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ABSTRACT

Mapping the conformational dynamics of proteins is crucial for elucidating their
functional mechanisms. While Molecular Dynamics (MD) simulation enables
detailed time evolution of protein motion, its computational toll hinders its use in
practice. To address this challenge, multiple deep learning models for reproducing
and accelerating MD have been proposed drawing on transport-based generative
methods. However, existing work focuses on generation through transport of sam-
ples from prior distributions, that can often be distant from the data manifold. The
recently proposed framework of stochastic interpolants, instead, enables transport
between arbitrary distribution endpoints. Building upon this work, we introduce
EquiJump, a transferable SO(3)-equivariant model that bridges all-atom protein
dynamics simulation time steps directly. Our approach unifies diverse sampling
methods and is benchmarked against existing models on trajectory data of fast-
folding proteins. EquiJump achieves state-of-the-art results in dynamics simulation
with a transferable model on all of the fast-folding proteins.

1 INTRODUCTION

Proteins are the workhorses of the cell, and simulating their dynamics is critical to biological discovery
and drug design (Karplus and Kuriyan, 2005). Molecular Dynamics (MD) simulation is an important
tool that leverages physics for time evolution, enabling precise exploration of the conformational
space of proteins (Hollingsworth and Dror, 2018). However, sampling with physically-accurate
molecular potentials requires small integration time steps, often making the simulation of phenomena
at relevant biological timescales prohibitive (Lane et al., 2013). To tackle this challenge, several
studies have adopted deep learning models to capture surrogates of MD potentials and dynamics (Noé
et al., 2020; Durumeric et al., 2023; Arts et al., 2023). More recent works (Schreiner et al., 2023;
Li et al., 2024; Jing et al., 2024b) have proposed to use deep learning-based simulators trained on
long-interval snapshots of MD trajectories to predict future states given some starting configuration.
These models draw from neural transport models (Ho et al., 2020; Lipman et al., 2022), learning a
conditional or guided bridge between a prior distribution (ρ0 = N ) and the target data manifold of
simulation steps (ρ1 = ρdata). In contrast, the recent paradigm of Stochastic Interpolants (Albergo
et al., 2023a; Albergo and Vanden-Eijnden, 2023) provides a method for directly bridging distinct
arbitrary distributions. In this work, we build upon this framework and introduce EquiJump, a
Two-Sided Stochastic Interpolant model which bridges between long-interval timesteps of protein
simulation directly (Figure 1). EquiJump is SO(3)-equivariant and simulates all heavy atoms directly
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Figure 1: Direct bridging of 3D Protein Simulation: EquiJump runs an stochastic interpolants-based
transport on 3D coordinates and geometric features to generate future time frames from an initial
state. Gray boxes depict transport across the latent space, which takes Gaussian perturbations and
uses learned noise and drift to transform all-atom proteins across time and 3D space.

in 3D. We train a transferable model on 12 fast-folding proteins (Majewski et al., 2023; Lindorff-
Larsen et al., 2011) and successfully recover their dynamics.

2 RELATED WORK

Advances in protein modeling through deep learning have led to the development of several models
capable of replicating MD trajectories. Most common MD learning approaches are trained on forces
(Wang et al., 2019; Husic et al., 2020; Satorras et al., 2021; Batatia et al., 2022). CG-MLFF Majewski
et al. (2023) implements a unified transferable model for multiple proteins with a coarse-grained
model. (Fu et al., 2023) learns to predict accelerated, coarse-grained dynamics of polymers with
GNNs. More recent approaches use a generative backbone to proxy dynamics potentials. Köhler
et al. (2023) utilizes normalizing flows (Gabrié et al., 2022) for coarse grained dynamics, while Arts
et al. (2023) builds upon Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) for
handling both ensemble and dynamics generation. Generative models that are capable of sampling
ensembles were also employed to reproducing MD distributions. AlphaFlow (Jing et al., 2024a)
uses Flow Matching (Lipman et al., 2022) to sample equilibrium states, while BioEmu (Lewis et al.,
2024) leverages DDPM for generating MD conformers. Closer to our approach, (Daigavane et al.,
2024) utilizes Walk-Jump Sampling (Saremi and Hyvärinen, 2019) to sample from the Boltzmann
distribution of small-peptide conformations. Alternatively, recent generative models generate next-
step predictions by transforming samples from a prior distribution, while conditioning on a source
configuration. Timewarp (Klein et al., 2023) enhances MCMC sampling with conditional normalizing
flows, while ITO (Schreiner et al., 2023) learns a conditional diffusion model for next-step prediction.
Similarly, F3low (Li et al., 2024) employs Optimal Transport Guided Flow Matching (Zheng et al.,
2023). MDGen (Jing et al., 2024b) applies One-Sided Stochastic Interpolants (Ma et al., 2024) to
generate time frames. Finally, concurrent work (Han et al., 2024; Luo et al., 2024) are similar to
EquiJump, and focus on generating next-step 3D configurations with transport from a source step.

3 METHODS

3.1 TWO-SIDED STOCHASTIC INTERPOLANTS FOR DYNAMICS SIMUILATION

Neural transport methods have demonstrated outstanding performance in generative tasks (Ma et al.,
2024; Liu et al., 2023; Lipman et al., 2022; Ho et al., 2020). Stochastic Interpolants (Albergo et al.,
2023a; Albergo and Vanden-Eijnden, 2023) are a recently proposed class of generative models that
have reached state-of-the-art results in image generation (Ma et al., 2024; Albergo et al., 2023b).
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Figure 2: Neural Transport of Tensor Clouds. (a) DDPM defines an SDE for denoising samples
from a Gaussian prior, while standard (b) Flow Matching traces a velocity field-based ODE for
moving the Gaussian samples. (c) Two-Sided Stochastic Interpolants instead enable transporting
through a local, normally-perturbed latent space that remains close to the manifold of the data.

