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Benchmarking the performance of Bayesian optimization
across multiple experimental materials science domains
Qiaohao Liang 1✉, Aldair E. Gongora2, Zekun Ren3, Armi Tiihonen 1,7, Zhe Liu1,8, Shijing Sun 1, James R. Deneault4, Daniil Bash5,
Flore Mekki-Berrada6, Saif A. Khan 6, Kedar Hippalgaonkar 5, Benji Maruyama4, Keith A. Brown 2, John Fisher III1 and
Tonio Buonassisi 1✉

Bayesian optimization (BO) has been leveraged for guiding autonomous and high-throughput experiments in materials science.
However, few have evaluated the efficiency of BO across a broad range of experimental materials domains. In this work, we quantify
the performance of BO with a collection of surrogate model and acquisition function pairs across five diverse experimental
materials systems. By defining acceleration and enhancement metrics for materials optimization objectives, we find that surrogate
models such as Gaussian Process (GP) with anisotropic kernels and Random Forest (RF) have comparable performance in BO, and
both outperform the commonly used GP with isotropic kernels. GP with anisotropic kernels has demonstrated the most robustness,
yet RF is a close alternative and warrants more consideration because it is free from distribution assumptions, has smaller time
complexity, and requires less effort in initial hyperparameter selection. We also raise awareness about the benefits of using GP with
anisotropic kernels in future materials optimization campaigns.
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INTRODUCTION
Autonomous experimental systems have recently emerged as the
frontier for accelerated materials research. These systems excel at
optimizing materials objectives, e.g. environmental stability of
solar cells or toughness of 3D printed mechanical structures, that
are typically costly, slow, or difficult to simulate and experimen-
tally evaluate. While autonomous experimental systems are often
associated with high sample synthesis rates via high-throughput
experiments (HTE), they may also utilize closed-loop feedback
from machine learning (ML) during materials property optimiza-
tion. The latter has motivated the integration of advanced lab
automation components with ML algorithms. Specifically, active
learning1,2 algorithms have traditionally been applied to minimiz-
ing total experiment costs while maximizing machine learning
model accuracy through hyperparameter tuning. Their primary
utility for materials science research, where experiments remain
relatively costly, lies in an iterative formulation that proposes
targeted experiments with regard to a specific design objective
based on prior experimental observations. Bayesian optimization
(BO)3–5, one class of active learning methods, utilizes a surrogate
model to approximate a mapping from experiment parameters to
an objective criterion, and provides optimal experiment selection
when combined with an acquisition function. BO has been shown
to be a data-efficient closed-loop active learning method for
navigating complex design spaces3,6–10. Consequently, it has
become an appealing methodology for accelerated materials
research and optimizing material properties11–22 beyond state-of-
the-art.
The materials science community has seen successful demon-

strations in performing materials optimization via autonomous
experiments guided by BO and its variants17,23–27. Naturally,
previous work emphasized the ability to achieve materials

optimization with fewer experimental iterations. There have been
very few quantitative analyses of the acceleration or enhancement
resulting from applying BO algorithms and discussions on the
sensitivity of BO performance to surrogate model and acquisition
function selection. Rohr et al.28, Graff et al.29, and Gongora et al.24

have evaluated the performance of BO using multiple surrogate
models and acquisition functions within specific electrocatalyst,
ligand, and mechanical structures design spaces, respectively.
However, comprehensive benchmarking of the performance of BO
algorithms across a broad array of experimental materials systems,
as we present here, has not been done. Although one could test
BO across various analytical functions or emulated materials
design spaces25,30, empirical performance evaluation on a broader
collection of experimental materials science data is still necessary
to provide practical guidelines. Optimization algorithms need
systematic and comprehensive benchmarks to evaluate their
performance, and the lack of these could significantly slow down
advanced algorithm development, eventually posing obstacles for
building fully autonomous platforms. Presented below, the
benchmarking framework, practical performance metrics, datasets
collected from realistic noisy experiments, and insights derived
from a side-by-side comparison of BO algorithms will allow
researchers to evaluate and select their optimization algorithm
before deploying it on autonomous research platforms. Our work
provides comprehensive benchmarks for optimization algorithms
specifically developed for autonomous and high-throughput
experimental materials research. Ideally, it provides insight for
designing and deploying Bayesian optimization algorithms that
suit the sample generation rate of future autonomous platforms
and tackle materials optimization in more complex design spaces.
In this work, we benchmark the performance of BO across five

different experimental materials science datasets, optimizing
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properties of carbon nanotube-polymer blends, silver nanoparti-
cles, lead-halide perovskites, and additively manufactured poly-
mer structures and shapes. We utilize a pool-based active learning
framework to approximate experimental materials optimization
processes. We also adapt metrics such as enhancement factor and
acceleration factor to quantitatively compare performances of BO
algorithms against that of a random sampling baseline. We
observe that when utilizing the same acquisition functions, BO
with Random Forest (RF)31–33 as a surrogate model has compar-
able performance to BO with Gaussian Process (GP)4 with
automatic relevance detection (ARD)34 that has an anisotropic
kernel. They also both outperform commonly used BO with GP
without ARD. Our discussion on surrogate models’ differences in
their implicit distributional assumptions, time complexities,
hyperparameter tuning, and the benefits of using GP with
anisotropic kernels yield deeper insights regarding surrogate
model selection for materials optimization campaigns. We also
offer open-source implementation of benchmarking code and
datasets to support the future development of such algorithms in
the field.

