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Abstract001

While supervised fine-tuning on chain-of-002
thought (CoT) traces can markedly boost rea-003
soning capabilities of large language models004
(LLMs), not all tokens in a CoT trace equally005
contribute to that gain. We propose a selective006
fine-tuning framework that embeds the token-007
selection ideas of Selective Language Model-008
ing (SLM) into reasoning-oriented training. In009
specific, by measuring each token’s excess loss010
with a reference model, we pinpoint the frag-011
ments most critical to reasoning and apply one012
of three tailored objectives: token-selective,013
token-weighted, or segment-selective, so gra-014
dient updates focus only on those high-value015
tokens or spans. When applied to Qwen2.5-016
1.5B and evaluated on GSM8K and MATH, this017
strategy outperforms standard fine-tuning, with018
the token-selective variant raising accuracy by019
up to 5.6 percentage points. This approach not020
only enhances model performance and train-021
ing efficiency, but also improves the coherence022
and reliability of multi-step reasoning, offer-023
ing a scalable solution for developing advanced024
reasoning models.025

1 Introduction026

Large Language Models (LLMs) have transformed027

natural language processing, achieving strong zero-028

and few-shot results on translation, question an-029

swering, and basic reasoning without task-specific030

fine-tuning (Brown et al., 2020). Yet they still strug-031

gle with complex multi-step problems that demand032

explicit logical deduction or arithmetic. Supplying033

chain-of-thought (CoT) rationales—intermediate034

reasoning traces—substantially narrows this gap035

(Wei et al., 2023): prompting LLMs to “think step036

by step” allows them to solve arithmetic and com-037

monsense tasks far better than direct-answer base-038

lines. Researchers have further transplanted this039

skill into smaller models by fine-tuning them on040

CoT corpora produced by stronger teachers (Ho041

Figure 1: Poorly curated or noisy data can hinder deep-
reasoning development. Left: Standard fine-tuning ap-
plies loss uniformly to all tokens. Right: Our proposed
selective fine-tuning applies loss only to the most infor-
mative tokens, ignoring the rest.

et al., 2023), enabling resource-efficient deploy- 042

ment. 043

Despite these advances, LLM reasoning remains 044

unreliable. The auto-regressive generation pro- 045

cess means that an early hallucination can cas- 046

cade through a long rationale and yield an incorrect 047

conclusion (Ferrag et al., 2025). Models also ex- 048

hibit weak self-consistency, sometimes contradict- 049

ing themselves within a single chain. Demonstrat- 050

ing that a model can reason in controlled settings 051

is therefore insufficient; we must ensure it does 052

so consistently across diverse problems (Xu et al., 053

2025; Boye and Moell, 2025; Li et al., 2025). 054

Supervised fine-tuning (SFT) is an attractive av- 055

enue because it integrates reasoning knowledge 056

directly into model weights. Conventional next- 057

token SFT, however, treats every token equally, 058

wasting capacity on trivial continuations and fail- 059

ing to target fragile parts of long CoT sequences. 060

Its effectiveness is therefore highly sensitive to data 061

cleanliness; noisy examples can degrade reasoning 062

rather than enhance it. 063

We address these issues with a selective fine- 064

tuning framework that leverages a reference model 065

and the notion of excess loss. Inspired by “Not All 066

Tokens Are What You Need” (Lin et al., 2025), we 067

first train a strong reference model and compute 068
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its token-level loss on the training set. The excess069

