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Abstract
Despite their recent success, Language Models
(LMs) have brought to question whether they statis-
tically repeat data (‘stochastic parrots’)[Bender et
al., 2021] or can learn the underlying generative pro-
cess of the data. Current benchmarks used to probe
the reasoning ability of LMs can be ambiguous as it
is unclear whether the model has learned the bench-
mark or the generative process of the data. In this
work we introduce a novel evaluation setting that we
use with Inductive In-Context Learning (IIL) and a
dataset, ReAnalogy, to probe the reasoning ability
of LMs. ReAnalogy consists of sequences with
positive examples, generated from regular expres-
sions (regex), and contains quasi-natural language.
We use regex to evaluate implicitly whether a LM
can infer ‘Rules’ (regex) given limited sets of exam-
ples (‘Facts’). We use the LM to generate additional
Facts to evaluate whether the generated Facts abide
by the Rules. We evaluate a GPT model in our set-
ting and compare with the same model where a Rule
is injected during training to replace a Fact. We use
IIL during evaluation to probe the model to infer the
Rule given Facts. We then use the inferred Rule to
synthesize an additional Fact. IIL improves ‘reason-
ing’ performance by as much as 33%. Our results
suggest that LMs can learn more than statistical pat-
terns in the data and we support our findings with
ablation studies. We evaluate our dataset with exist-
ing benchmarks and baselines in inductive program-
ming and find that current state-of-the-art symbolic
or neuro-symbolic approaches fail to the complexity
of our dataset; while the existing dataset and bench-
mark in the domain are inapplicable for LMs. Our
probing method and dataset are complex enough
for LMs and applicable for evaluating the inductive
reasoning abilities of LMs, while IIL can improve
‘reasoning’ of LMs. We make our dataset available
at https://github.com/fostiropoulos/reanalogy

1 Introduction
Reasoning capabilities of Language Models (LMs) has been
of recent interest in the Machine Learning (ML) community

and beyond. Evaluating the ability of LMs to reason is an
open problem where current work focus on psychometric tests
designed based on human priors that are inapplicable to LMs
[Yu et al., 2023; Bubeck et al., 2023]. Principled benchmarks
on evaluating reasoning can contain annotator bias due to
the ambiguity inherent in natural language. Although the
goal is for LMs to perform inductive reasoning comparably to
humans, a more systematic approach is required to evaluate
and compare between models.

Inductive reasoning tasks require a model to infer general
rules given observations, where the rule must match the ob-
servations such that {Factsi,∀i} → Rule. Consider a toy
example of an inductive reasoning task in natural language
{apples, oranges, pears, ... } → Plural Nouns;
this can be ambiguous as these same facts could also define
Fruits. Then, cars could be part of {Plural Nouns}
but not Fruits.Under such ambiguity, abductive inference
attempts to find the most probable Rule that describes the data
(e.g., here Fruits might be preferred as it is a smaller set
than Plural Nouns). In ML literature, inductive reasoning
is an overloaded term and as such we also use the term to refer
to the ambiguous setting. In contrast, deductive reasoning
would seek to deduce Facts from Rules.

Much of the criticism of language models has been on
whether they are ‘stochastic parrots’ [Bender et al., 2021]
as they learn the statistical patterns of the data but not the
underlying generative process, i.e., Fruits. However under
ambiguity, there can be many explanations for the same Facts,
optimizing the model for learning a single Rule from a list of
Facts can be biased to the labels of the annotator; e.g., if the
annotator marked all of those as Plural Nouns, how can we
evaluate a model on its ability to infer Fruits and penalize
if it cannot?

Unambiguous evaluation approaches include, Inductive
Logic Programming (ILP) where the goal is to deduce the
logical rules from a set of examples (positive and negative).
For example: {abcd,abzz,abeee, . . . } → ab[a-z]* or
2, 8, 16 · · · → 2i. ILP has been motivated by recent work
[Cropper et al., 2022] as a way of evaluating reasoning of LMs.
While the field has mainly considered benchmarks limited in
vocabulary, size or that require manual effort in curating and
processing examples. Further, baseline methods are outdated
when compared to current LMs. As such, there is a gap be-
tween natural language datasets in which there is ambiguity
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Figure 1: Illustration on the differences between our approach in Training (left) and Evaluating (right) as compared to previous methods. For
ReGPT we inject a Rule (‘R’) during training (bottom row of the red outline) as compared to GPT that is trained with additional Facts (‘F’).
Previous approaches directly optimize for a Rule synthesis task (biased) or use tests that can be inapplicable for LMs (pink outline). During
evaluation, we probe ReGPT with IIL (blue outline) to infer a Rule (R̂) from Facts that we use to generate additional Facts (blue tokens).
ReAnalogy evaluate whether the generated Facts abide by the ground-truth Rule. Our benchmark can implicitly evaluate on whether a model
has learned to infer the underlying Rules as opposed to explicitly evaluate a model optimized for ‘Rule Synthesis’. For IIL the soundness of the
Rule is unambiguous and as such it improves performance when compared to a baseline model.

