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Abstract

While supervised fine-tuning on chain-of-
thought (CoT) traces can markedly boost rea-
soning capabilities of large language models
(LLMs), not all tokens in a CoT trace equally
contribute to that gain. We propose a selective
fine-tuning framework that embeds the token-
selection ideas of Selective Language Model-
ing (SLM) into reasoning-oriented training. In
specific, by measuring each token’s excess loss
with a reference model, we pinpoint the frag-
ments most critical to reasoning and apply one
of three tailored objectives: token-selective,
token-weighted, or segment-selective, so gra-
dient updates focus only on those high-value
tokens or spans. When applied to Qwen2.5-
1.5B and evaluated on GSM8K and MATH, this
strategy outperforms standard fine-tuning, with
the token-selective variant raising accuracy by
up to 5.6 percentage points. This approach not
only enhances model performance and train-
ing efficiency, but also improves the coherence
and reliability of multi-step reasoning, offer-
ing a scalable solution for developing advanced
reasoning models.

1 Introduction

Large Language Models (LLMs) have transformed
natural language processing, achieving strong zero-
and few-shot results on translation, question an-
swering, and basic reasoning without task-specific
fine-tuning (Brown et al., 2020). Yet they still strug-
gle with complex multi-step problems that demand
explicit logical deduction or arithmetic. Supplying
chain-of-thought (CoT) rationales—intermediate
reasoning traces—substantially narrows this gap
(Wei et al., 2023): prompting LLMs to “think step
by step” allows them to solve arithmetic and com-
monsense tasks far better than direct-answer base-
lines. Researchers have further transplanted this
skill into smaller models by fine-tuning them on
CoT corpora produced by stronger teachers (Ho
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Figure 1: Poorly curated or noisy data can hinder deep-
reasoning development. Left: Standard fine-tuning ap-
plies loss uniformly to all tokens. Right: Our proposed
selective fine-tuning applies loss only to the most infor-
mative tokens, ignoring the rest.

et al., 2023), enabling resource-efficient deploy-
ment.

Despite these advances, LLM reasoning remains
unreliable. The auto-regressive generation pro-
cess means that an early hallucination can cas-
cade through a long rationale and yield an incorrect
conclusion (Ferrag et al., 2025). Models also ex-
hibit weak self-consistency, sometimes contradict-
ing themselves within a single chain. Demonstrat-
ing that a model can reason in controlled settings
is therefore insufficient; we must ensure it does
so consistently across diverse problems (Xu et al.,
2025; Boye and Moell, 2025; Li et al., 2025).

Supervised fine-tuning (SFT) is an attractive av-
enue because it integrates reasoning knowledge
directly into model weights. Conventional next-
token SFT, however, treats every token equally,
wasting capacity on trivial continuations and fail-
ing to target fragile parts of long CoT sequences.
Its effectiveness is therefore highly sensitive to data
cleanliness; noisy examples can degrade reasoning
rather than enhance it.

We address these issues with a selective fine-
tuning framework that leverages a reference model
and the notion of excess loss. Inspired by “Not All
Tokens Are What You Need” (Lin et al., 2025), we
first train a strong reference model and compute



its token-level loss on the training set. The excess
loss—the difference between the candidate model’s
loss and the reference loss—identifies difficult to-
kens. During fine-tuning we focus the gradient on
high-excess-loss tokens while down-weighting the
rest. By doing so, the model devotes more capacity
to learning the non-trivial reasoning components
that it hasn’t mastered, rather than over-processing
tokens it already predicts well. This simple se-
lective fine-tuning strategy is designed to both im-
prove training efficiency and steer the model’s opti-
mization toward better reasoning performance. In
summary, our approach directly tackles the ineffi-
ciency of uniform token-level training by prioritiz-
ing the most informative tokens (as identified via
a reference model), thereby aiming to produce an
LLM that is more adept at multi-step reasoning.

The empirical results demonstrate that our pro-
posed selective fine-tuning approach substantially
improves reasoning performance. When applied to
Qwen2.5-1.5B on the GSM8K and MATH bench-
marks, token-selective fine-tuning achieves 68.5%
and 41.2% accuracy respectively, representing in-
creases of 4.8 percentage points over standard fine-
tuning in both cases. Our token-weighted variant
performs even better, achieving 68.4% on GSM8K
and 42.0% on MATH. These improvements are par-
ticularly notable on the more challenging MATH
benchmark, suggesting that selective fine-tuning
effectively targets the difficult reasoning steps es-
sential for complex problem-solving.

