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Figure 1: Reconstruction results of DeepGfM. Our method reconstructs scenes from unordered
image collections without COLMAP poses. Top row: Reconstructed camera poses and point clouds.
Bottom row: Rendered novel views compared with COLMAP and ACE0.

Abstract

Neural radiance fields (NeRF) and 3D Gaussian Splatting (3DGS) are popular
techniques to reconstruct and render photorealistic images. However, the prereq-
uisite of running Structure-from-Motion (SfM) to get camera poses limits their
completeness. Although previous methods can reconstruct a few unposed images,
they are not applicable when images are unordered or densely captured. In this
work, we propose a method to train 3DGS from unposed images. Our method
leverages a pre-trained 3D geometric foundation model as the neural scene rep-
resentation. Since the accuracy of the predicted pointmaps does not suffice for
accurate image registration and high-fidelity image rendering, we propose to mit-
igate the issue by initializing and fine-tuning the pre-trained model from a seed
image. The images are then progressively registered and added to the training
buffer, which is used to train the model further. We also propose to refine the
camera poses and pointmaps by minimizing a point-to-camera ray consistency
loss across multiple views. When evaluated on diverse challenging datasets, our
method outperforms state-of-the-art pose-free NeRF/3DGS methods in terms of
both camera pose accuracy and novel view synthesis, and even renders higher
fidelity images than 3DGS trained with COLMAP poses. Our project page is
available at https://aibluefisher.github.io/DeepGfM.

1 Introduction

In recent years, the rapid advancement of 3D reconstruction techniques has enabled diverse applica-
tions for digitizing real-world scenes. Travelers and tourists routinely capture photographs and videos
of landmarks, which online platforms now process using neural radiance fields (NeRF) [42] or 3D
Gaussian Splatting (3DGS) [26] to generate photorealistic 3D models.
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Despite their fidelity, NeRF and 3DGS pipelines rely heavily on classical Structure-from-Motion
(SfM) methods like COLMAP [47] for precomputing camera poses. This decoupled setup introduces
inconsistencies: SfM relies on sparse keypoint reprojection errors, while neural rendering optimizes
dense photometric losses. Even minor pose inaccuracies can cause ghosting artifacts, degrading
visual quality (cf. Bottom row of Fig. 1).

This limitation raises a fundamental question: Can we train a fully differentiable reconstruction
network guided solely by photometric loss? While recent work like CF-3DGS [19] avoids explicit pose
estimation, it relies on consecutive-frame poses and monocular depth priors, limiting generalization to
unordered images or large camera motions. Thus, a unified framework for joint geometry estimation
and rendering is critical for robust 3D reconstruction across diverse inputs.

The 3D geometric foundation model DUSt3R [62] marked a milestone toward end-to-end neural SfM,
inspiring pose-free 3DGS methods [49, 69]. However, these approaches handle only image pairs due
to DUSt3R’s limitations. Extensions like Spann3R [58] and its variants (VGGT [59], Fast3R [68],
and FLARE [73]) fine-tuned DUSt3R on globally aligned pointmaps, thus extending the input of
DUSt3R from just image pairs to entire image sequences. However, their geometric accuracy lags
behind traditional SfM. Moreover, the GPU memory requirement of these methods grows rapidly
when handling hundreds of images(cf. Table 1), hindering high-fidelity rendering on consumer
hardware. This motivates our work to fine-tune existing pre-trained DUSt3R variants [58, 68, 73, 59]
for high-fidelity novel view synthesis from videos or unordered image collections.

We propose Deep Gaussian from Motion (DeepGfM), an end-to-end neural reconstruction frame-
work that unifies geometry estimation and novel view synthesis for video sequences and unordered
image collections. Our approach leverages a pre-trained 3D geometric foundation model (e.g.,
Spann3R or DUSt3R variants) as a scene regressor, extending its output beyond pointmaps to 3D
Gaussian primitives – enabling direct optimization of scene geometry and appearance via photometric
losses. To address the limitations of prior pose-free methods, we introduce a progressive training
strategy with three core stages: 1) Initialization: The scene regressor processes images from a
training buffer, predicting pointmaps and 3D Gaussians in a global coordinate frame. We then
compute initial camera poses via RANSAC and PnP. 2) Iterative Refinement: To mitigate pose
inaccuracies, we propose a point-to-camera ray consistency loss, jointly refining camera poses and
pointmaps. Newly registered images are added to the training buffer, and the scene regressor is
fine-tuned on this expanded set using photometric losses. This loop continues until no further images
can be registered. 3) Final Optimization: Accumulated errors are alleviated by re-optimizing all
camera poses with the previous results as initialization, ensuring global consistency. Our framework
is architecture-agnostic: it retains the internal structure of the pre-trained regressor (e.g., DUSt3R’s
transformer backbone) while adapting its output space for Gaussian primitives. This design bal-
ances generalization (inheriting geometric priors from foundation models) and flexibility (supporting
diverse DUSt3R variants).

Experiments demonstrate that DeepGfM surpasses both pose-free NeRF/3DGS methods and
COLMAP-based 3DGS in pose accuracy and rendering quality. While feed-forward pipelines
like VGGT and Fast3R prioritize speed, DeepGfM addresses the reconstruction of dense image
capture workflows to enable high-fidelity novel view synthesis without reliance on pose annotations
or large-scale memory-intensive methods.

Our main contributions are summarized as follows:

• Pose-free Foundation Model Adaptation. Unlike VGGT/MegaSAM, which rely on
pre-computed poses (potentially affected by inaccuracies), our pipeline operates without
pose annotations. This is achieved by refining Gaussian geometries dynamically to align
photometric appearance with ray-consistent novel view synthesis.

• Progressive and Modular Framework Design. The progressive design enables iterative
scalability, addressing GPU bottlenecks evident in VGGT-like pipelines. Modularity ensures
robustness against scene diversity, allowing refinement of components independent of
memory constraints imposed by dense image sets.

• Scene-specific Gaussian Prediction. Our method dynamically predicts Gaussian geome-
tries for each input scene, adapting to its unique photometric and geometric character-
istics for high-quality synthesis – a flexibility less evident in feed-forward methods like
VGGT/MegaSAM, which process inputs less adaptively.
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Table 1: GPU memory usage (GB) of neural scene reconstruction methods with 200 images as input.
Method CF-3DGS [19] DUSt3R [62] Fast3R [68] VGGT [59] Ours

GPU Memory OOM OOM 33.17 40.63 23.07

2 Related Work

Neural Rendering. Neural radiance fields [42] enable rendering from novel viewpoints with
encoded frequency features [54]. Many follow-up works try to improve the rendering and training
efficiency [34, 71, 18, 10] by encoding scenes into sparse voxels, multi-resolution hash tables [43],
or three orthogonal axes and planes [10]. Another branch of NeRF methods focuses on generalizable
NeRF [60, 11, 24, 52, 36], alleviating the aliasing [2, 4]. , registering multiple blocks of NeRF [20, 13],
and extending NeRF to city-scale scenes [53, 55, 45, 40, 65]. Different from NeRF, 3D Gaussian
Splatting [26] (3DGS) initializes 3D Gaussians from a sparse point cloud and renders scenes by
differentiable rasterization, and can achieve real-time rendering performance. Follow-up works
include learning the scene geometry implicitly by MLP [37] or GNN [57], fitting the surface via 2D
Gaussians [23, 21], alleviating the aliasing issue [72, 67, 31, 50], improving the training efficiency [33,
27, 35, 14] for large-scale scenes.