One-sided stochastic interpolants, which generalize flow matching and denoising diffusion models,
transport samples from a prior distribution X0 ∼ N to a target data distribution X1 ∼ ρ1 by utilizing
latent variables Z ∼ N through the stochastic process {Xτ}:

Xτ = J(τ,X1) + α(τ)Z (1)
where τ ∈ [0, 1] is the time parameterization. The interpolant function J satisfies boundary conditions
J(0,X1) = 0 and J(1,X1) = X1, and the noise schedule α satisfies α(0) = 1 and α(1) = 0. In
contrast, two-sided stochastic interpolants enable learning the transport from X0 ∼ ρ0 to X1 ∼ ρ1
when ρ0 and ρ1 are arbitrary probability distributions (Figure 2). Two-sided interpolants are described
by the stochastic process {Xτ}:

Xτ = I(τ,X0,X1) + γ(τ)Z (2)
where τ ∈ [0, 1] and to ensure boundary conditions, the interpolant I and noise schedule γ must
satisfy the following: I(0,X0,X1) = X0 and I(1,X0,X1) = X1, and γ(0) = γ(1) = 0. The
probability p(τ,X) of a stochastic interpolant satisfies the transport equation:

∂τp(τ,X) +∇ · (b(τ,X)p(τ,X)) = 0 (3)
and the boundary conditions p(0,X) = p0 and p(1,X) = p1. Here, b(τ,X) is the expected velocity:

b(τ,X) = E [∂τXτ |Xτ = X] = E [∂τI(τ,X0,X1) + ∂τγ(τ)Z |Xτ = X] (4)
With stochastic sampling, we can similarly define the noise term η(τ,X) as:

η(τ,X) = E[Z |Xτ = X] (5)
In practice, the exact forms of b and η are not known for arbitrary distributions p0, p1, and are thus
parameterized by neural networks. (Albergo et al., 2023a) shows that we can learn the functions
b̂ ≈ b and η̂ ≈ η by optimizing:

min
b̂

∫ 1

0

E
[1
2
∥b̂(τ,Xτ )∥

2
− (∂τI(τ,X0,X1) + ∂τγ(τ)Z) · b̂(τ,Xτ )

]
dτ (6)

min
η̂

∫ 1

0

E
[1
2
∥η̂(τ,Xτ )∥2 − Z · η̂(τ,Xτ )

]
dτ (7)

We can then sample Xτ=1 ∼ p(τ = 1,X1) through the stochastic differential equation::

dXτ =

(
b̂(τ,Xτ )−

ϵ(τ)

γ(τ)
η̂(τ,Xτ )

)
dτ +

√
2ϵ(τ)dWτ (8)

where Wτ is the Weiner process. With the expected velocity b̂ and noise η̂, the above equations
can be integrated numerically starting from (τ = 0,X0 ∼ p0) to (τ = 1,X1 ∼ p1). We note
that following from eq. (8) the probability p(τ,Xτ ) is SO(3)-equivariant when b̂ and η̂ are SO(3)-
equivariant and dWτ is isotropic. We extend the Two-Sided Stochastic Interpolant framework to
learn a time evolution operator from trajectory data [Xt]Lt=1. Given a source time step Xt and its
consecutive target step Xt+1, we define the distribution boundaries of our interpolant as ρ0 = ρ(Xt)
and ρ1 = ρ(Xt+1 | Xt) (Figure 1). We note that the conditional nature of the target distribution
requires that our predictions for drift b̂ and noise η̂ are explicitly conditioned on the source step Xt.
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3.2 MULTIMODAL INTERPOLANTS FOR ALL-ATOM PROTEIN STRUCTURES

We treat data X represented as geometric features positioned in three-dimensional space, X =
[(Vi,Pi)]

N
i=1, which we refer to as the Tensor Cloud representation (Figure 2). In this formulation,

each Vi is a tensor of irreducible representations (irreps) of O(3) or SO(3), associated with a 3D
coordinate Pi ∈ R3. The feature representations V are arrays of irreps up to order lmax where for each
l ∈ [0, lmax], the tensor Vl represents geometric features with dimensions Vl ∈ RH×(2l+1), where H
denotes the feature multiplicity. We extend interpolant eq. (8) to the multi-modal type Xi = (Vi,Pi)
by learning independent geometric features and coordinate updates as dXτ

i = (dVτ
i , dP

τ
i ). For

computing the losses eqs. (6) and (7), we compute the Tensor Cloud dot product by independently
treating each component Xi ·Xj = Vi ·Vj +Pi ·Pj .

We represent a protein monomer (R,X) as a sequence R and a Tensor Cloud X. Our model is
designed to update X while being conditioned on R. Each residue i consists of three components: a
residue label Ri ∈ R = {ALA, GLY, . . . }, the Cα 3D coordinate Pα

i ∈ R3, and a geometric feature
of order l = 1 with multiplicity 13, VA

i ∈ R13×3. This feature encodes the relative 3D vector from
the Cα to all other heavy atoms in the residue, following a canonical ordering (King and Koes, 2020;
Costa et al., 2024). For residues with fewer than 13 non-Cα heavy atoms, we pad corresponding
vectors.

3.3 NEURAL NETWORK ARCHITECTURE AND TRAINING

To efficiently process 3D data, we utilize established modules of Euclidean-equivariant neural
networks (Geiger and Smidt, 2022; Miller et al., 2020). We design a network with 4 headers to predict
the drift b̂ = (b̂V, b̂P) and noise η̂ = (η̂V, η̂P) terms (Figure 5). Given a configuration Xt, we first
prepare a hidden representation X̃t = fcond(R,Xt). The 4 headers take (X̃t,Xt

τ , τ) to produce
predictions of each component of the drift b̂ and the noise η̂. For efficiency, the embedding X̃t is
made independent of τ , and only the headers are used in the integration loop of the latent transport.
Refer to Appendix A.2 for more details. We train and sample EquiJump following Algorithms 1 and 2:

Algorithm 1 EquiJump Training
Require: Sequence R
Require: Trajectory Data [Xt]Tt=1

Require: Interpolant Parameters Iτ , γ(τ)
Require: Networks b̂V, b̂P, η̂V, η̂P, fcond
1: t ∼ U(1, T − 1)
2: τ ∼ U(0, 1)
3: Zτ ∼ N (0, I)
4: X̃t ← fcond(R,Xt)
5: Xt