RESULTS
Experimental materials datasets
As seen in Table 1, we have assembled a list of five materials
datasets with varying sizes, dimensions ndim, and materials
systems. These diverse datasets are generated from autonomous
experimental studies conducted by collaborators, and facilitate BO
performance analysis across a broad range of materials. They
contain three to five independent input features, one property as

materials optimization objective, and contain from a few tens to
hundreds of data points. Based on their optimization objectives,
the design space input features in the datasets range from
materials compositions to synthesis processing parameters, as
seen in Supplementary Table 1–5. For consistency, each dataset
has its optimization problem formulated as global minimization.
It should be noted that while all datasets were gathered from

relatively high-throughput experimental systems, P3HT/CNT,
AgNP, Perovskite, and AutoAM had BO guiding the selection of
subsequent experiments partially through the materials optimiza-
tion campaigns. Across the datasets, the differences in the
distribution of objective values can be observed in Fig. 1(a) and
the objective values are normalized for comparison purposes; the
differences in the distribution of sampled data points in its
respective materials design space can be seen in Fig. 1(b). The five
materials datasets in the current study are available in the
following GitHub repository35.

Bayesian optimization: surrogate models and acquisition
functions
Bayesian optimization (BO)3–5 aims to solve the problem of finding
a global optimum (min or max) of an unknown objective function
g: x*= arg minxgðxÞ where x∈ X and X is a domain of interest in
Rndim . BO holds the assumption that this black-box function g can
be evaluated at any x∈ X and the responses are noisy point-wise
observations (x, y), where E[y∣g(x)]= g(x). The surrogate model f is
probabilistic and consists of a prior distribution that approximates
the unknown objective function g, and is sequentially updated
with collected data to yield a Bayesian posterior belief of g.
Decision policies aimed to find the optimum in fewer experiments

Table 1. Description of experimental materials science datasets.

Dataset Domain Synthesis Size ndim Optimization Objective

P3HT/CNT53 Composite blends Drop casting 178 5 Electrical conductivity

AgNP54 Silver nanoparticles Flow synthesis 164 5 Absorbance spectrum score

Perovskite23 Thin film perovskite Spin coating 94 3 Stability score

Crossed barrel24 3D printed structure 3D printing 600 4 Mechanical toughness

AutoAM55 Materials manufacturing 3D printing 100 4 Shape score

Fig. 1 Experimental materials dataset design space manifold complexity visualization. a Histogram of objective values normalized to zero-
mean without loss of generality. b Input feature space, i.e. design space, visualization after dimensionality reduction to 3D via principal
component analysis (PCA). The colors of each point in the datasets indicate its value. PCA was performed to reduce the dimension of each
dataset to three for visualization, and the three axes shown are the top three principal component directions of each dataset.
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are implemented in acquisition functions, which can use the mean
and variance predicted at any x∈ X in the posterior to select the
next observation to be performed.
The BO algorithm is comprised of both a surrogate model and

an acquisition function. The surrogate models considered in this
study are random forest (RF)31, Gaussian process (GP) regression36,
and GP with automatic relevance detection (ARD)5,34,36.

1. To approximate the experience of a researcher with little
prior knowledge of a materials design space, for RF, we have
hyperparameters applicable across all five datasets without
loss of generality: ntree= 100 and bootstrap= True. Supple-
mentary Figure 1 shows that ntree= 100 is a suitable
hyperparameter for RF surrogate models when applied to
the five datasets.

2. For hyperparameters of GP, we choose kernels from
Matérn52, Matérn32, Matérn12, radial basis function (RBF),
and multilayer perceptron (MLP). The initial lengthscale for
each kernel was set to unit length.

3. For hyperparameters of GP ARD, we not only have the
above kernel choices from GP, but also use ARD, which
allows GP to keep anisotropic kernels. The kernel function of
GP then has individual characteristic lengthscales lj5,34 for
each of the input feature dimensions j.

As an example, in dimension j, Matérn52 kernel function
between two points p, q in design space would be

kðpj ;qjÞ ¼ σ2
0 � ð1þ

ffiffiffi
5

p
r

lj
þ 5r2

3l2j
Þ expð�

ffiffiffi
5

p
r

lj
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpj � qjÞ2

q
, σ is the standard deviation and lj is the

characteristic length scale. These characteristic length scales can
be used to estimate the distance moved along jth dimension from
the input values in the design space before the change of
objective values become uncorrelated with this feature. 1lj is thus
useful in understanding the sensitivity of objective value to input
feature j.
We then pair the selected surrogate model with one of three

acquisition functions, including expected improvement (EI),
probability of improvement (PI), and lower confidence bound
(LCB) LCB

λ
ðxÞ ¼ �μ̂ðxÞ þ λσ̂ðxÞ, where μ̂ and σ̂ are the mean and

standard deviation estimated by surrogate model while λ is an
adjustable ratio between exploitation and exploration.

In addition, these surrogate models, their hyperparameters, and
acquisition functions were chosen because they represent the
majority of off-the-shelf options accessible, and are ones that have
been widely applied to materials optimization campaigns in
the field. Our study provides a comprehensive test across the five
datasets in order to reflect how each BO algorithm, resulting from
the pairing above, performs across many different materials
science design spaces. GP and RF were also selected as examples
to specifically illustrate how the differences in implicit distribu-
tional assumptions of surrogate models could affect their
predictions of the mean and standard deviation when selecting
subsequent experiments and performance in BO.

