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Abstract001

Large Language Models (LLMs) have shown002
impressive proficiency in code generation. Un-003
fortunately, these models share a weakness004
with their human counterparts: producing code005
that inadvertently has security vulnerabilities.006
These vulnerabilities could allow unauthorized007
attackers to access sensitive data or systems,008
which is unacceptable for safety-critical appli-009
cations. We propose Feedback-Driven Secu-010
rity Patching (FDSP), where LLMs automat-011
ically refine generated, vulnerable code. Our012
approach leverages automatic static code anal-013
ysis to empower the LLM to generate and im-014
plement potential solutions to address vulnera-015
bilities. We address the research community’s016
needs for safe code generation by introducing017
a large-scale dataset, PythonSecurityEval, cov-018
ering the diversity of real-world applications,019
including databases, websites and operating020
systems. We empirically validate that FDSP021
outperforms prior work that uses self-feedback022
from LLMs by up to 17.6% through our pro-023
cedure that injects targeted, external feedback.024
Code and data are attached.025

1 Introduction026

Although Large language models (LLMs), such027

as GPT-4 (Brown et al., 2020) and CodeLlama028

(Rozière et al., 2023), are powerful tools for code029

generation, they are prone to generating vulnerable030

code (Pearce et al., 2023). LLMs have shown high-031

competency for a wide variety of code generation032

tasks, such as for producing code from natural lan-033

guage (Yu et al., 2018), code translation (Lachaux034

et al., 2020), and code optimization (Shypula et al.,035

2023). Utilizing LLMs for code generation has036

been shown to increase developers’ productivity037

with writing and explaining code, and fixing bugs038

(Wong et al., 2023). To enhance code refinement039

with LLMs, recent work by (Chen et al., 2023),040

proposed a self-debugging technique, where LLMs041

generate code, and then the code is sent back to the042

Figure 1: Overview of our approach: Initially, the LLMs
generates code. This code is subsequently analyzed for
security vulnerabilities using Bandit, a tool for static
code analysis, to determine if there are any security is-
sues. Following this, feedback on any identified issues
is incorporated into the LLMs to generate possible so-
lutions for resolving the security issues. Finally, each
proposed solution is sent back to the LLMs for code
refinement.

same LLM to produce feedback and then refine the 043

code. 044

However, code generated or refined by LLMs 045

could produces security vulnerabilities. Vulnera- 046

bilities in code allow unauthorized users to access 047

sensitive data or systems. For example, attackers 048

can manipulate your SQL queries to gain access 049

to the database, a technique known as SQL injec- 050

tion. This is due to the following reasons: 1) LLMs 051

may not always recognize security issues, often 052

producing code with vulnerabilities, particularly 053

when the code interacts with external service and 054

system, and 2) LLMs might struggle to fix security 055

issues in code due to their limited understanding 056

of security vulnerabilities and lack of specific secu- 057

rity knowledge, which has been explored in prior 058

literature (Athiwaratkun et al., 2023; Siddiq et al., 059

2023). 060

One potential approach to mitigate these se- 061

curity vulnerabilities is to train LLMs to recog- 062
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nize and patch security vulnerabilities. However,063

