memoryless oracle-efficient algorithms, proving strong impossibility results (Theorem 3.3).

3.1 Minimax sample complexity for oracle-efficient algorithms
In this section, we present our main statistical conclusion for the OEOE framework: For any finite
classF , it is possible to transform any black-box offline estimation algorithm into an online estimation
algorithm with near-optimal error (up to a logarithmic factor that we show is unavoidable).

Algorithm and minimax upper bound. Our results are achieved through a new algorithm, Version
Space Averaging, described in Algorithm 1. At each round t, the algorithm uses estimators f̂ 1, . . . , f̂ t

produced by an offline estimation oracle AlgOff , along with the previous covariates x1, . . . , xt−1,
to construct a version space Ft ⊆ F in Eq. (3). Informally, Ft consists of all f ∈ F that are
consistent with the estimators f̂ 1, . . . , f̂ t in the sense that for all s ∈ [t], the offline estimation error
relative to f̂ s is small; as long as the offline estimation oracle AlgOff has offline estimation error βOff

(Definition 1.1), it follows immediately that the construction in Eq. (3) satisfies f⋆ ∈ Ft. Given the
version space Ft, Algorithm 1 predicts by uniformly sampling: f̄ t ∼ µt := Unif(Ft), then proceeds
to the next round.7 The main guarantee for Algorithm 1 is stated in Theorem 3.1.

7For realizable binary classification with D0/1

(
f̂(x), f⋆(x)

)
= 1(f̂(x) ̸= f⋆(x)) and βOff = 0, the version

space construction in Eq. (3) coincides with that of the halving algorithm (e.g., Cesa-Bianchi and Lugosi [17]),
and its estimation error bound (Theorem 3.1) matches the halving algorithm up to absolute constants. As such,
Algorithm 1 can be viewed as a noisy/error-tolerant generalization of the halving algorithm, which may find
broader use.
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Algorithm 1 Version Space Averaging

1: input: parameter space F , offline estimation oracle AlgOff with parameter βOff ≥ 0.
2: for t = 1, 2, . . . , T do
3: Receive f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1).

4: Calculate version space:

Ft =
{
f ∈ F

∣∣∣ ∀s ∈ [t],
∑

τ<s
D
(
f̂ s(xτ), f(xτ)

)
≤ βOff

}
. (3)

5: Predict f̄ t ∼ µt := Unif(Ft) and receive xt. // Nature draws yt ∼ K(f⋆(xt)) and passes to AlgOff.

Theorem 3.1 (Main upper bound for OEOE). For any instance (X ,Y,Z,K,F), any metric-like
loss D, and any offline estimator AlgOff with parameter βOff ≥ 0, Algorithm 1 is oracle-efficient
and achieves

EstOn
D (T ) ≤ O(CD · (βOff + 1) ·min {log |F|, |X | log T}).

Most notably, Algorithm 1 achieves EstOn
D (T ) ≤ O(CD · (βOff + 1) · log |F|); that is, up to a

O(log|F|) factor, the reduction achieves online estimation rates in the OEOE framework that are
no worse than the minimax rate for offline estimation. For classification, regression, and density
estimation with generic finite classes F (Appendix C), the best possible offline estimation error rate
is βOff = O(log|F|), so this shows that price of oracle-efficiency is at most quadratic.

Minimax lower bound. Next, we show that the upper bound in Theorem 3.1 is nearly tight, giving
a lower bound that matches up to logarithmic factors.

Theorem 3.2 (Main lower bound for OEOE). Consider the binary classification setting with
Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff > 0, there exists an instance
(X ,Y,Z,K,F) with log |F| = |X | = N such that for any oracle-efficient algorithm, there
is a sequence of covariates (x1, . . . , xT ) and offline oracle with parameter βOff such that
E
[
EstOn

D (T )
]
≥ Ω(min {(βOff + 1)N,T}).

This result states that for a generic finite class F and offline estimation oracle AlgOff , any oracle-
efficient online estimator must have

E
[
EstOn

D (T )
]
≥ Ω(min {(βOff + 1) log |F|, (βOff + 1)|X |, T})

in the worst case. This implies that the log|F| factor we pay for offline to online conversion is un-
avoidable, and that Theorem 3.1 is optimal up to a log T factor, giving a near-optimal characterization
for the minimax rate for online estimation in the OEOE framework. We conclude with two remarks:
(i) The (βOff +1) scaling (as opposed to say, βOff ) in Theorem 3.1 is unavoidable, as witnessed by the
optimality of the halving algorithm for noiseless binary classification [17]; (ii) if the space Z and the
loss D are convex, then we can change Algorithm 1 to output a deterministic prediction by using the
average of all parameters in Ft rather than the uniform distribution on Ft. See Lemma G.1 for details.

General reductions and infinite classes. Algorithm 1 is somewhat specialized to finite classes. In
Appendix D (deferred to the appendix for space), we provide a more general approach to designing
oracle-efficient algorithms based on delayed online learning (Theorem D.1), and use it to derive a
characterization of oracle-efficient learnability for classification with infinite classesF (Theorem D.2).

Full memory vs. finite memory. Algorithm 1 requires full memory of all past offline estimators.
The more general approach proposed in Appendix D can use N most recent offline estimators to
obtain an estimation error bound of O(CD(N + βOffT/N) +N · log |F|) (Corollary D.1) for any
integer N > 0.

3.2 Impossibility of memoryless oracle-efficient algorithms

In the general OEOE framework, the learner can use the entire history of estimators f̂ 1, . . . , f̂ t and
covariates x1, . . . , xt−1 to produce the online estimator f̄ t for step t; notably the Version Space Aver-
aging algorithm with which our upper bounds in the prequel are derived uses the entire history. In this
section, we show that for memoryless oracle-efficient algorithms (Definition 3.1) that select the esti-
mator f̄ t only as a function of the most recent offline estimator f̂ t, similar guarantees are impossible.
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Definition 3.1 (Memoryless algorithm). An online estimation algorithm is memoryless if there exists
a map F t(·) such that we can write µt = F t(f̂ t), where f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1)

and µt is the randomization distribution for the online estimator f̄ t.8

Memoryless algorithms are more practical than arbitrary algorithms, since they do not require
storing past estimators or covariates in memory. Our motivation for studying memoryless algorithms
arises from recent work in interactive decision making [25, 27], which shows that there exist
near-optimal algorithms for contextual bandits and reinforcement learning that use estimation oracles
in memoryless fashion. We show that unfortunately, it is not possible to convert offline estimators
into memoryless online estimation algorithms with non-trivial error.

Theorem 3.3 (Impossibility of memoryless algorithms for OEOE). Consider the binary classification
setting with Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff ≥ 0, there exists an
instance (X ,Y,Z,K,F) with |F| = |X | = N such that for any memoryless oracle-efficient algo-
rithm, there exists a sequence of covariates (x1, . . . , xT ) and a (potentially improper) offline oracle
AlgOff with parameter βOff such that E

[
EstOn

D (T )
]
≥ Ω(min {N(βOff + 1), T}). This conclusion

still holds when the online estimation algorithm remembers f̂ 1, . . . , f̂ t−1 but not x1, . . . , xt−1.

This result shows that in the worst case, any memoryless oracle-efficient algorithm must have

E
[
EstOn

D (T )
]
≥ Ω((βOff + 1)min {|X |, |F|}).

This precludes an online estimation error bound scaling with (βOff +1) log|F| as in Theorem 3.1, and
shows that the gap between general and memoryless oracle-efficient algorithms can be exponential.

Interestingly, the lower bound in Theorem 3.3 holds even if the online estimation algorithm is
allowed to remember f̂ 1, . . . , f̂ t−1, but not x1, . . . , xt−1. The intuition here is that without covariate
information, it is not possible to aggregate the predictions of previous estimators or otherwise use them
to reduce uncertainty. This provides post-hoc motivation for our decision to incorporate covariate
memory into the OEOE protocol in Section 1.1.

The proof of Theorem 3.3 uses that the estimators f̂ t produced by the offline estimation oracle may
be improper (i.e., f̂ t /∈ F). We defer a variant of the result that holds even if the estimation oracle is
proper under additional assumptions as well as the complementary upper bound to Appendix D.2

4 Computational complexity of oracle-efficient online estimation
In this section, we turn our attention to the computational complexity of oracle-efficient online
estimation in the OEOE framework. In Section 4.1, we show (Theorem 4.1) that in general, it is not
possible to transform black-box offline estimation algorithms into online estimation algorithms in a
computationally efficient fashion. Then, in Section 4.2, we provide a more fine-grained perspective,
showing (Theorem 4.2) that for conditional density estimation, online estimation in the OEOE
framework is no harder computationally than online estimation with unrestricted algorithms.

4.1 Computational hardness of oracle-efficient estimation
Our main upper bounds (Section 3.1) show that online estimation error EstOn

D (T ) ≤ O((βOff +
1) log |F|) can be achieved in an oracle-efficient fashion for any finite class F , but the algorithm
(Algorithm 1) is not computationally efficient. We now show that this is fundamental: There exist
classes F for which offline estimation can be performed in polynomial time, yet no oracle-efficient
algorithm running in polynomial-time algorithm can achieve sublinear online estimation error.

Computational model. To present our results, we must formalize a computational model for
oracle-efficient online estimation, and in particular, define a notion of input length for oracle-efficient
online algorithms. To do so, we restrict our attention to noiseless binary classification, and consider
a sequence of classification instances indexed by n ∈ N, with Z = Y = {0, 1}, Xn := {0, 1}n,
K(z) = 1z , and indicator loss D0/1(·, ·). We consider a sequence of classes Fn that have polynomial
description lengthi.e. log|Fn| is polynomial in n, so that f ∈ Fn can be described in poly(n) bits. In
particular, we assume that f ∈ Fn is represented as a Boolean circuit of size poly(n) so that f(x) can
be computed in poly(n) time for x ∈ Xn; we refer to such sequences as polynomially computable.

8There are many natural variants of this protocol. For example, algorithms could select µt based on f̂ t and
B bits of auxiliary memory. We hope future work will explore these variants.
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To allow for offline estimators that are improper, we assume that for all t and
all sequences (x1, y1), . . . , (xT , yT ), the output f̂ t : {0, 1}n → {0, 1} returned by
Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1) is a Boolean circuit of size poly(n); we refer to such oracles

as having poly(n)-output description length.9 Likewise, to allow the online estimation algorithm it-
self to be improper and randomized, we restrict to algorithms for which computing f̄ t(x) for f̄ t ∼ µt

can be implemented as f̄ t(x, r) for a random bit string r ∼ Unif({0, 1}B), where B = poly(n); we
refer to the online estimator as having poly(n)-output description length if f̄ t(·, ·) is itself a Boolean
circuit of size poly(n). We refer to the online estimation algorithm polynomial time if it runs in
time poly(n) for any sequence of inputs t, x1, . . . , xt−1, and f̂ 1, . . . , f̂ t−1, and has poly(n)-output
description length.10

Main lower bound. Our main computational lower bound is as follows.

Theorem 4.1 (Computational lower bound for OEOE). Assume the existence of one-way functions.11

There exists a sequence of polynomially computable classes (F1,F2, . . . ,Fn, . . . ), along with a
sequence of poly(n)-output description length offline oracles with βOff = 0 associated with each Fn,
such that for any fixed polynomials p, q : N→ N and all n ∈ N sufficiently large, any oracle-efficient
online estimation algorithm with runtime bounded by p(n) must have E[EstOn

D (T )] ≥ T/4 for all
1 ≤ T ≤ q(n). At the same time, there exists an inefficient algorithm that achieves E[EstOn

D (T )] ≤
O(
√
n) for all T ∈ N.

Informally, Theorem 4.1 shows that there exist a class F and offline estimation oracles AlgOff for
which no oracle-efficient online estimation algorithm that runs in time

poly(len(X ), len(F),maxt len(f̂
t), T )

can achieve sublinear estimation error, where len(X ) and len(F) denote the number of bits required
to describe x ∈ X and f ∈ F , and len(f̂ t) denotes the size of the circuit required to compute f̂ t(x).
Yet, low online estimation error can be achieved by an inefficient algorithm, and there exist efficient
offline estimators with βOff = 0 as well. The result is essentially a corollary of Blum [14]; we refer
to Appendix H.1 for the detailed proof. We mention in passing that Hazan and Koren [33] also
give lower bounds against reducing online learning to offline oracles, but in a somewhat different
computational model; see Appendix B for detailed discussion.

Theorem 4.1 is slightly disappointing, since one of the main motivations for studying oracle-efficiency
is to leverage offline estimators as a computational primitive. Combined with our results in Section 3,
Theorem 4.1 shows that even though it is possible to be oracle-efficient information-theoretically, it
is not possible to achieve this computationally. Nonetheless, we are optimistic that our abstraction
can (i) aid in designing computationally efficient algorithms for learning settings beyond online
estimation, and (ii) continue to serve as a tool to formalize lower bounds against natural classes of
algorithms, as we have done here; see Section 5 for further discussion.

Remark 4.1. Theorem 4.1 relies on the fact that the offline estimator may be improper (i.e., f̂ t /∈ F ).
An interesting open problem is whether one can attain poly(log |Fn|) · o(T ) online estimation error
with runtime poly(log |Fn|) given a proper offline estimation oracle with parameter βOff = 0. ◁

4.2 Conditional density estimation: computationally efficient algorithms
In spite of the negative result in the prequel, which shows that efficient computation in the OEOE
framework is not possible in general, we can provide a more fine-grained perspective on the com-
putational complexity of oracle-efficient estimation for the problem conditional density estimation,
a general task which subsumes classification and regression, and has immediate applications to
reinforcement learning and interactive decision making [27, 28].

Conditional density estimation. Recall that conditional density estimation [71, 12] is the special
case of the online estimation framework in Section 1 in which X and Y are arbitrary, Z = ∆(Y),
and the kernel is K(z) = z; that is sampling y ∼ K(f⋆(x)) is equivalent to sampling y ∼ f⋆(x). For

9See, e.g., Arora and Barak [6], Definition 6.1
10The precise computational model for runtime under consideration (e.g., Turing machines or Boolean circuits)

does not change the nature of our results.
11Existence of one-way functions is a standard and widely believed complexity-theoretic assumptions, which

forms the basis of modern cryptography [30].
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the loss, we use squared Hellinger distance: D2
H

(
f(x), f⋆(x)

)
= 1

2

∫ (√
f(y | x)−

√
f⋆(y | x)

)2
;

with online estimation error given by EstOn
H (T ) =

∑T
t=1 D

2
H

(
f̂ t(xt), f⋆(xt)

)
.

Base algorithm. Our result is based on a reduction. We assume access to a base algorithm ACDE for
online estimation in the Conditional Density Estimation (CDE) framework, which is unrestricted in
the sense that it is not necessarily oracle-efficient. That is, ACDE can directly use the full data stream
(x1, y1), . . . , (xt−1, yt−1) at step t. For parameters RCDE(T ) and CF ≥ 1, we assume that for any
f⋆ ∈ F , the base algorithm ACDE ensures that for all δ ∈ (0, e−1), with probability at least 1− δ,

EstOn
H (T ) ≤ RCDE(T ) + CF · log(1/δ). (4)

We define the total runtime for ACDE across all rounds as Time(F , T ).

Main result. Our main result shows that any algorithm ACDE satisfying the guarantee above can be
transformed into an oracle-efficient algorithm with only polynomial blowup in runtime. For technical
reasons, we assume that V := e ∨ supf,f ′∈F,x∈X ,y∈Y

f(y|x)
f ′(y|x) is bounded; our sample complexity

bounds scale only logarithmically with respect to this parameter. In addition, we assume that all
f ∈ F and x ∈ X have O(1) description length, and that one can sample y ∼ f(x) in O(1) time.

Theorem 4.2. Let ACDE be an arbitrary (unrestricted) online estimation algorithm that satisfies
Eq. (4) and has runtime Time(F , T ). Then for any N ∈ N, there exists an oracle-efficient online
estimation algorithm that achieves estimation error

E
[
EstOn

H (T )
]
≤ Õ(CF log V · βOffT/N +N · (RCDE(T ) + CF log V ))

with runtime poly(Time(F , T ), log |F|, log |X |, T ), where βOff ≥ 0 is the offline estima-
tion parameter. The distributions µ1, . . . , µT produced by the algorithm have support
size poly(log |F|, log |X |, T ). As a special case, if the online estimation guarantee
for the base algorithm holds with RCDE(T ) ≤ C ′

F log T for some problem-dependent
constant C ′

F ≥ 1, then by choosing N appropriately, we achieve E
[
EstOn

H (T )
]
≤

Õ
(
(CF (CF + C ′

F )βOff)
1/2 log V · T 1/2 + (CF + C ′

F ) log V
)
.

Note that the estimation error bound in Theorem 4.2 is sublinear whenever the rate RCDE(T ) is. This
implies that for squared Hellinger distance, online estimation in the OEOE framework is no harder
computationally than online estimation with arbitrary, unrestricted algorithms.

The proof of Theorem 4.2 is algorithmic, and is based on several layers of reductions. The main
reason why the result is specialized to conditional density estimation is as follows: If we have an
estimator f̂ for which D2

H

(
f̂(x), f⋆(x)

)
is small for some x, we can simulate y ∼ f⋆(x) up to low

statistical error by sampling y ∼ f̂(x) instead, as f̂ and f⋆ are close in distribution. This allows us to
implement a scheme based on simulating outcomes and feeding them to the base algorithm.