on the ground-truth and synthetic datasets for which we have
access to their generative process but are not applicable for
modern LMs.

To this end we motivate that to evaluate the inductive rea-
soning abilities of a LM model we need a dataset for which
we have access to Rules which we can evaluate unambigu-
ously, i.e. the membership of a Fact to a Rule. Similarly, such
dataset should be challenging enough to be used with current
state-of-the-art models. Additionally, the evaluation protocol
should probe the generalization abilities of the model with-
out being subject to the same bias as the question it is trying
to answer, for example P (Rule|Facts) is an insufficient
test when Facts are ambiguous. The same protocol is bi-
ased when the model is trained such that to maximize P (R|F),
which can be referred to as Rule Synthesis. As such a holistic
approach to evaluation can be more effective at probing the
reasoning ability of a LM. For reasons of brevity we use R
and F to denote Rules and Facts respectively and use similar
notation throughout the text.

Regular Expressions (regex) are Finite Automata and can
represent a program (R) that can be used to both synthesize and
evaluate membership (∈) of an example (F) in an unambiguous
way. Current dataset composed of regex are inapplicable for
LMs where, they are too small to train on, or contain random
patterns. For this reason we propose ReAnalogy benchmark
composed of 60,368 regex mined from open-source reposito-
ries that contain quasi-natural language. For each expression
we generate examples (F) and evaluate the model on the ability
to generate additional facts from a limited set of only positive
implication examples, Figure 1. Our benchmark is challenging
enough for existing LMs, while it is able to evaluate the anal-
ogy making ability of a system in an unambiguous manner.

We evaluate LMs and find they perform at 83% accuracy
on this benchmark where previous state-of-the-art on ILP syn-

thesis catastrophically fails. As such, we introduce ReGPT,
where we inject Rules in the training sequence to evaluate
whether LMs can learn to infer rules. During evaluation we
use IIL to prompt a LM to infer Rules that we use to generate
Facts and improve performance by as much as 33% compared
to a GPT. Our approach can be summarized as induction fol-
lowed by deduction. We evaluate ReGPT to find that LMs
can improve on inductive reasoning and learn to infer Rules
implicitly when probed via IIL. We will make our code and
dataset publicly available after the review process concludes.
Our contributions can be summarized:

• We introduce ReAnalogy, a reasoning benchmark com-
posed of complex quasi-natural language generated from
complex regular expressions.

• We introduce ReGPT a GPT model that ‘reason’ by per-
forming induction to infer the Rules given a limited set
of true Facts via Inductive In-Context Learning followed
by deduction where it generates novel Facts.

• We ablate and analyze the performance of ReGPT and
ReAnalogy with results that can help to probe and im-
prove the reasoning abilities of LMs.

2 Related Work
We identify three categories of related works most similar to
our work. Work that attempt to evaluate and understand the
reasoning abilities of LMs; work that introduce evaluation set-
tings of reasoning for LMs; and work that introduce methods
for improving reasoning.

2.1 LM probing
Several works evaluate the reasoning abilities of LMs [Yu
et al., 2023] by probing to specific tasks, such as inductive,
deductive and abductive reasoning.



[Zhang et al., 2022] use a Language Model as a Logic
Programmer to reason over knowledge bases. Their dataset
contains query, facts, rules where the goal is, given the query,
to find a proof path. Contrary to their method, we evaluate
implicitly on how well a model can infer Rules by evaluating
the generated Facts. Additionally, IIL deduce rules implicitly,
by first performing inductive reasoning and using the inferred
rule to generate facts.