Pool-based active learning benchmarking framework
Within each respective experimental dataset, the set of data points
form a discrete representation of ground truth in the materials
design space. Figure 2 shows the pool-based active learning
benchmarking framework we use to simulate materials optimiza-
tion campaigns guided by BO algorithms in each materials system.
The framework has the following properties:

1. It has the traits of an active learning study as it contains a
machine learning model that is iteratively refined through
subsequent experimental observation selection based on
information from previously explored data points. The
framework is also adapted for BO, and emphasizes the
optimization of materials objectives over building an
accurate regression model in design space.

2. It is derived from pool-based active learning. Besides the
randomly selected initial experiments, the subsequent experi-
mental observations are selected from the total pool of
undiscovered data points (x, y)∈D, whose input features x are
all made available for evaluation by the acquisition functions.
The ground truth in the materials design space was
represented with a fixed number of discrete data points to
resembles studies that have a known total number of
experimental conditions to select from due to their equipment
resolution limitation. We chose such representation over a
continuous emulator for the following reasons and concerns:

(a) In real research scenarios, materials design spaces are not
completely continuous due to noise and limitation in the

Fig. 2 Benchmarking framework including a simulation of BO performing closed-loop optimization with alternating inference and
planning stages. X is the iteratively collected sequence of experimental data (x, y) during the optimization campaign. D is the original pool or
total undiscovered set of data from which the next experiments are selected. f is the surrogate model used to estimate mean μ̂ and standard
deviation σ̂, which parameterize the acquisition function α to select next experiment x* to be evaluated.
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resolution of equipment apparatus and experiment
design.

(b) Because many materials datasets do not cover their
design space evenly with at high resolution, the fitted
ground truth model would have greater variance in
regions that were loosely covered by the training
experimental dataset. As a result, even if we don’t
consider overfitting, the continuous emulator could have
varied accuracy across its design space compared to real
experimental ground truth, greatly affecting optimization
results.

(c) To emulate materials design spaces, selecting of models
such as GP introduces smoothness assumptions into the
design space, and thus during the benchmarking process
could give great advantages to BO algorithms with GP
surrogate models sharing similar gaussianity assump-
tions. In Supplementary Figure 2 - 3, we show how such
induced bias from different ground truth models affects
the evaluation of the performance of BO.

3. At each learning cycle of the framework, instead of selecting
a larger batch, only one new experiment is obtained. In our
retrospective study, a batch size of 1 was most applicable
across five materials studies with varying dimensions and
dataset sizes and allowed us to directly compare the impact
of surrogate model and acquisition function selection while
keeping the same batch size. In real experimental setups,
the exact tradeoff between batch size and cost of
experiment parallelization should be determined by
researchers and their equipment apparatus limitations.

Each BO algorithm is evaluated for 50 ensembles with 50
independent random seeds governing the initialization of
experiments. The aggregated performances of the BO algorithms
derived from 50 averaged runs resulting from 10 random five-fold
splits using the 50 original ensembles, is compared against a
statistical random search baseline, and we can quantitatively
evaluate its performance via active learning metrics defined in
the sections below. A detailed description of the framework and
the calculation of statistical random baselines can be seen in the
Methods section. The simulated materials optimization cam-
paigns were conducted on the Boston University Shared
Computing Cluster (SCC) and MIT Supercloud37, enabling the
parallel execution of multiple optimization campaigns on
individual computing nodes.

Observation of performance through case study on Crossed
barrel dataset
While the five datasets covered a breadth of materials domains,
the relative performances of tested BO algorithms were observed
to be quite consistent. The benchmarking results are thus
showcased using the Crossed barrel dataset24, which was
collected by grid sampling the design space through a robotic
experimental system while optimizing the toughness of 3D
printed crossed barrel structures. For the full combinatorial study
including all types of GP kernels and acquisition functions, please
kindly refer to Supplementary Figure 5–9 besides Fig. 3.
As for the performance metric, we use

Top%ðiÞ ¼ number of top candidates discovered
number of total top candidates

2 ½0; 1� (2)

to show the fraction of the crossed barrel structures with top 5%
toughness that have been discovered by cycle i= 1, 2, 3,…, N. Top
% describes how quickly can a BO-guided autonomous experi-
mental system could identify multiple top candidates in a
materials design space. Keeping multiple well-performing candi-
dates allows one to not only observe regions in design space that
frequently yield high-performing samples but also have backup

options for further evaluation should the most optimal candidate
fail in subsequent evaluations. There are research objectives
related to finding any good materials candidate, yet in those
cases, random selection could outperform optimization algorithms
due to luck in a simple design space. Our objective of finding
multiple or all top-tier candidates is more applicable to experi-
mental materials optimization scenarios and suitable for demon-
strating the true efficacy and impact of BO.
Figure 3 (a) illustrates learning rates based on Top% metric and

the following are observed:

1. RF initially excels at lower learning cycles, while GP with ARD
takes the lead after Top%= 0.46. Under the same acquisi-
tion function, performance of RF as a surrogate model is
often on par, if not slightly worse, when compared to the
performance of GP with ARD.