Pose-Free Neural Rendering. To alleviate the reliance of SfM poses, NeRFmm [64] jointly optimizes
NeRF and camera pose embeddings. BARF [32] proposes joint training of NeRF with imperfect
camera poses from coarse-to-fine, where high-frequencies are progressively activated during training
to alleviate the gradient inconsistency issue. GARF [15] extends BARF with a Gaussian activation,
enabling training a positional-embedding less coordinate network. However, these methods can
only handle forward-facing cameras or require accurate pose priors to converge. Nope-NeRF [5]
and CF-3DGS [19] leverage the inter-frame relationship (e.g. relative poses) and monocular depth
maps as regularization to train NeRF or 3DGS without precomputed camera poses, but limited
to short image sequences. Moreover, Nope-NeRF and CF-3DGS are highly susceptible to failure
when camera poses change significantly or images are unordered. InstantSplat [17] leverages the
pre-trained DUSt3R [62] to regress dense pointmaps between image pairs, followed by computing
camera poses by aligning the pointmaps into a global coordinate frame. However, aligning dense
pointmaps is time- and memory-consuming. As a result, InstantSplat can only handle a very few
images. Other related work includes Splatt3R [49] and NoPoSplat [69] to predict 3D Gaussians
from pairwise unposed images. Other methods include introducing the SLAM pipeline into the
NeRF [51, 74] or 3DGS [25, 39, 66] for indoor video sequences.

Neural 3D Reconstruction. DUSt3R [62, 30] reconstructs dense pointmaps from image pairs. By
aligning dense points, DUSt3R can obtain globally aligned camera poses and dense points. Though
DUSt3R generalizes very well since it is trained on massive diverse datasets, it produces only
local points and requires long post-processing time with a heavy GPU memory burden to obtain
globally aligned results. Spann3R [58] is the first work that tries to eliminate the post-processing
step of DUSt3R by utilizing a spatial-memory to decode the global points. Concurrent to our work,
methods [68, 73] improve the reconstruction speed and generality by fine-tuning DUSt3R on globally
aligned 3D points. ACEZero [9] reconstructs from unordered image collections via MLP and achieves
faster reconstruction speed than COLMAP while with less accurate camera poses. Orthogonal to
existing methods, our work focuses on the reconstruction accuracy in terms of both camera pose and
novel view synthesis.

3 Method

We first give the preliminaries of our scene regressor network in Sec. 3.1 and 3.2, followed by
introducing our network architecture and progressive training strategy in Sec. 3.3. Fig. 2 shows a
brief illustration of our network.
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Figure 2: The training pipeline of our proposed method. The method follows the classical
incremental SfM reconstruction pipeline with the key difference that the input is no longer an image
but a pair of images in a progressively updated training buffer. The scene regressor network is
trained as follows: 1) Use Spann3R [58] as the scene regressor network to predict 3D Gaussians
Gk and pointmaps Xk from a pair of images. 2) Leverage RANSAC and a PnP solver to obtain the
initial camera poses based on direct 2D-3D correspondences. 3) Refine the coarse camera poses by
minimizing the point-to-ray consistency loss between 3D tracks and camera centers. 4) Rasterize
the 3D Gaussians with the refined camera poses to render images. A photometric loss is adopted for
back-propagating gradients. 5) After each training epoch, we update the training buffer by registering
more images.

3.1 Preliminaries

Our network architecture is based on DUSt3R [62] and Spann3R [58]. Given an image pair (Ii, Ij),
DUSt3R predicts the corresponding pointmaps ({Xi,i}, {Xj,i}) for each image, where Xj,i denotes
the pointmap Xj expressed in camera i’s coordinate frame.

DUSt3R uses a ViT [16] as a shared encoder for both images and two transformer decoders for
the reference image i and the target image j, respectively. The two decoders denoted as reference
decoder Dref and target decoder Dtgt consist of two projection heads Href,Htgt that map the decoded
features into pointmaps:

f e
i , f

e
j = V(Ii, Ij), f d

i = Dref(f
e
i , f

e
j ), f

d
j = Dtgt(f

e
j , f

e
i ), (1)

Xi,i, Xj,i = Href(f
d
i ), Htgt(f

d
j ).

DUSt3R reconstructs image pairs in a local coordinate frame. When handling more than two images,
DUSt3R uses a post-processing step to align the pairwise dense pointmaps to a global coordinate
frame, which is time-consuming and can exceed the GPU memory limitation.

Spann3R proposes a feature fusion mechanism to predict pointmaps ({Xi,g}, {Xj,g)} in a global
coordinate frame. It computes a fused feature fGt in the t-th training epoch from a spatial feature
memory. The reference decoder inputs the fused feature for reconstruction, and the target decoder
produces features for memory querying. Furthermore, Spann3R uses two additional projection heads
to compute the key and query feature for reconstructing the next image pairs, and a memory encoder
Vmem which encodes the pointmaps from the reference decoder:

fQj = HQ
tgt(f

d
j ), f

K
i = HK

ref(f
d
i ), f

V
i = Vmem(X

i,g). (2)

Although Spann3R can reconstruct out-of-distribution scenes, it reconstructs images individually and
is limited to very short frames due to GPU memory limitations. Moreover, the 3D points predicted by
Spann3R in these scenes lack accuracy. We refer readers to [62, 58] for more details.

3.2 Neural Scene Representation

Modern 3D scene representations fall into two categories: explicit (e.g., 3D Gaussian primitives [26])
and implicit (neural networks [37, 46]). Our work builds on Spann3R [58], extending it to predict
both dense pointmaps and 3D Gaussian primitives. We refer to Spann3R as the scene regressor
network fSCR, which analogs to the scene regressor in pose regression or localization networks [6, 9].

4



Unlike the sparse scene regressor that takes an image as input, our scene regressor takes an image
pair as input and predicts dense pointmaps X = {Xi} and per-pixel 3D Gaussians G = {Gi} in a
global coordinate frame:

(Xi,Gi; Xj ,Gj) = fSCR(Ii, Ij), (3)

where Ii is the reference and Ij is the target image.

By rasterizing the set of 3D Gaussian primitives G, we back-propagate gradients to the model using
a photometric loss. More specifically, a 3D Gaussian primitive is composed of the opacity o, the
mean u, the covariance Σ, and the coefficients of the spherical harmonics SH. The covariance is
decomposed into a rotation matrix R and a scaling matrix S to ensure the positive semi-definiteness:
Σi = RSS⊤R⊤. In addition, instead directly predicting the mean u for each 3D Gaussian, we
predict an offset ∆X and apply it to the pointmaps to obtain the mean u = X+∆X. To render the
color for a pixel p, the 3D Gaussians are projected into the image space for alpha blending with the
projected 2D Gaussian Gproj:

C =
∑
i

ciαi

i−1∏
j=1

(1− αj), (4)

where αi is the rendering opacity and is computed by α = o ·Gproj(p), ci is the per-pixel color that
computed from the spherical harmonics SH. In practice, Eq. (4) is computed using a differentiable
rasterizer [26]:

Î = R(T,K; o,u,R,S,SH) = R(T,K; {Gi}), (5)

where T is the camera extrinsics and K is the intrinsics.

3.3 Progressive Neural Reconstruction

Fine-tuning a pre-trained geometric foundation model such as DUSt3R on unseen scenes is challeng-
ing. This is because they need ground-truth 3D data as supervision. However, obtaining ground-truth
3D points is difficult and expensive. We circumvent this limitation through a self-supervised progres-
sive approach.

3.3.1 Seed Initialization

Given an unordered image set I = {Ii}, we first select a seed image for initialization. This differs
from incremental SfM, which requires a seed image pair with sufficient matching inliers and a wide
baseline for two-view reconstruction. We follow a similar criterion to search for an initial image that
overlaps with as many other images as possible for faster convergence. To stabilize the training, we
use NetVLAD [1] to compute a global descriptor for each image. Then we compute similarity scores
between image descriptors. We further build a similarity graph, where the node represents an image,
the edge represents an image pair, and the edge weight represents the similarity score of that pair. We
remove an edge if its weight is lower than the threshold ssim. We then select the node that has the
maximum degree as the seed image Iseed. Intuitively, a node with a maximum degree suggests it has
the most adjacent images, which is beneficial for image registration. After selecting the seed image,
we finetune the scene regressor in a self-supervised manner. Specifically, we set the seed image as
the reference frame with identity camera pose Tseed = I. We then compute a photometric loss:

Lphoto =
∑

∥I− Î∥1 =
∑

∥I−R(Tseed,K, {Gi})∥1. (6)

Note that, during initialization, the seed image serves as both the reference and target image to the
scene regressor, and the camera pose is fixed as an identity matrix.