τ ← (1− τ) ·Xt + τ ·Xt+1 + γ(τ)Zτ

6: η̂ ←
(
η̂V(X̃t,Xt

τ , τ), η̂P(X̃
t,Xt

τ , τ)
)

7: b̂←
(
b̂V(X̃t,Xt

τ , τ), b̂P(X̃
t,Xt

τ , τ)
)

8: Gradient Step
9: −∇

(
1
2
∥b̂∥ − b̂ ·

(
∂τIτ (X

t,Xt+1) + γ̇(τ) ·Zτ
)

+ 1
2
∥η̂∥ − η̂ · Zτ

)

Algorithm 2 EquiJump Sampling
Require: Sequence R
Require: Start Step Xt

Require: Interpolant Parameters ϵ(τ), γ(τ)
Require: Networks b̂V, b̂P, η̂V, η̂P, fcond
Require: Integration Timestep dτ
1: Xt

τ=0 ← Xt

2: X̃t ← fcond(R,Xt)
3: for (τ ← 0 ; τ < 1 ; τ ← τ + dτ ) do
4: Zτ ∼ N (0, I)
5: η̂ ←

(
η̂V(X̃t,Xt

τ , τ), η̂P(X̃
t,Xt

τ , τ)
)

6: b̂←
(
b̂V(X̃t,Xt

τ , τ), b̂P(X̃
t,Xt

τ , τ)
)

7: dXτ ←
(
b̂− ϵ(τ)

γ(τ)
η̂
)
dτ +

√
2ϵ(τ)Zτ

8: Xt
τ+dτ ← Xt

τ + dXt
τ

9: return Xt
τ=1

3.4 EQUILIBRATION OF MODEL DYNAMICS

To measure long-term behavior of our models, we estimate the stationary distribution of the learned
dynamics and apply a correction to the density of sample observables. We leverage Time-lagged
Independent Component Analysis (TICA) (Pérez-Hernández et al., 2013) and build Markov State
Models (MSM) on clusters over TIC components. We obtain reference TICA components from the
original trajectories considering a similarity based on the Euclidean distance between Cα and a lag
time of 2ns. We find 100 clusters using k-means on the first 4 TIC dimensions, and build a Markov
State Model (MSM) on the basis of these clusters by estimating the transition matrix at long time-lag
(45 to 95ns). Finally, from the MSM largest eigenvectors we obtain the steady state probability
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of each cluster, which is used to reweight the distribution of measurements from generated data,
correcting the bias from simulation starting points.

4 EXPERIMENTS AND RESULTS

To evaluate the capability of our model in reproducing protein dynamics, we leverage the large-scale
dataset of 12 fast-folding proteins produced by (Majewski et al., 2023), and originally investigated in
(Lindorff-Larsen et al., 2011). The dataset consists of millions of snapshots of MD for 12 proteins
ranging from 10 to 80 residues, where in each trajectory snapshots are taken at the rate of 100 ps. We
refer to the original work and Appendices A.3 and A.4 for more details.

4.1 GENERATIVE TRANSPORT COMPARISON

We perform a comparative analysis of our method against the baseline methods for protein simulation
(Figure 2), evaluating their learned long-term dynamics on Protein G. We compare against DDPM
(Ho et al., 2020; Arts et al., 2023; Schreiner et al., 2023), standard Flow Matching (Lipman et al.,
2022; Li et al., 2024), and One-Sided Interpolants (Albergo et al., 2023a). In Figure 3, we show the
free energies (MSM-reweighted, as in 3.4) along the first two TIC components (Pérez-Hernández
et al., 2013) for best performing models. In Table 1, we compare the Jensen-Shannon divergence (Lin,
1991) of observables against reference for each model. These results reveal that the local transport of
EquiJump is well-suited for the consecutive-step dynamics of MD trajectories.

Figure 3: Protein G and Free Energies on its TIC components for different transport. (Left)
Protein G crystal. (Right) Estimated free energies on the first TIC components for samples produced
by DDPM, Flow Matching and Stochastic Interpolants.

DDPM Flow Matching One-Sided Interpolant EquiJump
σ2
P 1 3 5 1 3 5 1 3 5 1 3 5

TIC1 0.215 0.178 0.216 0.055 0.104 0.049 0.022 0.028 0.072 0.004 0.010 0.070
TIC2 0.191 0.154 0.167 0.049 0.110 0.069 0.023 0.031 0.099 0.004 0.009 0.065

RMSD 0.219 0.316 0.297 0.219 0.341 0.160 0.118 0.164 0.237 0.008 0.017 0.103
GDT 0.267 0.253 0.226 0.164 0.264 0.110 0.091 0.122 0.176 0.008 0.012 0.088

RG 0.257 0.302 0.132 0.208 0.347 0.173 0.141 0.171 0.252 0.025 0.033 0.162
FNC 0.281 0.374 0.192 0.129 0.160 0.082 0.071 0.077 0.142 0.003 0.011 0.111

Table 1: Jensen-Shannon Divergence of key observables from reference density. TIC1 and TIC2:
first two TICA components. RMSD: Root Mean Square Deviation of Cα atoms to crystal reference.
GDT: Global Distance Test (Total Score) of Cα atoms to crystal reference. RG: Radius of Gyration.
FNC: Fraction of Native Contacts. Please refer to Appendix A.5 for detailed metrics descriptions.