The main contributions of this paper are: (1) A
novel selective fine-tuning framework that lever-
ages excess loss to identify and prioritize the
most informative tokens in chain-of-thought rea-
soning traces; (2) Three complementary selective
loss functions that operate at different granulari-
ties (token-selective, token-weighted, and segment-
selective); (3) Empirical evidence that focusing on
high-value tokens during fine-tuning significantly
enhances reasoning capabilities while improving
training efficiency; and (4) Insights from ablation
studies on the importance of reference model qual-
ity, adaptive selection strategies, and curated train-
ing data for optimal reasoning performance.

2 Related Work

Data—efficient supervised fine-tuning. A grow-
ing body of evidence shows that high-quality, well-
matched data can rival—or outperform—training
on the full corpus during the SFT stage (Liu et al.,

2025b). Liu et al. (2024) cast data selection as an
optimal-transport alignment problem, adding a di-
versity regularizer and demonstrating that ~1 % of
carefully picked examples can beat 100 % of the
data. In a complementary line, Yang et al. (2024)
fine-tune a small proxy model, cluster examples
by their loss trajectories, and then train the target
LLM only on clusters deemed most useful.

Selectivity during training. Rather than filter ex-
amples beforehand, several approaches inject selec-
tivity into the loss computation itself. SelectIT (Liu
et al., 2025a) prompts the model to solve an instruc-
tion and self-evaluate its confidence; instructions
that trigger low confidence or wrong answers re-
ceive greater weight in subsequent updates. LESS
(Xia et al., 2024) estimates each example’s influ-
ence on a probe set via low-rank gradient sketches,
selecting those with gradients most aligned to de-
sired skills.

Token-level focus in pretraining Whole-
example selection can still waste effort on
uninformative tokens. Mindermann et al. (2022)
introduced RHO-LOSS, which scores data points
by how much they are expected to reduce hold-out
loss, avoiding noisy or already-mastered content.
Li et al. (2025) adapt this principle to LLMs with
Selective Language Modeling (SLM): a reference
model assigns each token an excess loss score, and
the main model updates only on high-score tokens,
ignoring or down-weighting the rest.

Together, these studies suggest that both which
examples and which tokens receive gradient signal
critically influence downstream reasoning perfor-
mance. Our work extends this idea by combining
reference-based excess-loss scoring with an effi-
cient, end-to-end fine-tuning routine tailored for
long chain-of-thought sequences.

3 Selective Fine-tuning for Reasoning

Our selective fine-tuning framework, illustrated in
Figure 2, consists of three key phases: (1) Train-
ing a reference model on high-quality, curated CoT
samples; (2) Using this reference model to cal-
culate excess loss on tokens in the main training
dataset; and (3) fine-tuning the main model with
one of three selective loss strategies that focus gra-
dient updates on the most informative portions of
reasoning traces.

The core insight is that not all tokens in a CoT
trace contribute equally to reasoning performance.
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Figure 2: The pipeline of Selective Fine-tuning via Excess Loss. This includes three major steps: training a
reference model on the curated CoT samples, calculating the excess loss using the reference model on the raw CoT
samples during the main model fine-tuning process, and finally fine-tuning the main model on the most valuable

tokens based on the excess loss.

By comparing the token-level loss of our candidate
model against a strong reference model, we identify
tokens that are particularly challenging or informa-
tive, and concentrate the learning process on these
high-value regions. This approach efficiently al-
locates computational resources while preventing
the model from overfitting to template language or
trivial patterns in the training data.

We extend Selective Language Modeling (SLM)
to the SFT phase of chain-of-thought traces by in-
troducing three complementary loss functions that
decide where to spend gradient budget:

* Token-Selective Loss (§3.1) — trains only on
the hardest tokens,

*» Token-Weighted Loss (§3.2) — reweights ev-
ery token by its difficulty,

* Segment-Selective Loss (§3.3) — selects
whole reasoning steps instead of single tokens.

All three rely on a reference model to measure ex-
cess loss: the difference between the main model’s
token loss and the reference’s. The higher the ex-
cess loss, the more a token (or segment) can teach
the model. The following subsections detail each
method, focusing on their implementation and ap-
plication during the SFT stage for enhancing rea-
soning capabilities in long CoT data.