3.3.2 Progressive Registration

After seed initialization, we progressively increase the training buffer by registering images Ibuf =
{Ik} in a training epoch. The image registration stage includes: 1) a coarse camera pose estimation
step to obtain initial camera poses with the fine-tuned scene regressor. 2) a camera pose refinement
step to improve the accuracy of registered cameras. With newly registered images, we further fine-
tune the scene regressor in the current epoch. Upon training convergence, we increase the training
buffer by selecting more images. This process is repeated until all images are registered.
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Coarse Camera Pose Estimation. Given a registered reference image Iref and a unregistered
target image Ik, we pass them to the scene regressor and obtain the 3D points {Xk} in a global
coordinate frame. Since we have the coordinates {yk} of each image pixel and their corresponding
3D coordinates {Xk}, we can easily find the 2D-3D correspondences {(yk,Xk)}. We then use
RANSAC and a PnP solver to obtain a coarse camera pose:

Tcoarse
k , Sk = PnP(K, {(yk,Xk)}), (7)

where Sk is the number of inliers and Xk = fSCR(Iref, Ik). Iref is the reference image and Ik is the
target image we want to register. We add the target image Ik into the training buffer only when the
inlier number is larger than the inlier threshold sinlier. After initialization, the seed image is selected
as the reference image. In the following training batches, we select the reference image from the
registered images that connect to most of the unregistered images.

Multi-View Consistent Pose Refinement. From the previous steps, the camera poses of newly
registered images can still be inaccurate. This is because: 1) some regions in images have not been
observed by the scene regressor; 2) each target image is registered individually, which lacks multiple
view constraints. Although ACE0 [9] uses an MLP pose refiner to alleviate this problem during
training, we experimentally found that it does not improve pose accuracy with our transformer-based
scene regressor. This is because ACE0 uses MLP as the scene coordinate decoder, and each pixel is
individually mapped onto the 3D space. ACE0 thus enables network training by mixing millions of
pixels from mutiple views in a training batch, and the multiple-view constraint helps constrain the
network training. However, since we use a transformer-based decoder and due to the GPU memory
limitation, we can use only a limited number of views in each training batch, which can easily diverge
the network training. To solve the aforementioned issue, we propose to further refine the coarse
camera poses by minimizing a point-to-camera ray consistency loss which involves multiple views:

Xi,T
refine
k = argmin

Xi,Rk,tk

∑
i,k

ρ(∥di,k · νi,k − (Xi − tk)∥2), (8)

where tk is the camera position for image Ik, di,k is the scaling factor between a 3D point Xi and
the camera position tk, νi,k is the ray direction between Xi and tk. This loss function is more robust
than the reprojection loss in ACE0 [9] since the error in Eq. 8 is bounded [75]. And since the scene
regressor already provided a coarse but reliable initial estimation, the convergence is fast. During
optimization, we fix the camera pose of the seed image for the gauge ambiguity and fix the scaling
factor between the seed image and its most similar adjacent image for the scale ambiguity. Moreover,
for a new training epoch, we fix the camera poses registered in the previous epoch and only optimize
the camera poses registered in the current training epoch to improve the optimization efficiency.
Fixing camera poses registered from previous epochs is important for our method to reconstruct
scenes at a larger scale because:

• After the previous fine-tuning epochs, the camera poses and pointmaps are accurate enough.
• By optimizing only local parameters, the GPU memory footprint is highly reduced. As a

comparison, the global alignment step of DUSt3R and InstantSplat will encounter the OOM
issue even with an 80GB A100 GPU.

After obtaining the refined camera poses, we fine-tune the scene regressor with a minor modification
to Eq. (6) by:

Lphoto =
∑
k

∥I−R(Trefine
k ,K, {Gi})∥1. (9)

3.3.3 Finalizing Neural Scene Reconstruction

We propose a two-stage strategy to improve the final reconstruction quality when all images have
been registered or no more images can be added to the training buffer. The first stage is to optimize all
camera poses using Eq. (8). This is because we incrementally register images and errors accumulate
during training. In this stage, we only fix the camera pose of the seed image, and camera poses
obtained from all previous training epochs are used as initial values for optimization. Since the initial
values are accurate enough, the final optimization converges very fast. To further improve the image
rendering quality, we proposed to refine the scene details using explicit 3D Gaussian primitives [26]
in a second stage. This is because we only used fixed low-resolution images during the training of our
scene regressor due to GPU memory limitations. The scene regressor can therefore only represent
the coarse scene geometry. In the second stage, we use the same strategy as in [26] for 3D Gaussian
densification and pruning during refinement.
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Figure 3: Visualization of camera poses accuracy on the LLFF dataset (Zoom in for best view).
Black: pseudo-ground-truth camera poses obtained from COLMAP [47]. Colored: predicted camera
poses.
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Figure 4: Visualization of camera poses accuracy on the Tanks-and-Temples dataset (Zoom in
for best view). Black: pseudo-ground-truth camera poses obtained from COLMAP [47]. Colored:
predicted camera poses.

Evaluation Datasets. We evaluate our method on the LLFF dataset [41], the Mip-NeRF360
dataset [3], the Tanks-and-Temples dataset [29], the sequential Tanks-and-Temples dataset (Seq
TnT) [5], and the 7scenes dataset [48]. The LLFF dataset contains 8 scenes with cameras facing
forward. The Mip-NeRF360 dataset contains different scenes where cameras are distributed evenly
in 360 degrees in the 3D space. The Tanks-and-Temples dataset is similar to the Mip-NeRF360
dataset in camera poses distribution and scene scales, but with more illumination and appearance
changes. Note that the Tanks-and-Temples dataset is different from the sequential Tanks-and-Temples
dataset preprocessed by Nope-NeRF, where the Seq TnT dataset is extracted from video segments and
contains fewer regions than the 360-degree Tanks-and-Temples dataset and thus requires fewer 3D
Gaussians to represent and is less challenging. The 7Scenes dataset contains indoor scenes scanned
with the Kinect camera.

Table 2: Camera pose accuracy averaged on each dataset. The red , orange and yellow colors
respectively denote the best, the second best, and the third best results.

Scenes LLFF | MipNeRF360 | Tanks-and-Temples | Seq TnT
∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t

NeRFmm [64] 1.04 0.423 77.14 2.837 61.40 2.083 0.48 1.735
BARF [32] 0.45 0.331 76.38 3.371 69.50 1.227 0.44 1.046
Nope-NeRF [5] 0.45 0.184 77.12 1.659 58.33 1.078 0.04 0.080
CF-3DGS [19] 1.27 5.087 – – – – 0.07 0.041
ACE0 [9] 3.20 0.043 0.83 0.014 9.13 0.170 9.52 0.103
Spann3R [58] 20.00 0.485 11.80 0.222 14.93 0.335 13.34 0.592
Ours 0.17 0.005 0.04 0.04 0.04 0.005 0.31 0.002

Implementation Details. We initialize the scene regressor network using the pre-trained Spann3R
model [58]. During training, we use the image resolution of 512× 512 for all the datasets. We use
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a learning rate of 1e − 5 to finetune the scene regressor. We use ssim = 0.3 to reject edges when
building the similarity graph. We use DSAC [7, 8] to compute the camera poses for candidate image
registration. Since DSAC supports only a single focal length, we modify it to use different focal
lengths for the image x-axis and y-axis. We set the threshold of inlier number sinlier to 5, 000 and
the threshold of reprojection error to be within 6 pixels in DSAC. For the seed initialization, we
finetune the scene regressor by 500 iterations. During the incremental training, we finetune the scene
regressor by 1,000 iterations on the LLFF dataset and 1,500 iterations on the Mip-NeRF360 dataset.
For the novel view synthesis task, images are downsampled by 4 during training and inference. We
use the CUDA rasterizer provided by [39] to enable the gradient computation of camera poses during
rasterization.