4.2 FAST-FOLDING TRANSFERABLE MODEL

We investigate the capabilities of our method on the challenging task of learning a stable and
accurate dynamics simulator for all of the 12 fast-folding proteins using a single, transferable model.
We systematically vary model capacity across latent dimensionalities H = {32, 64, 128, 256} to
assess the impact of model complexity on performance, further comparing our model to available
transferable force-field model CG-MLFF (Majewski et al., 2023). To the best of our knowledge, this
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Figure 4: Free Energy on TICA components for the 12 Fast-Folding Proteins. We compare the
free energy of EquiJump-256 against that of the reference and that of available model CG-MLFF.
EquiJump succesfully recovers the dynamics of the proteins, covering the phase space and stabilizing
the basin of most (shown as + in reference profile).

is the only other transferable model that covers these proteins. In Tables 2 and 3 and Figure 4, we
investigate model performance in reproducing the long-time (MSM-reweighted, 3.4) distribution of
observables and find that despite its large steps, our model shows better reconstruction of the slow
components and more accurate profiling of the free-energy TICA maps across the studied proteins.
We provide protein-specific results in Appendix A.8. We additionally verify the chemical validity
(Appendix A.11) and analyze performance improvements of our approach (Appendix A.12).

EquiJump
CG-MLFF 32 64 128 256

TIC1 0.30 0.15 0.13 0.07 0.03
TIC2 0.23 0.17 0.09 0.06 0.03

RMSD 0.20 0.18 0.12 0.11 0.03
GDT 0.21 0.25 0.13 0.11 0.02

RG 0.18 0.14 0.08 0.12 0.04
FNC 0.27 0.25 0.13 0.08 0.03

Table 2: Jensen-Shannon Divergence of en-
semble observables averaged over the 12 fast-
folding proteins.

EquiJump
CG-MLFF 32 64 128 256

RMSD 34.7 51.2 46.9 43.6 15.2
GDT 51.5 57.1 42.7 38.0 18.3

RG 9.4 13.8 11.4 18.7 4.3
FNC 45.2 48.8 32.8 23.7 15.7

Table 3: Percent Error in Predicting Averages
of ensemble observables for the 12 fast-folding
proteins

5 CONCLUSION

In this paper we introduced EquiJump for learning the dynamics of 3D protein simulations. EquiJump
extends Two-Sided Stochastic Interpolants for learning 3D dynamics through SO(3)-equivariant neural
networks. We validated our approach on the large-scale dataset of fast-folding proteins, in which we
compared generative frameworks and demonstrated a unified model that can accurately reproduce
complex dynamics across the different proteins. Our experiments suggest EquiJump provides a
stepping stone for future research in modeling and accelerating protein dynamics simulation.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 BROWNIAN DYNAMICS IN PROTEIN-SOLVENT SYSTEMS AND CONNECTION TO
STOCHASTIC INTERPOLANTS

In the study of molecular dynamics of proteins immersed in solvents, it is crucial to account for the
interactions between the proteins and the surrounding fluid. Proteins in a solvent experience random
collisions with solvent molecules, leading to stochastic behavior that can be effectively modeled
using Brownian dynamics (Ermak and McCammon, 1978). This approach captures the random
motion arising from thermal fluctuations and solvent effects, providing a realistic depiction of protein
behavior in biological environments.

Generalized frictional interactions among the particles can be incorporated into the Langevin equation
through a friction tensor R (Schlick, 2010). This tensor accounts for the action of the solvent on the
particles and modifies the Langevin equation to:

MẌ(t) = −∇E(X(t))−RẊ(t) +W(t), (9)

where M is the mass matrix, X(t) represents the particle positions at time t, E(X(t)) is the potential
energy, and W(t) is a random force representing thermal fluctuations from the solvent. The mean
and covariance of the random force W(t) are given by:

⟨W(t)⟩ = 0, ⟨W(t)W(t′)T ⟩ = 2kBTRδ(t− t′), (10)

where kB is Boltzmann’s constant, T is the temperature, and δ(t − t′) is the Dirac delta function.
This relation is based on the fluctuation-dissipation theorem, a fundamental result that connects the
friction experienced by a particle to the fluctuations of the random force acting upon it, assuming the
particle is undergoing random motion around thermal equilibrium.

This description ensures that the ensemble of trajectories generated from Eq. 9 is governed by the
Fokker-Planck equation, a partial differential equation that describes the evolution of the probability
density function of a particle’s position and momentum in phase space during diffusive motion. In
this context, the random force W(t) is modeled as white noise with no intrinsic timescale. The
inertial relaxation times, given by the inverses of the eigenvalues of the matrix M−1R, define
the characteristic timescale of the thermal motion. When these inertial relaxation times are short
compared to the timescale of interest, it is appropriate to neglect inertia in the governing equation,
effectively discarding the acceleration term by assuming MẌ(t) ≈ 0. Under this approximation,
Eq. 9 simplifies to the Brownian dynamics form:

Ẋ(t) = −R−1∇E(X(t)) +R−1W(t). (11)

This simplification reflects that solvent effects are sufficiently strong to render inertial forces negligi-
ble, resulting in motion that is predominantly Brownian and stochastic in nature. This description
is particularly effective for modeling very large, dense systems whose conformations in solution
are continuously and significantly altered by the fluid flow in their environment. To stably evolve
Brownian dynamics eq. (11) over time, small integration steps are usually required due to the stiffness
of the physical manifold. Molecular systems exhibit a wide range of timescales: fast atomic motions
such as bond vibrations and thermal fluctuations occur on the order of femtoseconds, while slower
conformational shifts and larger-scale rearrangements may take place over much longer periods.
These necessitate small time steps to accurately capture the system’s rapid changes without numerical
instability. In contrast, Stochastic Interpolants eq. (8), while also following the form of eq. (11),
enable smoothing of the data manifold by convolution with small Gaussian perturbations. This leads
to a latent representation that is robust to noise, allowing for larger integration steps. The smoother
manifold helps overcome local energy barriers and navigate the broader conformational landscape
more efficiently, making it possible to simulate molecular dynamics on extended timescales without
losing stability.

10



Published at the GEM workshop, ICLR 2025

A.2 EQUIJUMP MODEL

A.2.1 MODEL ARCHITECTURE

Figure 5: EquiJump Architecture: (a) The Self-Interaction Layer updates geometric features
independently, mixing Vl of different degrees into new features through a Tensor Square operation.
(b) The Spatial Convolution layer updates representations by aggregating the tensor product of
neighbors messages with the spherical harmonics embedding of the relative 3D vector between the
positions of those neighbors. (c) We stack the above modules to form a block, and build a base
network out of L blocks for making predictions. (d) A shared conditioner and 4 headers are built from
the base network. The conditioner processes sequence and the current simulation step, producing
latent embeddings that are fed to the prediction headers. The headers independently predict features
and coordinates updates for drift and noise components of the stochastic process.