loss—the difference between the candidate model’s070

loss and the reference loss—identifies difficult to-071

kens. During fine-tuning we focus the gradient on072

high-excess-loss tokens while down-weighting the073

rest. By doing so, the model devotes more capacity074

to learning the non-trivial reasoning components075

that it hasn’t mastered, rather than over-processing076

tokens it already predicts well. This simple se-077

lective fine-tuning strategy is designed to both im-078

prove training efficiency and steer the model’s opti-079

mization toward better reasoning performance. In080

summary, our approach directly tackles the ineffi-081

ciency of uniform token-level training by prioritiz-082

ing the most informative tokens (as identified via083

a reference model), thereby aiming to produce an084

LLM that is more adept at multi-step reasoning.085

The empirical results demonstrate that our pro-086

posed selective fine-tuning approach substantially087

improves reasoning performance. When applied to088

Qwen2.5-1.5B on the GSM8K and MATH bench-089

marks, token-selective fine-tuning achieves 68.5%090

and 41.2% accuracy respectively, representing in-091

creases of 4.8 percentage points over standard fine-092

tuning in both cases. Our token-weighted variant093

performs even better, achieving 68.4% on GSM8K094

and 42.0% on MATH. These improvements are par-095

ticularly notable on the more challenging MATH096

benchmark, suggesting that selective fine-tuning097

effectively targets the difficult reasoning steps es-098

sential for complex problem-solving.099

The main contributions of this paper are: (1) A100

novel selective fine-tuning framework that lever-101

ages excess loss to identify and prioritize the102

most informative tokens in chain-of-thought rea-103

soning traces; (2) Three complementary selective104

loss functions that operate at different granulari-105

ties (token-selective, token-weighted, and segment-106

selective); (3) Empirical evidence that focusing on107

high-value tokens during fine-tuning significantly108

enhances reasoning capabilities while improving109

training efficiency; and (4) Insights from ablation110

studies on the importance of reference model qual-111

ity, adaptive selection strategies, and curated train-112

ing data for optimal reasoning performance.113

2 Related Work114

Data–efficient supervised fine-tuning. A grow-115

ing body of evidence shows that high-quality, well-116

matched data can rival—or outperform—training117

on the full corpus during the SFT stage (Liu et al.,118

2025b). Liu et al. (2024) cast data selection as an 119

optimal-transport alignment problem, adding a di- 120

versity regularizer and demonstrating that ~1 % of 121

carefully picked examples can beat 100 % of the 122

data. In a complementary line, Yang et al. (2024) 123

fine-tune a small proxy model, cluster examples 124

by their loss trajectories, and then train the target 125

LLM only on clusters deemed most useful. 126

Selectivity during training. Rather than filter ex- 127

amples beforehand, several approaches inject selec- 128

tivity into the loss computation itself. SelectIT (Liu 129

et al., 2025a) prompts the model to solve an instruc- 130

tion and self-evaluate its confidence; instructions 131

that trigger low confidence or wrong answers re- 132

ceive greater weight in subsequent updates. LESS 133

(Xia et al., 2024) estimates each example’s influ- 134

ence on a probe set via low-rank gradient sketches, 135

selecting those with gradients most aligned to de- 136

sired skills. 137

Token-level focus in pretraining Whole- 138

example selection can still waste effort on 139

uninformative tokens. Mindermann et al. (2022) 140

introduced RHO-LOSS, which scores data points 141

by how much they are expected to reduce hold-out 142

loss, avoiding noisy or already-mastered content. 143

Li et al. (2025) adapt this principle to LLMs with 144

Selective Language Modeling (SLM): a reference 145

model assigns each token an excess loss score, and 146

the main model updates only on high-score tokens, 147

ignoring or down-weighting the rest. 148

Together, these studies suggest that both which 149

examples and which tokens receive gradient signal 150

critically influence downstream reasoning perfor- 151

mance. Our work extends this idea by combining 152

reference-based excess-loss scoring with an effi- 153

cient, end-to-end fine-tuning routine tailored for 154

long chain-of-thought sequences. 155

3 Selective Fine-tuning for Reasoning 156

Our selective fine-tuning framework, illustrated in 157

Figure 2, consists of three key phases: (1) Train- 158

ing a reference model on high-quality, curated CoT 159

samples; (2) Using this reference model to cal- 160

culate excess loss on tokens in the main training 161

dataset; and (3) fine-tuning the main model with 162

one of three selective loss strategies that focus gra- 163

dient updates on the most informative portions of 164

reasoning traces. 165

The core insight is that not all tokens in a CoT 166

trace contribute equally to reasoning performance. 167
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Figure 2: The pipeline of Selective Fine-tuning via Excess Loss. This includes three major steps: training a
reference model on the curated CoT samples, calculating the excess loss using the reference model on the raw CoT
samples during the main model fine-tuning process, and finally fine-tuning the main model on the most valuable
tokens based on the excess loss.