Camera Pose Accuracy. To evaluate the camera pose accuracy, we use COLMAP poses as ground-
truth and compare our method with NeRFmm [64], BARF [32], and Nope-NeRF [5], which are pose-
free NeRF methods. We also compare our method to the pose-free 3DGS methods CF-3DGS [19].
Besides pose-free NeRF/3DGS-based methods, we also compare with the neural 3D reconstruction
methods ACE0 [9] and Spann3R [58] with their official code. We present the quantitative results in
Table 2. The unit for rotation error is degree, and the unit for translation error is dimensionless since
the absolute scale in ground-truth is unknown. The results show that the camera pose accuracy of
our method consistently outperforms all other methods. The pose-free NeRF methods perform very
well on the LLFF dataset and the Seq TnT dataset, while failing on the MipNeRF360 dataset and the
Tanks-and-Temples dataset. While CF-3DGS claims to be COLMAP-free, it performed badly on the
LLFF dataset (cf. Fig. 3) and has similar performance on the Seq TnT dataset since it is only designed
for handling sequential data. CF-3DGS also failed on the MipNeRF360 and Tanks-and-Temples
dataset due to out-of-memory (marked by ‘-’). ACE0 achieved fairly good results on almost all
the datasets, but the accuracy on the LLFF dataset and the Seq TnT dataset is not as good as other
methods except Spann3R. We conjecture this is because these two datasets have only forward-facing
cameras, which provide fewer multi-view constraints than the MipNeRF360 dataset. Notably, we
found ACE0 has a large reconstruction error on the ‘Francis’ scene of the Tanks-and-Temples dataset
(cf. the bottom row in Fig. 4), which suggests there is still room to improve ACE0 on robustness.

Table 3: Averaged Novel view synthesis results. COLMAP⋆ and ACE0⋆ denote training 3DGS with
pose optimization. The red , orange , and yellow colors respectively denote the best, the second
best, and the third best results.

Scenes LLFF | MipNeRF360 | Tanks-and-Temples | Seq TnT
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRFmm [64] 22.84 0.640 0.460 11.23 0.410 0.812 10.31 0.332 0.881 22.50 0.59 0.54
BARF [32] 23.97 0.626 0.238 12.92 0.428 0.801 11.55 0.366 0.840 23.42 0.610 0.540
Nope-NeRF [5] 25.09 0.750 0.330 13.62 0.451 0.779 11.93 0.373 0.835 26.34 0.74 0.39
CF-3DGS [19] 16.52 0.479 0.437 – – – – – – 31.28 0.93 0.09
COLMAP [47] 24.64 0.794 0.132 28.08 0.845 0.121 23.06 0.743 0.200 30.64 0.92 0.07
COLMAP⋆ 24.77 0.796 0.124 28.11 0.843 0.123 23.17 0.743 0.197 30.59 0.93 0.07
ACE0 [9] 22.74 0.709 0.182 24.31 0.663 0.269 20.93 0.661 0.302 24.32 0.81 0.19
ACE0⋆ 22.71 0.709 0.183 24.32 0.664 0.271 20.67 0.644 0.324 24.49 0.82 0.18
Ours 25.01 0.797 0.122 28.19 0.862 0.095 23.17 0.745 0.197 30.96 0.93 0.06

We also provide the recovered camera poses in Fig. 5 to show that our method also works on videos
(left) and images with unevenly distributed camera poses (right).

Novel View Synthesis. We further evaluate our method on the task of novel view synthesis, which
could provide better metrics to validate the accuracy of camera poses since COLMAP poses can
contain errors. We provide the metrics of PSNR, SSIM [63], and LPIPS in Table 3. For COLMAP
and ACE0, we use the same framework to train 3DGS. The pose-free NeRF methods have low
numbers in the MipNeRF360 and Tanks-and-Temples dataset since they failed to estimate reliable
camera poses. Surprisingly, we found our method obtains the best results in image rendering quality
on almost all datasets and even outperforms COLMAP, showing that our method can compute
more accurate camera poses than COLMAP. Though our method is not specifically designed for
sequential images (in contrast to CF-3DGS), it still obtains comparable results to CF-3DGS and is
even better than CF-3DGS in LPIPS. To further highlight the importance of our method, we conducted
experiments to show the difficulty of jointly optimizing camera poses with 3DGS. We enable the
gradients backpropagation of camera poses during rasterization when training 3DGS with COLMAP
and ACE0 (denoted as COLMAP⋆ and ACE0⋆ respectively). From Tab. 3, we observe COLMAP⋆ is
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Tanks - Ballroom 7scenes - fire

Figure 5: Reconstructed camera poses of DeepGfM on the indoor 7scenes and sequential tanks-and-
temples (Seq TnT) dataset.

slightly better than COLMAP – given highly accurate initial poses; In contrast, ACE0⋆ is even worse
than ACE0 when initial poses are inaccurate. We also provide the qualitative results of novel view
synthesis in Fig. 6, Fig. 7 and Fig. 8. More qualitative results are provided in our supplementary.

Full Image COLMAP+3DGS CF-3DGSBARF OursGround Truth

Figure 6: The qualitative results of novel view synthesis on LLFF forward-facing dataset [41].

Full Image COLMAP+3DGS CF-3DGSBARF OursGround Truth

Figure 7: The qualitative results of novel view synthesis on LLFF forward-facing dataset [41].
Ablation Study. We ablate the effectiveness of our incremental training step and camera pose
refinement step in Table 4, which are averaged on eight scenes of the LLFF dataset. We can see that
with the refinement step, the camera pose accuracy is improved significantly. Although our proposed
method is initialized from the pre-trained Spann3R model, the convergence of the refinement step can
still fail in cases where the derived camera poses are grossly erroneous. We observe that the camera
pose accuracy is improved with our incremental training pipeline (Ourscoarse v.s. Spann3R), which
provides much better initial values for refinement than simply from Spann3R.

We further ablate the effectiveness of finalizing the camera poses in our training pipeline in Table 5.
The unit for rotation error is degree. We denote our method without the finalizing step as Oursnf. We
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Full Image Ground Truth ACE0+3DGS COLMAP+3DGS Ours

Figure 8: The qualitative results of novel view synthesis on the MipNeRF360 dataset (top two
rows) and the Tanks-and-Temples dataset (bottom two rows).

Table 4: Ablation study of the camera
pose refinement step.

Spann3R [58] Ourscoarse Oursrefine

∆R ∆t ∆R ∆t ∆R ∆t

Avg 20.00 0.485 10.20 0.229 0.17 0.005

Table 5: Ablation study of the reconstruction
finalization step.

Scenes Bicycle Counter Garden Kitchen
∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t

Oursnf 0.096 0.015 0.041 0.007 0.095 0.012 0.150 0.219
Ours 0.035 0.005 0.029 0.002 0.028 0.002 0.052 0.008

can see that the finalization effectively mitigates the error accumulation in both camera rotations
and translations. We also emphasize that the camera pose finalizing step is important to the neural
scene refinement step since 3DGS is sensitive to even small perturbations in camera poses. Moreover,
jointly optimizing explicit 3DGS and camera poses during training has limited effect when camera
poses are close to ground truth and can even diverge the training [70].

5 Conclusion
In this paper, we propose DeepGfM to reconstruct neural scenes from unposed images. Our method
adopts a pre-trained 3D foundation model as a scene regressor and leverages its learned geometry
priors to ease the task of pose-free 3DGS training. Based on the learned geometry, we obtain coarse
camera poses by RANSAC and PnP solver and refine them with a point-to-camera ray consistency loss.
Our training pipeline incrementally registers the image batch into a training buffer and progressively
finetunes the model in a self-supervised manner. Our method surpassed state-of-the-art pose-free
NeRF/3DGS methods and even outperforms COLMAP-based 3DGS on multiple datasets.