2. Both GP with ARD and RF outclass GP without ARD.
3. LCB2 typically outperform other LCB

λ
acquisition functions

that are biased towards overly exploration or exploitation as
seen in Supplementary Figure 5–9. These results enhance
prior beliefs on acquisition strategy selection originated
from theoretical studies38–40 and thus emphasize the
importance of acquisition strategies that balance explora-
tion and exploitation for future studies. LCB2 at times even
outperformed EI, which is a very popular acquisition
function in many previous materials optimization studies
but has also been known to make excessive greedy
decisions41–43. The performance of BO algorithms using
the probability of improvement (PI) as acquisition function
has also been evaluated, but its performance was quite
consistently worse than EI and therefore not the focus of
discussion; this observation can be partially attributed to PI
only focusing on how likely is an improvement occurs at
next experiment, but not considering how much improve-
ment could be made during the evaluation.

When trying to further compare the BO algorithms with
different surrogate models in this work, we would like to keep
the acquisition function consistent. The same acquisition function
LCB2 was thus used as a representative acquisition function for
surrogate model comparisons below because it has shown a
decent balance of exploration and exploitation based on its
benchmarking results.
We would like to highlight the relative performances of BO

algorithms that utilize surrogate models GP ARD (Matérn52
kernel), RF, and GP (Matérn52 kernel). To quantify the relative
performance, we set Top%= 0.8 as a realistic goal to indicate we
have identified 80% of the structures with top 5% toughness
(Fig. 3a). For surrogate models paired with LCB2, we see that GP
with ARD and RF reach that goal by evaluating approximately 75
and 85 candidates out of the total of 600, whereas GP without
ARD needs about 170 samples out of 600. Top% rises initially as
slowly as the random baseline because the surrogate models
suffer from high variance in prediction, having only been trained
with small datasets; Top% ramps up very quickly as the model
learns to become more accurate in identifying general regions of
interest to explore; the rate of learning eventually slows down at
high learning cycles because the local exploitation for the global
optimum has exhausted most if not all top 5% toughness
candidates, and the algorithms therefore switch to exploring
sub-optimal regions. Therefore, it can be assumed that the most
valuable regions to examine performance is before each curve
reaches Top%= 0.8 and Top%= 0.8 can be used as a realistic
optimization goal.
To quantify the acceleration of discovery from BO, we adapt two

other metrics similar to the ones from Rohr et al.28. Both compared
to a statistical random baseline,
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Enhancement Factor (EF)

EFðiÞ ¼ Top%BOðiÞ
Top%randomðiÞ (3)

shows how much improvement in a metric one would receive at
cycle i, and Acceleration Factor (AF)

AFðTop% ¼ aÞ ¼ iBO
irandom

(4)

is the ratio of cycle numbers showing how much faster one could
reach a specific value Top%(iBO)= Top%(irandom)= a∈ [0, 1]. The
aggregated performance of BO algorithms is further quantified via
EF and AF curves in Fig. 3(b, c): starting off with small EFs or AFs
before the surrogate model gains more accuracy; reaching
absolute EFmax and AFmax of up to 8 × . Eventually, the learning
algorithms show diminishing returns from an information gain
perspective as we progress deeper into our optimization
campaigns during pool-based active learning. We observe that
for the two BO algorithms both with the same acquisition function

LCB2 but different surrogate models GP ARD and RF, they reach
EFmax at different learning cycles and AFmax at different Top%,
both corresponding to the switch of best-performing algorithm
around Top%= 0.46. RF: LCB2 clearly excels at lower learning
cycles, yet GP ARD: LCB2 takes the lead and would reach Top%=
0.8 with fewer experiments. Therefore, these results objectively
show that optimal BO algorithm selection varies with the assigned
experiment budget and specific optimization task28.
Since we identified two BO algorithms, RF: LCB2 and GP ARD:

LCB2, to have comparable performance, we wanted to further
investigate how similar their optimization paths were in the
design space when starting from the same initial experiments. In
Fig. 3(d), we use the Jaccard similarity index to quantify the
similarity in optimizations paths. Jaccard similarity, J ¼ jA\Bj

jA∪ Bj, is the
size of the intersection divided by the size of the union of two
finite sample sets; specifically in our benchmarking study, using
the same 50-ensemble runs that generated Fig. 3(a), we can
calculate Jaccard similarity value J(i) at each learning cycle i, where
A(i) is the set of data points sequential collected at each learning

Fig. 3 The aggregated performance of BO algorithms on the Crossed barrel dataset. Performance is measured by a Top% vs. learning cycle
i against a random baseline, b Enhancement factor EF and c Acceleration factor AF, respectively. The algorithms with GP ARD as a surrogate
model are labeled in red, RF in blue, and GP in green; higher color saturation is correlated with better performance. Variation at each learning
cycle is visualized by plotting the median as well as shaded regions representing the 5th to 95th percentile of the aggregated 50-run
ensembles. The acquisition functions used are EI, PI, and LCB

λ
d Jaccard similarity index calculated between the optimization campaign

sequences of BO algorithms RF: LCB2 and GP ARD: LCB2. The median, 5th, 95th percentile of the 50-run ensemble are shown respectively.
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cycle during an optimization path guided by BO algorithm GP
ARD: LCB2, and B(i) is that of using RF: LCB2. As baselines, we have
also drawn what the Jaccard similarity value would look like
between two optimization paths that begin with the same initial
experiments and statistically have the least overlap or most
overlap. When i= 1 or 2, the same initial experiments are given to
the two BO algorithms, and J= 1. When 2 < i < 18, we can see that
the Jaccard similarity value drops as quickly as the statistically
least overlapping paths, indicating that despite the fact that GP
with ARD and RF were trained on the same initial experiments at
the onset, they follow very different paths in the materials design
space. This behavior indicates that, despite achieving comparable
performance, they exploit the underlying physics differently by
virtue of the choice of experiments.
When i ≥ 18, the general trend is that J increases with i,