By comparing the token-level loss of our candidate168

model against a strong reference model, we identify169

tokens that are particularly challenging or informa-170

tive, and concentrate the learning process on these171

high-value regions. This approach efficiently al-172

locates computational resources while preventing173

the model from overfitting to template language or174

trivial patterns in the training data.175

We extend Selective Language Modeling (SLM)176

to the SFT phase of chain-of-thought traces by in-177

troducing three complementary loss functions that178

decide where to spend gradient budget:179

• Token-Selective Loss (§3.1) — trains only on180

the hardest tokens,181

• Token-Weighted Loss (§3.2) — reweights ev-182

ery token by its difficulty,183

• Segment-Selective Loss (§3.3) — selects184

whole reasoning steps instead of single tokens.185

All three rely on a reference model to measure ex-186

cess loss: the difference between the main model’s187

token loss and the reference’s. The higher the ex-188

cess loss, the more a token (or segment) can teach189

the model. The following subsections detail each190

method, focusing on their implementation and ap-191

plication during the SFT stage for enhancing rea-192

soning capabilities in long CoT data.193

3.1 Token-Selective Loss 194

The token-selective loss method, inspired by the 195

SLM approach from Li et al. (2025), prioritizes 196

training on a subset of tokens with high excess loss 197

during the fine-tuning stage. For a given batch of in- 198

put sequences x = {x1, . . . , xT } and correspond- 199

ing target tokens y = {y1, . . . , yT }, we compute 200

the per-token cross-entropy loss for both the main 201

model M and the reference model R: 202

LM =
T∑
t=1

ℓM (t) = −
T∑
t=1

logPM (yt | x, y<t), 203

LR =
T∑
t=1

ℓR(t) = −
T∑
t=1

logPR(yt | x, y<t). 204

where PM and PR are the probability distribu- 205

tions over the vocabulary predicted by the main and 206

reference models, respectively. The excess loss is 207

then defined as: 208

L∆(t) = LM (t)− LR(t). 209

Tokens with an excess loss above a threshold, 210

determined by a selection ratio k ∈ [0, 1], are se- 211

lected for training. Specifically, we select the top 212

k · N tokens with the highest L∆(t), where N is 213

the number of valid tokens. A binary mask m is 214
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Figure 3: Selective Fine-tuning for CoT Reasoning Tasks. This diagram illustrates various selective fine-tuning
strategies applied to CoT reasoning. In the left and middle examples, blue tokens denote positions receiving gradient
updates, while black tokens are excluded during fine-tuning. In the right example, tokens are colored in shades of
orange, where darker orange indicates higher weight. Selective fine-tuning strategically filters noisy or redundant
information, concentrating learning on the most informative reasoning components to improve LLM performance
on multi-step reasoning tasks. *Note: This is a simplified, illustrative scenario and does not fully capture the
complexity of real token dynamics in large-scale training. Additional examples are available in the Appendix 5.6.

created, where mt = 1 if token t is selected and215

mt = 0 otherwise. The final loss is computed as:216

Ltoken-selective =
T∑
t=1

mt · CE(ŷt, yt),217

where CE is the cross-entropy loss, and ŷt are218

the logits from the main model. To balance com-219

prehensive learning and selective efficiency, we220

employ a linear decay scheduler for the selection221

ratio, starting at k = 1.0 in the first epoch (full-data222

fine-tuning) and decaying to k = 0.6 by the final223

epoch.224

3.2 Token-Weighted Loss225

The token-weighted loss method extends the token-226

selective approach by assigning continuous weights227

to tokens based on their excess loss, rather than228

a binary selection. Using the same excess loss229

L∆(t) as defined above, we compute weights via a230

softmax function with a temperature parameter τ :231

wt =
exp(L∆(t)/τ)∑
s∈V exp(L∆(s)/τ)