this method also has several significant challenges.064

Firstly, it requires a large labeled dataset that ac-065

curately distinguishes between vulnerabilities and066

non-vulnerabilities to train the LLMs effectively.067

Collecting such a human-labeled dataset is costly068

and time-consuming. Additionally, there is a crit-069

ical need for robust feedback mechanisms during070

the training process. LLMs require accurate feed-071

back to learn from their mistakes, and this feedback072

must come from security experts.073

In this paper, we address the key limitations of074

prior work by developing Feedback-Driven Secu-075

rity Patching (FDSP) and the PythonSecurityEval076

benchmark. In FDSP, LLMs generate potential so-077

lutions to fix the security issues in the generated078

code. This process involves analyzing the gener-079

ated code through static code analysis to identify080

any security issues and produce feedback. LLMs081

utilize the feedback to generate potential solutions,082

and then each potential solution along with the gen-083

erated code is sent back to the LLMs to refine the084

code. Next, we curate an extensive dataset from085

Stack Overflow, called PythonSecurityEval, as ex-086

isting security evaluation datasets are quite limited087

and insufficient to evaluate a model’s ability to pro-088

duce non-vulnerable code. Our dataset originates089

from real-world applications, providing diversity090

with prompts to generate code for a variety of appli-091

cations, including databases (such as SQL, MySQL,092

etc.), URLs, operating systems, and websites (e.g.,093

Flask). We consider these types of applications094

as primary sources of common vulnerabilities, in-095

cluding SQL injection, cross-site scripting (XSS),096

broken access control, and command injection.097

To summarize, Our work presents three key con-098

tributions:099

• We proposes (FDSP), a technique that en-100

hances LLMs to generate potential solutions101

for fixing security issues in the generated code102

by receiving feedback from static code analy-103

sis.104

• We demonstrate that FDSP outperforms prior105

works that use self-feedback by up to 17.6%.106

We empirically evaluate the capabilities of107

the most advanced LLMs, including GPT-4,108

GPT-3.5, and CodeLlama, in generating and109

refining insecure code. We utilize three bench-110

marks (including ours) and apply five baseline111

techniques for this evaluation.112

• We present PythonSecurityEval, a dataset de- 113

signed to evaluate the ability of LLMs to gen- 114

erate secure code. Our dataset contains 470 115

natural language prompts. 116

2 Related work 117

We discuss three a categories of previous work: 118

LLMs for code generation and refinement of LLMs, 119

as well as the source of feedback. 120

Language models for code: Code genera- 121

tion models have become a very popular research 122

area among Machine Learning (ML) and Soft- 123

ware Engineering (SE) communities. The most 124

common application of Code Generation models 125

is the text-to-code generation task, where users 126

prompt an LLM with natural language instruc- 127

tions about the coding task, and the LLM gener- 128

ates the corresponding code. Examples include 129

CodeLlama (Rozière et al., 2023) and CodeGeeX 130

(Zheng et al., 2023), which achieve state-of-the- 131

art performance on the Mostly Basic Program- 132

ming Problems (MBPP) dataset (Austin et al., 133

2021). The DocPrompting approach furtherdemon- 134

strates that prompting language models with code- 135

documentation improves code generation perfor- 136

mance on models such as CodeT5, CodeX, and 137

GPT-Neo on MBPP (Zhou et al., 2023). Beyond 138

code-generation, the proficiency of LLMs also ex- 139

tends to code-translation (Roziere et al., 2020), 140

code-repair (Allamanis et al., 2021), creating docu- 141

mentation (Nam et al., 2024), code-testing (Wang 142

et al., 2024) and defect-prediction (Alrashedy et al., 143

2023). Our interest lies in exploring how these var- 144

ious capabilities shown by LLMs can be applied to- 145

wards addressing security issues in LLM-generated 146

code. 147

Refinement of LLMs: Recent works have 148

demonstrated that LLMs can refine their own out- 149

put or adapt based on feedback from external tools 150

or human input. Self-Refine (Madaan et al., 2023) 151

generates feedback and refines its output to im- 152

prove the quality of the generated answers across 153

7 tasks using state-of-the-art models such as GPT- 154

3.5 and GPT-4. Additionally, a similar technique 155

called self-debug (Chen et al., 2023) enables code- 156

generation models to debug initially generated code 157

using feedback either from the same LLM, unit 158

test results, or compiler error messages. The feed- 159

back from the LLM explains the code line-by-line, 160

which is then used to refine the generated code. 161

This approach has shown improvement in three 162
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different code generation applications. An alter-163