For training all models we use the Adam optimizer (Kingma and Ba, 2017) with linearly decreasing
learning rate from 1× 10−2 to 1× 10−3 over 150k steps. We perform all experiments on NVIDIA
A100 machines with 2-4 GPUs.

The EquiJump block is built from two SO(3)-equivariant networks: the Self-Interaction (Figure
5.a) for updating features Vl independently, based on MACE (Batatia et al., 2022); and the Spatial
Convolution (Figure 5.b) for sharing information across neighbors, based on Tensor Field Networks
(Thomas et al., 2018). We build a deep neural network (DNN) by stacking L of these blocks (Figure
5.c). We use 5 DNNs in our model (Figure 5.d): 1 conditioner network fcond and 4 header networks
for predicting each of b̂V, b̂P, η̂V, η̂P independently.

Algorithms 3, 4, 5 describe the components of EquiJump. The Tensor Square operation in Alg. 3
(line 1) is applied independently within each channel. The residual sum of Alg. 5 (line 5) is only
performed on the geometric features, since positions are fixed. Tested models employ irreps of 0e +
1e across multiplicities {32, 64, 128, 256}. We only test conditional number of layers Lcond = 6, and
header number of layers Lheader = 4. Our experimentation indicates further scaling is a promising
direction of research.

For interpolant parameterization we use I(τ,X0,X1) = (1− τ)X0 + τX1, γ(τ) = σ · τ · (1− τ)
and fixed time dependent diffusion coefficient ϵ(τ) = 1.0 in sampling. Where σ = 3.0, 1.0 for the
coordinates and geometric features, respectively. In future work we will investigate how different
interpolant parameterizations affect the performance of our model. Independent treatment of feature
and coordinate components enables different interpolants for each term. In this work, we use the
same interpolant for both, only adjusting the variances (σ2

V, σ2
P) in sampling the variable Z. For

training the transferable model, we use σ2
P = 3.0 and σ2

V = 1.0.

Algorithm 3 Self-Interaction

Require: Tensor Cloud (P,V)

1: V← V ⊕ (V)
⊗2

2: V← MLP(Vl=0) ·V
3: V← Linear(V)
4: return (P,V)
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Algorithm 4 Spatial Convolution

Require: Tensor Cloud (V,P)
Require: Output Node Index i

1: (P̃, Ṽ)1:k ← kNN(Pi,P1:N )

2: R1:k ← Embed(||P̃1:k −Pi||2),
3: ϕ1:k ← SphericalHarmonics(P̃1:k −Pi)

4: Ṽ1:k ← MLP
(
Rk ⊕Vl=0

1:k ⊕Vl=0
)
· Linear

(
Ṽ1:k ⊗ ϕ1:k

)
5: V← Linear

(
V + 1

k

(∑
k Ṽk

))
6: return (V,P)

Algorithm 5 EquiJump Deep Network

Require: Tensor Cloud X = (P,V0:lmax)
1: H0 ← Self-Interaction(X)
2: for l in [0, L) do
3: Hl+1 ← Self-Interaction(Hl)
4: Hl+1 ← SpatialConvolution(Hl+1)
5: Hl+1 ← LayerNorm(Hl+1 +Hl)

6: Hagg ← Linear
(⊕L−1

l=0 Hl
)

7: Hout ← Self-Interaction(Hagg)
8: return Hout

A.2.2 EQUIVARIANCE

The features used in EquiJump are irreducible representations (irreps) of SO(3). To prove that Equi-
Jump is equivariant, we demonstrate that all operations within the network preserve the transformation
properties of the irreps under rotation.

Scalars, which are irreps of degree l = 0, remain invariant under rotation. For a scalar s ∈ R and a
rotation R ∈ SO(3), we have:

R · s = s. (12)

Applying functions such as MLPs to scalars preserves this invariance:

f(R · s) = f(s). (13)

For irreps with l > 0, equivariance depends on the nature of the operations. Linear operations
combine irreps of the same degree using scalar weights. Let v and w be irreps and W a learnable
weight matrix. Under a rotation R,

R · (Wv) = W (R · v), (14)

where R · v represents the rotated vector. Since the weight matrix W does not interfere with the
transformation properties, linear operations are equivariant.

EquiJump also employs tensor products, which combine two irreps v and w of degrees l1 and l2,
respectively, to produce new irreps of degrees |l1 − l2|, . . . , (l1 + l2). The tensor product transforms
under rotation as:

R · (v ⊗w) = (R · v)⊗ (R ·w), (15)

ensuring equivariance. In EquiJump, tensor products are used in two key cases: (1) between features
and spherical harmonics Ylm(r) of relative positions, and (2) between features and themselves (tensor
square). Spherical harmonics transform under rotation as:

R · Ylm(r) =
∑
m′

D
(l)
mm′(R)Ylm′(r), (16)

where D(l)
mm′(R) are elements of the Wigner-D matrix. Combining features with spherical harmonics

via tensor products preserves equivariance by construction.
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The basic operation in EquiJump involves a tensor product followed by a linear transformation. Let
T represent this combined operation:

T (v,w) = W (v ⊗w), (17)

where W is a learnable weight tensor. Under a rotation R,

R · T (v,w) = W (R · (v ⊗w)) = W ((R · v)⊗ (R ·w)). (18)

This demonstrates that this basic operation is equivariant. Since scalar transformations, linear layers,
and tensor products all preserve equivariance, the entire EquiJump network is SO(3)-equivariant. This
ensures that outputs transform consistently with inputs under rotation, making EquiJump well-suited
for modeling the rotationally symmetric dynamics of protein structures in 3D space.
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A.3 DATASET

We adapt the dataset produced by (Majewski et al., 2023). The trajectories are made up of several
NVT runs (20 to 100 ns) at T = 350 K from different starting configurations spanning the phase
space. The dataset consists of trajectories of ≈ 500 steps at intervals of 100ps. Refer to the table
below for the number of trajectories curated. To include all relevant residues, in addition to the
standard vocabulary of residues, we also include a canonical form of Norleucine (NLE).