Similarly, [Yang et al., 2022] observe that current inductive
reasoning datasets and tasks are superficial in probing the in-
ductive reasoning abilities of LMs. They propose DEER, a
dataset which contains a list of short natural language facts
accompanied by a rule. The dataset is curated by human eval-
uators that find facts on the internet given a rule. Contrary
to our work, their dataset is not publicly available. We evalu-
ate membership of Facts in Rule in an unambiguous manner
where DEER is inapplicable in this setting. Additionally, their
benchmark, and similar to [Teru et al., 2020], evaluates the
probability of inferring the correct Rule given Facts i.e. P (R|F)
and as such can be used auxiliary to our setting.

Other work [Misra et al., 2022] evaluate the ability of LMs
to perform property induction, i.e. if Fi → R1 and {Fj ,Fi} →
R2 then Fi → R2. Their evaluation setting is orthogonal to our
work, while their dataset is artificially generated from natural
language Facts with True / False pairs that are inapplicable to
be used for evaluating inductive reasoning.

[Telle et al., 2019] evaluate the minimum number of ex-
amples (Facts) required for a model to learn a concept (Rule)
using a regex dataset. They find that the total size (in length)
of the Facts as opposed to their number is a better indicator
of complexity to learn a Rule. Similarly, we evaluate the re-
lationship in learning Rules from Facts to arrive at similar
conclusions as we increase the number of facts we use to
infer Rules, Table 2. Contrary to their setting we evaluate
the inferred Rules by using them to generate additional Facts.
Additionally, ReAnalogy contain quasi-natural language as
opposed terminal 0 and 1 that are constructed from a restrict
set of regex.

[Yang et al., 2023; Liu et al., 2022] supplement our analysis
where they identify that natural language descriptions alone
can be inapplicable to evaluate the reasoning ability of LMs.
They combine descriptions (Facts) in natural language with
automaton-based representations (Rules) that can be formally
verified. Contrary to our work, we evaluate the Facts generated
by the Rules inferred via IIL.

Similar to our work, [Min et al., 2022] probe the mechanism
behind in-context learning and the aspects of the demonstra-
tion that contribute to end-task performance. They find that
ground-truth demonstrations (Rules) are not required. Simi-
larly, we find that explicitly learning (Rules) is not required for
a LM to learn to generate Facts where a GPT model performs
with 83% accuracy. Additionally, our method, IIL, improves
performance by as much as 33% where Rules are injected
during training and the model is probed via IIL.

2.2 Benchmarks
CLUTRR [Sinha et al., 2019] evaluate the ability of a model
to provide an answer (Fact) to a question in an in-context
learning setting. Contrary to evaluating P (A|Q) we evaluate

the ability of a model to generate additional facts. Similar
to ‘Rule Synthesis’ we find that a benchmark that evaluates
P (A|Q), cannot provide a holistic view. Additionally, their
dataset is inapplicable in our setting and the two benchmark
are orthogonal and as such can be used auxiliary to each other.

[Bhagavatula et al., 2019] introduce an ‘Abductive Reason-
ing’ benchmark where given observations (Facts) they evaluate
how well a model can generate (Rules) with natural language
pairs. This benchmark can be seen as similar to a Rule Syn-
thesis evaluation protocol such as, maxP (R|F ). Work by
[Cornelio and Thost, 2021] is similar in that regard as well.

[Yang and Deng, 2021] identify the gap between natural
language datasets and first-order logical rules. They propose a
dataset that expresses both natural language as well as formal
logic, quasi-natural language. In contrast, ReAnalogy use
regex to generate the examples where a DFA can generate
more complex expressions than first-order logic of limited
terminals.

[Mitchell, 2021] propose to evaluate the reasoning ability of
AI on psychometric tests designed for humans. Most similar
to our evaluation setting, Raven’s Progress Matrix evaluates
whether a model can learn to complete a sequence of complex
visual patterns. Such setting can be inapplicable to LM as
they are not agnostic to prior knowledge i.e. identification of
shapes, which can be a source of noise during evaluation. For
example, it would be hard to diagnose whether the model per-
forms poorly at recognizing rotations as opposed to reasoning.
Additionally, such priors can be natural for humans but are
known failure points for ML models [Geirhos et al., 2018;
Li et al., 2018].

2.3 Reasoning Improvements

[Chen et al., 2020] propose a method to synthesize regular
expressions from positive and negative examples and natural
language description. The main component of their method
is the multimodal approach that combined natural language
with AlphaRegex [Lee et al., 2016]; a symbolic search based
approach on the regular expressions. Our work are orthogonal,
as their method does not work under ambiguity.