5 Discussion
Our work introduces the Oracle-Efficient Online Estimation protocol as an information-theoretic
framework to study the relative power of online and offline estimators and gives a nearly complete
characterization of the statistical and computational complexity of learning in this framework. In
what follows, we discuss broader implications for our information-abstraction of oracle-efficiency.

Oracle-efficient learning as a general framework for analysis of algorithms. One of the most
important contributions of this work is to formalize oracle-efficient algorithms as mappings that act
upon a sequence of estimators but do not directly act on historical outcomes. While the computa-
tional lower bounds we provide for oracle-efficient learning are somewhat disappointing, we are
optimistic that—similar to statistical query complexity in TCS and information-based complexity
in optimization—our abstraction can (i) aid in designing computationally efficient algorithms for
learning settings beyond online estimation, and (ii) continue to serve as a tool to formalize lower
bounds against natural classes of algorithms, for estimation and beyond. That is, we envision oracle-
efficient learning as a more general framework to study oracle-based algorithms in any type of
interactive learning problem. We remark that one need not restrict to offline oracles; it is natural to
study oracle-efficient algorithms based on online estimation oracles or other types of oracles through
our information-theoretic abstraction as well. For concreteness, let us mention a couple of natural
settings where our information-theoretic abstraction can be applied.
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Oracle-efficient interactive decision making. For interactive decision making problems like bandits
and reinforcement learning (more broadly, the DMSO framework described in Appendix E.1), it is
natural to formalize oracle-effiicent algorithms as algorithms that do not directly observe rewards
(bandits) or trajectories (reinforcement learning), and instead must select their decision based on an
(online or offline) estimator (e.g., regression for bandits or conditional density estimation for RL). Fos-
ter and Rakhlin [25] and Foster et al. [27] et seq. provide algorithms with this property for contextual
bandits and RL, respectively, but the power of offline oracles in this context is not well understood.

Oracle-efficient active learning. For active learning, it is natural to consider algorithms that decide
whether to query the label for a point in an oracle-efficient fashion (e.g., Krishnamurthy et al. [39]).
For concreteness, consider pool-based active learning [32]. Suppose the learner is given a pool
P = {x1, ..., xn} of covariates and a parameter space F . The learner can repeatedly choose xt ∈ P
and call the offline oracle to obtain an estimator f̂ t such EstOff

D (t) :=
∑

i<t D
(
f̂ t(xi), f⋆(xi)

)
≤

βOff (in contrast to an unrestricted algorithm that observes yt = f⋆(xt)). The aim is to learn a
hypothesis with low classification error using the smallest number of queries possible. Can we design
oracle-efficient algorithms that do so with near-optimal label complexity?

5.1 Further Directions
We close with some additional directions for future research.

Refined notions of estimation oracles. This work considers generic offline estimation algorithms
that satisfy the statistical guarantee in Definition 1.1 but can otherwise be arbitrary. Understanding
the power of offline estimators that satisfy more refined (e.g., problem-dependent) guarantees is an
interesting direction for future research.

Open questions for proper versus improper learning. Our results leave some interesting gaps in
the power of proper versus improper oracles. First, the computational lower bounds in Section 4.1,
leave open the possibility of attaining poly(log |Mn|) · o(T ) online estimation error with runtime
poly(log |Mn|) given access to a proper offline estimation oracle with parameter βOff = 0. Second,
our results in Section 3.2 leave open the possibility of bypassing the Ω(|X |(βOff + 1)) lower bound
for memoryless algorithms under the assumption that the offline oracle is proper.
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Part I

Additional discussion and examples

A Additional notation
We denote R≥0 = [0,∞). For any a, b ∈ R, a ∧ b := min {a, b} and a ∨ b := max {a, b}. For any
integer N > 0, [N ] = {1, . . . , N}. For any set X , ∆(X ) is the space of all distributions on X . For
any integer T , the notation x1:T will be the shorthand notation for the sequence x1, . . . , xT . For any
real number x ∈ R, denote by ⌊x⌋ the largest integer that is smaller than or equal to x and by ⌈x⌉
the smallest integer that is greater than or equal to x. The indicator function is denoted by 1(·). We
define O(·), Ω(·), o(·), Θ(·), Õ(·), Ω̃(·), Θ̃(·) following standard non-asymptotic big-oh notation.
We use the binary relation x ≲ y to indicate that x ≤ O(y).

B Additional related work
In this section we discuss related work not already covered in detail.

Computational lower bounds for online learning. Beyond Blum [14], another work that considers
computational lower bounds for online learning is Hazan and Koren [33]. This work proves lower
bounds for online learning in a model where the learner has access to an ERM oracle that can
minimize the training loss for an arbitrary dataset (x1, y1), . . . , (xT , yT ). Their lower bound does not
fit in our computational model due to details around the way description length is formalized. In
particular, the main focus of [33] is to obtain a lower bound on the number of oracle calls any online
learning algorithm must make to an ERM oracle.

Similar to the setup for Theorem 4.1, Hazan and Koren [33] consider a sequence of classification
instances with Xn = {0, 1}n and classes Fn of the size of Ω(2

√
|Xn|), and show that any online

learning algorithm requires Ω(
√
|Xn|) oracle calls to achieve low regret for this class. However, the

estimators f ∈ Fn returned by the oracle in their construction have Ω(
√
|Xn|) description length

themselves, meaning that they do not satisfy the poly(n)-description length required by the model
described in Section 4.1 (in other words, the result is not meaningful as a lower bound on runtime,
because simply reading in the output of the offline oracle takes exponential time). For completeness,
we restate the example proposed by Hazan and Koren [33, Theorem 22] in our framework below.

Hard case from [33]. For any integer n ≥ 1, consider a binary classification problem with X2n =

{0, 1}2n, Z = Y = {0, 1}, D = D0/1 and K(z) = 1z . Let N := 22n, and let S be the collection
of all sets S = {s1, . . . , s2n} ⊂ {0, 1}2n where {0, 1}2n is also treated as the integer set of{
0, . . . , 22n − 1

}
in left-to-right order and si ∈ {2n(i− 1), . . . , 2ni− 1} for each i = 1, . . . , 2n.

We define a class F2n = {fS,τ : S ∈ S, τ ≤ 2n}, where

fS,τ (x) =

{
0 if x ∈ S and x ≥ sτ ,

1 otherwise.

For this class, we reduce back to the Theorem 22 of Hazan and Koren [33] which states that any
algorithm with runtime o(

√
N) has to suffer online estimation error at least t/2 for all 1 ≤ t ≤ 2n.

The issue with this example for our computation model is that |F2n| = Ω(2
√

|X2n|). Any sufficient
description for this parameter space in bit strings (or, e.g., boolean circuits) will scale with Ω(

√
|X2n|).

Thus, the description length required to return f̂ t is too large (already larger than the lower bound
obtained).

Online learning with memory constraints. A number of recent works focus on memory-regret
tradeoffs in online learning [59, 45, 44, 1, 68]. Here, the learner can observe the full data stream
(x1, y1), . . . , (xT , yT ), but is constrained to B bits of memory. This framework is incomparable to the
OEOE framework, but it would be interesting to explore whether there are deeper connections (e.g.,
any memoryless OEOE algorithm inherently has memory no larger than that of the offline oracle).
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Gaps between offline and online. A long line of work aims to characterize the optimal regret for
online learning, developing complexity measures (Littlestone dimension, sequential Rademacher
complexity) that parallel classical complexity measures like VC dimension and Rademacher com-
plexity for offline learning and estimation [10, 53, 54, 7]. It is well known that in general, the optimal
rates for online learning can be significantly worse than those for offline learning. Our work primarily
focuses on finite classes F , where there is no gap, but for infinite classes, any conversion from
offline to online estimation will inevitably lead to a loss in the estimation error rate that scales with
appropriate complexity measures for online learning (cf. Appendix D.1).

Other restricted computational models. Our information-theoretic formulation of oracle-
efficiency is inspired by statistical query complexity in theoretical computer science and information
complexity in optimization, both of which can be viewed as restricted computational models with
an information-theoretic flavor. The statistical query model is a framework in which the learner can
only access the environment through an oracle that outputs noise estimates (“statistical queries”) for
a target parameter of interest [13, 37, 21–23]. Information complexity in optimization is a model in
which algorithms can only access the parameter of interest through (potentially noisy) local queries
to gradients or other information [43, 60, 48, 2, 5].

C Examples of estimation problems and loss functions
In what follows, we give detailed background on three canonical examples of the general estimation
framework discussed in Section 1: Binary classification, square loss regression, and conditional
density estimation.

Classification [38, 63]. For binary classification, we take Z = Y = {0, 1} with the binary loss
D0/1(z1, z2) = 1(z1 ̸= z2) for z1, z2 ∈ Z and kernel K(z) = 1z , which is noiseless. The binary
loss is metric-like with CD = 1.

For offline estimation, observe that with covariates x1, . . . , xT and outcomes yt = f⋆(xt) for all
t ∈ {1, . . . , T}, any empirical risk minimizer f̂ that sets f̂(xt) = yt obtains

T∑
t=1

D0/1

(
f̂(xt), f⋆(xt)

)
= 0. (5)

For online estimation, the halving algorithm [17] achieves

EstOn
0/1(T ) =

T∑
t=1

D0/1

(
f̂ t(xt), f⋆(xt)

)
≤ log(|F|). (6)

We mention in passing that another natural classification setting we do not explore in detail in
this paper is noisy classification, where the setting is as above, except that we set Z = [0, 1],
K(f⋆(x)) = Ber(f⋆(x)), and take Dabs(z1, z2) = |z1 − z2| as the absolute loss for all z1, z2 ∈ Z .

Square loss regression [62, 66]. For real-valued regression, we take Z = Y = R with the square
loss Dsq(z1, z2) = (z1 − z2)

2 for z1, z2 ∈ Z and the kernel K(f⋆(x)) = N (f⋆(x), 1) or another
subGaussian distribution. Note that the square loss is a metric-like loss with CD = 2.

For offline estimation, with covariates x1, . . . , xT and outcomes yt ∼ f⋆(xt) + εt for all t ∈
{1, . . . , T}, the classical Empirical Risk Minimization (ERM) f̂ := argminf∈F

∑T
t=1(f(x

t)− yt)
2

gives

EstOff
sq (T ) =

T∑
t=1

Dsq

(
f̂(xt), f⋆(xt)

)
≤ log(|F|δ−1), (7)

with probability at least 1− δ (cf. Lemma C.1below).

For online estimation, the exponential weights algorithm [17], with decision space F and the loss at
each round chosen to be ℓt(f) = (f(xt)− yt)2, achieves

EstOn
sq (T ) =

T∑
t=1

Dsq

(
f̂ t(xt), f⋆(xt)

)
≤ log(|F|δ−1), (8)

with probability at least 1− δ (cf. Foster and Rakhlin [25] for a proof).

17



Conditional density estimation [12]. For conditional density estimation, we consider an arbitrary
outcome space Y and take Z = ∆(Y) with squared Hellinger distance D2

H given by12

D2
H

(
f̂(x), f⋆(x)

)
=

1

2

∫ (√
f̂(y | x)−

√
f⋆(y | x)

)2

dy. (9)

and K(z) = z for all z ∈ Z . Note that squared Hellinger distance is a metric-like loss with CD = 2.

For offline estimation, with covariates x1, . . . , xT and outcomes yt ∼ f⋆(xt) for all t ∈ {1, . . . , T},
the classical Maximum Likelihood Estimator (MLE) f̂ := argmaxf∈F

∑T
t=1 log f(y

t | xt) gives

EstOff
H (T ) =

T∑
t=1

D2
H

(
f̂(xt), f⋆(xt)

)
≤ log(|F|δ−1), (10)

with probability at least 1− δ (cf. Lemma C.2below).

For online estimation, the exponential weights algorithm [17], with decision space F and the loss at
each round chosen to be ℓt(f) = − log f(yt | xt), achieves

EstOn
H (T ) =

T∑
t=1

D2
H

(
f̂ t(xt), f⋆(xt)

)
≤ log(|F|δ−1), (11)

with probability at least 1− δ (cf. Foster et al. [27] for a proof).

C.1 Examples of offline oracles
For completeness, below we prove the offline estimation (fixed design) guarantees for square loss
empirical risk minimization and maximum likelihood estimation mentioned in the prequel.

Empirical risk minimization for square loss regression. For any square loss regression instance
(X ,Y,Z,K,F) defined as in Appendix C. The Empirical Risk Minimizer (ERM) estimator f̂ is
defined as

f̂ = argmin
f∈F

T∑
t=1

(f(xt)− yt)2.

We have the following bounds on the offline estimation error for the squared loss.

Lemma C.1. For any target parameter f⋆ ∈ F , with probability at least 1− δ, we have,

T∑
t=1

(
f̂(xt)− f⋆(xt)

)2
≤ 8 log(|F|/δ).

Proof of Lemma C.1. Observe that the ERM estimator satisfies
T∑

t=1

(f⋆(xt)− f̂(xt))2 =

T∑
t=1

(
(f̂(xt)− yt)2 − (f⋆(xt)− yt)2 + 2(f̂(xt)− f⋆(xt))(yt − f⋆(xt))

)
≤ 2

T∑
t=1

(f̂(xt)− f⋆(xt))εt, (12)

where the last inequality is by the definition of f̂ , and εt := yt − f⋆(xt) is a standard normal
distribution for all t ∈ [T ]. Then by the Gaussian tail bound, we have with probability at least 1− δ,

T∑
t=1

(f̂(xt)− f⋆(xt))εt ≤

√√√√2

T∑
t=1

(f̂(xt)− f⋆(xt))2 log(|F|/δ).

12More generally, if ν is a common dominating measure, then D2
H

(
P,Q

)
= 1

2

∫ (√
dP
dν

−
√

dQ
dν

)2

dν, where
dP
dν

and dQ
dν

are Radon-Nikodym derivatives. The notation in Eq. (9) reflects that this quantity is invariant under
the choice of ν.
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Plug the above inequality back into Eq. (12) and reorganize, we obtain the desired bound of

T∑
t=1

(f̂(xt)− f⋆(xt))2 ≤ 8 log(|F|/δ).

Maximum likelihood estimation for conditional density estimation. For any conditional density
estimation instance (X ,Y,Z,K,F) defined as in Appendix C. The Maximum Likelihood Estimator
(MLE) f̂ is defined as

f̂ = argmax
f∈F

T∑
t=1

log f(yt | xt).

We have the following bounds on the offline estimation error for squared Hellinger distance.

Lemma C.2. For any target parameter f⋆ ∈ F , with probability at least 1− δ, we have,

T∑
t=1

D2
H

(
f̂(xt), f⋆(xt)

)
≤ log(|F|/δ).

Proof of Lemma C.2. For any parameter f ∈ F , define

Zt = −
1

2
(log f⋆(yt | xt)− log f(yt | xt)).

Then for any f ∈ F , by Lemma A.4 of Foster et al. [27], with probability at least 1− δ/|F|, we have,

T∑
t=1

−1

2
(log f⋆(yt | xt)− log f(yt | xt)) ≤

T∑
t=1

log

(
E

[√
f(yt | xt)

f⋆(yt | xt)

])
+ log(|F|/δ).

We further have by the inequality of log(1 + x) ≤ x that

log

(
E

[√
f(yt | xt)

f⋆(yt | xt)

])
≤ E

[√
f(yt | xt)

f⋆(yt | xt)
− 1

]
.

Since yt ∼ f⋆(xt), we have by standard calculus and the definition of the squared Hellinger distance
that

E

[√
f(yt | xt)

f⋆(yt | xt)
− 1

]
= −D2

H(f
⋆(xt), f(xt)).

Altogether, we have obtained for any f ∈ F , with probability at least 1− δ/|F|
T∑

t=1

−1

2
(log f⋆(yt | xt)− log f(yt | xt)) ≤ −

T∑
t=1

D2
H(f

⋆(xt), f(xt)) + log(|F|/δ).

Thus, by union bound, the above inequality holds for all f ∈ F with probability at least 1− δ. Thus
the MLE f̂ satisfies

T∑
t=1

D2
H

(
f⋆(xt), f̂(xt)

)
≤

T∑
t=1

1

2
(log f⋆(yt | xt)− log f̂(yt | xt)) + log(|F|/δ)

≤ log(|F|/δ),

where the second inequality is by the defintion of MLE.
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Algorithm 2 Reduction from OEOE to Online Learning with Delayed Feedback

1: input: Offline estimation oracle AlgOff with parameter βOff ≥ 0, delay parameter N ∈ N,
delayed online learning algorithm ADOL for class F .

2: for t = 1, 2, . . . , T do
3: Receive f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1).

4: if t > N then
5: Let f̃ t−N := 1

N

t∑
i=t−N+1

f̂ i.

6: Let ℓt−N(f) := D
(
f̃ t−N(xt−N), f(xt−N)

)
and pass ℓt−N(·) to ADOL as the delayed feed-

back.
7: Let µt = At

DOL(ℓ
1, .., ℓt−N) be the delayed online learner’s prediction distribution.

8: Predict with f̄ t ∼ µt and receive xt.