Protein Residues Trajectories

Chignolin 10 3744
Trp-Cage 20 3940
BBA 28 7297
Villin 34 17103
WW domain 35 2347
NTL9 39 7651
BBL 47 18033
Protein B 47 6094
Homeodomain 54 1991
Protein G 56 11272
a3D 73 7113
λ-repressor 80 15697

A.4 CLUSTER-ENHANCED DATASET SAMPLING

While sampling uniformly on the whole dataset is effective for learning transitions, it is not efficient
due to slow modes and low frequency states. For the slowest modes of the system, states are very
high in free energy and heavily under-represented in our training dataset. To address this issue, taking
inspiration by classical sampling methods such as umbrella sampling (Torrie and Valleau, 1977) and
metadynamics (Laio and Parrinello, 2002) we propose a reweighing of the training set. Notably,
since our model learns ρ(Xt+1 | Xt), the target distribution remains unchanged as long as we fix
the endpoints (Xt,Xt+1): this sampling only varies the speed at which different parts of the phase
space are learned. We first find relevant degrees of freedom through TICA analysis (Pérez-Hernández
et al., 2013), which offers a reduced dimensional space that highlights the slow macroscopic modes
of the system. We then fit a small number of clusters through k-means in this simplified space using
the first two TIC components. Our enhanced dataset first samples a cluster, then from the cluster
a configuration and its transition. We fit 200 clusters for each protein. Figure 6 visualizes cluster
centers and the distribution of population sizes.

Figure 6: Cluster Centers and Distribution of Cluster Population Sizes.
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A.5 METRICS

We use the following metrics for assessment as commonly used for protein dynamics analysis:

TICs (Time-lagged Independent Components): Derived from Time-lagged Independent Compo-
nent Analysis (TICA), TICs project molecular dynamics data into a reduced-dimensional space that
emphasizes slow collective motions (Pérez-Hernández et al., 2013). We fit TICA on ground truth and
project samples to make comparisons. We consider the two main TIC components for our metrics.
For embedding our proteins for TICA, we use a distance matrix considering only Cα positions. We
use lagtime of 2ns.

RMSD (Root Mean Square Deviation): RMSD measures the average deviation of atomic positions
from a reference structure:

RMSD =

√√√√ 1

N

N∑
i=1

∥xmodel
i − xref

i ∥2, (19)

where N is the number of atoms. We align Cα backbone samples to reference crystal structure and
measure the resulting RMSD for obtaining our metric.

GDT (Global Distance Test): GDT quantifies the fraction of residues within specific distance
thresholds of the reference structure:

GDT =
1

4

∑
d∈{1,2,4,8}

# of residues within d Å
total residues

, (20)

and is used in protein structure alignment (Zemla, 2003). We align the Cα of our structures to
reference crystal structure and measure GDT for obtaining our reported values.

RG (Radius of Gyration): The compactness of a protein structure is measured as:

Rg =

√√√√∑N
i=1 mi∥xi − xCOM∥2∑N

i=1 mi

, (21)

where mi and xi are the mass and position of atom i, and xCOM is the center of mass.

FNC (Fraction of Native Contacts): FNC evaluates the fraction of interatomic contacts preserved
from the reference structure:

FNC =
# of native contacts in the sample

# of native contacts in the reference crystal
. (22)

This metric highlights native structure preservation (Best et al., 2013).
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A.6 EXPERIMENTS

A.6.1 GENERATIVE MODEL COMPARISON

For this evaluation, we vary the latent variable noise variance of positions σ2
P = {1, 3, 5} while

keeping the features noise variance fixed at σ2
V = 1. For comparison, we adapt our network and only

use 2 headers (noise or drift) for DDPM and Flow Matching. We train all models with H = 32 for
200k steps and batch size 128. For each model, we sample 1000 trajectories of 500 steps (50 ns) with
100 steps of latent variable integration.

A.6.2 12 FAST-FOLDERS TRANSFERABLE MODEL

We train all models for 500k steps with batch size 128. For collecting samples, we perform 500
simulations of 500 steps (50 ns) starting from states of the (enhanced) dataset. We employ 100 steps
of integration to obtain the next configuration. Our results demonstrate that while the force field-
based model is competitive in low-capacity regimes, our long-interval generative model significantly
outperforms it in higher-capacity settings. This can be attributed to the fact that force-field methods
are constrained to small time steps and only require short-term, local predictions which can be
captured with fewer model parameters. In contrast, a model capable of large time steps must possess
a deep understanding of the underlying data manifold, as the number of plausible transition states
grows significantly with increasing time step size. While EquiJump requires substantial capacity to
precisely reproduce equilibrium behavior, it successfully navigates the manifold across model sizes
(Appendix A.9), while achieving overall superior performance.
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A.7 VISUALIZATION OF SAMPLES

Figure 7: EquiJump Samples: (a) We visualize the performance of EquiJump on fast-folding
proteins by superposing 1500 backbone random samples of EquiJump trajectories. We align samples
to the crystal backbone (shown in black). We further present (b) mean pairwise Cα distance matrices,
(c) Ramachandran plots of backbone dihedrals and (d) Janin plots of sidechain dihedrals of EquiJump
samples against reference trajectory data.
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A.8 PROTEIN-SPECIFIC ABLATION RESULTS

We report Jensen-Shannon Divergence (Lin, 1991) against reference trajectories for reweighted
ensemble observables of each protein, comparing CG-MLFF (Majewski et al., 2023) and EquiJump
at various capacities to assess their ability to replicate realistic structural and dynamic properties.