Limitations. Though our method can produce higher quality reconstruction results in both camera
poses and novel view synthesis, it requires more GPU memory and training time than ACE0 since we
are fine-tuning transformers. In addition, our method uses Spann3R as the backbone of the scene
regressor. Therefore, the training speed and the convergence rate depend on the performance of
Spann3R. Moreover, when reconstructing larger-scale scenes, the spatial memory bank would require
more GPU memory, which limits its application to larger scenes. To solve these limitations, future
work may include the use of better variants of DUSt3R (e.g., Fast3R [68] and CUT3R [61]) to enable
reconstruction on larger scenes, adopting LORA [22, 38] to improve fine-tuning efficiency.
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A Implementation

Neural Scene Regressor. We initialize part of our model with the pretrained weights from
Spann3R [58]. Following Spann3R, we use a ViT-large encoder, two ViT-base decoders, and a
DPT head [44] for predicting dense pointmaps. We additionally use another DPT head to predict 3D
Gaussian primitives. Though Spann3R is trained on images with resolution 224× 224, we finetune it
on the reconstructed scene with image resolution 512× 512 using AdamW [28] optimizer.

Image Registration. We use DSAC to register images and compute coarse camera poses. An
image is successfully registered if it has at least 5, 000 inliers with a reprojection threshold of 6 px.
We use 64 hypotheses and an inlier alpha of 100. To accelerate registration, the dense pointmaps for
each image are downsampled by 4. To further speed up the training and reduce memory footprint,
we do not use all pointmaps from the newly registered images to refine camera poses. Instead, we
pre-build sparse point tracks Xk = {(yij , Ii)}, where yij denotes the j-th pixels observed on image
Ii. We adopt the Union-Find algorithm to remove duplicate and ambiguous tracks to improve the
robustness during refinement. We adopt the Huber loss with a threshold of 0.1 as the robust loss
function in Eq. (8).

Pseudo Algorithm of Our Training Pipeline. We provide the pseudo algorithm of our incremental
training pipeline as described in Sec. 3.3 in Alg. 1. At line 1, Vi denotes the set of graph nodes,
and Ei denotes the set of graph edges. At line 4, | · | denotes the capacity of a set. We align our
predicted camera poses to pseudo-ground-truth using the Umeyama [56] algorithm. Note that the
camera poses and sparse points of COLMAP are normalized at the end of reconstruction. In line 14,
we also normalize our predicted camera poses and dense points before refining the neural scene for
fair comparison. We experimentally found that this can improve the training stability of 3DGS.

Algorithm 1 Incremental Neural Reconstruction Algorithm

Require: a set of (unordered) images {Ii}, maximum iteration per epoch itermax
Ensure: Camera poses {Ti}, 3D Gaussian primitives {Gi}

1: Construct a similarity graph Gsim = (Vi, Ei)
2: Initialization from a seed image Iseed (cf. Sec. 3.3.1)
3: Registered image set (Ireg, Treg) = {(Iseed,Tseed)}
4: while |Ireg| < |{Ii}| do
5: Register a new image batch (Inew, Tnew) by Eq. (7)
6: Refine newly registered camera poses by Eq. (8)
7: Update training buffer using (Inew, Tnew)
8: iter := 0
9: while iter < itermax do

10: Finetune scene regressor fSCR using Eq. (9)
11: iter := iter + 1
12: Ireg := Ireg + Inew, Treg := Treg + Tnew

13: Finalize camera poses Treg = {Ti} using (8)
14: Normalize camera poses T norm

reg = Normalize(Treg)
15: Finalize neural scene {Gi} (cf. Sec. 3.3.3)

B Additional Qualitative Results

We present more qualitative results in this Section. More reconstruction results of camera pose and
pointmaps are included in Fig. 17.

Ablation of Pose Refinement. We present the visual comparison of our method with (Oursrefine)
and without (Ourscoarse) the refinement step in Fig. 9. As shown in Fig. 9, camera poses are aligned
closer to the ground truth after camera pose refinement. Compared to the camera poses obtained from
Spann3R of the first row in Fig. 3 and the third row in Fig. 10, the coarse camera poses are closer to
the ground truth, which is coherent with the quantitative results provided in Table 6.
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Table 6: Ablation study of camera pose accuracy.

Scenes Spann3R [58] Ourscoarse Oursrefine

∆R ∆t ∆R ∆t ∆R ∆t

Fern 39.03 0.767 01.30 0.125 0.26 0.005
Flower 11.91 0.285 16.53 0.609 0.52 0.011
Fortress 08.31 0.152 06.07 0.127 0.04 0.002
Horns 06.98 0.349 14.23 0.145 0.03 0.001
Leaves 44.09 0.801 18.24 0.187 0.22 0.006
Orchids 09.77 0.256 07.22 0.255 0.24 0.006
Room 07.48 0.513 10.22 0.180 0.03 0.001
Trex 32.39 0.758 07.76 0.210 0.03 0.010
Avg 20.00 0.485 10.20 0.229 0.17 0.005

Ours (coarse) Ours (refined)Spann3R

Forward-facing Top-down Forward-facing Top-down Forward-facing Top-down

Figure 9: Ablation of camera poses refinement on the LLFF dataset (Zoom in for best view). Top
and bottom are respectively the camera poses of the ‘Fern’ and ‘Room’ scenes.

More Results of Camera Poses. We provide more visual comparison of camera poses on the LLFF
dataset in Fig. 10. The results on the MipNeRF360 dataset and more results on the Tanks-and-Temples
dataset are respectively provided in Fig. 11 and Fig. 12. We can observe that CF-3DGS [19] failed to
produce faithfully camera poses on the LLFF dataset, which has been analyzed in the main paper.
While ACE0 [9] performs very well on the MipNeRF360 dataset, it struggles on the challenging
Tanks-and-Temples dataset (cf. The ‘Train’ scene in Fig. 12). Moreover, we find that ACE0 performs
poorly on the LLFF dataset. This may be due to the MLP decoder of ACE0 maps individual pixels to
3D space, while it requires well-distributed training views to constrain the network. However, the
LLFF dataset contains only forward-facing cameras, which do not provide strong constraints from
different view directions and therefore degenerate the training of ACE0.

We further provide the camera poses of our method on the indoor 7scenes dataset in Fig. 13, and the
camera poses of our method on the sequential tanks-and-temples dataset in Fig. 14 to show that our
method can work on diverse scenes and video sequences.

Table 7: Quantitative results of camera pose accuracy on MipNeRF360 dataset.
Scenes ACE0 [9] | Spann3R [58] | Ours

∆R ∆t ∆R ∆t ∆R ∆t

Bicycle 1.02 0.017 10.79 0.212 0.035 0.005
Counter 0.83 0.014 11.16 0.226 0.029 0.002
Garden 0.82 0.012 15.65 0.279 0.028 0.002
Kitchen 0.64 0.012 9.60 0.171 0.052 0.008
Avg 0.83 0.014 11.8 0.222 0.04 0.004

More Qualitative Results of Novel View Synthesis. We present more qualitative results on the
novel view synthesis task in Fig. 15, and Fig. 16. The quantitative camera pose accuracy only reveals
how close the predicted camera poses are to the COLMAP poses. However, it cannot distinguish
which is more accurate since COLMAP poses are only pseudo-ground-truth and it can produce

16



Table 8: Quantitative results of camera pose accuracy on Tanks-and-Temples dataset.