Part II

Omitted results
D General reductions for oracle-efficient online estimation
The oracle-efficient online estimation algorithm in Section 3.1, Algorithm 1, is somewhat specialized
to finite classes. In this section, we provide a more general approach to designing oracle-efficient
algorithms based on delayed online learning, and use it to derive a characterization of oracle-efficient
learnability for classification with infinite classes F .

For the results in this section, we assume that Z and D are convex, which covers regression and
conditional density estimation; variants of our result for classification are given in Appendix G.3.

Online learning with delayed feedback. Before introducing our algorithm, we first introduce an
abstract delayed online learning framework [67, 42, 35, 47]. In our framework, the learner is given a
class F ⊆ ZX . Their goal is to choose a sequence of parameters f̄ 1, . . . , f̄T that minimizes regret
against the class F for an adversarially chosen sequence of loss functions ℓ1, . . . , ℓT , with the twist
being that the loss ℓt is not revealed immediately at step t, and instead becomes available at step
t+N for a delay parameter N ∈ N.

In more detail, the interaction between the learner and the environment proceeds as follows:

• For t = 1, . . . , T :

• The learner picks f̄ t ∼ µt ∈ ∆(ZX ).

• Learner incurs loss ℓt(f̄ t) and adversary reveals loss function ℓt−N : ZX → [0, 1] for round
t−N (if t < N + 1, nothing is revealed).

The goal of the learner is to minimize regret in the sense that

RDOL(T,N, γ) :=

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ · min

f∈F

T∑
t=1

ℓt(f)

is small, where γ ≥ 1 is a parameter. For γ = 1, this definition coincides with the standard notion
of regret in online learning (e.g., Cesa-Bianchi and Lugosi [17]), but allowing for γ > 1 will prove
useful for our technical results.

Algorithm and online estimation error bound. Algorithm 2 describes our reduction from oracle-
efficient online estimation to delayed online learning. In addition to an offline oracle AlgOff , the
algorithm takes as input a delay parameter N ∈ N and a delayed online learning algorithm ADOL for
the class F (Algorithm 2 does not explicitly take the class F as an argument, as the algorithm only
implicitly makes use of F through ADOL).

The basic premise behind Algorithm 2 is that for any sequence of consistent offline estimators, we can
average to improve the predictions. Consider a step t ∈ [T ]. Suppose f̂ 1, . . . , f̂T are produced by an
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offline oracle AlgOff with parameter βOff ≥ 0, where we augment the sequence by setting f̂T+s = f̂T

for all s ∈ N. Then we can use an argument based on convexity (cf. proof of Theorem D.1) to show
that for any N ∈ N, the averaged parameters

f̃ t :=
1

N

t+N∑
i=t+1

f̂ i (13)

satisfies
T∑

t=1

D
(
f̃ t(xt), f⋆(xt)

)
≤ N +

1

N

T−N∑
t=1

t+N∑
i=t+1

D
(
f̂ i(xt), f⋆(xt)

)

= N +
1

N

T∑
t=2

∑
i<t

D
(
f̂ t(xi), f⋆(xi)

)
≤ N + βOffT/N.

In particular, as we increase N , the quality of the predictions increases, and we achieve sublinear
estimation error as soon as N = ω(T ). Of course, the catch here is that f̃ t depends on the predictions
of future estimators, and cannot be computed at step t. However, f̃ t can be computed at step t+N+1,
with a delay of N . This leads us to appeal to delayed online learning. In particular, at each step
t ≥ N + 1, Algorithm 2 proceeds as follows. Using the new offline estimator f̂ t from AlgOff , the

algorithm computes the averaged estimator f̃ t−N := 1
N

t∑
i=t−N+1

f̂ i corresponding to the estimator in

Eq. (13) for step t−N . The algorithm then defines a loss function

ℓt−N(f) := D
(
f̃ t−N(xt−N), f(xt−N)

)
and feeds it into the delayed online learning algorithm ADOL as the feedback for step t−N . Finally,
Algorithm 2 uses the prediction distribution µt produced by ADOL to sample the final estimator f̄ t,
then proceeds to the next step. Our main theorem shows that as long ADOL achieves low regret for
delayed online learning, this strategy leads to low online estimation error.

Theorem D.1 (Reduction from oracle-efficient online estimation to delayed online learning). Let D
be any convex, metric-like loss. Suppose we run Algorithm 2 with delay parameter N ∈ N and a
delayed online learning algorithm ADOL for the class F . Then for all γ ≥ 1, Algorithm 2 ensures
that

E
[
EstOn

D (T )
]
≤ O(CDγ(N + βOffT/N) +RDOL(T,N, γ)), (14)

with any offline oracle AlgOff with parameter βOff ≥ 0, where

RDOL(T,N, γ) :=

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ · min

f∈F

T∑
t=1

ℓt(f) (15)

is the regret of ADOL for the sequence of losses constructed in Algorithm 2.

The parameter N controls a sort of bias-variance tradeoff in Theorem D.1. The first term in Eq. (14)
(corresponding to the bias of the averaged estimators) decreases with the delay N , while the second
term (corresponding to the regret of ADOL) increases; the optimal choice for N will balance these
terms. To make this concrete, we revisit finite classes as a warmup.

Example: Finite classes. Delayed online learning is well-studied, and optimal algorithms are
known for many classes of interest [67, 42, 35, 47]. The following standard result (a proof is given in
Appendix G.3 for completeness) gives a delayed regret bound for arbitrary finite classes.

Lemma D.1. Consider the delayed online learning setting with a delay parameter N . There exists
an algorithm that achieves

RDOL(T,N, 2) =

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− 2 · min

f∈F

T∑
t=1

ℓt(f) ≤ 2N · log |F|

for any sequences of losses ℓ1, . . . , ℓT ∈ [0, 1].
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Combining Theorem D.1 with Lemma D.1, we can obtain the following upper bound for oracle-
efficient online estimation.

Corollary D.1 (Oracle-efficient online estimation for finite classes via delayed online learning).
Consider an arbitrary instance (X ,Y,Z,K,F) and metric-like loss D, and assume Z is convex. By
choosing ADOL as in Lemma D.1, Algorithm 2 ensures that for any N ≥ 1,

E
[
EstOn

D (T )
]
≤ O(CD(N + βOffT/N) +N · log |F|).

with any offline oracle AlgOff with parameter βOff .

By choosing N =
√

CDβOff ·T
CD+log |F| ∨ 1, Corollary D.1 gives an upper bound of

O
(√

CDβOff(CD + log|F|) · T + log |F|
)

. While the rate in Corollary D.1, is worse than The-
orem 3.1 in terms of dependence on T , the reduction has two advantages: (1) It does require a-priori
knowledge of the offline estimation parameter βOff : If we choose N =

√
CD·T

CD+log |F| ∨ 1, Corol-

lary D.1 obtains O((βOff + 1)(
√
CD(CD + log|F|) · T + CD + log |F|)); (2) The reduction by

Algorithm 2 is more flexible, and allows for guarantees beyond finite classes, as we now illustrate.

D.1 Characterization of oracle-efficient learnability for classification
As an application of Algorithm 2 and Theorem D.1, we give a characterization for oracle-efficient
learnability in the OEOE framework. To state the result, we define Ldim(F) as the Littlestone
dimension for a binary function class F (e.g., Ben-David et al. [10]).

Theorem D.2 (Characterization of oracle-efficient learnability for binary classification). Consider a
binary classification instance (X ,Y,Z,K,F) withZ = Y = {0, 1}, D = D0/1 andK(z) = 1z . For
any class F and βOff ≥ 0, there exists an oracle-efficient algorithm that achieves online estimation
error O(

√
βOffLdim(F) · T log T + Ldim(F) log T ). On the other hand, in the worst-case any

algorithm must suffer at least Ω(Ldim(F)) online estimation error.

The main idea behind this result is to show that we can create a delayed online learner for the
reduction in Algorithm 2 that achieves low regret for Littlestone classes.13

D.2 Additional lower and upper bounds for memoryless oracle-efficient algorithms

The proof of Theorem 3.3 uses that the estimators f̂ t produced by the offline estimation oracle may
be improper (i.e., f̂ t /∈ F). We next provide a variant of the result that holds even if the estimation
oracle is proper, under the additional assumptions that (i) the learner is itself proper in the sense
that µt ∈ ∆(F), and (ii) the learner is time-invariant (i.e., the learner sets µt = F (f̂ t) for all t).

Theorem 3.3′ (Impossibility of memoryless algorithms for OEOE; proper variant). Consider the
binary classification setting with Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff ≥ 0,
there exists an instance (X ,Y,Z,K,F) with |F| = |X | = N such that for any memoryless oracle-
efficient algorithm that is (i) proper, and (ii) time-invariant, there exists a sequence of covariates
(x1, . . . , xT ) and a proper offline oracle AlgOff with parameter βOff such that E

[
EstOn

D (T )
]
≥

Ω(min {N(βOff + 1), T}).

A complementary upper bound. For completeness, we conclude by showing that the (large) lower
bound in Theorem 3.3 can be achieved with a memoryless oracle-efficient algorithm. We consider
the “trivial” algorithm that outputs the estimators produced by the offline oracle as-is.

Proposition D.1 (Upper bound for memoryless OEOE). For any instance (X ,Y,Z,K,F),
metric-like loss D, and offline oracle AlgOff with parameter βOff , the algorithm that returns
f̄ t = f̂ t := Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1) has online estimation error EstOn

D (T ) ≤
O((βOff + 1)|X | log T ).

13Formally, to handle the fact that Z = {0, 1} is not convex, this result requires a slight modification to Line
4 in Algorithm 2 that replaces the average with a majority vote. See the proof for details.
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E Application to interactive decision making
In this section, we apply our techniques for oracle-efficient online estimation to the Decision Making
with Structured Observations (DMSO) framework for interactive decision making introduced by
[27]. First, in Appendix E.1, we use our reductions to provide offline oracle-efficient algorithms
for interactive decision making. Then, in Appendix E.2, we focus on reinforcement learning and
show that it is possible to bypass the impossibility results for memoryless oracle-efficient algorithms
(Theorem 3.3) for instances (X ,Y,Z,K,F) corresponding to Markov decision processes that satisfy
a structural property known as coverability.

E.1 Offline oracle-efficient algorithms for interactive decision making
In this section, we introduce the setting of Decision Making with Structured Observations (DMSO)
and the applications of our results to this setting.

Decision Making with Structured Observations (DMSO). The DMSO framework [27] captures
a large class of interactive decision making problems (e.g. contextual bandits and reinforcement
learning). In this framework, the learner is given access to a model classM that contains an unknown
true model M⋆ : Π→ ∆(R×O), where Π is the decision space,R ⊆ R is the reward space and O
is the observation space. Then the interaction between the learner and the environment proceeds in T
rounds, where for each round t = 1, . . . , T :

1. The learner selects a decision πt ∈ Π.

2. Nature selects a reward rt ∈ R and observation ot ∈ O based on the decision, where the
pair (rt, ot) is drawn independently from the unknown distribution M⋆(πt). The reward
and observation is then observed by the learner.

Let gM(π) := EM,π[r] denote the mean reward function and πM := argmaxπ∈Π gM(π) denote the
decision with the greatest expected reward for M . The learner’s performance is evaluated in terms of
regret to the optimal decision for M⋆:

RegDM(T ) :=

T∑
t=1

Eπt∼pt

[
gM⋆

(πM⋆)− gM⋆
(πt)

]
, (16)

where pt ∈ ∆(Π) is the learner’s distribution over decisions at round t.

Background: Reducing DMSO to online estimation. Any DMSO class (M,Π,O) induces an
instance (X ,Y,Z,K,F) of the estimation framework in Section 1 as follows. We associate F =M,
X = Π, Y = O ×R, Z = ∆(O ×R), and K(M⋆(π)) = M⋆(π). That is, we have a conditional
density estimation problem in which the covariates are decisions π ∈ Π and the outcomes are
observation-reward pairs drawn from the underlying model M⋆(π). In particular for a sequence of
decisions π1, . . . , πT and a sequence of estimators M̂ 1, . . . , M̂T , we define the online estimation
error for a loss D as

EstOn
D (T ) =

T∑
t=1

D
(
M̂ t(πt),M⋆(πt)

)
. (17)

We refer to any algorithm AlgOn that ensures that EstOn
D (T ) ≤ βOn almost surely given access to

{(πt, ot, rt)}Tt=1 with (ot, rt) ∼M⋆(πt) as an online estimation oracle with parameter βOn.

Foster et al. [27, 28] give an algorithm, Estimation-to-Decisions (E2D), that provides bounds on the
regret in Eq. (16) given access to an online estimation oracle AlgOn. The algorithm is (online) oracle-
efficient and memoryless, in the sense that the decision πt at each step t is a measurable function of
the oracle’s output M̂ t. To restate their result, we define the Decision-Estimation Coeficient for the
classM as

decDγ (M,M) = inf
p∈∆(Π)

sup
M∈M

Eπ∼p

[
gM(πM)− gM(π)− γ · D

(
M(π),M(π)

)]
(18)

for a reference model M and any losses D. We further define decDγ (M) = supM∈M decDγ (M,M).
With this notation, the main regret bound for E2D is as follows.
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Algorithm 3 Estimation to Decisions Meta-Algorithm with Offline Oracles (E2D.Off)
1: parameters:

Offline estimation oracle AlgOff with parameter βOff .
Oracle-efficient online estimation algorithm AlgOEOE.
Exploration parameter γ > 0.

2: for t = 1, 2, · · · , T do
3: Compute estimate M̂ t = Algt

Off

(
π1, . . . , πt−1, o1, ..., ot−1

)
.

4: Feed M̂ t to OEOE algorithm AlgOEOE and obtain µt.
5: Let

pt = argmin
p∈∆(Π)

sup
M∈M

E
π∼p,M̂∼µt

[
gM(πM)− gM(π)− γ · D

(
M̂(π),M(π)

)]
. (20)

6: Sample decision πt ∼ pt and ot ∼M⋆(πt) and feed πt to OEOE algorithm AlgOEOE.

Proposition E.1 (Theorem 4.3 of [27]). For any model class (M,Π,O) and metric-like loss D, any
γ > 0, and any online estimation oracle AlgOn with parameter βOn > 0, the E2D algorithm ensures
that

RegDM(T ) ≲ sup
µ∈∆(M)

decDγ (M, µ) · T + γ · βOn. (19)

For the case of squared Hellinger distance where D = D2
H, the Decision-Estimation Coefficient

decDγ (M) was shown to be a lower bound on the minimax optimal regret for any classM. Hence,
Proposition E.1 shows that it is possible to achieve near-optimal regret for any interactive decision
making problems whenever an online estimation oracle is available. However, it was unclear whether
similar results could be achieved based on offline estimation oracles.

Making E2D offline oracle-efficient. Algorithm 3 (E2D.Off) invokes the E2D algorithm of Foster
et al. [27] with any oracle-efficient online estimation algorithm AlgOEOE (which can be any of the
algorithms we provide, e.g. Theorems 3.1 and 4.2), along with an offline estimation oracle AlgOff , to
provide offline oracle-efficient guarantees for interactive decision making. Invoking the algorithm
with Version Space Averaging (via Theorem 3.1) leads to the following corollary.

Corollary E.1. Consider any DMSO class (M,Π,O) and metric-like loss D. Algorithm 3, with
exploration parameter γ > 0 and AlgOEOE chosen to be Algorithm 1, ensures that

E[RegDM] ≤ O(log T ) · max

{
decDγ (M) · T, γ · (βOff + 1) log |M|

}
,

for any offline estimation oracle AlgOff with parameter βOff .

This result shows that information-theoretically, it is possible to achieve low regret in the DMSO
framework with offline oracles, though the result is not computationally efficient.

As an example, in the case of square loss regression (Appendix C) which is used for contextual bandits,
an offline guarantee of βOff = O(log |M|) is achievable. Meanwhile, it is known that decDsq

γ (M) ≲

|A|/γ [27]. Thus Corollary E.1 achieves a bound of Õ(
√
|A|T · log |M|) with an appropriate choice

of γ. The best know regret guarantee for contextual bandit is Õ(
√
|A|T log |M|) [58, 70]. The

bound from Corollary E.1 matches the state-of-the-art result up to a factor Õ(
√
log |M|). How to

remove this suboptimality is an interesting direction for future work.

Naturally, the other reductions for oracle-efficient online estimation developed in this paper can be
combined with Algorithm 3 as well. In particular, by combining with Theorem 4.2 we derive the
following corollary for squared Hellinger distance.

Corollary (Informal). Whenever online conditional density estimation can be performed efficiently
with access to the full history, and whenever the minimax problem in Eq. (18) can be solved efficiently,
there exists a computationally efficient and offline oracle-efficient algorithm with near-optimal regret
in the DMSO framework.

24



E.2 Bypassing impossibility of memoryless algorithms via coverability
Recall that our results in Section 3.2 show that in general, it is impossible to obtain low online esti-
mation error through memoryless oracle-efficient algorithms. In this section, we revisit memoryless
algorithms for the Markov decision processes a particular type of class (M,Π,O) (or equivalently,
(X ,Y,Z,K,F)). We prove that for any class of Markov decision processes for which a structural
parameter called coverability [69] is small, any offline estimator can be directly converted into an
online estimator.