3.1 Token-Selective Loss

The token-selective loss method, inspired by the
SLM approach from Li et al. (2025), prioritizes
training on a subset of tokens with high excess loss
during the fine-tuning stage. For a given batch of in-
put sequences x = {x1,...,z7} and correspond-
ing target tokens y = {y1,...,yr}, we compute
the per-token cross-entropy loss for both the main
model M and the reference model R:

T

T
L = ZgM(t) = —ZlogPM(yt | 7, y<t),
t=1 t=1

T T
Lr= ZER(t) =~ ZlogPR(yt | T, y<t).
t=1 t=1

where Pj; and Pg are the probability distribu-
tions over the vocabulary predicted by the main and
reference models, respectively. The excess loss is
then defined as:

La(t) = Las(t) — Lg(t).

Tokens with an excess loss above a threshold,
determined by a selection ratio k € [0, 1], are se-
lected for training. Specifically, we select the top
k - N tokens with the highest L (t), where N is
the number of valid tokens. A binary mask m is



Question: If a pen costs $3 and a notebook costs $5,

how much do 2 pens and 3 notebooks cost in total?

Token-Selective Loss

Let's think about this step by step. A pen
is a writing instrument. Each pen costs
$3. So, let's multiply, buying 2 pens means
2 x $3 = $6. Since each notebook costs
$5, 3 notebooks will cost $12. Wait, 3 x
$5 is $15. Remember, total cost is the
sum of individual costs. Then the total
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Segment-Selective Loss

Let's think about this step by step. A pen
is a writing instrument. Each pen costs
$3. So, let's multiply, buying 2 pens means
2 x $3 = $6. Since each notebook costs
$5, 3 notebooks will cost $12. Wait, 3 x
$5 is $15. Remember, total cost is the
sum of individual costs. Then the total
cost is $6 + $15 = $21. Final answer: 21.
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Figure 3: Selective Fine-tuning for CoT Reasoning Tasks. This diagram illustrates various selective fine-tuning
strategies applied to CoT reasoning. In the left and middle examples, blue tokens denote positions receiving gradient
updates, while black tokens are excluded during fine-tuning. In the right example, tokens are colored in shades of
orange, where darker orange indicates higher weight. Selective fine-tuning strategically filters noisy or redundant
information, concentrating learning on the most informative reasoning components to improve LLM performance
on multi-step reasoning tasks. *Note: This is a simplified, illustrative scenario and does not fully capture the
complexity of real token dynamics in large-scale training. Additional examples are available in the Appendix 5.6.

created, where m; = 1 if token t is selected and
m; = 0 otherwise. The final loss is computed as:

T
Lioken-selective = Z my - CE(S’ta yt))

t=1
where CE is the cross-entropy loss, and y; are
the logits from the main model. To balance com-
prehensive learning and selective efficiency, we
employ a linear decay scheduler for the selection
ratio, starting at £ = 1.0 in the first epoch (full-data
fine-tuning) and decaying to k¥ = 0.6 by the final

epoch.

3.2 Token-Weighted Loss

The token-weighted loss method extends the token-
selective approach by assigning continuous weights
to tokens based on their excess loss, rather than
a binary selection. Using the same excess loss
L(t) as defined above, we compute weights via a
softmax function with a temperature parameter 7:

exp(La(t)/7)
Y sevexp(La(s)/T)’

where V is the set of valid tokens, and 7 =
2 controls the softness of the weight distribution.
These weights are applied to the per-token cross-
entropy loss to compute the final loss:

Wt =

> ey Wi - CE(Fe, 1)
ZtEV wt + €

£token—weighted =

where ¢ = 10~8 prevents division by zero. This
method allows the model to focus on tokens with
higher excess loss while still considering all valid
tokens, potentially improving generalization com-
pared to the binary selection in token-selective loss.

3.3 Segment-Selective Loss

For long CoT data, where reasoning errors often
arise from entire steps rather than individual tokens,
we propose a segment-selective loss that operates
at a higher granularity. Segments are defined as
coherent units of reasoning steps, identified using
an unsupervised approach with sentence embed-
dings and DBSCAN clustering. Given segment
labels s = {s1,..., s} that assign each token to
a segment (or an ignore index for padding), we
compute the excess loss L (t) as in the token-
selective method. The segment-level excess loss is
then calculated by averaging the per-token excess
loss within each segment:
L) = =3 La(t)
A |Si] ’
teS;

where S; is the set of tokens in segment ¢, and
|S;| is the number of tokens in that segment. The
top k - G segments with the highest L\¥ () are se-
lected, where (G is the number of unique segments,
and k is the selection ratio. A binary mask m is
created such that m; = 1 if token ¢ belongs to a
selected segment and m; = 0 otherwise. The loss
is then:



T
»Csegment—selective = E mg - CE(ytv yt)-
t=1

This approach preserves the contextual integrity
of reasoning steps, ensuring that the model trains
on semantically meaningful units.