indicating that the paths chosen by the two algorithms gradually
start to have some overlap as they move towards finding crossed
barrels structures with high toughness. Recall both algorithms
reached Top%= 0.8 between 75 to 85 learning cycles in Fig. 3(a),
and between those learning cycles, we observe that J is
approximately between 0.27–0.33, still considerably far from J=
1. This observation shows that while both algorithms have
comparable performance in the task of finding crossed barrel
structures with good toughness, due to their different choice of
surrogate models, their paths towards discovering optimum can
differ considerably.
In addition, the Jaccard similarity value does not increase

monotonically, and a significant drop can be seen in J such as one
around i= 50, which coincides with the learning cycles where GP
ARD: LCB2 overtook RF : LCB2 as best performing algorithm in
Fig. 3(a). Since the two algorithms used the same acquisition
function, this observation shows that while in general the
optimization paths of the two algorithms have more overlap over
time, occasional divergent paths still take place because the two
algorithms have a considerable difference in gathered data used
to learn their surrogate models and how their surrogate models
predict mean and standard deviation. GP ARD : LCB2 and RF : LCB2
started at the same two initial experiments and use the same
acquisition function, and the only difference is the surrogate
model used. Thus, the divergence and convergence in optimiza-
tion paths can be again primarily attributed to GP ARD and RF
exploiting underlying physics of crossed barrel structure differ-
ently. Figure 3(d) highlights the impact of different surrogate
model selection beyond final performance, and to provide better
guidelines to future research, inspires us to further investigate the
role of surrogate models.

Comparison of performance across datasets
To further assess the performance of BO, similar optimization
campaigns were conducted for the P3HT/CNT, AgNP, AM ARES,
and Perovskite datasets. Across most, if not all, of the investigated
datasets, it was observed quite consistently that the performance
of BO algorithms using GP with ARD and RF as surrogate models
were comparable, and both outperform those using GP without
ARD in most datasets. To illustrate, in Fig. 4, we show such relative
performance using normalized EFmax of BO algorithms same
acquisition function LCB2 but with different surrogate models
across all five datasets. In addition to the observation on relative
performance, we also observe that BO algorithms with RF and GP
ARD as a surrogate models also have plenty of overlap between
their 5th to 95th percentile across five datasets, further indicating
their similarity in performance. We also observe the variance of
EFmax for RF is on average lower than those for GPs. This
phenomenon can be attributed to RF being an ensemble model,
where the high variances from many single decision trees are
mitigated through aggregation, resulting in a model with
relatively low bias and medium variance32,44. GP with anisotropic

kernels (GP ARD) is thus shown to be a great surrogate model
across most materials domains, with RF being a close second, and
both proving to be robust models for future optimization
campaigns.
Notably, EFmax of the other four datasets were in the 2 × to 4 ×

range as seen in Supplementary Figure 4, which is noticeably
lower than the EFmax of the crossed barrel dataset in Fig. 3(b). The
difference in the absolute EFmax can be attributed to the data
collection methodology of the individual datasets. While the
crossed barrel dataset was collected using a grid sampling
approach, the other four studies were collected along the path
of a BO-guided materials optimization campaign. Therefore, these
four datasets were smaller in size and possessed an intrinsic
enhancement and acceleration within their datasets. As a result, it
is reasonable that these datasets demonstrate lower EFs, AFs
during benchmarking. Noticeably, the Perovskite dataset had the
most intrinsic acceleration because its next experimental choice
was guided by BO infused with probabilistic constraints generated
from DFT proxy calculations of the environmental stability23 of
perovskite. As a result, the optimization sequence to be chosen in
that study is already narrowed down to a more efficient path from
initial experiments to final optimum, making the random baseline
to appear arbitrarily much worse. Another interesting observation
is how the performance of BO with GP without ARD (isotropic
kernels) as a surrogate model catches up with those of BO with GP
ARD and RF in Perovskite and AutoAM dataset where the design
space has an already “easier" path towards the optimum. That is,
when materials design space is relatively simple, GP without ARD
can serve as an equally good surrogate model in BO compared to
GP ARD and RF. Despite the differences described above, we
observe that absolute EFmax > 1 across five datasets, indicating
that performance enhancements of BO over a random baseline
still exists even in such uneven search spaces. The results again
show that BO is a very effective tool for experimental selection in
materials science.

Fig. 4 Normalized EFmax demonstrated by BO algorithms having
GP without ARD, GP with ARD, and RF as surrogate models and all
using LCB2 as acquisition function. In each dataset, the BO
algorithm with the largest EFmax had its EF scaled to 1, and the
other two BO algorithms showing lower EFmax were correspondingly
scaled, resulting in five sets of column plots. For each algorithm
applied across datasets, the median of EFmax is shown by the
barplots, and its 5th and 95th percentile are shown by respective
floating bars.
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The hypothesis that the lower EFmax are caused by intrinsic
acceleration and enhancement resulting from the dataset collec-
tion process can be verified by collecting a subset from the
uniform grid sampled crossed barrel dataset. This subset is
collected by running BO algorithm GP: EI until all candidates with
top 5% toughness are found, representing an “easier" path
towards optimums, and therefore carries intrinsic enhancement
and acceleration. We run the same benchmarking framework on
this subset, and observe that EFmax is reduced, as seen in
Supplementary Figure 4.