Similarly, [Wei et al., 2022] introduce a method for eliciting
reasoning via in-context learning of LMs. The reasoning
ability of the model increases when the model is demonstrated
additional examples. Their analysis supplements our work
and to work by [Jaimovitch-Lopez et al., 2021]. Contrary, to
[Jaimovitch-Lopez et al., 2021], where they use input output
pairs to learn the concepts, we only use input pairs (Facts).
Additionally their dataset are artificial sequences of 0s and 1s.

[Rytting and Wingate, 2021] explore a neuro-symbolic ap-
proach of using the learned representations of a LM to train
symbolic engine. Similarly our approach can also be seen
as neuro-symbolic with the use of IIL to infer unambiguous
Rules that are used to synthesize Facts. Their analysis is auxil-
iary to our work, while their method uses a reasoning engine
on templates of natural language meant to Synthesize Rules.



3 Preliminaries
3.1 Inductive Reasoning
For Language Models, reasoning is the process of drawing
conclusions (Rules) from a set of observations (Facts). In
general, it consists of inductive reasoning, deductive reasoning
or abductive reasoning. Inductive reasoning is to reach gen-
eralized conclusions (Rules) based on observed specific in-
stances (Facts). When there is insufficient evidence to reach
a conclusion, abductive inference involves making educated
hypotheses from the incomplete observations. Mathematically,
inductive reasoning can be presented in Facts → Rules.
On the contrary, deductive reasoning uses general principles
or rules to make specific conclusions, i.e. Rules → Facts.

For example, during inductive reasoning, given the Facts:
abcd, abzz, and abeee; we can find a Rule1 that they all
‘start with ab’. Formally, {abcd, abzz, abeee} →
Rule1. While for deductive reasoning, given the Rule
‘strings that start with ab’, we can present Facts {abcd,
abzz, abeee}. ReGPT performs inductive reasoning
where we infer the Rules from a limited set of Facts
followed by deductive reasoning where we generate Facts
from the inferred Rules i.e. P (R|F) → P (Fi+1|R). Contrary,
GPT generates new Facts from the previous Facts, i.e.
P (Fi+1|Fi).

3.2 Regular Expressions
Regular expressions (regex) are automata and provide a for-
mal representation of a language. Although not equivalent,
Formal Languages have been applied in Natural Language
in the past. More recent work [Hahn et al., 2022] can find
equivalent approximations between the two. While it is no
mathematical equivalence between Natural Languages and
Formal Languages, we refer to their intersection as quasi-
natural language.

Regex are algebraic approaches to search for and manipu-
late text based on a set of rules. For example, the Rule1 in
the previous subsection, ‘starting with ab’, can be represented
as ˆab.*. The syntax of regular expressions include oper-
ators such as (‘.’,‘ˆ’, ‘$’,‘|’,‘[ ]’,‘[ˆ ]’,‘∗’,‘+’,‘{m,n}’),
that provide control for iteration (i.e. ∗ matches any of the
previous characters any number of times), logic (i.e. | can be
used as an OR operator), while other characters are considered
terminals. Rules are combined to form complex relationships
with terminal character symbols such as letter or strings. For
example "[dog,]." would match "dog,dog,dog. . . ". Complex
strings can be matched with sufficiently complex expressions.

Finite Automata (FA) contain transitions between states.
For example, the expression "[a-z]*" defines all strings that
contain any number of lower case characters from the English
alphabet. The states would be characters ‘a’ through ‘z’ and a
terminal state. Nondeterministic FA (NFA) define probability
of transition between states, i.e. probability of ‘a’ followed by
‘a’. We can interpret regex in this work as NFA where at each
state we randomly sample a transition at an even probability.
ReAnalogy is the only dataset that supports the full regex
functionality and for unicode character-set; an artifact of our
efficient implementation in generating regexes.

3.3 In-Context Learning
In-Context Learning (ICL) [Brown et al., 2020] is a paradigm
that trains LMs with a limited set of demonstrations. Different
from fine-tuning, which updates parameters of pre-trained
networks by training on datasets of new tasks, ICL requires
no parameter optimization for a downstream tasks. Instead,
ICL uses as input a ‘prompt’ that can guide the model to
perform a task. Given that a LM has been pre-trained on large-
scale corpus, it can perform tasks that were not contained in
the training data such as generating new data via generative
sampling. We find that ICL is the correct setting to evaluate
the generalization ability of a LM as it is not biased in training
the model for a specific task, i.e. Rule Synthesis. While the
prompt can be used to guide a the pre-trained model via next-
token prediction on Facts or Rules and generate additional
Rules or Facts.