Scenes ACE0 | Spann3R | Ours
∆R ∆t ∆R ∆t ∆R ∆t

Family 6.41 0.088 16.98 0.378 0.036 0.003
Francis 21.63 0.351 14.19 0.361 0.030 0.002
Ignatius 2.96 0.043 11.23 0.313 0.028 0.002
Train 5.52 0.196 17.33 0.286 0.065 0.011
Avg 9.13 0.170 14.93 0.335 0.04 0.005

Table 9: Quantitative results of camera pose accuracy on 7scenes dataset.
Scenes ACE0 | Spann3R | Ours

∆R ∆t ∆R ∆t ∆R ∆t

chess 0.590 0.016 6.468 0.300 0.082 0.010
fire 0.680 0.016 8.662 0.346 0.116 0.004
heads 1.141 0.038 9.258 0.464 0.420 0.012
pumpkin 0.616 0.022 7.731 0.551 0.141 0.012
Avg 0.757 0.023 8.033 0.415 0.440 0.010
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Figure 10: More qualitative comparisons of camera poses accuracy on the LLFF dataset (Zoom
in for best view). Black: pseudo-ground-truth camera poses obtained from COLMAP [47]. Colored:
predicted camera poses.
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Figure 11: More qualitative comparisons of camera poses accuracy on the MipNeRF360 dataset
(Zoom in for best view). Black: pseudo-ground-truth camera poses obtained from COLMAP [47].
Colored: predicted camera poses.
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Figure 12: More qualitative comparisons of camera poses accuracy on the Tanks-and-Temples
dataset (Zoom in for best view). Black: pseudo-ground-truth camera poses obtained from
COLMAP [47]. Colored: predicted camera poses.

7scenes - chess 7scenes - fire 7scenes - heads 7scenes - pumpkin

Figure 13: Visualizations of our camera poses on the 7scenes dataset.
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Ballroom Barn Church Family

Figure 14: Visualizations of our camera poses on the Sequential Tanks-and-Temples dataset.

erroneous camera poses. Nonetheless, the results of novel view synthesis provide better metrics to
show which one is better when two camera poses are close. In Fig. 15 and Fig. 16, we can observe
that our method can render finer details when we zoom into the same areas. The visual comparison
also provides coherent support to the quantitative results of novel view synthesis in Table 15 and
Table 16.

Full Image Ground Truth ACE0+3DGS COLMAP+3DGS Ours

Figure 15: More qualitative comparisons of novel view synthesis on the 7Scenes dataset. From
top to bottom are scenes of fire, heads, pumpkin, and chess.

C More Discussion

Differences with (neural) incremental SfM methods. Our incremental training pipeline is similar
to the classical incremental SfM method [47] but differs as follows:

• Seed Initialization. Incremental SfM initializes from an image pair, where the camera poses
of the image pair are fixed after initialization to fix the gauge freedom. However, our method
initializes from a pretrained model and only one seed image.
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Full Image Ground Truth ACE0+3DGS COLMAP+3DGS Ours

Figure 16: More qualitative comparisons of novel view synthesis on the sequential Tanks-and-
Temples dataset. From top to bottom are the scenes of the ballroom, barn, horse, and church.

• Objective Function. We fine-tune our model using a rendering loss while scenes are
optimized by the reprojection error in SfM.

• Scene Sparsity. Our model predicts dense scene geometries, while SfM outputs sparse scene
structures.

Our incremental training pipeline also shares some similarities with a recent learning-based SfM
method ACE0 [9], with several key differences: 1) ACE0 only predicts sparse pointmaps, while our
method predicts dense pointmaps and 3D Gaussian primitives. 2) ACE0 uses 2D CNN and MLP
as the neural scene representation, while we use transformers as the scene representation. 3) The
training batch of ACE0 is composed of pixels from multiple views, while our method takes as input
image pairs in the training batch. Moreover, fine-tuning a pre-trained foundation model such as
DUSt3R is not easy. This is because these 3D foundation models are supervised by ground-truth 3D
points that are difficult to obtain in unseen scenes.

Run Time and Memory Footprint. Our pipeline converges faster than COLMAP [47]. On the
LLFF, 7Scenes and Sequential Tanks-and-Temples, our method converges in two epochs, which takes
about 25 minutes for each scene; On the MipNeRF360 dataset and the Tanks-and-Temples dataset,
our method converges in 5− 15 epochs, which takes about 2 hours for each scene. We evaluate the
model during training and save intermediate results to disk for every 1, 000 iteration. The evaluation
time is also included in the training step. Our method takes about 21GB with a batch size of 1 during
training on an NVIDIA 4090 GPU.

D Per-Scene Breakdown

We provide per-scene quantitative results for both camera pose accuracy in Table 10, Table 7, Table 8,
Table 9, and Table 18, as well as novel view synthesis in Table 11, Table 14, Table 15, Table 16,
Table 17, Table 19, and Table 20. Note that, for the MipNeRF360, Tanks-and-Temples, and 7Scenes
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Figure 17: More visual reconstruction results on real-world datasets.

datasets, NeRFmm, BARF, and Nope-NeRF failed to obtain reasonable camera poses and clear novel
views, thus, we did not present the per-scene quantitative results in tables for readability.

Table 10: Quantitative results of camera pose accuracy on LLFF dataset.

Scenes NeRFmm Nope-NeRF BARF [32] DBARF [12] | ACE0 [9] | CF-3DGS [19] Spann3R [58] | Ours
∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t

Fern 1.82 0.706 0.99 0.252 0.19 0.192 0.89 0.341 7.46 0.064 2.81 9.254 39.03 0.767 0.26 0.005
Flower 0.42 0.086 0.10 0.035 0.25 0.224 1.39 0.318 6.73 0.031 0.24 2.586 11.91 0.285 0.52 0.011
Fortress 0.74 0.233 0.30 0.081 0.48 0.364 0.59 0.229 0.98 0.010 1.28 8.592 8.31 0.152 0.04 0.002
Horns 0.85 0.321 0.45 0.217 0.30 0.222 0.82 0.292 1.48 0.013 1.15 2.371 6.98 0.349 0.03 0.001
Leaves 0.05 0.138 0.14 0.218 1.27 0.249 4.63 0.855 4.93 0.036 0.33 7.350 44.09 0.801 0.22 0.006
Orchids 2.03 0.686 0.38 0.203 0.63 0.404 1.16 0.573 1.19 0.093 1.45 2.772 9.77 0.256 0.24 0.006
Room 1.66 0.670 0.94 0.244 0.32 0.270 0.53 0.360 1.06 0.041 1.36 3.336 7.48 0.513 0.03 0.001
Trex 0.78 0.542 0.32 0.219 0.14 0.720 1.06 0.463 1.73 0.059 1.56 4.431 32.39 0.758 0.03 0.010

Avg 1.04 0.423 0.45 0.184 0.45 0.331 1.38 0.429 3.20 0.043 1.27 5.087 20.00 0.485 0.17 0.005

Table 11: Quantitative results of novel view synthesis on LLFF dataset.

Scenes NeRFmm Nope-NeRF BARF | CF-3DGS | 3DGS ACE0 | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Fern 20.58 0.590 0.500 23.01 0.710 0.380 23.79 0.710 0.311 17.35 0.494 0.428 23.63 0.794 0.136 19.33 0.585 0.295 23.77 0.797 0.114
Flower 27.02 0.760 0.320 29.39 0.860 0.190 23.37 0.698 0.211 20.17 0.622 0.362 26.91 0.829 0.096 25.84 0.787 0.109 25.81 0.812 0.108
Fortress 24.94 0.570 0.570 29.38 0.800 0.280 29.08 0.823 0.132 14.73 0.395 0.460 29.93 0.880 0.078 29.09 0.848 0.085 29.31 0.868 0.084
Horns 23.67 0.660 0.480 25.24 0.730 0.370 22.78 0.727 0.298 15.60 0.412 0.514 26.02 0.862 0.121 24.99 0.821 0.137 26.67 0.882 0.093
Leaves 19.46 0.550 0.460 19.85 0.600 0.400 18.78 0.537 0.353 15.38 0.416 0.398 17.91 0.593 0.205 17.09 0.527 0.242 16.45 0.526 0.270
Orchids 16.77 0.400 0.550 19.51 0.560 0.430 19.45 0.574 0.291 13.80 0.258 0.516 18.98 0.612 0.159 16.15 0.419 0.314 19.55 0.640 0.147
Room 26.14 0.840 0.390 28.54 0.890 0.280 31.95 0.940 0.099 18.36 0.713 0.382 28.96 0.927 0.115 26.89 0.894 0.118 32.37 0.948 0.073
Trex 24.13 0.770 0.390 25.82 0.840 0.290 22.55 0.767 0.206 16.76 0.522 0.434 24.74 0.881 0.145 22.52 0.792 0.155 26.11 0.905 0.084

Avg 22.84 0.640 0.460 25.09 0.750 0.330 23.97 0.626 0.238 16.52 0.479 0.437 24.64 0.794 0.132 22.74 0.709 0.182 25.01 0.797 0.122

E Social Impacts

Since it is the era of large foundation models, it is popular for more and more works that dive into
training a generalizable geometric foundation model and then use it to reconstruct scenes in a fast
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Table 12: Quantitative results of novel view synthesis on MipNeRF360 dataset.