DISCUSSION
In this section, we further compare GP ARD, RF, and GP as
surrogate models in BO under the context of autonomous and
high-throughput materials optimization.
BO algorithms with GP-type surrogate models have been

extensively used in many published materials studies and have
shown to be robust models suitable for most optimization
problems in materials science based on our benchmarking results
in Fig. 3 and Supplementary Figure 4. Meanwhile, RF is a close
second alternative to GP in BO for future HT materials optimiza-
tion campaigns when considering the factors below. To briefly
summarize, RF is free from distribution assumptions in comparison
to GP-type models. In general, it is quicker to train due to smaller
time complexity, and requires less effort in initial hyperparameter
selection. The lack of extrapolation power in RF can also be
partially mitigated via initial sampling strategies.
We first highlight the difference between GP and RF during the

prediction of mean and standard deviation, where GPs rely on
heavy distributional assumptions while RF is distribution-free. GP,
whether anisotropic or isotropic, is essentially a distribution over a
materials design space such that any finite selection of data points
in this design space results in a multivariate Gaussian density over
any point of interest. For the selection of a new data point as the
next experiment, its predicted mean and standard deviation are all
part of such a gaussian distribution constructed from previous
experiments. Therefore, the predicted means and standard
deviations of GPs from their posteriors carry gaussianity assump-
tions and can be interpreted as statistical predictions based on
prior information. Meanwhile, an RF is an ensemble of decision
trees that have slight variation due to bootstrapping. For RF,
prediction of objective value and the standard deviation at a new
point in materials space is an aggregated result, namely
averaging44 the values from all its decision trees’ respective
predictions. Compared to those of GPs, the predicted means and
standard deviations of RFs do not have distributional assumptions,
and can be interpreted as empirical estimates. If rarely the ground
truth of a materials design space indeed satisfied the gaussianity
assumptions, then GP type surrogate models could have an
advantage over RF in BO as seen in Supplementary Figure 2-3.
However, commonly seen phase changes and exponential
relations from thermodynamics often introduce measurements
with piece-wise constants or with orders of magnitude changes
within neighboring regions of materials design space. Whether
these are new findings or outliers, they should be of specific
interest to experimentalists. These results are typically smoothed
out in the GP surrogate model to satisfy its distributional
assumptions. The decision trees of RF would be able to capture
these points more accurately and reflect their influences on future
predictions. While both RF and GP are both suitable surrogate
models, we would like to highlight their fundamental differences
when fitting materials domain with unknown distributional
assumption.
We next discuss the difference in time complexities of GP and RF

as surrogate models. Across five datasets in this study, starting from
the same initial experiments and using the same acquisition
function LCB2, the ratio of average running time to finish

benchmarking framework between the three surrogate models is
tRF: tGP: tGP ARD= 1: 1.14: 1.32. For the fitting, we have time complex-
ities tRF ¼ OðnlogðnÞ � ndim � ntreeÞ<tGP ¼ Oðn3 þ n2 � ndimÞ45–47,
where n is the number of training data, ndim is the design
space dimension, ntree is the number of decision trees kept in
the RF model. The higher computational complexity of the GP
model is mostly due to the process of calculating the inverse of
an n by n matrix during its training process, and keeping
anisotropic kernels has added extra computational time. In our
study, the datasets are relatively small in size n, and therefore
the time complexity Oðn3Þ of GP was less troublesome while
that of RF is mostly dominated by Oðndim � ntreeÞ. However, if
our datasets had sizes of order 105 or 106, the amount of
computational resources to run BO algorithms with GP-type
surrogate models could quickly become intractable due to
cubic complexity to n and a significantly larger difference in
computation speed between RF and GPs would be easily
noticeable. As a result, despite being a better performing
surrogate model type, GP could be less preferred compared to
RF in real-time optimization problems when there is a time
limit for selecting the next set of conditions48. For HT materials
research, with increased application of automation, time used
in generating samples will eventually match with the time used
in suggesting new experiments. Thus, if we aim to have a fast
and seamless feedback loop between running BO and
performing high-throughput materials experiments, then RF
could have a potential advantage over GP-type surrogate
models when considering the tradeoff between performance
and time complexity.
We last discuss the effort required hyperparameter tuning of a

surrogate model during optimization. While RF has potentially
more hyperparameters such as ntree, max depth, and max split to
select, it is less penalized for sub-optimal choice of hyperpara-
meters compared to GP. In this study, across five datasets, as long
as sufficient ntree were used in RF, its regression accuracy is
comparable to that of RF with larger ntree as seen in Supplemen-
tary Figure 1. Other hyperparameters of RF such as max depth or a
minimum number of samples for leaf node either have had less of
an impact or are too arbitrary to decide at the start of BO
campaign in a specific materials domain. Meanwhile, besides the
implicit distribution assumption of using a GP type surrogate
model, a kernel (covariance function) of GP specifies a specific
smoothness prior on the domain. Choosing a kernel that is
incompatible with the unknown domain manifold could signifi-
cantly slow down optimization conversion due to loss of
generalization. For example, the Matérn52 kernel analytically
requires the fitted GP to be 2 times differentiable in the mean-
square sense4, which can be difficult to verify for unknown
materials design spaces. Selecting such a kernel could introduce
extra domain smoothness assumptions to an unfamiliar design
space, as we often have limited data to make confident
distribution assumptions of the domain at optimization onset.
Instead of devoting a nontrivial experimental budget to finding
the best kernel for GP using adaptive kernels49, automating kernel
selection50 or keeping a library of kernels available via online
learning, RF is an easier off-the-shelf option that allows one to
make fewer structural assumptions about unfamiliar materials
domains. If a GP-type surrogate model is still preferred, a
Multilayer Perceptron (MLP) kernel51 mimicking smoothness
assumption-free neural networks would be suggested as it has
comparable performance to other kernels as seen in Supplemen-
tary Figure 5-9.
Admittedly, our benchmarking framework might have given RF