3.4 Practical Integration

All three methods are integrated into the SFT stage
using the LitGPT framework, as described in the
provided code. The reference model—trained
on high-quality instruction data—provides stable
CRr(t). The selection ratio k for selective methods
is dynamically adjusted using a linear decay sched-
uler, and the temperature 7 for weighted methods
is fixed at 5.0. Experiments employ Qwen2.5-1.5B
(131k-token context), so long CoT sequences fit
without truncation.

4 Experimental Setup

All experiments are carried out in LITGPT using
the 1.5 B-parameter Qwen2.5 backbone, whose
131 K token window comfortably accommodates
full chain-of-thought (CoT) transcripts.

4.1 Reference Model

We first train a reference model—also Qwen2.5-
1.5B—on the curated S1k instruction set from
Muennighoff et al. (2025). The set contains 1
000 high-quality examples with detailed reason-
ing traces. Training lasts 5 epochs with a cosine-
decayed learning-rate peak of 5 x 107°, 15 warm-
up steps, 20 000-token sequences, and a per-device
batch size of 1 (to avoid out-of-memory).

4.2 Fine-tuning Data

For the main experiments we use the authors’ larger,
unfiltered split (59k examples). Its noise and di-
versity provide a realistic stress test for selective
fine-tuning.

4.3 Methods Compared

We evaluate four SFT strategies, each run for 3
epochs on the 59k corpus with the same scheduler
and hyper-parameters as the reference model (batch
1, max-LR 5 x 1079):

¢ Full fine-tuning (baseline): standard cross-
entropy on every token.

* Token-Selective Loss: hard-masking the top
k tokens by excess loss, with k linearly an-
nealed from 1.0 to 0.6.

» Token-Weighted Loss: soft weights from a
T7=>5 softmax over excess loss.

* Segment-Selective Loss: hard selection of
entire reasoning segments, using the same k
schedule as (2).

4.4 Datasets

Following Lin et al. (2025), we measure few-shot
CoT accuracy on GSMS8K (grade-school arith-
metic) and MATH (advanced competition prob-
lems). Accuracy is reported as the percentage of
problems solved correctly under identical prompt-
ing conditions.

5 Results

Research questions.
five questions:

Our experiments address

* RQI1 — Does selective fine-tuning beat stan-
dard full fine-tuning on chain-of-thought
(CoT) reasoning?

* RQO2 — Which granularity is more helpful,
token-level or segment-level?

* RQ3 — Is soft weighting superior to hard
masking?

* ROQ4 — How does the amount and quality of
reference data influence token selection?

* RQ5 — How important is the choice of the
selection-ratio scheduler?

5.1 Effects of Selective Fine-tuning for
Reasoning

Table 1 presents the CoT reasoning performance
of the baseline and proposed methods, alongside
reference base models, on the GSM8K and MATH
benchmarks.

The token-selective loss method, which priori-
tizes tokens with high excess loss L (t), achieved
68.5% on GSM8K and 41.2% on MATH, yielding
an average accuracy of 54.9%. This represents im-
provements of 4.8% and 4.8% over the baseline full
fine-tuning (63.7% on GSMS8K, 36.4% on MATH)
on the same dataset, demonstrating the effective-
ness of focusing training on informative tokens.



Table 1: Few-shot CoT reasoning results on math benchmarks. |f| denotes the number of parameters, and Data
indicates the fine-tuning dataset (slk: 1,000 samples; s1-full59k: 59,000 samples).

Model 6] Data | GSM8K MATH Average
Base Models
Gemma3 4B - 38.4 24.2 31.3
Mistral 7B - 52.2 13.1 32.7
Qwen2.5 1.5B - 52.5 31.6 42.0
Fine-tuning on Qwen2.5-1.5B

Full fine-tuning (baseline) 1.5B slk 65.6 31.8 48.7
Full fine-tuning (baseline) 1.5B sl-full59k 63.7 36.4 50
Selective fine-tuning (Token-level) 1.5B  s1-full59k 68.5 41.2 54.9
Selective fine-tuning (Segment-level) 1.5B  s1-full59k 67.9 37.2 52.6
Weighted fine-tuning (Token-level) 1.5B  s1-full59k 68.4 42.0 55.2

The method’s strong MATH performance high-
lights its capability in addressing complex, multi-
step reasoning challenges by optimizing for tokens
critical to logical inference.