Generative Sampling uses a scoring function to calculate
the probability of a sequence token given all previous tokens
(i.e. the prompt). There are several ways to perform sampling,
such as beam-search over all candidate options. To avoid
the bias introduced by the sampling method we evaluate the
generative ability of a model using ‘top-k’ sampling, where
we randomly sample from the top-k most probable tokens.

4 Method
4.1 ReAnalogy
As the current datasets with regex lack sufficient complexity
to effectively evaluate the performance of LMs and probe
their limitations, we contribute a new dataset ReAnalogy,
which consists of 60,368 regex acquired from open-source
repositories and augmented with 43,896 python regex from
[Davis et al., 2019].

Similarly to [Davis et al., 2019], we find that the majority
of the expressions collected form the web are not compilable,
contain bugs, vulnerabilities, are too large, or lack complexity
(e.g., when a large portion of the expression is a fixed pattern,
usually code). We mine additional examples from open-source
repositories using the GitHub API and search for code that
utilizes the ‘re’ library and we extract the string literals used
for those expressions. We find that a significant portion of the
expressions we mine contain natural language and code i.e.
expr1="While linting files .*"
We use the expressions to model Rules, that describe

Facts, such as text that match the Rule pattern. There are
several avenues in finding Facts that match the Rule. The
expression has a specific use-case and it can be difficult to
find multiple string examples in-the-wild that provide an exact
match at scale i.e. matching expr1 with a natural language cor-
pus. We attempt to use expressions directly to large corpus on
dataset like Common Crawl1 and Github repositories. Based
on sub-sample of our results it is computationally expensive
to perform exhaustive search and did not lead to sufficient
matches from a limited set of examples we sampled.

As such, we generate Facts by randomly traversing the
regex execution graph where we modify XEGER2. We per-

1https://commoncrawl.org/
2https://github.com/crdoconnor/xeger



Figure 2: Quantitative evaluation of ReAnalogy Left Probability of sampling examples by a regex for a given inter-similarity range and as
measured by the Jaccard index. A higher inter-similarity signifies larger distance between generated Facts where 0 would be as good as random
i.e. generated using the expression ".*". On the contrary, Facts with high inter-similarity would be generated by fixed regex i.e. "hello world".
For ReAnalogy the Fact inter-similarity is evenly distributed signifying diversity and complexity of generated expressions, with a median of
0.70. Contrary KB13 and Deep-Regex that have 0.90 and 0.88 respectively. Right Distribution of the filtered regex by length for each dataset.
ReAnalogy is significantly larger than KB13 [Kushman and Barzilay, 2013] and Deep-Regex [Locascio et al., 2016] where the latter dataset
are dwarfed by the size of ReAnalogy distribution. Additionally, ReAnalogy has diversity on the size of expressions that can be observed
by the even distribution in the histogram.

form modifications to set a stop condition for some operations
i.e. ‘*’ that limit the number of terminal repetitions to 10.
Additionally, the existing library provides poor support for
specific binary terminals i.e. unicode characters. The vocab-
ulary of ReAnalogy is composed of 242 terminals. Our
implementation is performant enough that the generation can
be performed on-the-fly and is not the bottleneck in training a
LM.

Filtering To enhance the diversity and complexity of the
generated data, we filter for regex that can not produce more
than 10 unique examples over multiple random repetitions.
The goal of filtering is to avoid evaluating or training on very
simple examples, such as [a,a,...] → a. For example,
regex for fixed strings such as ’GRID_PPEM’ were removed
from the dataset. While there were patterns that were not com-
pilable in Python such as "\\G . . . " due to lack of support of
operator \\G. Additionally, operators such as "\b" (backspace)
are not applicable in our generative setting.

4.2 Fact Score
We define a metric to evaluate the membership of generated
Facts implicitly by a Ground Truth Rule under ambiguity of
reasoning. We find that directly predicting and evaluating the
Rule is biased, as a model can learn to synthesize a Rule from
Facts but does not answer whether the model can learn to
do the same under more general conditions. Throughout this
work we use the term P (R|F) to describe this setting.