nate approach, called Self-Repair (Olausson et al.,164

2023), where sought to produce feedback specifi-165

cally focusing on why any faulty code-snippet is166

incorrect. Another study (Gou et al., 2023) intro-167

duced CRITIC, which enables the model to engage168

with external tools, such as a code interpreter, cal-169

culator, and search engine to receive feedback and170

improve the generated output. In our work, we171

build on these self-refinement methods towards en-172

abling large language models to fix security issues173

in generated code.174

The source of feedback: Human-feedback is175

the most effective and accurate source of feedback;176

however, it is also costly and time-intensive (Elgo-177

hary et al., 2021; Yuntao Bai, 2023). An alternative178

way to obtain feedback is from external tools such179

as compiler error messages for program repair (Ya-180

sunaga and Liang, 2020) and Pylint, a static code181

analyzer, for improving Python coding standards182

(Bafatakis et al., 2019). Additionally, previous stud-183

ies have proposed techniques on how to obtain feed-184

back from LLMs, including the LLM-Augmenter185

system (Peng et al., 2023) and Recursive Reprompt-186

ing and Revision framework (Yang et al., 2022).187

Unlike these works, which utilize feedback from188

either LLMs or external tools, our approach com-189

bines feedback from both external tools and LLMs,190

where the static code analysis provides feedback191

about the generated code, and then LLMs generate192

potential solutions for addressing security issues in193

code.194

3 FDSP Framework195

Our approach, FDSP, seeks to identify and resolve196

vulnerabilities in code generated by an LLM. The197

principal component of FDSP is the use of static198

code analysis (Bandit) to generate solutions to po-199

tentially vulnerable code We take a four-step ap-200

proach: (i) code generation, (ii) code testing, (iii)201

solution generation and (iv) code refinement. The202

complete algorithm for FDSP is provided in Algo-203

rithm 1.204

3.1 Code generation205

Given a natural language description of a Python206

function denoted as x, an LLM generates a Python207

program y according to PLM (y|x). Then, the pro-208

gram y is executed and if there is compiler error209

message, we send the program y with {ec} to the210

LLMs to fix the error, as describe in Eqn 2. The211

Algorithm 1 FDSP algorithm

Require: Input x, LLMs PLM , number of poten-
tial solutions J , number of iterations K

Ensure: Refine vulnerable code y from the LLMs
PLM (yi|x)

1: Initialize output yi from PLM (x)
2: // Generate potential solutions (Eqn. 4)
3: S ∼ PLM (y,ℜ, j, p)
4: //Iteration for each potential solution (Eqn. 5)
5: for s ∈ S do
6: for k ← 1 to K do
7: yi ← PLM (y, s)
8: if δ(yi) is secure then ▷ Stop condition
9: Return yi

10: end if
11: end for
12: end for
13: Return y

initial generated code can be describe as follows: 212

yi ∼ PLM (yi|x) (1) 213

yc ∼ PLM (yc|x, yi, ec) (2) 214

We consider a zero-shot setting because, in real- 215

world use cases, users prompt LLMs to generate 216

code directly without providing examples. 217

3.2 Code testing 218

Static code analysis tools are utilized by software 219

engineers to evaluate the quality of the code and 220

identify any potential vulnerabilities. We use Ban- 221

dit1, a static code analysis tool designed to detect 222

common vulnerabilities in Python functions. Ban- 223

dit constructs the Abstract Syntax Tree2 (AST) for 224

a Python function and conducts analysis on the 225

AST nodes. Subsequently, Bandit, denoted by δ, 226

generates a report ℜ about the code y. Then, we 227

pass the report ℜ from Bandit to the LLMs to gen- 228

erate potential solutions to fix the vulnerabilities. 229

we can describe the Bandit report as follows: 230

ℜ = δ(y) (3) 231

Figure 2 shows an example of Bandit feedback 232

for the code snippet in 1. 233

1https://github.com/PyCQA/bandit
2https://greentreesnakes.readthedocs.io/en/latest/