The segment-selective loss method, operating at
the granularity of reasoning steps, achieved 67.9%
on GSMS8K and 37.2% on MATH, with an average
of 52.6%. While it outperformed the baseline on
both benchmarks, its MATH performance lagged
behind the token-selective method by 4.0%. This
suggests that segment-level selection, while pre-
serving contextual integrity, may be less effective
for tasks requiring fine-grained token-level reason-
ing, such as advanced mathematical problems.

The token-weighted loss method, which as-
signs continuous weights based on LA (), achieved
68.4% on GSMS8K and 42.0% on MATH, yielding
the highest average accuracy of 55.2% among all
methods. Its balanced performance across both
datasets suggests that continuous weighting offers
a good trade-off between generalization and speci-
ficity, supporting both simple and complex reason-
ing tasks.

Overall, the proposed selective and weighted
loss functions significantly enhance SFT efficiency
and reasoning performance compared to standard
full fine-tuning. Among them, the token-weighted
loss method achieves the highest overall accuracy,
while the token-selective loss method remains
highly robust, particularly on more complex bench-
marks like MATH. These results validate the hy-
pothesis that prioritizing high-excess-loss tokens or
segments enables more effective learning of com-

plex reasoning patterns. The ablation study further
elucidates the importance of adaptive selection ra-
tios and curated reference data in achieving these
gains.

5.2 Token-level vs. Segment-level Granularity

The segment-selective loss method, operating at the
granularity of reasoning steps, achieved 67.9% on
GSMSK and 37.2% on MATH, with an average of
52.6%. While it outperformed the baseline on both
benchmarks, its MATH performance lagged behind
the token-selective method by 4.0%. This suggests
that segment-level selection, while preserving con-
textual integrity, may be less effective for tasks
requiring fine-grained token-level reasoning, such
as advanced mathematical problems.

Our results indicate that token-level approaches
generally outperform segment-level methods, par-
ticularly on tasks that require precise, step-by-step
reasoning like those found in the MATH bench-
mark. However, segment-level selection still offers
meaningful improvements over the baseline, sug-
gesting that the optimal granularity may depend on
the specific reasoning task.

5.3 Hard Masking vs. Soft Weighting

The token-weighted loss method, which assigns
continuous weights based on La(t), achieved
68.4% on GSMS8K and 42.0% on MATH, yield-
ing the highest average accuracy of 55.2% among
all methods. Its balanced performance across both
datasets suggests that continuous weighting offers
a good trade-off between generalization and speci-



Table 2: Ablation study results on GSM8K and MATH benchmarks for the Qwen2.5 1.5B model fine-tuned on the

59,000-sample dataset.

Method Configuration =~ GSM8K MATH Average
Token Selection Method
1,000 Samples, Linear Decay Default 68.5 41.2 54.9
500 Samples, Linear Decay Ablation 67.6 33.8 50.7
100 Samples, Linear Decay Ablation 70.0 36.8 53.4
Random 1,000 Samples, Linear Decay | Self-Reference 67.9 34.4 51.2
1,000 Samples, Fixed Ratio (0.6) Ablation 69.6 33.8 51.7
1,000 Samples, Fixed Ratio (0.8) Ablation 69.1 36.8 52.9

ficity, supporting both simple and complex reason-
ing tasks.

When comparing hard masking (token-selective)
versus soft weighting approaches, we find that
soft weighting tends to perform marginally bet-
ter, particularly on more complex reasoning tasks
like MATH. This advantage may stem from the
weighted approach’s ability to maintain a more
nuanced gradient signal that preserves contextual
information while still prioritizing high-value to-
kens.

5.4 Impact of Reference Data Quality and
Quantity

To investigate the influence of reference data on to-
ken selection, we conducted ablation experiments
with varying amounts of curated data for train-
ing the reference model. The default configura-
tion using 1,000 high-quality samples achieved the
strongest overall performance (54.9% average ac-
curacy).

Reducing the reference dataset to 500 samples re-
sulted in a performance drop to 67.6% on GSM8K,
33.8% on MATH, and an average of 50.7%. The
significant decline in MATH performance suggests
that a smaller reference dataset compromises the
accuracy of excess loss estimation, particularly for
tasks requiring deep, multi-step reasoning.