As such, we propose to evaluate generated Fact with the
ground-truth Rule (R∗) as opposed to performing equiva-
lence comparison of an inferred Rule (R̂) and R∗. First, two
Rules can be equivalent but expressed differently. In the con-
text of regular expressions it can be trivial to evaluate e.g.

[a-zA-Z0-9_] == \w, but in natural language rule equiv-
alence can be ambiguous. Second, more than one Rule can
interpret the Facts, i.e. R̂ → {F}, R∗ → {F} and R̂ ̸= R∗.
Under an ambiguous setting, R̂ can be considered correct in
the context of probing the ability of a model to reason. For
example F = {ab, ac, ad} → R̂ has many ambiguous
and correct interpretations R̂ ∈ {a*, . . . ,a[bcde]}.

We disambiguate the evaluation and contrary to comparing
between Rules, we propose to compare if the generated Facts
satisfy R∗; e.g., whether R∗ → ae. The Fact Score (FS) is
computed as the mean accuracy score of R∗ → Fi+1 and
calculated as:
FS = P (R∗ → Fi+1|{F1, ..,Fi});∀R∗ ∈ ReAnalogy (1)
Fact Score can be extended beyond regex to natural lan-

guage whereby R∗ → Fi+1 can be evaluated by an auxiliary
model or human feedback. However, we limit our work to
regex as a proving ground for our evaluation protocol, as a
regex can be unambiguously evaluated without significant
manual effort in curating a dataset.

4.3 ReGPT
We use ReGPT to implement Inductive In-Context Learning
(IIL) and evaluate on whether LMs can learn to infer Rules
given Facts. The goal of ReGPT is to probe the reasoning abil-
ity of LMs and not to introduce a novel architecture. As such,
we compare with a baseline GPT. Both models are trained on
a set of Facts. The difference for ReGPT is that we replace
a Fact with a Rule injected in the training sequence but with-
out direct or explicit supervision to associate the Rule with
the Facts, Figure 1. To ablate the influence of model struc-
ture, ReGPT uses the same backbone as GPT, i.e. Transformer.
ReGPT is used to evaluate two hypothesis:



1. Do LMs learn to infer Rules from the data?

2. Do LMs learn to associate Facts and Rules implicitly?

We evaluate 1. with GPT probed with ReAnalogy to gen-
erate Facts and evaluated using FS, Section 4.2 with 83%
performance. We evaluate 2. with Inductive In-Context Learn-
ing (IIL) and probe ReGPT to generate rules and evaluate
those rules by using them to generate facts. There are two
aspects of our approach that can extend beyond our work.
Firstly, generating Rules is unambiguous and even in natural
language. i.e. inferring a rule such that "dogs are mammals"
or "octopuses are mammals" are both unambiguous but not
necessarily correct. Secondly, evaluating whether the inferred
rule is correct (given the facts) is evaluated by the ability of
the model to produce names of mammals given a list of name
of animal i.e. [bird, . . . , horse, Facti+1] → Facti+1 = "oc-
topus" or "dog". The evaluation is performed on whether the
generated fact is correct. i.e. "mammal" → "octopus".

The advantage of this approach is that the evaluation met-
ric used from Section 4.2, can account for ambiguity of the
probing facts. We find that the performance of a model is in-
fluenced both by the quality and quantity of facts, Section 5.2.
Inductive In-Context Learning can probe on whether the model
has successfully learned associations between concepts and
whether it can reason on this association and extrapolate be-
yond the evidence present in the prompt.

Our approach has similarities to Neuro-Symbolic methods,
where we evaluate the correctness of the inferred Rule in an
unambiguous manner, for example on whether an expression
can be compiled or a natural language syllogism follows a
template. While generating facts can be seen as deductive
reasoning. As such our approach can be summarized as induc-
tion (inferring sound Rules from Facts) followed by deduction
(inferring Facts from Rules).

5 Experiments

We use ReAnalogy composed of 60,368 expressions that
we use to synthesize examples on the fly during training of
both GPT and ReGPT. Based on the insights from [Telle et al.,
2019] and to avoid the learning bias from the size of examples
and regular expressions we limit their length to 64 characters.
The total sequence length can reach 1024 characters which is
identical to [Radford et al., 2019]. In Section 5.1 we evalu-
ate and compare ReAnalogy with a baseline method Deep-
Regex[Locascio et al., 2016]. We evaluate on their dataset
NL-RX-Turk and KB13 [Kushman and Barzilay, 2013] that
are regex dataset used in literature and show both the dif-
ference in complexity, size as well as applicability of each
dataset to LMs. Next in Section 5.2 we evaluate and compare
ReGPT with the baseline GPT to evaluate the effects of Induc-
tive In-Context Learning using Fact Score from Section 4.2.
We use Adam with 0.001 LR for all our experiments. For
reasons of brevity on hyper-parameters and implementation
details we refer the reader to our open-source repository3 that
is well-documented.