a slight advantage by discretizing the materials domain through
actively acquiring a new data point at each cycle and limiting the
choice of next experiments within the pool of undiscovered data
points. However, the crossed barrel dataset has a sampling
density, size, and range within its design space sufficient to cover
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its manifold complexity. A drawback of RF is that it performs
poorly in extrapolation beyond the search space covered by
training data, yet in the context of materials optimization
campaigns, this disadvantage can be mitigated by clever design
of initial experiments, namely using sampling strategies like Latin
hypercube sampling (LHS). In this way, we can not only preserve
the pseudo-random nature of selecting initial experiments but
also cover a wider range of data in each dimension so that the RF
surrogate model would not have to often extrapolate to
completely unknown regions. We thus believe that when paired
with the intuitive tuning of LCB’s weights to adjust exploration
and exploitation, RF warrants more consideration as an alternative
to GP ARD as a surrogate model in BO for general materials
optimization campaigns at early stages.
We would like to lastly raise awareness about the benefits of

using GP with anisotropic kernels over GP with isotropic kernels in
future materials optimization campaigns. As mentioned earlier,
ARD allows us to utilize individual lengthscales for each input
dimension j in the kernel function of GP, which are subsequently
optimized along with learning cycles. These lengthscales in an
anisotropic kernel provide a “weight" for measuring the relative
relevancy of each feature to predicting the objective, i.e. under-
standing the sensitivity of objective value to each input feature
dimension. The reason GP without ARD shows worse performance
is as follows: it will have a single lengthscale in an isotropic kernel
as a scaling parameter controlling GP’s kernel function, which is at
odds with the fact that each input feature has its distinct
contribution to the objective. Depending on how different each
feature is in nature, range, and units, e.g. solvent composition vs.
printing speed, using the same lengthscale in the kernel function
for each feature dimension could provide unreliable predictive
results. The materials optimization objective naturally has different
sensitivities to each input variable, and thus it is rationale then,
that the “lengthscale" parameter inside the GP kernel should be
independent. In Fig. 4, the noticeable improvements of using an
anisotropic kernel can be seen in the relative lower performance
of GP without ARD compared to that of GP with ARD. While data
normalization can partially alleviate the problem, how it is
conducted is highly subject to a researcher’s choice, and therefore
we would like to raise awareness of the benefits of using GP with
anisotropic kernels.
In addition, the lengthscales from the kernels of GP with ARD

provides us with more useful information about the input features.
These lengthscale values have been used for removing irrelevant
inputs4, where high lj values imply low relevancy input feature j. In
the context of materials optimization, we find the following use of
ARD especially useful: ARD could identify a few directions in the
input space with specially high “relevance.” This means that if we
train GP with ARD on input data with their original units and
without normalization, once we extract the length scale of each
feature lj, our GP model in theory should not be able to accurately
extrapolate more than lj units away from collected observations in
jth dimension. Thus, lj suggests the range of next experiments to
be performed in the jth dimension of the materials design space. It
also infers a suitable sampling density in each dimension in the
experimental setting. When a particular input feature dimension
has a relative small lj or large 1

lj
, it means that for a small change in

objective value, we would have a relatively large change in the
location within this input feature dimension; thus, the sampling
density or resolution in this dimension should be high enough to
capture such sensitivity. Previous studies have considered using
information extracted from these length scales for even more
advanced analysis and variable selection52. At the expense of
computation time tolerable in the context of materials optimiza-
tion campaigns, an anisotropic kernel provides not only a better
generalizable GP model but also useful information in analyzing
input feature relevancy at each learning cycle. For the above
mentioned reasons, it would be great practice for researchers to

emphasize their use of GP with anisotropic kernels over GP with
isotropic kernels as surrogate models during materials optimiza-
tion campaigns.
In conclusion, we benchmarked the performance of BO

algorithms across five different experimental materials science
domains. We utilize a pool-based active learning framework to
approximate experimental materials optimization processes, and
adapted active learning metrics to quantitatively evaluate the
enhancement and acceleration of BO for common research
objectives. We demonstrate that when paired with the same
acquisition functions, RF as a surrogate model can compete with
GP with ARD, and both outperform GP without ARD. In the context
of autonomous and high-throughput experimental materials
research, GP with anisotropic kernel has shown to be more robust
as a surrogate model across most design spaces, yet RF also
warrants more consideration because of it being free from
distribution assumptions, having lower time complexities, and
requiring less effort in initial hyperparameter selection. In addition,
we raise awareness about the benefits of using GP with
anisotropic kernels over GP with isotropic kernels in future
materials optimization campaigns. We provide practical guidelines
on surrogate model selection for materials optimization cam-
paigns, and also offer open-source implementation of bench-
marking code and datasets to support future algorithmic
development.
Establishing benchmarks for active learning algorithms like BO

across a broad scope of materials systems is only a starting point.
Our observations demonstrate how the choice of active learning
algorithms has to adapt to their applications in materials science,
motivating more efficient ML-guided closed-loop experimenta-
tion, and will likely directly result in a larger number of successful
optimization of materials with record-breaking properties. The
impact of this work can be extended to not only other materials
systems, but also a broader scope of scientific studies utilizing
closed-loop and high-throughput research platforms. Through our
benchmarking effort, we hope to share our insights with the field
of accelerated materials discovery and motivate a closer
collaboration between ML and physical science communities.