,232

where V is the set of valid tokens, and τ =233

2 controls the softness of the weight distribution.234

These weights are applied to the per-token cross-235

entropy loss to compute the final loss:236

Ltoken-weighted =

∑
t∈V wt · CE(ŷt, yt)∑

t∈V wt + ϵ
,237

where ϵ = 10−8 prevents division by zero. This 238

method allows the model to focus on tokens with 239

higher excess loss while still considering all valid 240

tokens, potentially improving generalization com- 241

pared to the binary selection in token-selective loss. 242

3.3 Segment-Selective Loss 243

For long CoT data, where reasoning errors often 244

arise from entire steps rather than individual tokens, 245

we propose a segment-selective loss that operates 246

at a higher granularity. Segments are defined as 247

coherent units of reasoning steps, identified using 248

an unsupervised approach with sentence embed- 249

dings and DBSCAN clustering. Given segment 250

labels s = {s1, . . . , sT } that assign each token to 251

a segment (or an ignore index for padding), we 252

compute the excess loss L∆(t) as in the token- 253

selective method. The segment-level excess loss is 254

then calculated by averaging the per-token excess 255

loss within each segment: 256

L
seg
∆ (i) =

1

|Si|
∑
t∈Si

L∆(t), 257

where Si is the set of tokens in segment i, and 258

|Si| is the number of tokens in that segment. The 259

top k ·G segments with the highest Lseg
∆ (i) are se- 260

lected, where G is the number of unique segments, 261

and k is the selection ratio. A binary mask m is 262

created such that mt = 1 if token t belongs to a 263

selected segment and mt = 0 otherwise. The loss 264

is then: 265
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Lsegment-selective =
T∑
t=1