Model Train Dataset Eval. Dataset FS

Deep-Regex NL-RX-Turk NL-RX-Turk 0.58
ReGPT NL-RX-Turk NL-RX-Turk 0.66
ReGPT ReAnalogy NL-RX-Turk 0.80
Deep-Regex KB13 KB13 0.65
ReGPT KB13 KB13 0.20
ReGPT ReAnalogy KB13 0.85

Table 1: Cross-Evaluation and comparison of ReGPT when trained
and evaluated using existing dataset from literature. NL-RX-Turk and
KB13 are too small and not complex enough to be used with LMs,
Figure 2. When trained and evaluated on the same dataset ReGPT
performs poorly compared to baseline Deep-Regex. ReGPT perfor-
mance is proportional to the complexity and size of the dataset where
KB13≪NL-RX-Turk. When ReGPT is pre-trained on ReAnalogy
it outperforms the baseline. Our results highlight the in-applicability
of existing dataset in training LMs, as well as the effectiveness of
ReGPT when compared to a baseline.

5.1 ReAnalogy
For the experiments in this section we train 8 ReGPT of differ-
ent sizes [2,6,24] layers on Datasets Deep-Regex and KB13
as a way to evaluate the applicability of LMs on the respective
datasets. We found that smaller models worked better for the
smaller dataset, and as such we report the best performance
from the range. We compare with a ReGPT model of 24 layers
pre-trained on ReAnalogy and evaluated on each respective
dataset. We find that both NL-RX-Turk and KB13 are too
small to be used with a LM where their in-dataset evalua-
tion performance correlates with their size 824 for KB13 and
10000 for Deep-Regex with 0.20 and 0.66 FS respectively,
Table 1. On the contrary, evaluating the same dataset using
a pre-trained model leads to contrary results where ReGPT
performs better for a simpler dataset KB13. We conclude that
both datasets are inapplicable to use with a LM. Addition-
ally, pre-trained ReGPT outperforms a baseline method on the
datasets, where Deep-Regex also suffers in performance on
KB-13 due to the small size.

Next we evaluate the characteristics of the two datasets
qualitatively and quantitatively. Figure 2 shows the distribu-
tion of inter-similarity between facts and the distribution of
the length for the expressions present in the filtered dataset.
The Facts sampled by ReAnalogy have relative evenly dis-
tributed inter-similarity, while those in KB13 and Deep-Regex
are concentrated in intervals with low inter-similarity. There-
fore, ReAnalogy is the only that has a large number of
diverse expressions with complex characteristics. During our
filtering process described in Section 4.1 we find 5% of ‘fixed’
string regex in ReAnalogy compared to 0.5% for KB13 and
0.3% Deep-Regex. The observation is an artifact of expres-
sions that contain natural language, i.e. Figure 3.

5.2 Inductive In-Context Learning
We compare and evaluate a GPT model with 24 layers and

we ablate the importance of the number of facts as well as
the sampling ‘freedom’ to generate facts (‘top-k’). We train 8

3https://github.com/fostiropoulos/reanalogy



Listing 1: KB13 Examples

(.*[0-9].*){5,}
1. Er9?=0mQL92:?$)\\BzG 1 ...
2. xL‘\2r{IngtO\f6Kd<R<1JM...
3. 2fYz6FX\XW6WH#a?=\rv0>...

Listing 2: NL-RX-Turk Examples

.*([0-9])|(dog)|(.).*
1. 23j
2. XrK%0
3. dog

Listing 3: ReAnalogy Examples

applying.*?jquery.*?script
1. applying+WjqueryaK-6py|w9$script
2. applyingV\f>\/Rk{qkTjqueryscript
3. applyings\tH’jquery#script

Figure 3: Qualitative evaluation on samples between KB13, NL-RX-Turk and ReAnalogy datasets. Compared to ReAnalogy, other dataset
contain mostly random expressions for which the generated examples do not contain meaningful semantics. NL-RX-Turk contain expressions
that contain natural language, while ReAnalogy is the only that contains complex quasi-natural language expressions.

different models for the experiments in this section until the
validation loss plateaus (which differs for different ‘N. Facts’).