EquiJump
CG-MLFF 32 64 128 256

chignolin

TIC1 0.221 0.026 0.069 0.009 0.006
TIC2 0.152 0.019 0.039 0.003 0.006

RMSD 0.253 0.028 0.083 0.012 0.018
GDT 0.231 0.018 0.080 0.010 0.013

RG 0.191 0.029 0.061 0.008 0.020
FNC 0.189 0.024 0.069 0.007 0.012

trpcage

TIC1 0.372 0.115 0.107 0.048 0.019
TIC2 0.187 0.037 0.047 0.068 0.008

RMSD 0.283 0.051 0.038 0.011 0.022
GDT 0.302 0.066 0.042 0.013 0.021

RG 0.438 0.045 0.028 0.007 0.035
FNC 0.299 0.100 0.096 0.036 0.031

bba

TIC1 0.334 0.110 0.067 0.114 0.044
TIC2 0.169 0.132 0.012 0.022 0.017

RMSD 0.022 0.102 0.048 0.211 0.025
GDT 0.037 0.339 0.045 0.248 0.029

RG 0.185 0.086 0.024 0.271 0.026
FNC 0.200 0.279 0.086 0.143 0.026

wwdomain

TIC1 0.252 0.191 0.061 0.048 0.028
TIC2 0.072 0.065 0.047 0.037 0.014

RMSD 0.246 0.226 0.091 0.139 0.022
GDT 0.263 0.240 0.093 0.127 0.021

RG 0.084 0.161 0.064 0.173 0.018
FNC 0.264 0.294 0.100 0.090 0.021

villin

TIC1 0.347 0.181 0.091 0.020 0.015
TIC2 0.340 0.162 0.078 0.016 0.019

RMSD 0.253 0.149 0.079 0.035 0.016
GDT 0.293 0.151 0.088 0.028 0.015

RG 0.240 0.101 0.054 0.079 0.019
FNC 0.300 0.149 0.064 0.015 0.020

ntl9

TIC1 0.251 0.270 0.207 0.072 0.045
TIC2 0.270 0.287 0.225 0.078 0.073

RMSD 0.192 0.283 0.191 0.101 0.059
GDT 0.170 0.242 0.156 0.069 0.044

RG 0.019 0.187 0.130 0.121 0.050
FNC 0.172 0.383 0.240 0.054 0.038

bbl

TIC1 0.402 0.124 0.062 0.069 0.033
TIC2 0.229 0.224 0.063 0.137 0.036

RMSD 0.378 0.053 0.016 0.135 0.011
GDT 0.409 0.055 0.008 0.132 0.008

RG 0.207 0.042 0.013 0.140 0.018
FNC 0.445 0.237 0.057 0.134 0.029

proteinb

TIC1 0.377 0.055 0.040 0.041 0.008
TIC2 0.332 0.115 0.062 0.054 0.008

RMSD 0.214 0.265 0.156 0.178 0.007
GDT 0.240 0.277 0.162 0.181 0.007
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EquiJump
CG-MLFF 32 64 128 256

RG 0.247 0.247 0.121 0.190 0.044
FNC 0.313 0.189 0.095 0.095 0.004

homeodomain

TIC1 0.250 0.308 0.260 0.203 0.081
TIC2 0.183 0.144 0.130 0.117 0.044

RMSD 0.150 0.414 0.298 0.321 0.068
GDT 0.189 0.468 0.349 0.355 0.078

RG 0.051 0.288 0.195 0.313 0.137
FNC 0.246 0.378 0.257 0.261 0.089

proteing

TIC1 0.180 0.077 0.127 0.034 0.009
TIC2 0.212 0.602 0.154 0.037 0.012

RMSD 0.075 0.175 0.101 0.079 0.019
GDT 0.103 0.628 0.106 0.067 0.013

RG 0.079 0.191 0.069 0.105 0.040
FNC 0.241 0.386 0.155 0.039 0.011

a3d

TIC1 0.348 0.336 0.356 0.095 0.072
TIC2 0.319 0.130 0.099 0.055 0.034

RMSD 0.107 0.352 0.336 0.074 0.070
GDT 0.112 0.355 0.339 0.072 0.057

RG 0.371 0.234 0.173 0.099 0.038
FNC 0.224 0.311 0.286 0.079 0.055

lambda

TIC1 0.330 0.109 0.159 0.107 0.116
TIC2 0.338 0.210 0.144 0.100 0.091

RMSD 0.311 0.129 0.109 0.033 0.046
GDT 0.277 0.167 0.095 0.028 0.042

RG 0.157 0.137 0.131 0.046 0.053
FNC 0.382 0.277 0.116 0.044 0.060

19



Published at the GEM workshop, ICLR 2025

A.9 ADDITIONAL TICA FREE ENERGY PROFILES

Figure 8: From disorder to order: Free Energy profiles on TIC1 and TIC2 for comparison
model and EquiJump models with increasing capacity. While the MLFF model remains close to
basin states, EquiJump is biased to less ordered regions despite staying in the manifold, and instead
becomes more stable with increasing capacity.
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A.10 ADDITIONAL FREE ENERGY CURVES

In Figure 9, we show the estimated free energy of observable Cα Root Mean Square Deviation
(RMSD) from the reference crystal structure, following reweighting based on stationary distributions
of fitted Markov Models. We compare the best performing EquiJump model against reference and
CG-MLFF. These curves represent the energy distribution of Cα-RMSD after the system reaches
equilibrium and are highly sensitive to the accurate estimation of conformational transitions, making
them a robust evaluation metric for dynamics models. We additionally provide free energy curve
estimates for Radius of Gyration 10 and for Fraction of Native Contacts 11.

Figure 9: Free Energy on Cα-RMSD for the 12 Fast-Folding Proteins. We align trajectory
samples to the reference crystal, and measure Cα-RMSDs (x-axis). Using Markov State Model
(MSM) weights based on our TICA-based clusters, we reweight Cα-RMSD counts to obtain free
energy estimates (y-axis). We find that EquiJump successfully approximates the free energy curves
of reference trajectories.