Scenes 3DGS | +exposure | +depth | +exposure+depth | +ae +ae+exposure +ae+exposure+depth
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicycle 24.93 0.731 0.186 25.01 0.733 0.184 24.88 0.729 0.188 24.96 0.731 0.185 25.34 0.735 0.205 25.34 0.733 0.203 25.14 0.728 0.211
Bonsai 31.38 0.938 0.060 31.54 0.938 0.059 31.34 0.937 0.061 31.50 0.938 0.060 34.42 0.959 0.052 34.91 0.961 0.049 34.38 0.958 0.055
Counter 29.46 0.916 0.087 29.43 0.916 0.088 29.12 0.912 0.093 29.20 0.912 0.092 30.39 0.923 0.083 30.47 0.924 0.081 30.11 0.919 0.088
Flower 21.66 0.595 0.352 21.64 0.596 0.354 21.68 0.595 0.349 21.64 0.593 0.353 21.48 0.587 0.357 21.49 0.585 0.359 21.25 0.572 0.364
Garden 27.15 0.850 0.084 27.23 0.851 0.084 27.21 0.851 0.083 27.15 0.850 0.085 27.68 0.858 0.089 27.91 0.862 0.085 27.76 0.859 0.089
Kitchen 30.40 0.920 0.047 30.30 0.920 0.047 29.70 0.914 0.051 29.88 0.914 0.051 33.19 0.955 0.035 33.45 0.956 0.034 31.85 0.947 0.041
Room 31.84 0.931 0.076 32.02 0.931 0.075 31.84 0.930 0.076 31.93 0.930 0.076 33.53 0.942 0.070 33.75 0.943 0.068 33.35 0.941 0.071
Stump 26.59 0.758 0.166 26.65 0.760 0.165 26.50 0.755 0.164 26.60 0.757 0.163 26.38 0.744 0.178 26.38 0.744 0.177 26.15 0.736 0.182
Treehill 23.00 0.620 0.352 23.19 0.625 0.338 22.75 0.613 0.356 22.88 0.618 0.349 22.86 0.614 0.359 23.03 0.618 0.357 23.03 0.618 0.357

Avg 27.38 0.807 0.157 27.45 0.808 0.155 27.22 0.804 0.158 27.30 0.805 0.157 28.36 0.813 0.159 28.53 0.814 0.157 28.11 0.809 0.162

Table 13: Quantitative results of novel view synthesis on Tanks-and-Temples dataset.

Scenes 3DGS | +exposure | +depth | +exposure+depth | +ae +ae+exposure +ae+exposure+depth
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Barn 25.79 0.809 0.191 25.87 0.809 0.191 25.38 0.797 0.205 25.58 0.798 0.203 26.65 0.821 0.184 26.78 0.821 0.182 26.38 0.809 0.194
Caterpillar 23.26 0.727 0.248 23.83 0.738 0.234 23.20 0.724 0.250 23.74 0.735 0.238 24.17 0.745 0.237 24.03 0.739 0.235 23.90 0.733 0.244
Family 18.85 0.684 0.267 19.52 0.697 0.253 21.09 0.741 0.195 21.46 0.748 0.190 19.71 0.681 0.247 20.00 0.684 0.242 22.45 0.745 0.183
Francis 24.98 0.830 0.226 25.60 0.834 0.222 26.13 0.845 0.200 27.00 0.854 0.188 26.76 0.847 0.204 26.19 0.838 0.216 27.60 0.853 0.190
Horse 22.29 0.826 0.162 22.61 0.828 0.155 22.53 0.825 0.155 22.66 0.826 0.152 22.59 0.828 0.159 23.60 0.835 0.145 23.56 0.831 0.144
Ignatius 22.46 0.715 0.211 23.45 0.727 0.197 22.52 0.715 0.211 23.49 0.727 0.196 24.11 0.743 0.187 23.93 0.739 0.190 23.92 0.734 0.194
Playground 20.51 0.613 0.384 20.94 0.619 0.375 21.02 0.622 0.370 21.39 0.629 0.358 21.57 0.632 0.380 21.41 0.629 0.383 21.82 0.634 0.374
Train 20.20 0.648 0.302 20.48 0.653 0.293 19.58 0.625 0.321 20.12 0.636 0.307 21.13 0.674 0.272 21.06 0.671 0.270 20.24 0.640 0.314

Avg 22.29 0.732 0.249 22.79 0.738 0.240 22.68 0.737 0.238 23.18 0.744 0.229 23.34 0.746 0.234 23.38 0.745 0.233 23.73 0.747 0.230

Table 14: Quantitative results of novel view synthesis with camera pose optimization on LLFF
dataset.

Scenes COLMAP + 3DGS COLMAP + 3DGS + pose opt | ACE0 ACE0 + pose opt Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Fern 23.63 0.794 0.136 23.68 0.794 0.134 19.33 0.585 0.295 19.39 0.586 0.290 23.77 0.797 0.114
Flower 26.91 0.829 0.096 26.92 0.830 0.095 25.84 0.787 0.109 25.71 0.786 0.110 25.81 0.812 0.108
Fortress 29.93 0.880 0.078 29.92 0.880 0.077 29.09 0.848 0.085 29.21 0.849 0.085 29.31 0.868 0.084
Horns 26.02 0.862 0.121 25.72 0.854 0.130 24.99 0.821 0.137 24.93 0.819 0.142 26.67 0.882 0.093
Leaves 17.91 0.593 0.205 18.06 0.596 0.201 17.09 0.527 0.242 17.10 0.529 0.244 16.45 0.526 0.270
Orchids 18.98 0.612 0.159 18.99 0.613 0.160 16.15 0.419 0.314 16.12 0.417 0.316 19.55 0.640 0.147
Room 28.96 0.927 0.115 29.76 0.933 0.097 26.89 0.894 0.118 26.96 0.894 0.120 32.37 0.948 0.073
Trex 24.74 0.881 0.145 25.07 0.884 0.097 22.52 0.792 0.155 22.25 0.790 0.155 26.11 0.905 0.084

Avg 24.64 0.794 0.132 24.77 0.797 0.124 22.74 0.709 0.182 22.71 0.709 0.183 25.01 0.797 0.122

Table 15: Quantitative results of novel view synthesis on MipNeRF360 dataset.

Scenes COLMAP + 3DGS COLMAP + 3DGS + pose opt | ACE0 + 3DGS ACE0 + 3DGS + pose opt | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bicycle 23.23 0.656 0.282 23.19 0.648 0.291 21.08 0.413 0.523 21.02 0.410 0.537 23.86 0.725 0.181
Counter 29.26 0.916 0.081 29.33 0.916 0.081 26.34 0.824 0.157 26.38 0.826 0.152 29.34 0.917 0.080
Garden 27.46 0.861 0.079 27.48 0.861 0.079 22.78 0.583 0.287 22.97 0.590 0.283 27.42 0.862 0.077
Kitchen 32.35 0.947 0.042 32.43 0.947 0.042 27.03 0.832 0.109 26.89 0.830 0.110 32.12 0.945 0.043
Avg 28.08 0.845 0.121 28.11 0.843 0.123 24.31 0.663 0.269 24.32 0.664 0.271 28.19 0.862 0.095

Table 16: Quantitative results of novel view synthesis on Tanks-and-Temples dataset.