Markov decision processes. We consider classes (M,Π,O) that correspond to an episodic
finite-horizon reinforcement learning setting, following Foster et al. [27]. With H ∈ N denoting
the horizon, each model M ∈ M specifies a non-stationary Markov decision process as a tuple
M =

{
{Sh}Hh=1,A, {PM

h }Hh=1, {RM

h }Hh=1, d1
}

, where Sh is the state space for layer h, A is
the action space, PM

h : Sh × A → ∆(Sh+1) is the probability transition kernel for layer h,
RM

h : Sh × A → ∆(R) is the reward distribution for layer h, and d1 ∈ ∆(S1) is the initial state
distribution. We allow the reward distribution and transition kernel to vary across models inM and
assume that the initial state distribution is fixed.

We set Π ⊂ ΠRNS, which denotes the set of all randomized, non-stationary policies π =
(π1, . . . , πH) ∈ ΠRNS, where πh : Sh → ∆(A). For a fixed MDP M ∈ M and π ∈ Π, the
observation o ∼ M(π) is a trajectory (s1, a1, r1), . . . , (sH , aH , rH) that is generated through the
following process, beginning from s1 ∼ d1. For h = 1, . . . ,H:

• ah ∼ πh(sh).

• rh ∼ RM

h (sh, ah) and sh+1 ∼ PM

h (· | sh, ah).

So the obseravtion space O = S1 ×A× R× · · · × SH ×A× R. For notational convenience, we
take sH+1 to be a deterministic terminal state. We use PM,π and EM,π[·] to denote the probability
law and expectation over trajectories induced by M(π). In addition, we define P

M

h (· | sh, ah) as the
conditional distribution on sh+1, rh given sh, ah under M for h ∈ [H].

The guarantees we provide apply to any loss that has a particular layer-wise structure tailored to
reinforcement learning.

Definition E.1 (Layer-wise loss). For any sequence of losses {Dh}h∈[H] bounded by [0, 1], where
Dh : ∆(Sh ×R)×∆(Sh ×R)→ [0, 1] for all h ∈ [H], we define the layer-wise loss DRL on ∆(O)
as 14

DRL(M(π)∥M ′(π)) =

H∑
h=1

EM′,π
[
Dh

(
P

M′
(· | sh, ah)∥P

M

(· | sh, ah)
)]

,

for any pair of MDPs M,M ′ ∈M and policy π ∈ Π.15

Examples of the layer-wise loss are scaled reverse KL-divergence (which is bounded by [0, 1]
whenever the density ratios under consideration are upper and lower bounded with an appropriate
scaling) [27] and the squared Bellman error [29]. Another useful example is the the sum of layer-wise
squared Hellinger distances given by

DRL
H (M(π)∥M ′(π)) =

H∑
h=1

EM′,π
[
D2

H

(
P

M

(· | sh, ah), P
M′

(· | sh, ah)
)]

. (21)

This loss coincides with the global squared Hellinger distance D2
H(M(π),M ′(π)) up to an O(H)

factor.

14The ordering of M and M ′ on the right-hand side of the definition is due to the following technical reason:
Theorem E.1 only works when the expectation on the right-hand side to be taken with respect to M⋆(π), which
shows up as the second argument in the offline oracle guarantee (??).

15For the results in this section, it will be useful to work with asymmetric losses, and in this case we use the
notation D(· ∥ ·) instead of D(·, ·).
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Coverability. We provide memoryless oracle-efficient algorithms for online estimation for any
layer-wise loss DRL when the underlying MDP M⋆ has bounded coverability [69].

Definition E.2 (Coverability). For an MDP M⋆ and a policy π, we define dπh(s, a) ≡
EM⋆,π[1(sh, ah = s, a)]. The coverability coefficient Ccov for a policy class Π for the MDP M⋆ is
given by

Ccov(M
⋆) := inf

ν1,...,νH∈∆(S×A)
sup

π∈Π,h∈[H]

∥∥∥∥dπhνh
∥∥∥∥
∞
.

It is immediate to see that Ccov ≤ |Π|, but in general it can be much smaller. Examples of MDP
classes with low coverability include Block MDPs, Low-Rank MDPs, and exogenous block MDPs
[69, 4].

Offline-to-online conversion under coverability. Our main result shows that under coverability,
the outputs of any offline estimation oracle AlgOff satisfy an online estimation guarantee as-is.

Theorem E.1 (Offline-to-online conversion under coverability). For any layer-wise loss DRL and
MDP class (M,Π,O) and M⋆ ∈M, the sequence of estimators (M̂ 1, . . . , M̂T ) produced by any
offline estimation oracle AlgOff for DRL with parameter βOff satisfy

T∑
t=1

DRL
(
M̂ t(πt)∥M⋆(πt)

)
≤ O

(√
HCcov(M⋆)βOffT log T +HCcov(M

⋆)
)
.

This result is based on a variant of the proof technique in Theorem 1 of Xie et al. [69]. An important
application of the result, which can be applied in tandem with the guarantees in Foster et al. [27],
concerns squared Hellinger distance.

Corollary E.2. For any MDP class (M,Π,O) and M⋆ ∈ M, the sequence of estimators
(M̂ 1, . . . , M̂T ) produced by any offline estimation oracle AlgOff for squared Hellinger distance D2

H
with parameter βOff satisfy

EstOn
H (T ) =

T∑
t=1

D2
H

(
M̂ t(πt),M⋆(πt)

)
≤ O

(
H
√

Ccov(M⋆)βOffT log T +H2Ccov(M
⋆)
)

This result follows by using that the layer-wise squared Hellinger distance in Eq. (21) is equivalent to
D2

H(M(π),M ′(π)) up to O(H) factors.

Application to interactive decision making. We apply Theorem E.1 to decision making via
Algorithm 3.

Corollary E.3. Consider any layer-wise loss D = DRL and MDP class (M,Π,O), and let Ccov :=
supM∈M Ccov(M). Algorithm 3 with exploration parameter γ > 0 and AlgOEOE chosen to be the
identity map ensures that

E[RegDM] ≤ O(log T ) · max

{
sup

µ∈∆(M)

decDγ (M, µ) · T, γ ·
(√

HCcovβOffT log T +HCcov

)}
,

for any offline estimation oracle AlgOff with parameter βOff .

Contextual bandits and optimality of offline-to-online conversion. Another implication for
Theorem E.1 concerns the special case of contextual bandits (that is, MDPs with horizon one).
For the contextual bandit setting we abbreviate S = S1, and refer to d1 ∈ ∆(S) as the context
distribution. We define gM(s, a) = Er∼RM

1 (s,a)[r] as the expected reward function under a model
M , and following Foster and Rakhlin [25], use the squared error between mean reward functions as
our divergence:

DCB(M(π),M ′(π)) := Es∼d1,a∼π(s)

[
Dsq

(
gM(s, a), gM′

(s, a)
)]
. (22)

For this setting, the coverability coefficient Ccov is always bounded by the number of actions |A|,
which leads to the following corollary.
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Corollary E.4. For any contextual bandit class (M,Π,O) and M⋆ ∈M, the sequence of estimators
(M̂ 1, . . . , M̂T ) produced by any offline estimation oracle AlgOff for DCB with parameter βOff satisfy

EstOn
D (T ) =

T∑
t=1

DCB

(
M̂ t(πt),M⋆(πt)

)
≤ O

(√
|A|TβOff log T + |A|

)
,

Recall that Foster and Rakhlin [25] show that any algorithm for online estimation with the divergence
in Eq. (22) with EstOn

D (T ) ≤ βOn can be lifted to a contextual bandit algorithm with regret
O
(√
|A|T · βOn

)
via the inverse gap weighting strategy, even if contexts are chosen adversarially.

Subsequent work of Simchi-Levi and Xu [58] shows that for stochastic contexts, the inverse gap
weighting strategy also yields regret O

(√
|A|T · βOff

)
given access to an offline oracle with parameter

βOff . On the other hand, combining Corollary E.4 with the guarantee from Foster and Rakhlin [25]
gives regret O

(
|A|1/4T 3/4βOff

1/4
)
. This does not recover the result from Simchi-Levi and Xu [58],

but nonetheless gives an alternative proof that sublinear offline estimation error suffices for sublinear
regret.

The guarantee in Theorem E.1 leads to a degradation in rate from βOff to
√
TβOff (suppressing

problem-dependent parameters). Our next result shows that this is tight in general.

Proposition E.2 (Tightness of offline-to-online conversion). For any integer T ≥ 1 and βOff > 0,
there exists a contextual bandit class (M,Π = AS ,O) with |A| = 2, a distribution d1 ∈ ∆(S),
a sequence (π1, . . . , πT ) and an offline oracle AlgOff for DCB with parameter βOff such that the
oracle’s outputs (M̂ 1, . . . , M̂T ) satisfy

EstOn
D (T ) =

T∑
t=1

DCB

(
M̂ t(πt),M⋆(πt)

)
≥ Ω

(√
TβOff

)
.
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Part III

Proofs
F Technical tools
Lemma F.1. For any non-increasing sequence x1 ≥ x2 ≥ · · · ≥ xT+1 ≥ 1,

T∑
t=1

xt − xt+1

xt
≤ log(x1).

Proof of Lemma F.1. Since log(1 + a) ≤ a for all a > −1, for any t ∈ [T ], we have

− log(xt/xt+1) = log

(
1 +

(
xt+1

xt
− 1

))
≤
(
xt+1

xt
− 1

)
.

Summing up over t ∈ [T ], we obtain
T∑

t=1

xt − xt+1

xt
=

T∑
t=1

1− xt+1

xt
≤

T∑
t=1

log(xt/xt+1) = log(x1/xT+1) ≤ log(x1).

The following lemma gives an improvement to Lemma A.13 of Foster et al. [27] that removes a
logarithmic factor. This shows that up to an absolute constant, squared Hellinger distance obeys a
one-sided version of the chain rule for KL divergence.

Lemma F.2 (Subadditivity for squared Hellinger distance). Let (X1,F1), . . . , (Xn,Fn) be a se-
quence of measurable spaces, and let X i =

∏i
i=t Xt and F i =

⊗i
t=1 Ft. For each i, let Pi(· | ·)

and Qi(· | ·) be probability kernels from (X i−1,F i−1) to (Xi,Fi). Let P and Q be the laws of
X1, . . . , Xn under Xi ∼ Pi(· | X1:i−1) and Xi ∼ Qi(· | X1:i−1) respectively. Then it holds that

D2
H(P,Q) ≤ 7 · EP

[
n∑

i=1

D2
H(Pi(· | X1:i−1),Qi(· | X1:i−1))

]
.

Proof of Lemma F.2. We appeal to the cut-and-paste property of [34], defining a collection
of distributions indexed by a hypercube {0, 1}n with the property that the vertices (0, . . . , 0) and
(1, . . . , 1) correspond to the distribution P and Q. Concretely, for any vertex v ∈ {0, 1}n of the
hypercube, we define a probability distribution

Pv :=
∏
i∈[n]

Rvi(· | X1:i−1), where Rvi(· | X1:i−1) =

{
Pi(· | X1:i−1) if vi = 0,

Qi(· | X1:i−1) if vi = 1.

Observe that P(0,...,0) = P and P(1,...,1) = Q. Now, consider any four vertices a, b, c, d ∈ {0, 1}n

with the property that {ai, bi} = {ci, di} for each i ∈ [n] (with {·} interpreted as a multi-set). Then
for any measure ν :=

∏n
i=1 νi(·|X1:i−1), where νi(·|X1:i−1) is any common dominating conditional

measure16 for Pi(·|X1:i−1) and Qi(·|X1:i−1), by the definition of squared Hellinger distance we
have

D2
H(Pa,Pb) = 1−

∫ √√√√ n∏
i=1

dRai(· | X1:i−1)

dνi

dRbi(· | X1:i−1)

dνi
dν

= 1−
∫ √√√√ n∏

i=1

dRci(· | X1:i−1)

dνi

dRdi
(· | X1:i−1)

dνi
dν

= D2
H(Pc,Pd). (23)

16For example, we can take νi(·|X1:i) = (Pi(·|X1:i−1) + Qi(·|X1:i−1))/2. for Pi and Qi. The result is
independent of the choice of ν.
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Let k be the maximum integer such that 2k ≤ n. Then since Eq. (23) holds, by Theorem 7 of Jayram
[34] applied with the pairwise disjoint collection Aj =

{
i ≤ n | i mod 2k = j

}
for all j ∈ [2k]

where |Aj | ≤ 2 for all j, we have

D2
H(P,Q) ·

n∏
i=1

(1− 1/2i) ≤
2k∑
j=1

D2
H

P,
∏
l∈Aj

Ql(· | X1:l−1)
∏

l′ /∈Aj

Pl′(· | X1:l′−1)


≤ 2EP

[
n∑

i=1

D2
H(Pi(· | X1:i−1),Qi(· | X1:i−1))

]
.

To conclude, we note that
∏n

i=1(1− 1/2i) > 2/7.

G Proofs from Section 3
G.1 Proofs from Section 3.1

Theorem 3.1 (Main upper bound for OEOE). For any instance (X ,Y,Z,K,F), any metric-like
loss D, and any offline estimator AlgOff with parameter βOff ≥ 0, Algorithm 1 is oracle-efficient
and achieves

EstOn
D (T ) ≤ O(CD · (βOff + 1) ·min {log |F|, |X | log T}).

Proof of Theorem 3.1. Our main technical result is the following lemma, which is proven in the
sequel.

Lemma G.1. Consider any instance (X ,Y,Z,K,F) and a metric-like loss17 D on Z . Let f⋆ ∈ F
be the target parameter, and consider a sequence of sets F = F1 ⊇ F2 ⊇ · · · ⊇ FT ⊇ {f⋆} and
sequence of covariates x1, . . . , xT ∈ X with the property that for all t ∈ [T ], all f ∈ Ft satisfy the
following offline estimation guarantee:

t−1∑
s=1

D(f(xs), f⋆(xs)) ≤ βOff . (24)

Then, by defining µt = Unif(Ft), we have that

T∑
t=1

Ef∼µt [D(f(xt), f⋆(xt))] ≤ O((βOff + 1) ·min {log |F|, |X | log T}).

To invoke Lemma G.1, we observe that the version space construction in Algorithm 1 ensures that for
all t ∈ [T ], all f ∈ Ft satisfy

t−1∑
s=1

D(f(xs), f⋆(xs)) ≤
t−1∑
s=1

CD

(
D
(
f(xs), f̂ t(xs)

))
+ D

(
f̂ t(xs), f⋆(xs)

)
≤ 2CDβOff .

In addition, it is immediate to see that F = F1 ⊇ F2 ⊇ · · · ⊇ FT . Thus, by invoking Lemma G.1
with parameter βOff

′ = 2CDβOff , we have that

EstOn
D (T ) =

T∑
t=1

Ef∼µt [D(f(xt), f⋆(xt))] ≤ O((CDβOff + 1) ·min {log |F|, |X | log T}).

To simplify, we note that (CDβOff + 1) ≤ CD(βOff + 1), since CD ≥ 1.

17For this lemma, D need not be a metric-like loss; it suffices that D is bounded and has D(z, z) = 0 for all
z ∈ Z .
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Proof of Lemma G.1. We begin by proving that EstOn
D (T ) ≤ O(CD · (βOff + 1) · log |F|). Let

us adopt the convention that FT+1 = {f⋆}, so that FT+1 ⊆ FT ⊆ · · · ⊆ F1. For any parameter
f ∈ F \ {f⋆}, define tf := min {t : f /∈ Ft+1}. It is immediate to see that for all f ∈ F \ {f⋆},
1 ≤ tf ≤ T and for all t ∈ [T ], |{f : tf = t}| = |Ft \ Ft+1|. Using that D(f⋆(x), f⋆(x)) = 0 for
all x ∈ X , we re-write the online estimation error as
T∑

t=1

Ef∼µt [D(f(xt), f⋆(xt))] =

T∑
t=1

1

|Ft|
∑
f∈Ft

D(f(xt), f⋆(xt)) =

T∑
t=1

1

|Ft|
∑

f∈Ft,f ̸=f⋆

D(f(xt), f⋆(xt))

=

T∑
t=1

∑
f :tf=t

∑
s≤t

1

|Fs|
D(f(xs), f⋆(xs))

Using that FT ⊆ FT−1 ⊆ · · · ⊆ F1, we can upper bound this quantity by
T∑

t=1

∑
f :tf=t

∑
s≤t

1

|Fs|
D(f(xs), f⋆(xs)) ≤

T∑
t=1

∑
f :tf=t

1

|Ft|
∑
s≤t

D(f(xs), f⋆(xs)).

To proceed, observe that for any function f ∈ F , if tf = t, then f ∈ Ft. It follows from the assumed
bound in Eq. (24) that if tf = t, then∑

s≤t

D(f(xs), f⋆(xs)) = D(f(xt), f⋆(xt)) +
∑

s≤t−1

D(f(xs), f⋆(xs))

≤ 1 + βOff ,

where we have used the fact that the loss D is bounded by 1. Using this fact, and recalling that for all
t ∈ [T ], |{f : tf = t}| = |Ft \ Ft+1|, we bound

T∑
t=1

∑
f :tf=t

1

|Ft|
∑
s≤t

D(f(xs), f⋆(xs)) ≤ (βOff + 1)

T∑
t=1

∑
f :tf=t

1

|Ft|
≤ (βOff + 1)

T∑
t=1

|Ft \ Ft+1|
|Ft|

.