mt · CE(ŷt, yt).266

This approach preserves the contextual integrity267

of reasoning steps, ensuring that the model trains268

on semantically meaningful units.269

3.4 Practical Integration270

All three methods are integrated into the SFT stage271

using the LitGPT framework, as described in the272

provided code. The reference model—trained273

on high-quality instruction data—provides stable274

ℓR(t). The selection ratio k for selective methods275

is dynamically adjusted using a linear decay sched-276

uler, and the temperature τ for weighted methods277

is fixed at 5.0. Experiments employ Qwen2.5-1.5B278

(131k-token context), so long CoT sequences fit279

without truncation.280

4 Experimental Setup281

All experiments are carried out in LITGPT using282

the 1.5 B-parameter Qwen2.5 backbone, whose283

131 K token window comfortably accommodates284

full chain-of-thought (CoT) transcripts.285

4.1 Reference Model286

We first train a reference model—also Qwen2.5-287

1.5B—on the curated S1k instruction set from288

Muennighoff et al. (2025). The set contains 1289

000 high-quality examples with detailed reason-290

ing traces. Training lasts 5 epochs with a cosine-291

decayed learning-rate peak of 5× 10−5, 15 warm-292

up steps, 20 000-token sequences, and a per-device293

batch size of 1 (to avoid out-of-memory).294

4.2 Fine-tuning Data295

For the main experiments we use the authors’ larger,296

unfiltered split (59k examples). Its noise and di-297

versity provide a realistic stress test for selective298

fine-tuning.299

4.3 Methods Compared300

We evaluate four SFT strategies, each run for 3301

epochs on the 59k corpus with the same scheduler302

and hyper-parameters as the reference model (batch303

1, max-LR 5× 10−5):304

• Full fine-tuning (baseline): standard cross-305

entropy on every token.306

• Token-Selective Loss: hard-masking the top 307

k tokens by excess loss, with k linearly an- 308

nealed from 1.0 to 0.6. 309

• Token-Weighted Loss: soft weights from a 310

τ=5 softmax over excess loss. 311

• Segment-Selective Loss: hard selection of 312

entire reasoning segments, using the same k 313

schedule as (2). 314

4.4 Datasets 315

Following Lin et al. (2025), we measure few-shot 316

CoT accuracy on GSM8K (grade-school arith- 317

metic) and MATH (advanced competition prob- 318

lems). Accuracy is reported as the percentage of 319

problems solved correctly under identical prompt- 320

ing conditions. 321

5 Results 322

Research questions. Our experiments address 323

five questions: 324

• RQ1 — Does selective fine-tuning beat stan- 325

dard full fine-tuning on chain-of-thought 326

(CoT) reasoning? 327

• RQ2 — Which granularity is more helpful, 328

token-level or segment-level? 329

• RQ3 — Is soft weighting superior to hard 330

masking? 331

• RQ4 — How does the amount and quality of 332

reference data influence token selection? 333

• RQ5 — How important is the choice of the 334

selection-ratio scheduler? 335

5.1 Effects of Selective Fine-tuning for 336

Reasoning 337

Table 1 presents the CoT reasoning performance 338

of the baseline and proposed methods, alongside 339

reference base models, on the GSM8K and MATH 340

benchmarks. 341

The token-selective loss method, which priori- 342

tizes tokens with high excess loss L∆(t), achieved 343

68.5% on GSM8K and 41.2% on MATH, yielding 344

an average accuracy of 54.9%. This represents im- 345

provements of 4.8% and 4.8% over the baseline full 346

fine-tuning (63.7% on GSM8K, 36.4% on MATH) 347

on the same dataset, demonstrating the effective- 348

ness of focusing training on informative tokens. 349
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Table 1: Few-shot CoT reasoning results on math benchmarks. |θ| denotes the number of parameters, and Data
indicates the fine-tuning dataset (s1k: 1,000 samples; s1-full59k: 59,000 samples).

Model |θ| Data GSM8K MATH Average

Base Models

Gemma3 4B - 38.4 24.2 31.3
Mistral 7B - 52.2 13.1 32.7
Qwen2.5 1.5B - 52.5 31.6 42.0

Fine-tuning on Qwen2.5-1.5B

Full fine-tuning (baseline) 1.5B s1k 65.6 31.8 48.7
Full fine-tuning (baseline) 1.5B s1-full59k 63.7 36.4 50
Selective fine-tuning (Token-level) 1.5B s1-full59k 68.5 41.2 54.9
Selective fine-tuning (Segment-level) 1.5B s1-full59k 67.9 37.2 52.6
Weighted fine-tuning (Token-level) 1.5B s1-full59k 68.4 42.0 55.2