Our experiments on the number of facts provided to the
model provide two insights. First, the performance of GPT
plateaus and decreases for ‘N. Facts’ > 5 and ‘Top-K’= 2
sampling; first row of Table 2. Our observation could be
an artifact of the inability of the model to draw associations
between Facts as complexity from additional facts arises.

In contrast, ReGPT with IIL outperforms a GPT under
equivalent settings. When increasing ‘N. Facts’, the perfor-
mance of ReGPT improves, as shown in the second row of
Table 2. Additionally, ReGPT is example efficient where for
fewer N.Facts the performance gap is larger between GPT and
ReGPT with 0.54 and 0.71 FS respectively.

Top-K sampling is used to randomly sample from the K
most likely terminals. Larger K result in samples with higher
diversity. GPT benefits from the diversity of the generated facts
where larger K improve FS, while the contrary can be observed
for ReGPT where larger K can harm performance. Our results
suggest that there is a risk-creativity trade-off where higher
creativity can be exhibited by LMs at the risk of improbable
Rules. This is an artifact that diversity in generation of rules
leads to improbable outcomes and we hypothesize it could
also explain hallucinations [Ji et al., 2023], where on the one
hand LMs display ‘creativity’ in generating impressive content
and often catastrophically fail by producing improbable text.
We conclude that hallucinations can be explained by the poor
inference of the underlying structure of the data (the inferred
Rules).

6 Discussion
Understanding the performance of LMs requires principled
methods of evaluation that can disambiguate the inherent am-
biguity of realistic reasoning tasks. One can argue that a
limitation of our work is the quasi-natural language while
we find that to be necessary and a novel aspect of our work.
Quasi-natural language does not contain ambiguous reasoning
arguments while being close enough to a natural language for
a principled but challenging evaluation setting. We motivate
that there should be a diverse set of benchmarks and datasets
for evaluation of LMs. We introduce and evaluate IIL on a
quasi-natural language setting as a starting point and find that
additional work and open problems in this area would need to
be addressed before applying Inductive In-Context Learning
directly in natural language. Additional manual effort will be
required for creating and curating a natural language dataset
specific to IIL. We motivate that such benchmarks and dataset

Top-k N. Facts (FS) 2 5 8 12

2 GPT 0.54 0.71 0.71 0.70
ReGPT 0.71 0.80 0.83 0.86

6 GPT 0.55 0.74 0.75 0.77
ReGPT 0.69 0.78 0.80 0.85

10 GPT 0.58 0.75 0.79 0.81
ReGPT 0.66 0.79 0.79 0.84

14 GPT 0.60 0.76 0.80 0.83
ReGPT 0.66 0.78 0.80 0.84

18 GPT 0.61 0.77 0.82 0.83
ReGPT 0.65 0.79 0.79 0.83

Table 2: Comparison of GPT and ReGPT evaluated with IIL using FS
from Section 4.2, where we evaluate a generated Fact by the ground-
truth Rule. We generate Facts using Top-K sampling with different
hyper-parameters. We find that increasing Top-K can increase the
performance of GPT, but harms the performance of ReGPT. Although
ReGPT consistently outperforms GPT, we find this to be an artifact
of generating more improbable Rules. Using IIL improve the Fact-
Score accuracy by a significant margin 9% on average and as much
as by 33%.

should be open and accessible to everyone by open-sourcing
ReAnalogy and urge for other researchers to do the same.
Our work is in the intersection of LMs and ILP and bares sim-
ilarities to neuro-symbolic approaches. While a lot of work is
emerging in this domain it is still unclear how to best compare
between methods in a principled manner.

7 Conclusion
We find that previous benchmark and evaluation settings can-
not provide a holistic view of the reasoning ability of a LM.
Previous work explicitly optimizing the performance of a LM
for the reasoning task and can be inapplicable in evaluating
on whether reasoning emerges in LMs. We propose an evalu-
ation setting using Inductive In-Context Learning where we
probe the reasoning abilities of a LM by evaluating the gen-
erated Facts as opposed to directly evaluating the Rules it
generates. We find that LM can perform at our benchmark
without explicit supervision on the reasoning task. We use IIL
with ReGPT and evaluate whether a LM can implicitly learn
to associate Facts with Rules where we improve ‘reasoning’
performance of a GPT by 33%.
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