Interestingly, using just 100 samples achieved
the highest GSM8K performance at 70.0%, but a
lower MATH score of 36.8%, yielding an average
of 53.4%. This indicates that for simpler reason-
ing tasks, even a small high-quality reference set
can effectively identify informative tokens, while
complex reasoning benefits from larger reference
datasets.

Furthermore, our "Self-Reference" configura-
tion using 1,000 randomly selected (rather than

curated) samples achieved only 67.9% on GSM8K
and 34.4% on MATH (51.2% average), highlight-
ing the importance of high-quality reference data
for effective token selection.

5.5 Selection Ratio Scheduler Optimization

Our experiments compared different selection ra-
tio schedulers for the token-selective method. The
linear decay scheduler (gradually reducing selec-
tion from 1.0 to 0.6) outperformed fixed ratios,
achieving 68.5% on GSM8K and 41.2% on MATH
(54.9% average).

Fixed selection ratios of 0.6 and 0.8
achieved 69.6%/33.8% and 69.1%/36.8% on
GSMSK/MATH respectively, resulting in averages
of 51.7% and 52.9%. The significant performance
drop on MATH with fixed ratios suggests that
adaptive selection is particularly important for
complex reasoning tasks.

The linear decay approach provides an optimal
balance by allowing the model to learn broadly in
early epochs and gradually focus on high-excess-
loss tokens as training progresses. This strategy
appears crucial for developing robust reasoning
capabilities across diverse problem types.

5.6 Qualitative Examples

Figure 4 and 5 shows the complete CoT trace with
tokens and segmented selected. The tokens marked
in blue represent the actual tokens trained while the
remaining black tokens are not trained during the
fine-tuning process.

6 Conclusion

This paper introduces a novel selective fine-tuning
framework for LLMs, centered on token and
segment-level excess loss to enhance complex rea-
soning through supervised fine-tuning. By lever-



think The set of numbers is $\{87, 85, 80, 83, 84, x\}$. The mean of the set is 83.5. The number of elements in the set is 6. The mean of a set of numbers is the sum of the numbers divided by the
number of elements. So, the sum of the numbers is the mean multiplied by the number of elements. Sum of the numbers = $83.5 \times 6% Sum of the numbers = $501$ The sum of the given
numbers is $87 + 85 + 80 + 83 + 84 + x8. $87 + 85 + 80 + 83 + 84 + x = 5018 $419 + x = 501$ $x = 501 - 4198 $x = 828 Now the set of numbers is $1{87, 85, 80, 83, 84, 82\}$. To find the
median of the set, we need to order the numbers from least to greatest. Ordered set: $1{80, 82, 83, 84, 85, 87\}$ Since there are an even number of elements in the set (6), the median is the average
of the two middle numbers. The two middle numbers are the $\frac {6} {2} = 3$rd and the $\frac{6} {2} + 1 = 4S$th numbers in the ordered set. The 3rd number is 83. The 4th number is 84. Median
= S\frac {83 + 84} {2}$ Median = $\frac {167} {2}$ Median = $83.58 The mean of the set of numbers $\{87,85,80,83,84,x\}$ is 83.5. The number of elements is 6. The sum of the elements is $6
\times 83.5 = 501$. The sum of the given numbers is S87+85+80+83+84-+x = 419+x$. So, $419+x = 5018. $x = 501 - 419 = 828. The sct of numbers is $1{87, 85, 80, 83, 84, 82\}$. Order the
numbers from least to greatest: $1{80, 82, 83, 84, 85, 87\}$. Since there are 6 numbers, the median is the average of the middle two numbers. The middle two numbers are the 3rd and 4th numbers,
which are 83 and 84. Median = $\frac{83+84} {2} =\frac{167} {2} = 83.5$. Express the answer as a decimal to the nearest tenth. The median is 83.5. answer Let the set of numbers be $S =\{87,
83, 80, 83, 84, x\}$. The mean of the set is given as 83.5. The number of elements in the set is 6. The formula for the mean of a set of numbers is the sum of the numbers divided by the number of
elements. Mean $= \frac {\text{Sum of the numbers}} {\text{Number of elements} }$ $83.5 =\frac{87 + 85 + 80 + 83 + 84 + x} {6}$ Multiply both sides by 6 to find the sum of the numbers: Sum
of the numbers $= 83.5 \times 6% Sum of the numbers $= 501$ Now, we can write the equation for the sum of the numbers: $87 + 85 + 80 + 83 + 84 + x = 501$ Add the known numbers: $419 + x
= 501$ Subtract 419 from both sides to solve for x: $x = 501 - 419$ $x = 828 Now we have the complete set of numbers: $1{87, 85, 80, 83, 84, 82\}$. To find the median, we need to arrange the
numbers in ascending order: $1{80, 82, 83, 84, 85, 87\}$ Since there are an even number of elements (6), the median is the average of the two middle numbers. The middle numbers are the