METHODS
Prediction by surrogate models and acquisition functions
In order to estimate the mean μ̂ðx�Þ and standard deviation σ̂ðx�Þ of
predicted objective value at a previously undiscovered observation x* in
design space:
For a Gaussian process (GP), it assumes a prior over the design space

that is constructed from already collected observations (xi, yi), i= 1, 2, . . . , n.
This prior is the source of implicit distributional assumptions, and when an
undiscovered new observation (x� , y�) is being considered during a noisy
setting (σ= 0.01), the joint distribution between the objective values of
collected data y 2 Rn and y� is

y

y�

� �
� N 0;

K þ σ2I KT
�

K� K��

" # !
: (5)

K is the covariance matrix of the input features X= {xi∣i= 1, 2, . . . , n}; K�
is the covariance between the collected data and new input feature x� ; K��
is the covariance between the new data. For each of the covariance
matrices, Kpq= k(xp, xq), where k is the kernel function, whether isotropic or
anisotropic, used in GP. Then from the posterior, we have estimates K�

μ̂ðxÞ ¼ y� ¼ K�½K þ σ2I��1
y (6)

and covariance matrix

covðy�Þ ¼ K�� � K�½K þ σ2I��1
KT
� (7)

The standard deviation value σ̂ðxÞ can be obtained from the diagonal
elements of this covariance matrix.
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For a random forest (RF), let ĥkðx�Þ denote the prediction of objective
value from the kth decision tree in the forest, k= 1, 2, . . . , ntree, then

μ̂ðx�Þ ¼ 1
ntree

Xntree
k¼1

ĥkðx�Þ (8)

and

σ̂ðx�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPntree
k¼1

ðĥkðx�Þ � μ̂ðx�ÞÞ2

ntree

vuuut (9)

The median or other variations could also be used in future studies to
aggregate the predictions for potential improvement in robustness44.
We tested three acquisition functions in our study, including expected

improvement (EI), probability of improvement (PI), and lower confidence
bound (LCB).

EI ðxÞ ¼ ðybest � μ̂ðxÞ � ξÞ � ΦðZÞ þ σ̂ðxÞφðZÞ (10)

PI ðxÞ ¼ ΦðZÞ (11)

where

Z ¼ ybest � μ̂ðxÞ � ξ

σ̂ðxÞ (12)

μ̂ and σ̂ are estimated mean and standard deviation by surrogate model;
ybest is best discovered objective value within all collected values so far;
ξ= 0.01 is jitter value that can slightly control exploration and exploitation;
Φ and φ are the cumulative density function and probability density
function of a normal distribution.

LCB
λ
ðxÞ ¼ �λμ̂ðxÞ þ σ̂ðxÞ (13)

where λ is a adjustable ratio between exploitation and exploration.

Pool-based active learning framework
As seen in Fig. 2, to approximate early-stage exploration during each
optimization campaign, n= 2 initial experiments are drawn randomly
with no replacement from original pool D= {(xi, yi)∣i= 1, 2,…, N} and
add to collection X= {(xi, yi)∣i= 1, 2,…, n}. During the planning stage,
surrogate model f is used to estimate the mean μ̂ðxÞ and standard
deviation σ̂ðxÞ. We then evaluate the acquisition function values
αðμ̂ðxÞ; σ̂ðxÞÞ for each remaining experimental action x ∈ D in parallel. At
each cycle, action x* = arg maxxαðxÞ will be selected as the next
experiment. During the inference stage, after selecting action x*, the
corresponding sample observation y* is obtained, and (x*, y*) is added
to X and removed from set D. The new observation (x*, y*) is
incorporated into the surrogate model. The sequential alternation
between planning and inference is repeated until undiscovered data
points run out.

Statistical baselines
In Figs. 3 and 4, we have introduced some statistical baselines when
benchmarking the performance of BO algorithms with a pool-based active
learning framework.
For the random baseline in Fig. 3(a), assuming a total pool of N data

points and the number of good materials candidates M= 0.05N, at cycle
i= 1, expected probability of finding a good candidate is P(1)= 0.05 and
expected value of Top%ð1Þ ¼ 1�Pð1Þ

M ¼ 0:0016.
Then at cycle i= 2, 3, . . . , N, there is

PðiÞ ¼ M�
Pi�1

n¼1
PðnÞ

N�i
(14)

and

Top%ðiÞ ¼
Pi

n¼1 PðnÞ
M

(15)

In Fig. 3(d), between two optimization paths starting with the same two
initial data points:

1. The statistically most overlap happens when two paths are identical,
resulting in J(i)= 1, i= 1, 2, . . . , N;

2. The statistically least overlap happens when the two follow
drastically different paths until they run out of data points

undiscovered by both algorithms, resulting in

JðiÞ ¼
1 1 � x � 2
1

i�1 3 � i � N
2 þ 1

2i�N
N

N
2 þ 2 � i � N

8><
>: (16)
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study are available in the following GitHub repository35: https://github.com/PV-Lab/
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