Figure 10: Free Energy on Cα Radius of Gyration for the 12 Fast-Folding Proteins. We bin
and reweigh counts of Cα gyradii (x-axis) based on MSM weights to obtain free energy estimates
(y-axis).
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Figure 11: Free Energy on Fraction of Native Contacts of Cα atoms for the 12 Fast-Folding
Proteins. We bin and reweigh Fraction of Native Contacts (FNC) (x-axis) of Cα atoms based on
MSM weights to obtain free energy estimates (y-axis). We only consider residues at least 3 sequence
positions apart, and use a cutoff of 8 Å for counting contacts.
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A.11 CHEMISTRY EVALUATION

We verify that EquiJump trajectories stay in a chemically valid manifold by plotting the distribution
of bond lengths, bond angles and collisions of van der Waals radii against those in reference. In
Figure 12, we plot those distributions for best peforming EquiJump model (H = 256) for fast-folding
proteins Chignolin, Trp-cage, BBA and the WW domain. We observe that EquiJump accurately
reproduces the distribution curves, interestingly revealing fewer counts for atomic clashes (despite
larger dispersion) compared to reference. Our plots demonstrate that our model produces data that
successfully stays within a chemically valid manifold across the different proteins.

Figure 12: Distribution of Chemical Measures. We pick 3000 structures at random from reference
trajectories and EquiJump. For each sample, we measure the distribution of bond lengths and bond
angles considering all heavy atoms in the system. We estimate clashes by counting intersections of
van der Waals radii for all pairs of non-bonded atoms.
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A.12 PERFORMANCE ANALYSIS

In order to study the performance of our model, we consider the largest protein (lambda) as reference.
The classical MD simulation used to generate its trajectory uses explicit water and the total system
has size around 12000 atoms (Lindorff-Larsen et al., 2011). Following Amber24 benchmarks, on
the same hardware we use for our simulations (NVIDIA A100) a system twice as large (JAC)
can reach a throughput of 1258 ns/day (Exxact Corp., 2024). Scaling linearly to the size of the
lambda cell, this results in 3.6s for a single 100ps step. Drawing from this reference, in Table
5 we compare the performance of EquiJump models across different scales, where we observe
positive acceleration factors for all model instances. Based on these metrics, we study the relation
of EquiJump speedup against generation quality. In Figure 13, we identify the trade-off between
estimated acceleration factors and accuracy in reproducing the distribution of TIC components for
different simulation batch sizes. We observe that EquiJump models are able to accurately reconstruct
TIC components (JS < 0.1) while accelerating by factors of 5-15× compared to Amber24, achieving
a significant simulation throughput with minimal trade-off in precision. In comparison, CG-MLFF is
estimated to be 1-2 orders of magnitude slower than the reference simulation (Majewski et al., 2023).
Similarly, state-of-the-art neural force-field MACE-OFF (Kovács et al., 2023) is estimated to perform
2.5Msteps/day for its smallest model on the same hardware (Kovács et al., 2023). With a time step
of 4 fs, this corresponds to 860s per 100ps step, or a 0.004× slowdown in comparison to reference.
In contrast, despite its already promising acceleration, the performance of EquiJump is likely to be
further enhanced through additional network architecture optimization, exploration of more efficient
differential equation solvers, and application of distillation and sampling acceleration techniques
(Luhman and Luhman, 2021; Salimans and Ho, 2022). In Appendix A.13, we study the impact of
sampling hyperparameters and find promising results for more acceleration through further tuning of
noise scaling for fewer integration steps.

Batch Size

Model (# Params) 1 8 32

32 (6.5M) Time (s) 0.34 1.49 3.35
Accel. (×) 10.60 19.33 34.39

64 (25.4M) Time (s) 0.51 2.26 6.07
Accel. (×) 7.05 12.74 18.98

128 (100.8M) Time (s) 0.60 3.12 12.17
Accel. (×) 6.00 9.23 9.47

256 (391.1M) Time (s) 1.05 6.40 26.09
Accel. (×) 3.40 4.50 4.42

Table 5: Performance Metrics and Estimates.
We measure the time of transport for a step of
100 ps using different model capacities when
integrating with 100 latent time steps for simu-
lating the largest protein considered (lambda),
and estimate the acceleration factor from rep-
resentative classical MD with explicit solvent
that generated the training dataset. All results
are reported on NVIDIA A100 machines with
single GPU of 80G.

Figure 13: Quality against Acceleration.
We plot estimated acceleration factors against
Jensen-Shannon divergence (JS) for the distribu-
tion of long-term TIC components of EquiJump
samples against reference trajectories. We dis-
play positive performance across batch sizes.
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A.13 SAMPLING PARAMETERS ABLATION

We study the impact of changing sampling hyperparameters ϵ(τ) and dτ in the quality of long-term
dynamics generation. For that, we train a model for simulating the dynamics of fast-folding protein
Chignolin. We parameterize our model with H = 32 and train it for 120k steps with batch size 512.
We consider scale of noising parameter ϵ(τ) = {0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 10.0} and number of steps
in integration (1/dτ) = {30, 50, 75, 100, 150, 200, 300}. For each, we sample 300 trajectories of
500 steps (50 ns). As above, we reweight metrics through MSM based on TICA-clusters to estimate
values at equilibrium. In Figure 14, we show the Jensen-Shannon Divergence (JS) between ground
truth and samples obtained at different parameterizations of ϵ and dτ . In Figure 15, we show the
effects of hyperparamter variation on the (long-term reweighted) density of the first TIC components
of samples. We observe that large variation (= 0.1, 10.0) on ϵ yields underperforming models.
Notably, we observe that even with few steps (30, 50, 75) higher quality can be obtained through
smaller ϵ (= 0.5, 0.75). Our results suggest that further investigation about the noising schedule
ϵ(τ) is a promising direction for increasing acceleration of high-quality simulation through fewer
integration steps.

Figure 14: Effect of Sampling Parameters on Generation Quality. We measure Jensen-Shannon
divergence (JS) from reference of (reweighted) observable distributions (TIC1, TIC2 and RMSD)
across different sampling parameters ϵ(τ) and (1/dτ).

Figure 15: Effect of Sampling Parameters on TIC profile: we plot the density of the first TIC
components of Chignolin with varying noise factor ϵ(τ) and integration number of steps (1/dτ ).
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