$\frac {6} {2} = 3$rd and the $\frac {6} {2} + 1 = 4$th numbers in the ordered set. The 3rd number is 83. The 4th number is 84. Median $= \frac{83 + 84} {2}$ Median $= \frac{167} {2}$ Median
$=83.5$ The median of the set of six numbers is 83.5. The question asks to express the answer as a decimal to the nearest tenth. In this case, 83.5 is already in that format. Final Answer: The final
answer is $\boxed {83.5}$

Figure 4: An example of selecting specific tokens during the fine-tuning process

think The problem is about the energy threshold for the generation of two electronically excited hydrogen atoms from a hydrogen molecule and determining the bond energy of the hydrogen
molecule. The reaction is: H2(v=0) -> H*(n=2) + H*(n=2) The energy threshold for this reaction is given as 24.9 eV. We need to determine the bond energy of H2. The energy required for this
reaction can be considered as the sum of the energy required to break the H-H bond and the energy required to excite each hydrogen atom to the n=2 state. Let E_C be the bond energy of H2. The
energy required to break the H-H bond is E_C. This will result in two ground state hydrogen atoms: H2 -> H(n=1) + H(n=1) Energy = E_C The energy required to excite a hydrogen atom from the
ground state (n=1) to the first excited state (n=2) can be calculated using the energy levels of the hydrogen atom. The energy of an electron in the nth energy level of a hydrogen atom is given by:
E n=-13.6 ¢V /n"2 For n=1 (ground state): E_1 =-13.6 ¢V / 12 =-13.6 ¢V For n=2 (first excited state): E_2 =-13.6 ¢V /2”2 =-13.6 ¢V / 4 = -3.4 eV The energy difference between these two
levels is the excitation energy: I"E=E_2-E_I =-3.4 eV - (-13.6 eV) =-3.4 eV + 13.6 eV = 10.2 eV Since there are two hydrogen atoms being excited to the n=2 state, the total excitation energy
for both atoms is 2 * I”E. Total excitation energy =2 * 10.2 eV = 20.4 eV The total energy threshold for the reaction is the sum of the bond energy and the total excitation energy: Energy
Threshold = E_C + Total excitation energy Given that the energy threshold is 24.9 €V: 24.9 eV =E_C + 20.4 ¢V Now we can solve for the bond energy E C: E_ C=24.9eV -204eVE C=4.5
eV The bond energy of H2 is 4.5 eV. We need to provide the answer to the first decimal place. In this case, it is already to the first decimal place. Let's double check the calculations. Energy levels
of hydrogen atom: E_n =-13.6/n"2 eV Energy of H atom in ground state (n=1): E_1 =-13.6 eV Energy of H atom in excited state (n=2): E_2 = -13.6/4 = -3.4 eV Excitation energy for one H atom:
E 2-E 1=-3.4-(-13.6) = 10.2 ¢V Excitation energy for two H atoms: 2 * 10.2 ¢V = 20.4 ¢V The total energy required for the process is the sum of the bond dissociation energy and the
excitation energies of the two H atoms. Energy threshold = Bond energy + Excitation energy of H1 + Excitation energy of H224.9eV=E C+10.2eV+102eV249eV=E C+204eVE C=
24.9¢V-20.4 eV E_C=4.5¢V The bond energy of H2 is 4.5 eV. The question asks for the value to the first decimal place, which it already is. answer The energy threshold for the generation of
two electronically excited hydrogen atoms $\mathrm {H}* {\star} (n=2)$ from $\mathrm {H} {2}(v=0)$ is given by the energy required to break the bond in $\mathrm {H} {2}$ plus the energy
required to excite each of the resulting hydrogen atoms to the $n=28 state. The reaction is: $imathrm {H}_{2}(v=0) \rightarrow \mathrm {H} " {\star} (n=2) + \mathrm {H} " {\star} (n=2)$ The energy
threshold for this reaction is $24.9 \mathrm {eV}$. The process can be broken down into two steps: 1. Breaking the bond in $imathrm {H} {2}$ to form two ground state hydrogen atoms:
$imathrm{H}_{2} \rightarrow \mathrm {H}(n=1) + \mathrm {H}(n=1)$ The energy required for this step is the bond energy SE_{\mathrm{C}}$. 2. Exciting each ground state hydrogen atom to
the Sn=2$ state: S\mathrm {H}(n=1) \rightarrow \mathrm {H}* {\star} (n=2)$ The energy of an electron in the $n$-th energy level of a hydrogen atom is given by the formula: SE_n = -\frac {13.6}