Finally, by Lemma F.1, we have that
T∑

t=1

|Ft \ Ft+1|
|Ft|

=

T∑
t=1

|Ft| − |Ft+1|
|Ft|

≤ log |F1| = log |F|.

We conclude that
T∑

t=1

Ef∼µt [D(f(xt), f⋆(xt))] ≤ (βOff + 1) log |F|.

We now prove the bound EstOn
D (T ) ≤ O(CD · (βOff + 1) · |X | log T ). For each x ∈ X , define

Nt−1(x) =
t−1∑
s=1

1(xs = x). Then we can write the online estimation error as

T∑
t=1

Ef∼µt [D(f(xt), f⋆(xt))] =

T∑
t=1

∑
x∈X

1(x = xt)

Nt−1(x) ∨ 1
· Ef∼µt [(Nt−1(x) ∨ 1)D(f(x), f⋆(x))].

From the definition of µt, we have that

Ef∼µt [(Nt−1(x) ∨ 1)D(f(x), f⋆(x))] =
1

|Ft|
∑
f∈Ft

(Nt−1(x) ∨ 1)D(f(x), f⋆(x))

≤ 1

|Ft|
∑
f∈Ft

(Nt−1(x) + 1)D(f(x), f⋆(x)).

Now, from the offline guarantee assumed in Eq. (24), we have for all x ∈ X and f ∈ Ft,

(Nt−1(x) + 1)D(f(x), f⋆(x)) ≤
∑

s≤t−1

D(f(xs), f⋆(xs)) + D(f(x), f⋆(x)) ≤ βOff + 1.
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Combining these observations, we have

T∑
t=1

Ef∼µt [D(f(xt), f⋆(xt))] ≤ (βOff + 1)

T∑
t=1

∑
x∈X

1(x = xt)

Nt−1(x) ∨ 1
.

Now, for each x ∈ X , define tx = min {t ≤ T : xt = x} if this set is not empty, and set tx = T
otherwise. From this definition and the fact that 1 + 1/2 + · · ·+ 1/T ≤ 1 + log T , we have that

∑
x∈X

T∑
t=1

1(x = xt)

Nt−1(x) ∨ 1
=
∑
x∈X

(
tx∑
t=1

1(x = xt)

Nt−1(x) ∨ 1
+

T∑
t=tx+1

1(x = xt)

Nt−1(x) ∨ 1

)

≤
∑
x∈X

1 +

NT−1(x)∑
i=1

1

i


≤ 2|X |+ |X | log T ≤ 3|X | log T.

We conclude that
T∑

t=1

Ef∼µt [D(f(xt), f⋆(xt))] ≤ 3(βOff + 1) · |X | log T.

Theorem 3.2 (Main lower bound for OEOE). Consider the binary classification setting with
Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff > 0, there exists an instance
(X ,Y,Z,K,F) with log |F| = |X | = N such that for any oracle-efficient algorithm, there
is a sequence of covariates (x1, . . . , xT ) and offline oracle with parameter βOff such that
E
[
EstOn

D (T )
]
≥ Ω(min {(βOff + 1)N,T}).

Proof of Theorem 3.2. Let N ≥ 1 be given, a consider the model class where X = {x1, . . . , xN} is
an arbitrary discrete set, Z = Y = {0, 1}, F = {0, 1}X , D(z1, z2) = D0/1(z1, z2) = 1{z1 ̸= z2},
and K(z) = 1z .

We first specify the offline estimation oracle, then specify an adversarially chosen covariate sequence.
Fix T ∈ N, and for any 1 ≤ t ≤ T and sequence of covariates x1, . . . , xt define Nt(x) :=∑t

s=1 1(x
s = x). For any target parameter f⋆ ∈ F and offline estimation parameter βOff > 0, we

consider the oracle Algt

Off(·; f⋆) for the sequence x1, . . . , xt that returns

f̂ t(x) =

{
0 if Nt−1(x) < βOff ,

f⋆(x) otherwise.

To complete the construction, we consider sequence (x1, . . . , xT ) in which

xt = xmin{⌈t/⌈βOff⌉⌉,N}.

Equivalently, and perhaps more intuitively, we set

(x1, . . . , xT ) = (x1, . . . , x1︸ ︷︷ ︸
⌈βOff⌉

, x2, . . . , x2︸ ︷︷ ︸
⌈βOff⌉

, . . . , xN , . . . , xN︸ ︷︷ ︸
⌈βOff⌉

, xN , xN , . . . ),

stopping earlier if T ≤ N⌈βOff⌉.
For any f⋆, we now show that Algt

Off(·; f⋆) is an offline oracle with parameter βOff on the sequence
x1, . . . , xT . This is because for any i < min {⌈t/⌈βOff⌉⌉, N}, the covariate xi is repeated ⌈βOff⌉ ≥
βOff times. Thus f̂ t(xi) = f⋆(xi). This implies for t ≤ N · ⌈βOff⌉ that

t−1∑
s=1

D0/1

(
f̂ t(xs), f⋆(xs)

)
=

t−1∑
s=t−⌈t/⌈βOff⌉⌉·⌈βOff⌉

D0/1

(
f̂ t(xs), f⋆(xs)

)
≤ ⌈βOff⌉ − 1 ≤ βOff .
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If t > N · ⌈βOff⌉, then all the covariates are repeated for more than ⌈βOff⌉ times, thus f̂ t = f⋆.
Overall, we have shown that Algt

Off(·; f⋆) is an offline oracle with parameter βOff .

Now, fix any oracle-efficient online estimation algorithm, and consider the expected regret under
f⋆ ∼ Unif(F) (with Algt

Off(·; f⋆) as the oracle). If T ≥ N⌈βOff⌉, then regardless of how the
algorithm chooses µt, since for any block of xi, f⋆(xi) is independent of µt(xi), the expected regret
is lower bounded as

T∑
t=1

Ef⋆∼Unif(F) Ef̄∼µt

[
D0/1

(
f̄(xt), f⋆(xt)

)]
≥

N∑
i=1

⌈βOff⌉∑
j=1

Ef⋆∼Unif(F) Ef̄∼µi⌈βOff⌉+j

[
D0/1

(
f̄(xi), f

⋆(xi)
)]

=
1

2
N⌈βOff⌉ ≥ Ω(N(βOff + 1)) = Ω(min {(βOff + 1) log |F|, (βOff + 1)|X |}).

G.2 Proofs from Section 3.2

Theorem 3.3 (Impossibility of memoryless algorithms for OEOE). Consider the binary classification
setting with Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff ≥ 0, there exists an
instance (X ,Y,Z,K,F) with |F| = |X | = N such that for any memoryless oracle-efficient algo-
rithm, there exists a sequence of covariates (x1, . . . , xT ) and a (potentially improper) offline oracle
AlgOff with parameter βOff such that E

[
EstOn

D (T )
]
≥ Ω(min {N(βOff + 1), T}). This conclusion

still holds when the online estimation algorithm remembers f̂ 1, . . . , f̂ t−1 but not x1, . . . , xt−1.

Proof of Theorem 3.3. Given a parameter βOff > 0 and an integer N , assume without loss of
generality that K := T/(⌊βOff⌋ + 1) is an integer. Consider the instance (X ,Y,Z,K,F) with
X = [N ], Z = Y = {0, 1}, D = D0/1, K(z) = 1z , and parameter space F = {fi}i∈[N ] is defined
as

fi(x) = 1{x = i}.

We consider a sequence of covariates (x1, . . . , xT ) divided into K blocks, each with length ⌊βOff⌋+1.
In each block, the covariates will be chosen to be the same, i.e., x1 = · · · = x⌊βOff⌋+1, x⌊βOff⌋+2 =
· · · = x2⌊βOff⌋+2. We define τt = ⌈t/(⌊βOff⌋+ 1)⌉ as the index of the block the step t belongs to, and
we adopt the convention that xτ ∈ X is value of the covariates for block τ , i.e., xt = xτt for all t.
We leave the precise choice for x1, . . . , xK as a free parameter for now.

Fix any memoryless oracle-efficient online estimation algorithm defined by a sequence of maps
{F t}t∈[T ] (cf. Definition 3.1). We set the true target parameter to be f⋆ = fi⋆ , where the index
i⋆ ∈ [N ] will be chosen later in the proof (in an adversarial fashion based on the algorithm under
consideration); for now, we leave i⋆ ∈ [N ] as a free parameter.

We first specify the offline estimation oracle under fi⋆ . For each block index τ = 1, . . . ,K, define

X τ = X \ ({xs}s≤(τ−1)(⌊βOff⌋+1) ∪ {i
⋆})

as the set of covariates inX\{i⋆} that have not been observed before block τ , and letX τ := X τ∪{i⋆}.
We define

f̂ t(x) = 1{x ∈ X τt}
as the estimator returned by the oracle at round t. It is immediate from this construction that regardless
of how x1, . . . , xT are chosen, the offline estimation error is bounded by

∀t ∈ [T ],
∑
s<t

D0/1

(
f⋆(xs), f̂ t(xs)

)
≤

t−1∑
s=(τt−1)(⌊βOff⌋+1)+1

D0/1

(
f⋆(xs), f̂ t(xs)

)
≤ ⌊βOff⌋ ≤ βOff ,

since the value of f̂ t differs from fi⋆ only for covariates that have not been observed before block τt.
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It remains to lower bound the algorithm’s online estimation error. To start, note that D0/1 coincides
with Dsq on the set {0, 1} and Dsq is convex. Hence, by Jensen’s inequality, it suffices to lower bound

T∑
t=1

(f t(xt)− fi⋆(x
t))2,

where f t(xt) is the mean under f̄ t(xt) where f̄ t ∼ µt = F t(f̂ 1, . . . , f̂ t−1, f̂ t).

To proceed, we specify the sequence x1, . . . , xT , choosing xt as a measurable function of X t and i⋆

(recall that i⋆ itself has yet to be chosen). Fix a round t, and suppose that X t ̸= ∅. We choose xt

to lower bound the estimation error by considering two cases. In the process, we will also define a
function ĵτ : (2[N ])⊗τ → [N ] ∪ {⊥} for each τ ∈ [K], where (2[N ])⊗τ = 2[N ] × · · · × 2[N ]︸ ︷︷ ︸

τ copies

. Let

τ ∈ [K] be fixed.

• If
⌊βOff⌋+1∑

p=1
1(f τ(⌊βOff⌋+1)+p(x) ≤ 1/2) ≥ ⌊βOff⌋+1

2 for all x ∈ X τ , we set xτ = i⋆ (equiva-

lently, xτ(⌊βOff⌋+1)+p = i⋆ for p = 1, . . . , ⌊βOff⌋+ 1), so that

(τ+1)(⌊βOff⌋+1)∑
t=τ(⌊βOff⌋+1)+1

max
xt

(f t(xt)− fi⋆(x
t))2 ≥ ⌊βOff⌋+ 1

8
.

In this case, we define ĵτ(X 1, . . . ,X τ) =⊥.

• If there exists j ∈ X τ such that
⌊βOff⌋+1∑

p=1
1(f τ(⌊βOff⌋+1)+p(j) ≤ 1/2) < ⌊βOff⌋+1

2 , we set

xτ = j (equivalently, xτ(⌊βOff⌋+1)+p = j for p = 1, . . . , ⌊βOff⌋+ 1) for the least such j, so
that

(τ+1)(⌊βOff⌋+1)∑
t=τ(⌊βOff⌋+1)+1

max
xt

(f t(xt)− fi⋆(x
t))2 ≥ ⌊βOff⌋+ 1

8
1{i⋆ ̸= j}.

In this case, we define ĵτ(X 1, . . . ,X τ) = j as well.

Note that since f t is a measurable function of X 1, ĵ1,. . . ,X τt , ĵτt is well-defined.

Combining these cases, it follows that for any choice of i⋆, choosing x1, . . . , xK in the fashion
described above ensures that

T∑
t=1

(f t(xt)− fi⋆(x
t))2 ≥ ⌊βOff⌋+ 1

8

K∑
τ=1

1

{
ĵτ(X 1, . . . ,X τ) ̸= i⋆

}
.

We now state and prove the following technical lemma, which asserts that there exists a choice of i⋆
for which the right-hand side above is large.

Lemma G.2. For any algorithm, there exists a choice for i⋆ ∈ [N ] such that

min
{
τ : ĵτ(X 1, . . . ,X τ) = i⋆

}
≥ Ω(N).

Proof of Lemma G.2. Consider a more abstract process, which we claim captures the evolution of
X τ . Let i⋆ ∈ [N ], and let A1 = [N ]. We consider a sequence of sets {Aτ}τ≥1 evolving according to
the following process, parameterized by a sequence of functions

{
gτ : (2[N ])⊗τ → [N ] ∪ {⊥}

}
τ≥1

and index i⋆ ∈ [N ].

For τ ≥ 1:

• If gτ(A1, . . . , Aτ) =⊥, Aτ+1 ← Aτ .

• If gτ(A1, . . . , Aτ) ̸=⊥, let Aτ+1 = Aτ \ {gτ(A1, . . . , Aτ)} if gτ(A1, . . . , Aτ) ̸= i⋆, and let
Aτ+1 ← Aτ otherwise.
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We claim that there exists i⋆ ∈ [N ] such that gs(A1, . . . , As) ̸= i⋆ for all s < N under this process.
To see this define a set Xτ inductively: Starting from X1 = [N ], set Xτ+1 ← Xτ \ gτ(X1, . . . , Xτ)
if gτ(X1, . . . , Xτ) ̸=⊥, and set Xτ+1 ← Xτ otherwise; note that this process does not depend on
the choice i⋆, since gτ itself does not depend on i⋆.

For any τ , observe that for any i ∈ Xτ , if we set i⋆ = i, then gs(A1, . . . , As) ̸= i⋆ for all s < τ , and
so Aτ = Xτ . It follows that as long as Xτ ̸= ∅, we can choose i⋆ such that gs(A1, . . . , As) ̸= i⋆ for
all s < τ . Since Xτ shrinks by at most one element per iteration, it follows that this is possible for
all τ < N .

It follows immediately from Lemma G.2 that by choosing i⋆ as guaranteed by the lemma, we have

T∑
t=1

(f t(xt)− fi⋆(x
t))2 ≥ ⌊βOff⌋+ 1

8
· Ω(min {N,K})

≥ Ω(min {N(βOff + 1), T}).

Theorem 3.3′ (Impossibility of memoryless algorithms for OEOE; proper variant). Consider the
binary classification setting with Z = Y = {0, 1} and loss D0/1(·, ·). For any N ∈ N and βOff ≥ 0,
there exists an instance (X ,Y,Z,K,F) with |F| = |X | = N such that for any memoryless oracle-
efficient algorithm that is (i) proper, and (ii) time-invariant, there exists a sequence of covariates
(x1, . . . , xT ) and a proper offline oracle AlgOff with parameter βOff such that E

[
EstOn

D (T )
]
≥

Ω(min {N(βOff + 1), T}).
Proof of Theorem 3.3′. Given a parameter N ∈ N, we consider the instance (X ,Y,Z,K,F)
given by X = {xi}i∈[N ], Z = Y = {0, 1}, D = D0/1 and K(z) = 1z , with parameter space
F := {fi}i∈[N ] given by

fi(xj) = 1(j ≥ i).

Let any memoryless oracle-efficient algorithm defined by prediction map F 1 = · · · = F T = F be
given. We lower bound the algorithm’s online estimation error by considering two cases.

Case 1: There exists a parameter fi such that the distribution µi = F (fi) satisfies µi(fi) < 1/2. We
consider two sub-cases of Case 1. The first subcase is where µi({fj : j > i}) > 1/4. In this case,
we choose the sequence of covariates as x1 = · · · = xT = xi, set f⋆ = fi, and choose AlgOff to be
the offline estimation oracle that sets f̂ 1 = · · · = f̂T = fi. With this choice, the offline estimation
error for the oracle satisfies

∀t ∈ [T ],
∑
s<t

D0/1

(
f⋆(xs), f̂ t(xs)

)
=
∑
s<t

D0/1(fi(x
s), fi(x

s)) = 0.

However, the online estimation error satisfies

T∑
t=1

Ef̄∼µt

[
D0/1

(
f⋆(xt), f̄(xt)

)]
=

T∑
t=1

Ef̄∼µi

[
D0/1

(
fi(xi), f̄(xi)

)]
≥

T∑
t=1

∑
j>i

µi(fj)D0/1(fi(xi), fj(xi))

=

T∑
t=1

∑
j>i

µi(fj)D0/1(fi(xi), fi+1(xi))

≥ 1

4

T∑
t=1

D0/1(fi(xi), fi+1(xi)) = T/4.
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The second sub-case of Case 1 is where µi({fj : j > i}) ≤ 1/4. This, combined with the fact that
µi(fi) < 1/2, gives µi({fj : j < i}) > 1/4. In this sub-case, we choose the sequence of covariates
as x1 = · · · = xT = xi−1, set f⋆ = fi, and choose AlgOff to be the offline estimation oracle that
sets f 1 = · · · = fT = fi. In this case, the offline estimation error is zero:

∀t ∈ [T ],
∑
s<t

D0/1

(
f⋆(xs), f̂ t(xs)

)
=
∑
s<t

D0/1(fi(x
s), fi(x

s)) = 0.