The method’s strong MATH performance high-350

lights its capability in addressing complex, multi-351

step reasoning challenges by optimizing for tokens352

critical to logical inference.353

The segment-selective loss method, operating at354

the granularity of reasoning steps, achieved 67.9%355

on GSM8K and 37.2% on MATH, with an average356

of 52.6%. While it outperformed the baseline on357

both benchmarks, its MATH performance lagged358

behind the token-selective method by 4.0%. This359

suggests that segment-level selection, while pre-360

serving contextual integrity, may be less effective361

for tasks requiring fine-grained token-level reason-362

ing, such as advanced mathematical problems.363

The token-weighted loss method, which as-364

signs continuous weights based on L∆(t), achieved365

68.4% on GSM8K and 42.0% on MATH, yielding366

the highest average accuracy of 55.2% among all367

methods. Its balanced performance across both368

datasets suggests that continuous weighting offers369

a good trade-off between generalization and speci-370

ficity, supporting both simple and complex reason-371

ing tasks.372

Overall, the proposed selective and weighted373

loss functions significantly enhance SFT efficiency374

and reasoning performance compared to standard375

full fine-tuning. Among them, the token-weighted376

loss method achieves the highest overall accuracy,377

while the token-selective loss method remains378

highly robust, particularly on more complex bench-379

marks like MATH. These results validate the hy-380

pothesis that prioritizing high-excess-loss tokens or381

segments enables more effective learning of com-382

plex reasoning patterns. The ablation study further 383

elucidates the importance of adaptive selection ra- 384

tios and curated reference data in achieving these 385

gains. 386

5.2 Token-level vs. Segment-level Granularity 387

The segment-selective loss method, operating at the 388

granularity of reasoning steps, achieved 67.9% on 389

GSM8K and 37.2% on MATH, with an average of 390

52.6%. While it outperformed the baseline on both 391

benchmarks, its MATH performance lagged behind 392

the token-selective method by 4.0%. This suggests 393

that segment-level selection, while preserving con- 394

textual integrity, may be less effective for tasks 395

requiring fine-grained token-level reasoning, such 396

as advanced mathematical problems. 397

Our results indicate that token-level approaches 398

generally outperform segment-level methods, par- 399

ticularly on tasks that require precise, step-by-step 400

reasoning like those found in the MATH bench- 401

mark. However, segment-level selection still offers 402

meaningful improvements over the baseline, sug- 403

gesting that the optimal granularity may depend on 404

the specific reasoning task. 405

5.3 Hard Masking vs. Soft Weighting 406

The token-weighted loss method, which assigns 407

continuous weights based on L∆(t), achieved 408

68.4% on GSM8K and 42.0% on MATH, yield- 409

ing the highest average accuracy of 55.2% among 410

all methods. Its balanced performance across both 411

datasets suggests that continuous weighting offers 412

a good trade-off between generalization and speci- 413
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Table 2: Ablation study results on GSM8K and MATH benchmarks for the Qwen2.5 1.5B model fine-tuned on the
59,000-sample dataset.

Method Configuration GSM8K MATH Average

Token Selection Method

1,000 Samples, Linear Decay Default 68.5 41.2 54.9
500 Samples, Linear Decay Ablation 67.6 33.8 50.7
100 Samples, Linear Decay Ablation 70.0 36.8 53.4
Random 1,000 Samples, Linear Decay Self-Reference 67.9 34.4 51.2
1,000 Samples, Fixed Ratio (0.6) Ablation 69.6 33.8 51.7
1,000 Samples, Fixed Ratio (0.8) Ablation 69.1 36.8 52.9