Scenes COLMAP+3DGS COLMAP+3DGS+pose opt | ACE0+3DGS ACE0+3DGS+pose opt | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Family 23.04 0.773 0.147 23.08 0.773 0.145 20.43 0.651 0.259 19.32 0.591 0.352 23.11 0.775 0.144
Francis 26.42 0.841 0.188 26.88 0.846 0.178 24.08 0.796 0.274 24.18 0.793 0.275 26.70 0.845 0.182
Ignatius 22.07 0.671 0.228 21.99 0.669 0.229 20.93 0.615 0.273 20.92 0.614 0.271 21.95 0.669 0.230
Train 20.72 0.685 0.235 20.74 0.686 0.235 18.29 0.580 0.400 18.24 0.579 0.398 20.93 0.689 0.230
Avg 23.06 0.743 0.200 23.17 0.743 0.197 20.93 0.661 0.302 20.67 0.644 0.324 23.17 0.745 0.197

Table 17: Quantitative results of novel view synthesis on 7scenes dataset.

Scenes COLMAP+3DGS COLMAP+3DGS+pose opt | ACE0+3DGS ACE0+3DGS+pose opt | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

chess 26.13 0.872 0.151 26.13 0.873 0.151 25.48 0.855 0.165 25.52 0.858 0.159 26.02 0.872 0.154
fire 26.02 0.805 0.193 26.17 0.807 0.187 25.61 0.774 0.201 25.38 0.763 0.210 25.67 0.805 0.192
heads 23.03 0.843 0.225 23.06 0.840 0.230 24.40 0.820 0.298 24.22 0.861 0.195 23.68 0.854 0.211
pumpkin 26.62 0.864 0.219 26.63 0.864 0.220 26.86 0.855 0.212 26.93 0.860 0.207 26.54 0.863 0.218
Avg 25.45 0.846 0.197 25.50 0.846 0.197 25.58 0.826 0.219 25.51 0.836 0.193 25.48 0.849 0.194
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Table 18: Quantitative results of camera pose accuracy on the sequential Tanks-and-Temples
dataset.

Scenes BARF NeRFmm Nope-NeRF | CF-3DGS | ACE0 | Ours
∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t ∆R ∆t

Ballroom 0.228 0.531 0.177 0.449 0.018 0.041 0.024 0.037 8.047 0.018 1.303 0.002
Barn 0.265 0.314 0.494 1.629 0.032 0.046 0.034 0.034 10.488 0.035 0.161 0.001
Church 0.038 0.114 0.127 0.626 0.008 0.034 0.018 0.008 4.316 0.023 0.136 0.004
Family 0.591 1.371 0.537 2.743 0.015 0.047 0.024 0.022 1.589 0.029 0.111 0.002
Francis 0.558 1.321 0.618 1.647 0.009 0.057 0.154 0.029 18.370 0.026 0.429 0.002
Horse 0.394 1.333 0.434 1.349 0.017 0.179 0.057 0.112 2.439 0.023 0.216 0.007
Ignatius 0.324 0.736 0.379 1.302 0.005 0.026 0.057 0.122 2.434 0.025 0.133 0.002
Museum 1.128 3.442 1.051 4.134 0.202 0.207 0.215 0.052 28.510 0.648 0.227 0.010
Avg 0.441 1.046 0.477 1.735 0.038 0.080 0.069 0.041 9.524 0.103 0.313 0.002

Table 19: Quantitative results of novel view synthesis on the sequential Tanks-and-Temples
dataset.

Scenes BARF NeRFmm Nope-NeRF | CF-3DGS ACE0+3DGS COLMAP+3DGS | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ballroom 20.66 0.50 0.60 20.03 0.48 0.57 25.33 0.72 0.38 32.47 0.96 0.07 22.28 0.80 0.17 34.33 0.96 0.02 35.18 0.97 0.01
Barn 25.28 0.64 0.48 23.21 0.61 0.53 26.35 0.69 0.44 31.23 0.90 0.10 25.88 0.87 0.15 32.66 0.95 0.04 31.81 0.95 0.04
Church 23.17 0.62 0.52 21.64 0.58 0.54 25.17 0.73 0.39 30.23 0.93 0.11 28.47 0.89 0.09 30.04 0.93 0.06 29.80 0.93 0.06
Family 23.04 0.61 0.56 23.04 0.58 0.56 26.01 0.74 0.41 31.27 0.94 0.07 23.31 0.85 0.15 28.74 0.93 0.07 27.99 0.92 0.08
Francis 25.85 0.69 0.57 25.40 0.69 0.52 29.48 0.80 0.38 32.72 0.91 0.14 27.14 0.83 0.24 32.01 0.92 0.11 31.76 0.92 0.11
Horse 24.09 0.72 0.41 23.12 0.70 0.43 27.64 0.84 0.26 33.94 0.96 0.05 22.33 0.80 0.21 22.66 0.82 0.18 26.32 0.90 0.11
Ignatius 21.78 0.47 0.60 21.16 0.45 0.60 23.96 0.61 0.47 28.43 0.90 0.09 24.54 0.81 0.16 30.17 0.92 0.06 30.86 0.93 0.05
Museum 23.58 0.61 0.55 22.37 0.61 0.53 26.77 0.76 0.35 29.91 0.91 0.11 20.62 0.65 0.31 34.51 0.96 0.02 33.97 0.94 0.02
Avg 23.42 0.61 0.54 22.50 0.59 0.54 26.34 0.74 0.39 31.28 0.93 0.09 24.32 0.81 0.19 30.64 0.92 0.07 30.96 0.93 0.06

feed-forward manner. Regardless of its efficiency in inference, the accuracy of the reconstruction
results is still not well solved. We believe that many variants of DUSt3R will benefit from our work
in improving their reconstruction accuracy.

Table 20: Quantitative results of novel view synthesis with camera pose optimization on the
sequential Tanks-and-Temples dataset.

Scenes COLMAP + 3DGS COLMAP + 3DGS + pose opt | ACE0 + 3DGS ACE0 + 3DGS + pose opt | Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Ballroom 34.33 0.96 0.02 34.42 0.97 0.02 22.28 0.80 0.17 25.24 0.86 0.11 35.18 0.97 0.01
Barn 32.66 0.95 0.04 32.20 0.95 0.04 25.88 0.87 0.15 25.82 0.87 0.14 31.81 0.95 0.04
Church 30.04 0.93 0.06 29.95 0.93 0.06 28.47 0.89 0.09 28.32 0.90 0.09 29.80 0.93 0.06
Family 28.74 0.93 0.07 28.94 0.93 0.07 23.31 0.85 0.15 23.40 0.85 0.15 27.99 0.92 0.08
Francis 32.01 0.92 0.11 32.24 0.92 0.11 27.14 0.83 0.24 26.72 0.83 0.24 31.76 0.92 0.11
Horse 22.66 0.82 0.18 22.11 0.81 0.19 22.33 0.80 0.21 22.53 0.81 0.20 26.32 0.90 0.11
Ignatius 30.17 0.92 0.06 30.34 0.93 0.06 24.54 0.81 0.16 23.29 0.80 0.18 30.86 0.93 0.05
Museum 34.51 0.96 0.02 34.51 0.96 0.02 20.62 0.65 0.31 20.63 0.66 0.31 33.97 0.94 0.02
Avg 30.64 0.92 0.07 30.59 0.93 0.07 24.32 0.81 0.19 24.49 0.82 0.18 30.96 0.93 0.06
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to the abstract and the last paragraph of Sec. 1 for our contribution.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Sec. 5 in the conclusion section for the limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation details are included in Sec. 4 in the main paper. Additional
implementation details are included in Sec. A in the supplementary. Pseudo algorithms are
included in Sec. 1 in the supplementary for better understanding and reproducing the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release related code and checkpoints upon the acceptance of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training and testing details are included in Sec. 4 in the main paper. Additional
details are included in Sec. A in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow related works for the setting of error bar.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute resources and running time are included in Sec. 4 in the main paper
and Sec. C in the supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the social impacts of our work in Sec. E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We included the urls and cited the papers for code and datasets used in this
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use and cite existing datasets in this work. Other assets including related
code/models will be released upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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