In addition, the online estimation error is lower bounded by
T∑

t=1

Ef̄∼µt

[
D0/1

(
f⋆(xt), f̄(xt)

)]
=

T∑
t=1

Ef̄∼µi

[
D0/1

(
fi(xi−1), f̄(xi−1)

)]
≥

T∑
t=1

∑
j<i

µi(fj)D0/1(fi(xi−1), fj(xi−1))

=

T∑
t=1

∑
j<i

µi(fj)D0/1(fi(xi−1), fi−1(xi−1))

≥ 1

4

T∑
t=1

D0/1(fi(xi−1), fi−1(xi−1)) = T/4.

Case 2: For all parameter fi ∈ F , the distribution µi = F (fi) has µi(fi) ≥ 1/2.

In this case, we choose x1, . . . , xT by repeating each of the covariates ⌊βOff⌋+ 1 number of times in
increasing order by their index, and choose the offline estimation oracle AlgOff to return f1, . . . , fN
in the same block-wise but with the index offset by 1.

Formally, let τt = ⌈t/(⌊βOff⌋ + 1)⌉ denote the index of the block that round t belongs to, so that
τ1 = · · · = τ⌊βOff⌋+1 = 1, τ⌊βOff⌋+2 = · · · = τ2⌊βOff⌋+2 = 2 and so on. We choose xt = xmin{τt,N},
and choose the offline oracle AlgOff to set f̂ t = fmin{τt,N}. Finally, we set f⋆ = fN .

We have that for all t, the offline estimation error of the oracle is bounded as.∑
s<t

D0/1

(
f̂ t(xs), f⋆(xs)

)
=
∑
s<t

D0/1

(
fN (xmin{τs,N}), fmin{τt,N}(xmin{τs,k})

)
=

∑
s<t,τs=τt

1 ≤ ⌊βOff⌋ ≤ βOff .

However, the online estimation error is lower bounded by
T∑

t=1

Ef̄∼µt

[
D0/1

(
f⋆(xt), f̄(xt)

)]
≥ 1

2

T∑
t=1

D0/1

(
fN (xmin{τt,N}), fmin{τt,N}(xmin{τt,N})

)
≥ Ω(min {T,N(βOff + 1)}).

Proposition D.1 (Upper bound for memoryless OEOE). For any instance (X ,Y,Z,K,F),
metric-like loss D, and offline oracle AlgOff with parameter βOff , the algorithm that returns
f̄ t = f̂ t := Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1) has online estimation error EstOn

D (T ) ≤
O((βOff + 1)|X | log T ).
Proof of Proposition D.1. The proof is very similar to the second part of the proof of Lemma G.1.

For each x ∈ X , define Nt−1(x) =
t−1∑
s=1

1(xs = x). Then we can write the online estimation error as

T∑
t=1

D
(
f̂ t(xt), f⋆(xt)

)
=

T∑
t=1

∑
x∈X

1(x = xt)

Nt−1(x) ∨ 1
· (Nt−1(x) ∨ 1) · D

(
f̂ t(x), f⋆(x)

)
,
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As a consequence of the offline estimation guarantee for f̂ t, we have that

(Nt−1(x) ∨ 1)D
(
f̂ t(x), f⋆(x)

)
≤

(
t−1∑
s=1

D
(
f̂ t(xs), f⋆(xs)

))
∨ 1 ≤ βOff + 1.

Combining this with the preceding inequality gives

T∑
t=1

D
(
f̂ t(xt), f⋆(xt)

)
≤ (βOff + 1)

T∑
t=1

∑
x∈X

1(x = xt)

Nt−1(x) ∨ 1
.

Now, for any x ∈ X , define tx := min {t ≤ T : xt = x} if this set is not empty, and let tx = T
otherwise. From this definition and the fact that 1 + 1/2 + · · ·+ 1/T ≤ 1 + log T , we have that

∑
x∈X

T∑
t=1

1(x = xt)

Nt−1(x) ∨ 1
=
∑
x∈X

(
tx∑
t=1

1(x = xt)

Nt−1(x) ∨ 1
+

T∑
t=tx+1

1(x = xt)

Nt−1(x) ∨ 1

)

≤
∑
x∈X

1 +

NT−1(x)∑
i=1

1

i


≤ 2|X |+ |X | log T ≤ 3|X | log T.

We conclude that
T∑

t=1

D
(
f⋆(xt), f̂ t(xt)

)
≤ 3(βOff + 1) · |X | log T.

G.3 Proofs from Appendix D
Theorem D.1 (Reduction from oracle-efficient online estimation to delayed online learning). Let D
be any convex, metric-like loss. Suppose we run Algorithm 2 with delay parameter N ∈ N and a
delayed online learning algorithm ADOL for the class F . Then for all γ ≥ 1, Algorithm 2 ensures
that

E
[
EstOn

D (T )
]
≤ O(CDγ(N + βOffT/N) +RDOL(T,N, γ)), (14)

with any offline oracle AlgOff with parameter βOff ≥ 0, where

RDOL(T,N, γ) :=

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ · min

f∈F

T∑
t=1

ℓt(f) (15)

is the regret of ADOL for the sequence of losses constructed in Algorithm 2.

Proof of Theorem D.1. Using the metric-like loss property, we can bound the online estimation
error of Algorithm 2 by

T∑
t=1

Ef̄∼µt

[
D
(
f̄(xt), f⋆(xt)

)]
≤ CD ·

T∑
t=1

Ef̄∼µt

[
D
(
f̄(xt), f̃ t(xt)

)]
+ CD ·

T∑
t=1

D
(
f̃ t(xt), f⋆(xt)

)
.

By the regret guarantee for the delayed online learning algorithm ADOL, we have

T∑
t=1

Ef̄∼µt

[
D
(
f̄(xt), f̃ t(xt)

)]
≤ γ ·

T∑
t=1

D
(
f̃ t(xt), f⋆(xt)

)
+RDOL(T,N, γ)
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since f⋆ ∈ F . Combining these observations, we have that

T∑
t=1

Ef̄∼µt

[
D
(
f̄(xt), f⋆(xt)

)]
≤ CD(γ + 1)

T∑
t=1

D
(
f̃ t(xt), f⋆(xt)

)
+RDOL(T,N, γ).

Finally, from the definition of f̃ t and the convexity of the loss D, we have

T∑
t=1

D
(
f̃ t(xt), f⋆(xt)

)
≤ N +

1

N

T−N∑
t=1

t+N∑
i=t+1

D
(
f̂ i(xt), f⋆(xt)

)

= N +
1

N

T∑
t=2

∑
i<t

D
(
f̂ t(xi), f⋆(xi)

)
≤ N +

βOffT

N
,

where the final line uses the offline estimation guarantee for AlgOff . This completes the proof.

Lemma D.1. Consider the delayed online learning setting with a delay parameter N . There exists
an algorithm that achieves

RDOL(T,N, 2) =

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− 2 · min

f∈F

T∑
t=1

ℓt(f) ≤ 2N · log |F|

for any sequences of losses ℓ1, . . . , ℓT ∈ [0, 1].

Proof of Lemma D.1. This result follows using Lemma G.3 with γ = 2, choosing AOL to be the
exponential weights algorithm described in Corollary 2.3 of Cesa-Bianchi and Lugosi [17], which has

ROL(T, γ) ≤ O(log |F|)

for all T ∈ N and γ ≥ 1.

Theorem D.2 (Characterization of oracle-efficient learnability for binary classification). Consider a
binary classification instance (X ,Y,Z,K,F) withZ = Y = {0, 1}, D = D0/1 andK(z) = 1z . For
any class F and βOff ≥ 0, there exists an oracle-efficient algorithm that achieves online estimation
error O(

√
βOffLdim(F) · T log T + Ldim(F) log T ). On the other hand, in the worst-case any

algorithm must suffer at least Ω(Ldim(F)) online estimation error.

Proof of Theorem D.2. For the lower bound we recall that for βOff = 0, Lemma 21.6 of [57] states
that any algorithm (oracle-efficient or not) has to suffer Ω(Ldim(F)) online estimation error in the
worst case.

For the remainder of the proof, we focus on establishing the upper bound. For any set of parameters
F : X → ∆({0, 1}), define the majority vote function Majority(F) for a class F via

Majority(F)(x) = 1

∑
f∈F

f(1 | x) ≥
∑
f∈F

f(0 | x)


for all x ∈ X . We will show that Algorithm 4 (a variant of Algorithm 2 that replaces averaging with
a majority vote), with a properly chosen delayed online learning algorithm ADOL, can obtain

O
(√

βOffLdim(F) · T log T + Ldim(F) log T
)

online estimation error.
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Algorithm 4 Reduction to delayed online learning for binary loss

1: input: Offline estimation oracle AlgOff with parameter βOff ≥ 0, delay parameter N ∈ N,
delayed online learning algorithm ADOL for class F .

2: for t = 1, 2, . . . , T do
3: Receive f̂ t from offline estimation algorithm.
4: if t > N then
5: Let f̃ t−N = Majority

(
{f̂ i}ti=t−N+1

)
. // This is the only different step compared

to Algorithm 2.

6: Let ℓt−N(f) = D0/1

(
f̃ t−N(xt−N), f(xt−N)

)
and pass ℓt−N(·) to ADOL as the delayed

feedback.
7: Let µt = At

DOL(ℓ
1, .., ℓt−N) be the delayed online learner’s prediction distribution.

8: Predict with f̄ t ∼ µt and receive xt.

Let γ ≥ 1 be fixed, and consider any delayed online learning algorithm ADOL that achieves
T∑

t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ · min

f∈F

T∑
t=1

ℓt(f) ≤ RDOL(T,N, γ).

for any sequence of losses in the delayed online learning setting with delay N (i.e., where we receive
loss ℓt at time t+N for some N ≥ 0).

We proceed to bound the regret of Algorithm 4. Since the loss D0/1 is metric-like, the online
estimation error is upper bounded by
T∑

t=1

Ef̄∼µt

[
D0/1

(
f̄(xt), f⋆(xt)

)]
≤

T∑
t=1

Ef̄∼µt

[
D0/1

(
f̄(xt), f̃ t(xt)

)]
+

T∑
t=1

D0/1

(
f̃ t(xt), f⋆(xt)

)
.

Next, the guarantee of ADOL ensures that
T∑

t=1

Ef̄∼µt

[
D0/1

(
f̄(xt), f̃ t(xt)

)]
≤ γ

T∑
t=1

D0/1

(
f̃ t(xt), f⋆(xt)

)
+RDOL(T,N, γ),

since f⋆ ∈ F . Combining these observations, we have that
T∑

t=1

Ef̄∼µt

[
D0/1

(
f̄(xt), f⋆(xt)

)]
≤ (γ + 1)

T∑
t=1

D0/1

(
f̃ t(xt), f⋆(xt)

)
+RDOL(T,N, γ).

Finally, we observe that for each step t, if D0/1

(
f̃ t(xt), f⋆(xt)

)
= 1, it means that least N/2 of the

predictors f̂ t+1, . . . , f̂ t+N must have predicted f⋆(xt) incorrectly. This implies that

D0/1

(
f̃ t(xt), f⋆(xt)

)
≤ 2

N

t+N∑
i=t+1

D0/1

(
f̂ i(xt), f⋆(xt)

)
.

But since the offline estimation assumption states that∑
i<t

D0/1

(
f̂ t(xi), f⋆(xi)

)
≤ βOff ,

this implies that
T∑

t=1

D0/1

(
f̃ t(xt), f⋆(xt)

)
≤ N +

2

N

T−N∑
t=1

t+N∑
i=t+1

D0/1

(
f̂ i(xt), f⋆(xt)

)

= N +
2

N

T∑
t=2

∑
i<t

D0/1

(
f̂ t(xi), f⋆(xt)

)
≤ N +

2βOffT

N
.

38



We conclude that
T∑

t=1

Ef̄t∼µt

[
D0/1

(
f̄ t(xt), f⋆(xt)

)]
≤ O(γ(N + βOffT/N) +RDOL(T,N, γ)).

To complete the proof, we set γ = 2 and chooseAOL to be the algorithm described in Theorem 21.10
of Shalev-Shwartz and Ben-David [57], which (by incorporating the same technique18 as Corollary
2.3 of Cesa-Bianchi and Lugosi [17]), ensures that

ROL(T/N, 2) ≤ O(Ldim(F) log T ).
Then by Lemma G.3 with γ = 2, we have

RDOL(T,N, 2) ≤ O(N · Ldim(F) log T ).

Setting N =
√
βOffT/(Ldim(F) log T ) ∨ 1, this yields

T∑
t=1

Ef̄t∼µt

[
D
(
f̄ t(xt), f⋆(xt)

)]
≤ O

(√
βOffLdim(F) · T log T + Ldim(F) log T

)
.

G.3.1 Supporting Lemmas

Algorithm 5 Reduction from delayed online learning to non-delayed online learning

1: input: Delay parameter N ∈ N, base online learning algorithm AOL.
2: Initialize N copies A1

OL, . . . ,AN
OL of the base algorithm.

3: for t = 1, . . . , T do
4: if t ≤ N then
5: Let µt = At

OL(∅).
6: else
7: Let i ≡ t mod N where i ∈ [N ].
8: Receive loss ℓt−N .
9: Feed ℓt−N to Ai

OL.
10: Let µt = Ai

OL(ℓ
i, ℓi+N , . . . , ℓt−N).

11: Play f̄ t ∼ µt.

The following lemma is a standard result [67, 42, 35, 47] which shows that the delayed online learning
problem setting in Appendix D can be generically reduced to non-delayed online learning. The idea
behind the reduction, which is displayed in Algorithm 5, is as follows. Given a delay parameter
N ∈ N, we run N copies A1

OL, . . . ,AN
OL of a given “base” online learning algorithm AOL for a class

F over disjoint subsequences of rounds. The following lemma gives a guarantee for this reduction

Lemma G.3 (Delayed online learning reduction). Let AOL be a base online learning algorithm for
the class F with the property that for any sequence of losses ℓ1, . . . , ℓT in the non-delayed online
learning setting and any γ ≥ 1,

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ ·min

f∈F

T∑
t=1

ℓt(f) ≤ ROL(T, γ).

If we run Algorithm 5 with delay parameter N ∈ N, then for all γ ≥ 1, the algorithm ensures that

RDOL(T,N, γ) ≤
N∑
i=1

T/N∑
j=1

Ef̄i+N·j∼µi+N·j
[
ℓi+N·j(f̄ i+N·j)

]
− γ · min

f∈F

T/N∑
j=1

ℓi+N·j(f)


≤ N ·ROL(T/N, γ)

for online learning with delay N .
18The algorithm described in Theorem 21.10 of Shalev-Shwartz and Ben-David [57] applies the exponential

weights algorithm to a specialized class of experts, and the guarantee obtained is for ROL(T, 1). The analysis
from Corollary 2.3 of Cesa-Bianchi and Lugosi [17] shows that for γ > e/(e− 1), the same algorithm obtains
ROL(T, 2) scaling with O(Ldim(F) log T ). We omit the details here since it is a standard argument.
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Proof of Lemma G.3. By the guarantee of AOL, we have that for all i ∈ [N ],

T/N∑
j=1

Ef̄i+N·j∼µi+N·j
[
ℓi+N·j(f̄ i+N·j)

]
− γ · min

f∈F

T/N∑
j=1

ℓi+N·j(f) ≤ ROL(T/N, γ).

Summing up over all i ∈ [N ], we obtain

N ·ROL(T/N, γ) =

N∑
i=1

T/N∑
j=1

Ef̄i+N·j∼µi+N·j
[
ℓi+N·j(f̄ i+N·j)

]
− γ ·

N∑
i=1

min
f∈F

T/N∑
j=1

ℓi+N·j(f)

≥
N∑
i=1

T/N∑
j=1

Ef̄i+N·j∼µi+N·j
[
ℓi+N·j(f̄ i+N·j)

]
− γ ·min

f∈F

N∑
i=1

T/N∑
j=1

ℓi+N·j(f)

=

T∑
t=1

Ef̄t∼µt

[
ℓt(f̄ t)

]
− γ ·min

f∈F

T∑
t=1

ℓt(f).

H Proofs from Section 4
H.1 Proofs from Section 4.1
Theorem 4.1 (Computational lower bound for OEOE). Assume the existence of one-way functions.19

There exists a sequence of polynomially computable classes (F1,F2, . . . ,Fn, . . . ), along with a
sequence of poly(n)-output description length offline oracles with βOff = 0 associated with each Fn,
such that for any fixed polynomials p, q : N→ N and all n ∈ N sufficiently large, any oracle-efficient
online estimation algorithm with runtime bounded by p(n) must have E[EstOn

D (T )] ≥ T/4 for all
1 ≤ T ≤ q(n). At the same time, there exists an inefficient algorithm that achieves E[EstOn

D (T )] ≤
O(
√
n) for all T ∈ N.