{n"2} \mathrm{cV}$ For the ground state (Sn=18): SE_1 = -\frac{13.6} {172} = -13.6 \mathrm {e¢V } S For the first excited state ($n=25): SE_2 = -\frac{13.6} {2/2} = -\frac{13.6} {4} = -3.4
mathrm {eV}$ The energy required to excite a hydrogen atom from $n=18$ to $n=2$ is: $\Delta E=E_2 - E_1 =-3.4 \mathrm {eV} - (-13.6 \mathrm {eV}) = -3.4 \mathrm {eV} + 13.6
‘mathrm{eV} = 10.2 ‘\mathrm{eV}$ Since there are two hydrogen atoms being excited, the total excitation energy is $2 \times 10.2 \mathrm {¢V} = 20.4 \mathrm {e¢V'}$. The total energy threshold
for the reaction is the sum of the bond energy and the total excitation energy: Energy Threshold = Bond Energy + Total Excitation Energy $24.9 \mathrm{eV} =E_{\mathrm{C}} + 20.4
‘mathrm{eV}$ Solving for the bond energy SE_{\mathrm {C}}$: SE_{\mathrm{C}} = 24.9 \mathrm{eV} - 20.4 \mathrm{¢V}$ $E_{\mathrm{C}} = 4.5 \mathrm {¢V}$ The bond energy of
$\mathrm {H}_{2}$ is $4.5 \mathrm {eV}$. The value is already given to the first decimal place. Final Answer: The final answer is $\boxed {4.5}$

Figure 5: An example of selecting specific segments during the fine-tuning process

aging a reference model to compute excess loss,
we identify and prioritize high-value tokens and
reasoning steps, significantly improving training ef-
ficiency and model accuracy on CoT tasks. Among
the proposed methods, both the token-selective
loss and token-weighted approaches consistently
outperformed baseline and alternative strategies,
achieving substantial gains on both GSM8K and
MATH benchmarks. The ablation study on the
token-selection method further confirmed the crit-
ical role of curated reference data and adaptive
selection strategies in optimizing reasoning perfor-
mance.

7 Future Work

Building upon the findings of this study, there are
several avenues for future research: One can evalu-
ate the proposed selective fine-tuning methods on
a broader range of reasoning tasks (e.g., logical
puzzles, scientific reasoning, commonsense QA)
and across different domains to assess the general-
izability of the approach. Applying and analyzing
the effectiveness of these selective techniques on
larger, state-of-the-art LLMs to determine if the
observed benefits scale with model size and ca-

pability. Further theoretical analysis is needed to
deepen the understanding of why prioritizing high-
excess-loss tokens specifically benefits complex
reasoning tasks and how it influences the internal
representations learned by the model. Finally, de-
veloping more sophisticated criteria for token or
segment selection beyond excess loss, potentially
incorporating measures of uncertainty, semantic
importance, or structural role within the reasoning
chain would be an interesting future direction. Ex-
ploring dynamic thresholding or adaptive weight-
ing schemes based on training progress could also
be beneficial.

8 Limitations

Despite the promising results, our approach has
several limitations that warrant further investiga-
tion: The quality of our method depends heavily
on the reference model’s performance. If the refer-
ence model has biases or weaknesses in certain
reasoning domains, these limitations may prop-
agate to the selective fine-tuning process. Our
method requires training an additional reference
model and computing token-wise excess loss dur-
ing fine-tuning, introducing computational over-



head compared to standard fine-tuning approaches.
Our evaluation primarily focused on mathemati-
cal reasoning tasks (GSM8K and MATH). The ef-
fectiveness of selective fine-tuning on other rea-
soning domains (e.g., logical reasoning, common
sense reasoning) remains to be thoroughly explored.
Also, the segment-selective approach relies on un-
supervised segmentation of reasoning traces, which
may not always align with the true logical structure
of the solution. More sophisticated segmentation
methods might further improve performance. fi-
nally, our experiments were conducted on the 1.5B-
parameter Qwen2.5 model. The scalability and
effectiveness of selective fine-tuning on larger mod-
els (10B+ parameters) remains an open question.
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