ficity, supporting both simple and complex reason-414

ing tasks.415

When comparing hard masking (token-selective)416

versus soft weighting approaches, we find that417

soft weighting tends to perform marginally bet-418

ter, particularly on more complex reasoning tasks419

like MATH. This advantage may stem from the420

weighted approach’s ability to maintain a more421

nuanced gradient signal that preserves contextual422

information while still prioritizing high-value to-423

kens.424

5.4 Impact of Reference Data Quality and425

Quantity426

To investigate the influence of reference data on to-427

ken selection, we conducted ablation experiments428

with varying amounts of curated data for train-429

ing the reference model. The default configura-430

tion using 1,000 high-quality samples achieved the431

strongest overall performance (54.9% average ac-432

curacy).433

Reducing the reference dataset to 500 samples re-434

sulted in a performance drop to 67.6% on GSM8K,435

33.8% on MATH, and an average of 50.7%. The436

significant decline in MATH performance suggests437

that a smaller reference dataset compromises the438

accuracy of excess loss estimation, particularly for439

tasks requiring deep, multi-step reasoning.440

Interestingly, using just 100 samples achieved441

the highest GSM8K performance at 70.0%, but a442

lower MATH score of 36.8%, yielding an average443

of 53.4%. This indicates that for simpler reason-444

ing tasks, even a small high-quality reference set445

can effectively identify informative tokens, while446

complex reasoning benefits from larger reference447

datasets.448

Furthermore, our "Self-Reference" configura-449

tion using 1,000 randomly selected (rather than450

curated) samples achieved only 67.9% on GSM8K 451

and 34.4% on MATH (51.2% average), highlight- 452

ing the importance of high-quality reference data 453

for effective token selection. 454

5.5 Selection Ratio Scheduler Optimization 455

Our experiments compared different selection ra- 456

tio schedulers for the token-selective method. The 457

linear decay scheduler (gradually reducing selec- 458

tion from 1.0 to 0.6) outperformed fixed ratios, 459

achieving 68.5% on GSM8K and 41.2% on MATH 460

(54.9% average). 461

Fixed selection ratios of 0.6 and 0.8 462

achieved 69.6%/33.8% and 69.1%/36.8% on 463

GSM8K/MATH respectively, resulting in averages 464

of 51.7% and 52.9%. The significant performance 465

drop on MATH with fixed ratios suggests that 466

adaptive selection is particularly important for 467

complex reasoning tasks. 468

The linear decay approach provides an optimal 469

balance by allowing the model to learn broadly in 470

early epochs and gradually focus on high-excess- 471

loss tokens as training progresses. This strategy 472

appears crucial for developing robust reasoning 473

capabilities across diverse problem types. 474

5.6 Qualitative Examples 475

Figure 4 and 5 shows the complete CoT trace with 476

tokens and segmented selected. The tokens marked 477

in blue represent the actual tokens trained while the 478

remaining black tokens are not trained during the 479

fine-tuning process. 480

6 Conclusion 481

This paper introduces a novel selective fine-tuning 482

framework for LLMs, centered on token and 483

segment-level excess loss to enhance complex rea- 484

soning through supervised fine-tuning. By lever- 485
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Figure 4: An example of selecting specific tokens during the fine-tuning process

Figure 5: An example of selecting specific segments during the fine-tuning process

aging a reference model to compute excess loss,486

we identify and prioritize high-value tokens and487

reasoning steps, significantly improving training ef-488

ficiency and model accuracy on CoT tasks. Among489

the proposed methods, both the token-selective490

loss and token-weighted approaches consistently491

outperformed baseline and alternative strategies,492

achieving substantial gains on both GSM8K and493

MATH benchmarks. The ablation study on the494

token-selection method further confirmed the crit-495

ical role of curated reference data and adaptive496

selection strategies in optimizing reasoning perfor-497

mance.498

7 Future Work499

Building upon the findings of this study, there are500

several avenues for future research: One can evalu-501

ate the proposed selective fine-tuning methods on502

a broader range of reasoning tasks (e.g., logical503

puzzles, scientific reasoning, commonsense QA)504

and across different domains to assess the general-505

izability of the approach. Applying and analyzing506

the effectiveness of these selective techniques on507

larger, state-of-the-art LLMs to determine if the508

observed benefits scale with model size and ca-509

pability. Further theoretical analysis is needed to 510

deepen the understanding of why prioritizing high- 511

excess-loss tokens specifically benefits complex 512

reasoning tasks and how it influences the internal 513

representations learned by the model. Finally, de- 514

veloping more sophisticated criteria for token or 515

segment selection beyond excess loss, potentially 516

incorporating measures of uncertainty, semantic 517

importance, or structural role within the reasoning 518

chain would be an interesting future direction. Ex- 519

ploring dynamic thresholding or adaptive weight- 520

ing schemes based on training progress could also 521

be beneficial. 522

8 Limitations 523

Despite the promising results, our approach has 524

several limitations that warrant further investiga- 525

tion: The quality of our method depends heavily 526

on the reference model’s performance. If the refer- 527

ence model has biases or weaknesses in certain 528

reasoning domains, these limitations may prop- 529

agate to the selective fine-tuning process. Our 530

method requires training an additional reference 531

model and computing token-wise excess loss dur- 532

ing fine-tuning, introducing computational over- 533
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head compared to standard fine-tuning approaches.534

Our evaluation primarily focused on mathemati-535

cal reasoning tasks (GSM8K and MATH). The ef-536

fectiveness of selective fine-tuning on other rea-537

soning domains (e.g., logical reasoning, common538

sense reasoning) remains to be thoroughly explored.539

Also, the segment-selective approach relies on un-540

supervised segmentation of reasoning traces, which541

may not always align with the true logical structure542

of the solution. More sophisticated segmentation543

methods might further improve performance. fi-544

nally, our experiments were conducted on the 1.5B-545

parameter Qwen2.5 model. The scalability and546

effectiveness of selective fine-tuning on larger mod-547

els (10B+ parameters) remains an open question.548
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