Proof of Theorem 4.1. We frame the example proposed by Blum [14] in their Theorem 3.2 (see also
Bun [15]) in our setting. For any integer n ≥ 1, let the covariate space Xn be Xn = {0, 1}n, and set
Z = Y = {0, 1} and K(z) = 1z . We define a class Fn =

{
fs : s ∈ {0, 1}

√
n
}

with

fs(x) :=

{
1 if x ∈ cs,

0 otherwise,

for a certain collection of subsets {cs ∈ Xn}s∈{0,1}
√

n defined in Definition 2 of Blum [14], which is
constructed based on cryptographic functions using the assumption of existence of one-way functions.
The precise definition will not be important. The properties we will use are:

1. The value fs(x) can be computed in poly(n) time for any x ∈ Xn.

2. For any polynomials p(n), q(n), any (possibly randomized) online estimation algorithm
(oracle-efficient or not) which runs in time p(n), and any time step T ≤ q(n), for
sufficiently large n where q(n) ≪ 2

√
n,20 there exists s ∈ {0, 1}

√
n and a sequence

x1
s, . . . , x

2
√

n−1
s , x2

√
n

s (the specific definition of this sequence can be found in Blum [14])
such that the online estimation error under this sequence when f⋆ = fs is at least T/4
in expectation. Our lower bound construction for any oracle efficient online estimation
algorithm with runtime bounded by p(n) in time step bounded by 1 ≤ T ≤ q(n) will choose
the aforementioned covariate sequence as the covariates revealed with the aforementioned
function as the true parameter, i.e., xτ = xτ

s for τ ∈ [T ] and f⋆ = fs.

19Existence of one-way functions is a standard and widely believed complexity-theoretic assumptions, which
forms the basis of modern cryptography [30].

20The argument is essentially asymptotic, since the choice of n is determined by the power of the one-way
function.
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It is straightforward to see that the sequence (F1,F2...,Fn, ...) admits polynomial description length
as claimed, since log |Fn| =

√
n. We are left to verify that there is an offline oracle that achieves

βOff = 0 with poly(n)-output description length, yet does not provide any information not already
available to the learner in the setting of Blum [14] (recall that in the protocol of Blum [14], the learner
gets to see the covariates x1,. . . ,xt and the true labels y1,. . . ,yt−1 at time step t before making their
prediction, but does not receive any other feedback).

Consider the following offlines oracle Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1). The oracle output f̂ t is a

circuit that, on input x, compares x sequentially with x1, . . . , xt. If x is ever equal to xτ for some
τ ∈ [t− 1], the circuit will output yτ . If x is not equal to any xτ for τ ∈ [t− 1], the circuit outputs 0.
Such a Boolean circuit can be constructed with polynomial size in n because each xτ has length n
for τ ∈ [t− 1] and t ≤ T ≤ q(n) by assumption. It is easy to see that this oracle achieves βOff = 0,
yet does not provide any additional information about target parameter f⋆ beyond what is available
in the model of Blum [14]. Combining all the above, we complete our lower bound proof.

Lastly, we observe that since the setting we consider is an instance of noiseless binary classification,
the classical halving algorithm achieves an online estimation error bound of O(log |Fn|) = O(

√
n)

[17].

H.2 Proofs from Section 4.2
In this section, we prove Theorem 4.2 through four layers of reductions through different variants
of the online estimation setting. In Appendix H.2.1, we first introduce the relevant settings and the
describe reductions through them. We then combine these reductions to prove Theorem 4.2. Finally,
in Appendix H.2.2, we prove each of the four reduction results.

H.2.1 Proof of Theorem 4.2
Theorem 4.2. Let ACDE be an arbitrary (unrestricted) online estimation algorithm that satisfies
Eq. (4) and has runtime Time(F , T ). Then for any N ∈ N, there exists an oracle-efficient online
estimation algorithm that achieves estimation error

E
[
EstOn

H (T )
]
≤ Õ(CF log V · βOffT/N +N · (RCDE(T ) + CF log V ))

with runtime poly(Time(F , T ), log |F|, log |X |, T ), where βOff ≥ 0 is the offline estima-
tion parameter. The distributions µ1, . . . , µT produced by the algorithm have support
size poly(log |F|, log |X |, T ). As a special case, if the online estimation guarantee
for the base algorithm holds with RCDE(T ) ≤ C ′

F log T for some problem-dependent
constant C ′

F ≥ 1, then by choosing N appropriately, we achieve E
[
EstOn

H (T )
]
≤

Õ
(
(CF (CF + C ′

F )βOff)
1/2 log V · T 1/2 + (CF + C ′

F ) log V
)
.

Proof of Theorem 4.2. The proof of Theorem 4.2 is algorithmic, and is based on several layers of
reductions.

• First, using the scheme in Appendix D, we reduce the problem of oracle-efficient
online estimation to delayed online learning with the loss function ℓt−N(f) =

D
(
f̃ t−N(xt−N), f(xt−N)

)
defined in Algorithm 2, where f̃ t−N = 1

N

∑t
i=t−N+1 f̂

i is an
average of offline estimators and N ∈ N is a delay parameter.

• Then, using a standard reduction [67, 42, 35, 47], we reduce the delayed online learning
problem above to a sequence of N non-delayed online learning problems, with the same
sequence of loss functions; both this and the preceding step are computationally efficient.

• To complete the reduction, we argue that the base algorithm can be used to solve the online
learning problem above in an oracle-efficient fashion. To do this, we simulate interaction
with the environment by sampling fictitious outcomes yt ∼ f̃ t(xt) from the averaged offline
estimators and passing them into the base algorithm. We argue that the fictitious outcomes
approximate the true outcomes well through a change-of-measure argument.

Combining the above, we conclude that given any base algorithm that efficiently performs online
estimation with outcomes sampled from the target parameter f⋆, we can efficiently construct a
computationally efficient and oracle-efficient algorithm. In more detail, we introduce four layers of
reduction in reverse order from CDE to OEOE.
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Conditional Density Estimation with Reference Outcomes (CDEwRO). The bottom-most
reduction we consider is from a setting we refer to as Conditional Density Estimation with Reference
Outcomes (CDEwRO) to the (realizable) CDE setting. CDEwRO is similar to CDE, but with the
following difference. Instead of receiving outcomes y1, . . . , yT sampled from the true model f⋆(xt)

directly, in CDEwRO, the outcome is sampled from a reference parameter f̃ t(xt) which is guaranteed
to be close to f⋆ in a certain sense. Moreover, the covariates and the reference parameters f̃ 1,. . . ,f̃T

are selected obliviously (i.e. the entire sequence is chosen by the adversary before the online learning
protocol begins).

Algorithm 6 Reduction from CDEwRO to CDE

1: input: Time T ∈ N, base algorithm ACDE.
2: Nature selects T covariates x1, . . . , xT along with the reference parameters f̃ 1, . . . , f̃T .
3: for t = 1, . . . , T do
4: Learner predicts f̄ t ∼ µt = ACDE(x

1, . . . , xt−1, y1, . . . , yt−1).
5: Outcome yt ∼ f̃ t(xt) is sampled and revealed to the learner with the covariate xt.

Our reduction from CDEwRO to CDE is given in Algorithm 6. The main guarantee for this reduction
is as follows.

Lemma H.1. For any fixed ζ ≥ 0, suppose
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
≤ ζ. Let

RCDEwRO(T, ζ) := 3CF log V · ζ +RCDE(T ) + 2CF · log(CFT ), (25)

where RCDE(T ) is defined as in Eq. (4) by the assumption on ACDE. Then Algorithm 6 achieves an
expected online estimation error upper bound of

T∑
t=1

E
[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
≤ RCDEwRO(T, ζ)

in the CDEwRO setting, and has runtime poly(Time(F , T ), T ) .

The key technique in the proof of this lemma is a change of measure argument based on Donsker-
Varadhan [46].

Conditional Density Estimation with Reference Parameters (CDEwRP). The next reduction in
our stack is from a setting we refer to as Conditional Density Estimation with Reference Parameters
(CDEwRP) to the CDEwRO setting above. CDEwRP is identical to CDEwRO, except that in
the former setting, the learner directly observes the reference parameter f̃ t instead of observing
yt ∼ f̃ t(xt) as in CDEwRO.

A second difference is that we allow the adversary in the CDEwRP setting to be adaptive , while our
definition of the CDEwRO setting only allows for oblivious adversaries. Thus, the reduction we
consider serves two purposes:

• Simulating the CDEwRO feedback model through sampling.

• Reducing the adaptive adversary to an oblivious one.

The reduction from adaptive adversaries to oblivious follows and improves upon the result from [31],
and may be of independent interest.

Our reduction from CDEwRP to CDEwRO is displayed in Algorithm 6, and takes as input an
algorithm ACDEwRO(·; ·) for the CDEwRO setting, where At

CDEwRO(T ; ·) denotes the algorithm’s
output at round t ≤ T as a function of the history. The main guarantee for the algorithm is as follows.

Lemma H.2. For any fixed ζ ≥ 0, suppose
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
≤ ζ. Let

RCDEwRP(T, ζ, ε) := 2RCDEwRO(T, ζ) + ε, (26)
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Algorithm 7 Reduction from CDEwRP to CDEwRO

1: input: Time T ∈ N, accuracy parameter ε > 0, algorithm ACDEwRO.
2: Let L = O(T log(T |F||X |)/ε).
3: for t = 1, . . . , T do
4: for i = 1, . . . , L do
5: for s = 1, . . . , t− 1 do
6: Learner samples ys,t

i ∼ f̃ s(xs).
7: Learner computes f̄ t

i = ACDEwRO(T ;x
1,t

i , . . . , xt−1,t

i , y1,t

i , . . . , yt−1,t

i ).
8: Learner predicts via f̄ t ∼ µt = Unif(

{
f̄ t
i

}
i∈[L]

).

9: Nature selects and reveals the covariate xt and the reference parameter f̃ t based on µt.

where RCDEwRO(T, ζ) is defined as in Eq. (25). Then Algorithm 7 with parameter ε > 0 achieves an
expected online estimation error upper bound of

T∑
t=1

E
[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
≤ RCDEwRP(T, ζ, ε)

in the CDEwRP setting, and runs in time poly(Time(F , T ), T, log |F|, log |X |, 1/ε) . The distribu-
tions µ1, . . . , µT produced by the algorithm have support size poly(log |F|, log |X |, T, 1/ε).

Conditional Density Estimation with Delayed Reference Parameters (CDEwDRP). Our next
reduction is from a setting we refer to as Conditional Density Estimation with Delayed Reference
Parameters (CDEwDRP) to the CDEwRP setting. CDEwDRP is identical to CDEwRP, except that
the reference function f̃ t is revealed only at round t+N instead of at round t, for a delay parameter
N ∈ N.

Algorithm 8 Reduction from CDEwDRP to CDEwRP

1: input: Time T ∈ N, delay time N ∈ N, algorithm ACDEwRP.
2: Initialize N copies of the algorithm ACDEwRP as A1

CDEwRP, . . . ,AN
CDEwRP.

3: for t = 1, . . . , T do
4: Learner predicts f̄ t ∼ µt = Ai

CDEwRP(T/N, 1/N ;xi, xi+N , . . . , xt−N , f̃ i, f̃ i+N , . . . , f̃ t−N)
where i ≡ t mod N .

5: Nature selects and reveals the covariate xt and the reference parameter f̃ t−N based on µt.

Our reduction from CDEwDRP to CDEwRP is displayed in Algorithm 7, and takes as input an
algorithm ACDEwRP(·; ·) for the CDEwRP setting, where At

CDEwRP(T, ε; ·) denotes the algorithm’s
output at round t ≤ T with accuracy parameter ε > 0 (cf. Algorithm 7), as a function of the history.
The main guarantee for the algorithm is as follows.

Lemma H.3. For any fixed ζ ≥ 0, suppose
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
≤ ζ. Let

RCDEwDRP(T,N, ζ) := sup

ζ1,...,ζN≥0,
N∑

i=1
ζi≤ζ

N∑
i=1

RCDEwRP(T/N, ζi, 1/N), (27)

where RCDEwRP(T/N, ζi, 1/N) is defined as in Eq. (26). Then Algorithm 8 achieves an expected
online estimation error upper bound of

T∑
t=1

E
[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
≤ RCDEwDRP(T,N, ζ)

in the CDEwDRP setting, and has runtime poly(Time(F , T ), T, log |F|, log |X |). The distributions
µ1, . . . , µT produced by the algorithm have support size poly(log |F|, log |X |, T ).
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Algorithm 9 Reduction from OEOE to CDEwDRP

1: input: Time T ∈ N, offline estimation oracle AlgOff with parameter βOff ≥ 0, delay parameter
N ∈ N, CDEwDRP algorithm AODEwDRP.

2: for t = 1, . . . , T do
3: Receive f̂ t = Algt

Off(x
1, . . . , xt−1, y1, . . . , yt−1).

4: Learner computes reference parameter f̃ t−N = 1
N

t∑
i=t−N+1

f̂ i.

5: Learner predicts f̄ t ∼ µt = AODEwDRP(T,N ;x1, x2, . . . , xt, f̃ 1, f̃ 2, . . . , f̃ t−N).
6: Nature selects and reveals the covariate xt based on µt.

Oracle-Efficient Online Estimation (OEOE). Our final reduction reduces the Oracle-Efficient
Online Estimation setting (OEOE) to the CDEwDRP setting described above. This reduction, which
is displayed in Algorithm 8, is a variant of the approach used in Theorem D.1. The reduction takes
as input a CDEwDRP algorithm AODEwDRP(·; ·), where At

ODEwDRP(T,N ; ·) denotes the algorithm’s
output at round t ≤ T with delay parameter N , as a function of the history.

Lemma H.4. Algorithm 9 achieves an expected online estimation error upper bound of

T∑
t=1

E
[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
≤ RCDEwDRP(T,N,N + βOffT/N)

in the OEOE setting, and has runtime poly(Time(F , T ), T, log |F|, log |X |). The distributions
µ1, . . . , µT produced by the algorithm have support size poly(log |F|, log |X |, T ).

Completing the proof of Theorem 4.2. To prove Theorem 4.2, we compose all of the preceding
reductions, with N left as a free parameter temporarily. We first apply Lemma H.4 to reduce from
the OEOE setting to the CDEwDRP setting, with the guarantee that

T∑
t=1

E
[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
≤ RCDEwDRP(T,N,N + βOffT/N).

Then by Lemma H.3, we can reduce the CDEwDRP setting to the CDEwRP setting, with the
guarantee by Eq. (27) that

RCDEwDRP(T,N,N + βOffT/N) = sup
N∑

i=1
ζi≤N+βOffT/N

N∑
i=1

RCDEwRP(T/N, ζi, 1/N).

Then apply Lemma H.2 N times with T , ζ, and ε in the Lemma chosen to be T/N , ζi, and 1/N
respectively for each i ∈ [N ], we can reduce the CDEwRP setting to the CDEwRO setting with
guarantee by Eq. (26) that

sup
N∑

i=1
ζi≤N+βOffT/N

N∑
i=1

RCDEwRP(T/N, ζi, 1/N) = 1 + sup
N∑

i=1
ζi≤N+βOffT/N

2

N∑
i=1

RCDEwRO(T/N, ζi).
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Consequently, apply Lemma H.1 N times with T and ζ in the Lemma chosen to be T/N and ζi for
each i ∈ [N ], we can reduce the CDEwRO setting to the CDE setting with guarantee by Eq. (25) that

sup
N∑

i=1
ζi≤N+βOffT/N

N∑
i=1

RCDEwRO(T/N, ζi)

≤ sup
N∑

i=1
ζi≤N+βOffT/N

N∑
i=1

(3CF log V · ζi +RCDE(T ) + 2CF · log(CFT ))

≲ CF log V ·
(
N +

βOffT

N

)
+N · (RCDE(T ) + CF · log(CFT ))

= CF log V · βOffT

N
+N · (RCDE(T ) + CF · log(V CFT )). (28)

By choosing N =
√

CFβOffT ·log V
RCDE(T )+CF ·log(V CFT ) ∨ 1, we can bound the expression in (28) as

E[EstH(T, βOff)] ≲
√

CFβOffT (RCDE(T ) + CF · log(V CFT )) log V +RCDE(T ) + CF · log(V CFT )

≤
√

CFβOffTRCDE(T ) log V + CF
√

βOffT log(V CFT ) log V

+RCDE(T ) + CF · log(V CFT ).

Finally, under the assumption that RCDE(T ) ≤ C ′
F log T , the bound above can be further simplified

as

E[EstH(T, βOff)] ≲ (CF (CF + C ′
F )βOff log V log(V CFT ))

1/2T 1/2 + (CF + C ′
F ) log(V CFT ).

H.2.2 Proofs for supporting lemmas
Proof of Lemma H.1. For Algorithm 6, denote the randomness of the sequence (y1:T , µ1:T ) under
f⋆ ∈ F and (f̃ 1:T ) by Pf⋆

and Pf̃1:T

respectively. The data generating process for (x1:T , y1:T ) in the
CDEwRO setting implies that

EPf̃1:T

[
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]]
= E

[
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]]
.

By Donsker-Varadhan [46], we have that for all η > 0

1

η
DKL

(
Pf̃1:T

∥Pf⋆
)
≥ EPf̃1:T

[
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]]

− 1

η
logEPf⋆ exp

{
η

T∑
t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]}
. (29)

For any random variables X,Y, Z, we denote by DKL(PX ∥PY | Z) = EZ [DKL

(
PX|Z ∥PY |Z

)
]. We

further note that by the chain rule for KL divergence,

DKL

(
Pf̃1:T

∥Pf⋆
)
=

T∑
t=1

EPf̃1:T

[
DKL

(
Pf̃1:T

(xt,yt) ∥P
f⋆

(xt,yt) | x
1:t−1, y1:t−1

)]
=

T∑
t=1

DKL

(
f̃ t(xt) ∥ f⋆(xt)

)
,

where the second equality holds because yt follows f̃ t(xt) and f⋆(xt) respectively, and because
the conditional distribution of xt is identical under both laws due to the oblivious assumption of the
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covariates in the setting of CDEwRO. Then by the relation between KL and Hellinger (Lemma A.10
of [27]) and that 1 ≤ log V , we have
T∑

t=1

DKL

(
f̃ t(xt) ∥ f⋆(xt)

)
≤ (2 + log V ) ·

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
≤ 3 log V ·

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
,

where the last inequality is by V ≥ e. Combining all of the results so far and using (29), we have

E

[
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]]
≤ 3 log V

η
·

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
+

1

η
logEPf⋆ exp

{
η

T∑
t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]}
.

To proceed, using that for any postive random variable X , E[X] =
∫∞
0

P(X ≥ t)dt, we have

1

η
logEPf⋆ exp

{
η

T∑
t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]}

= RCDE(T ) +
1

η
logEPf⋆ exp

{
η

(
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
−RCDE(T )

)}

≤ RCDE(T ) +
1

η
logEPf⋆ exp

{
η

(
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
−RCDE(T )

)
+

}

= RCDE(T ) +
1

η
log

∫ ∞

0

Pf⋆

((
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
−RCDE(T )

)
+

≥ 1

η
log t

)
dt.

Recall the assumption
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
≤ ζ and let η = 1

CF
. We have

3 log V

η
·

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
+

1

η
logEPf⋆ exp

{
η

T∑
t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]}

≤ 3 log V

η
· ζ +RCDE(T )

+
1

η
log

∫ ∞

0

Pf⋆

((
T∑

t=1

Ef̄t∼µt

[
D2

H

(
f̄ t(xt), f⋆(xt)

)]
−RCDE(T )

)
+

≥ 1

η
log t

)
dt

≤ 3CF log V · ζ +RCDE(T ) + CF log

(
1 +

∫ eCF·T

1

1

t
dt

)
≤ 3CF log V · ζ +RCDE(T ) + 2CF · log(CFT ).

where the second inequality uses the assumption Eq. (4) on the algorithm.

Proof of Lemma H.2. Our result improves uses the proof technique from the adversarial-to-oblivious
reduction in Lemma 11 of Gonen et al. [31], but improves the result by a O(log T ) factor.

Consider the CDEwRP setting. Let Et[·] := E[· | x1:t−1, f̃ 1:t−1]. Let µs,t :=
Et[ACDEwRO(y

1,t

1 , . . . , ys−1,t

1 , x1,t

1 , . . . , xs−1,t

1 )] for all 1 ≤ s ≤ t ≤ T where the expectation is
taken over all the random variables y1,t

1 , . . . , ys−1,t

1 , x1,t

1 , . . . , xs−1,t

1 .

Then by Bernstein’s concentration inequality applied to µt (interpreted as an empirical approximation
to µt,t), conditioned on x1:t−1, f̃ 1:t−1, we have with probability at least 1− ε

2T , for all x′ ∈ X and
f ′ ∈ F ,

Et
f∼µt

[
D2

H(f(x), f
′(x))

]
≤ 2Et

f∼µt,t

[
D2

H(f(x), f
′(x))

]
+ ε/(2T ). (30)
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For any fixed t ∈ [T ] and all t′ such that t ≤ t′ ≤ T , the different trajectories
x1,t′

1 , . . . , xt−1,t′

1 , y1,t′

1 , . . . , yt−1,t′

1 are i.i.d. conditioned on x1:t−1, f̃ 1:t−1. Thus, we have

E
[
Et
f∼µt,t

[
D2

H(f(x
t), f⋆(xt))

]]
= E

[
Et+1
f∼µt,t+1

[
D2

H

(
f(xt), f⋆(xt)

)]]
(31)

= . . . (32)

= E
[
ET
f∼µt,T

[
D2

H(f(x
t), f⋆(xt))

]]
. (33)

Finally, for Algorithm 7, we have by the guarantee of ACDEwRO,

T∑
t=1

E
[
ET
f∼µt,T

[
D2

H(f(x
t), f⋆(xt))

]]
≤ RCDEwRO(T, ζ).

Combining the three results above, we have

T∑
t=1

E
[
Et
f∼µt

[
D2

H(f(x
t), f(xt))

]]
≤ 2

T∑
t=1

E
[
Et
f∼µt,t

[
D2

H(f(x
t), f⋆(xt))

]]
+ ε

= 2

T∑
t=1

E
[
ET
f∼µt,T

[
D2

H(f(x
t), f⋆(xt))

]]
+ ε

≤ 2RCDEwRO(T, ζ) + ε,

where the first equality is by Eq. (30), the second equality is from Eq. (31), and the final inequality is
by the guarantee of ACDEwRO.

Proof of Lemma H.3. Note that Algorithm 8 is a variant of the reduction in Lemma G.3, specialized
to squared Hellinger distance, and the proof here will use the same idea as Lemma G.3.

For each i ∈ [N ], let ζi =
∑T/N

j=1 D2
H

(
f̃ i+N·j(xi+N·j), f⋆(xi+N·j)

)
. Then by the guarantee of

ACDEwRP, we that for all i ∈ [N ],

T/N∑
j=1

Ef̄∼µi+N·j
[
D2

H

(
f̄(xi+N·j), f⋆(xi+N·j)

)]
≤ RCDEwRP(T/N, ζi, 1/N),

Summing up over all i ∈ [N ], we obtain

T∑
t=1

Ef̄∼µt

[
D2

H

(
f̄(xt), f⋆(xt)

)]
=

N∑
i=1

T/N∑
j=1

Ef̄∼µi+N·j
[
D2

H

(
f̄(xi+N·j), f⋆(xi+N·j)

)]
≤

N∑
i=1

RCDEwRP(T/N, ζi, 1/N).

By the assumption on
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
, we have

N∑
i=1

ζi =

N∑
i=1

T/N∑
j=1

D2
H

(
f̃ i+N·j(xi+N·j), f⋆(xi+N·j)

)
=

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
≤ ζ.

Finally, we conclude

T∑
t=1

Ef̄∼µt

[
D2

H

(
f̄(xt), f⋆(xt)

)]
≤ sup

N∑
i=1

ζi≤ζ

N∑
i=1

RCDEwRP(T/N, ζi, 1/N).
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Proof of Lemma H.4. This reduction is arguably the most interesting one. This reduction is by
noticing that averaging across the outputs of the offline oracle will generate reference parameters
(although delayed) with small online estimation errors as shown later in Eq. (34). By the guarantee
of AODEwDRP, we have

T∑
t=1

Ef̄∼µt

[
D2

H

(
f̄(xt), f⋆(xt)

)]
≤ RCDEwDRP(T,N, ζ),

where ζ can be chosen to be any upper bound of
T∑

t=1
D2

H

(
f̃ t(xt), f⋆(xt)

)
since it is unknown to the

learner in the setup where we augment the sequence of f̂ 1,. . . ,f̂T by setting f̂T+s = f̂T for all s ∈ N
and define f̃ t := 1

N

∑t+N
i=t+1 f̂

i for t = T −N,T −N + 1, . . . , T . Furthermore, by the definition of
f̃ t, we can obtain

T∑
t=1

D2
H

(
f̃ t(xt), f⋆(xt)

)
= N +

1

N

T−N∑
t=1

t+N∑
i=t+1

D2
H

(
f̄ i(xt), f⋆(xt)

)
= N +

1

N

T∑
t=2

∑
i<t

D2
H

(
f̄ t(xi), f⋆(xi)

)
≤ N +

βOffT

N
. (34)

Thus, we conclude Algorithm 9 obtains
T∑

t=1

Ef̄∼µt

[
D2

H

(
f̄(xt), f⋆(xt)

)]
≤ RCDEwDRP(T,N,N + βOffT/N).

I Proofs from Appendix E
Theorem E.1 (Offline-to-online conversion under coverability). For any layer-wise loss DRL and
MDP class (M,Π,O) and M⋆ ∈M, the sequence of estimators (M̂ 1, . . . , M̂T ) produced by any
offline estimation oracle AlgOff for DRL with parameter βOff satisfy

T∑
t=1

DRL
(
M̂ t(πt)∥M⋆(πt)

)
≤ O

(√
HCcov(M⋆)βOffT log T +HCcov(M

⋆)
)
.

Proof of Theorem E.1. This proof closely follows the proof of Theorem 1 in Xie et al. [69]. Define
the shorthand dt

h(s, a) ≡ dπ
t

h (s, a) and Ccov = Ccov(M
⋆), and define

d̃t

h(s, a) :=

t−1∑
τ=1

dτ

h(s, a), and µ⋆
h := argmin

µh∈∆(S×A)

sup
π∈Π

∥∥∥∥dπhµh

∥∥∥∥
∞
.

From the definition of the layer-wise loss, we have
T∑

t=1

DRL
(
M̂ t(πt)∥M⋆(πt)

)
=

H∑
h=1

T∑
t=1

∑
(s,a)∈S×A

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)
.

We define a “burn-in” phase for each state-action pair (s, a) ∈ S ×A by defining

τh(s, a) = min
{
t | d̃t

h(s, a) ≥ Ccov · µ⋆
h(s, a)

}
.
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Let h ∈ [H] be With this definition, for we can write

T∑
t=1

∑
(s,a)∈S×A

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)

=
∑

(s,a)∈S×A

∑
t<τh(s,a)

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)
+

∑
(s,a)∈S×A

∑
t≥τh(s,a)

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)

For the first term above, we have∑
(s,a)∈S×A

∑
t<τh(s,a)

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)
≤

∑
(s,a)∈S×A

d̃
τh(s,a)

h (s, a) ≤ 2Ccov

∑
(s,a)∈S×A

µ⋆
h(s, a) = 2Ccov,

where the last inequality holds because∑
(s,a)∈S×A

d̃
τh(s,a)

h (s, a) =
∑

(s,a)∈S×A

d̃
τh(s,a)−1

h (s, a) + d
τh(s,a)

h (s, a) ≤ 2Ccov · µ⋆
h(s, a).

The remaining term is

H∑
h=1

∑
(s,a)∈S×A

∑
t≥τh(s,a)

dt

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)

=

H∑
h=1

T∑
t=1

∑
(s,a)∈S×A

dt

h(s, a)

(
d̃t

h(s, a)

d̃t

h(s, a)

)1/2

1{t ≥ τh(s, a)}Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)

≤

√√√√ H∑
h=1

T∑
t=1

∑
(s,a)∈S×A

(1(t ≥ τh(s, a))dt

h(s, a))
2

d̃t

h(s, a)
·

√√√√ H∑
h=1

T∑
t=1

∑
(s,a)∈S×A

d̃t

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)
.

Following the derivation in Theorem 1 of Xie et al. [69], we have

T∑
t=1

∑
(s,a)∈S×A

(1(t ≥ τh(s, a))d
t

h(s, a))
2

d̃t

h(s, a)
≤ 2

T∑
t=1

∑
(s,a)∈S×A

dt

h(s, a) · dt

h(s, a)

d̃t

h(s, a) + Ccov · µ⋆
h(s, a)

≤ 2

T∑
t=1

∑
(s,a)∈S×A

max
t′∈[T ]

dt′

h (s, a) ·
dt

h(s, a)

d̃t

h(s, a) + Ccov · µ⋆
h(s, a)

≤ 2

(
max
s,a

T∑
t=1

dt

h(s, a)

d̃t

h(s, a) + Ccov · µ⋆
h(s, a)

)
·

 ∑
(s,a)∈S×A

max
t∈[T ]

dt

h(s, a)


≲ Ccov log T,

where the last inequality follows from Lemmas 3 and 4 of Xie et al. [69]. For the second term, as a
consequence of the offline estimation assumption, we have that for all t ∈ [T ],

H∑
h=1

∑
(s,a)∈S×A

d̃t

h(s, a)Dh

(
P

M⋆

h (s, a)∥P M̂t

h (s, a)
)
=

t−1∑
s=1

DRL
(
M̂ t(πs)∥M⋆(πs)

)
≤ βOff .

Altogether, we conclude that

T∑
t=1

DRL
(
M̂ t(πt)∥M⋆(πt)

)
≤ O

(√
HCcovβOffT log T +HCcov

)
.
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Corollary E.2. For any MDP class (M,Π,O) and M⋆ ∈ M, the sequence of estimators
(M̂ 1, . . . , M̂T ) produced by any offline estimation oracle AlgOff for squared Hellinger distance D2

H
with parameter βOff satisfy

EstOn
H (T ) =

T∑
t=1

D2
H

(
M̂ t(πt),M⋆(πt)

)
≤ O

(
H
√

Ccov(M⋆)βOffT log T +H2Ccov(M
⋆)
)

Proof of Corollary E.2. By Lemma F.2, for any two MDP models M and M ′ and any π ∈ ∆(ΠRNS),
we have

D2
H(M(π),M ′(π)) = D2

H(M
′(π),M(π)) ≤ 7 ·

H∑
h=1

EM
′,π
[
D2

H

(
P

M′

h (sh, ah), P
M

h (sh, ah)
)]

.

(35)

On the other hand, for any h ∈ [H], we have from Lemma A.9 of Foster et al. [27] that

EM
′,π
[
D2

H

(
P

M′

h (sh, ah), P
M

h (sh, ah)
)]
≤ 4D2

H(M(π),M ′(π)),

by choosing X = (sh, ah) and Y = (rh, sh+1) in the aforementioned lemma. Summing up over h,
we conclude that

H∑
h=1

EM
′,π
[
D2

H

(
P

M′

h (sh, ah), P
M

h (sh, ah)
)]
≤ 4H · D2

H(M(π),M ′(π)). (36)

Consider any sequence of policies π1, . . . , πT and outputs M̂ 1, . . . , M̂T from an offline oracle with
parameter βOff for squared Hellinger distance. By Eq. (36), we have that for all t ∈ [T ],

t−1∑
τ=1

H∑
h=1

EM⋆,πτ
[
D2

H

(
P

M⋆

h (s, a), P
M̂τ

h (s, a)
)]
≤ 4H

t−1∑
τ=1

D2
H

(
M̂ τ(πτ),M⋆(πτ)

)
≤ 4βOffH.

Theorem E.1 thus implies that

T∑
t=1

H∑
h=1

EM⋆,πt
[
D2

H

(
P

M⋆

h (s, a), P
M̂t

h (s, a)
)]

≲ H
√

CcovβOffT log T +H2Ccov.

Finally, using Eq. (35), we can convert the inequality above into a bound on the square Hellinger
distance:

T∑
t=1

D2
H

(
M̂ t(πt),M⋆(πt)

)
≲

T∑
t=1

H∑
h=1

EM⋆,πt
[
D2

H

(
P

M⋆

h (s, a), P
M̂t

h (s, a)
)]

≲ H
√

CcovβOffT log T +H2Ccov.

Proposition E.2 (Tightness of offline-to-online conversion). For any integer T ≥ 1 and βOff > 0,
there exists a contextual bandit class (M,Π = AS ,O) with |A| = 2, a distribution d1 ∈ ∆(S),
a sequence (π1, . . . , πT ) and an offline oracle AlgOff for DCB with parameter βOff such that the
oracle’s outputs (M̂ 1, . . . , M̂T ) satisfy

EstOn
D (T ) =

T∑
t=1

DCB

(
M̂ t(πt),M⋆(πt)

)
≥ Ω

(√
TβOff

)
.

Proof of Proposition E.2. Let βOff > 0 and T be given, and let N ∈ N be chosen such that T =
N ·⌊NβOff⌋; we assume without loss of generality that N is large enough such that NβOff > 1, which
implies that ⌊NβOff⌋ ≥ NβOff/2). Define A = {a0, a1}, S = {s0, . . . , sN−1}, and gM⋆

(s, a) ≡ 0
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for all s ∈ S, a ∈ A. Let d1 = Unif(S) be the context distribution. For any t ∈ {1, . . . , T}, consider
the deterministic policy πt : S → A and the offline estimator M̂ t defined via

πt(sn) =

{
a1, if n = ⌊t/⌊NβOff⌋⌋,
a0, otherwise.

and gM̂t
(s, a) =

{
1, if s = s⌊t/⌊NβOff⌋⌋, a = a1,

0, otherwise.

We first verify that M̂ 1, . . . , M̂T satisfy the offline oracle requirement. For any t ∈ {1, . . . , T}, we
have

t−1∑
τ=1

Es∼d1

[
Dsq

(
gM(s, πτ (s)), gM̂τ

(s, πτ (s))
)]

=
1

N

t−1∑
τ=1

1
{
πτ(s⌊t/N⌋) = a1

}
=

1

N
· (t− ⌊t/⌊NβOff⌋⌋ · ⌊NβOff⌋) ≤ βOff .

However, the online error is

T∑
t=1

Es∼d1

[
Dsq

(
gM(s, πt(s)), gM̂t

(s, πt(s))
)]

=

T∑
t=1

1

N
= ⌊NβOff⌋ ≥

1

2

√
TβOff .
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope. The claims are validated by detailed proofs.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes] .

Justification: See Section 1.2.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The paper provides detailed assumptions and proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: This paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work. There is no societal impact on the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: This paper does not involve crowdsourcing or research with human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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