3



3.3 Generating potential solutions234

Static code analysis can detect vulnerabilities but235

cannot fix them. The primary contribution of FDSP236

is to leverage static code analysis to enable LLMs237

to generate or suggest multiple solutions S to ad-238

dress these vulnerabilities, as represented in equa-239

tion 4.240

S ∼ PLM (y,ℜ, j, p) (4)241

Where the J present the total number of gener-242

ated potential solutions, and the p is the instruction243

that given to the LLMs. Figure 1 illustrates this pro-244

cess: the LLM generates code vulnerable to SQL245

injection, we then provide the LLM with report246

from Bandit, and subsequently, the LLM generates247

three different potential solutions: 1) Use Parame-248

terized Queries, 2) Manual Escape and Quote Ta-249

ble Name and 3) Use an ORM (Object-Relational250

Mapping) Library.251

3.4 Code refinement252

We use the generated potential solutions S ∼253

s1⊕s2 . . .⊕sj , from the previous step as feedback254

to fix the vulnerable code y. In the previous step255

the LLMs generate J unique solutions to fix the256

security issues. Then, each potential solution and257

vulnerable code is fed back into the LLM multi-258

ple times, denoted as K. The idea behind the K259

iterations for each solution is to allow the LLMs260

to generate as many fixes as possible for the vul-261

nerable code. The refinement process is terminated262

when the Bandit detects no security issues or when263

the iteration reaches the maximum number of itera-264

tions, K, for all potential solutions S, as shown in265

Algorithm 1.266

yi+k ∼ {{PLM (yi+k|yi+k−1, sn)}jn=1}
k
i=1 (5)267

4 Experimental Settings268

Existing benchmarks, LLMSecEval and SecurityE-269

val, are insufficient for large-scale evaluation due270

to their limited size. To address this limitation,271

we introduce PythonSecurityEval, comprising 470272

natural language prompts for diverse real-world273

applications, collected from Stack Overflow. We274

utilize PythonSecurityEval to compare FDSP with275

existing strategies for fixing security issues.276

1 # The prompt: Write a Python function
to return the total number of rows
in SQLite.

2

3 import sqlite3
4 def get_total_rows(database_name ,

table_name):
5 conn = sqlite3.connect(

database_name)
6 cursor = conn.cursor ()
7 cursor.execute("SELECT COUNT (*)

FROM {}".format(table_name))
8 result = cursor.fetchone ()
9 conn.close()

10 return result [0]

Code Snippet 1: An example of a prompt from
PythonSecurityEval dataset where GPT-4 generates
vulnerable code of the SQL injection type. The report
from Bandit is shown in 2.

4.1 Benchmarks 277

LLMSecEval: A dataset containing natural lan- 278

guage prompts to evaluate LLMs on generating 279

secure source code (Tony et al., 2023). This dataset 280

covers the majority of the Top 25 Common Weak- 281

ness Enumeration (CWE) scenarios from 2021, ad- 282

dressing various security concerns. It consists of 283

a total of 150 prompts, where each prompt is a 284

natural language description for generating code. 285

SecurityEval: This dataset, proposed by (Siddiq 286

and Santos, 2022), is used to evaluate LLMs on 287

their ability to generate secure Python programs. It 288

comprises 121 natural language prompts covering 289

75 different types of vulnerabilities. Each prompt 290

includes the header of a Python function along with 291

comments that describe the function’s purpose. 292

PythonSecurityEval: We collected a new large 293

dataset from Stack Overflow to address the limita- 294

tion of the existing dataset. The current datasets are 295

limited in size and diversity, which is not very effi- 296

cient in evaluating the ability of LLMs to generate 297

secure code and their capacity to fix security vul- 298

nerabilities. The PythonSecurityEval includes nat- 299

ural language prompts intended to generate Python 300

functions that cover diverse real-world applications. 301

Our dataset is three times larger than those used in 302

LLMSecEval and SecurityEval, with a total of 470 303

prompts. 304

Our benchmark is diverse, covering the major- 305

ity of real-world applications that consider the pri- 306

mary sources of common vulnerabilities. For ex- 307

ample, SQL injection occurs when Python code 308

connects to, inserts into, and queries from a SQL 309

database. There are several examples in our bench- 310

mark where the prompt involves writing Python 311
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code to insert a value into an SQL database. An-312

other example is command injection, where the313

Python code interacts with the operating system,314

allowing attackers to gain unauthorized access to315

data and systems. We include examples that gen-316

erate Python code with access to the operating sys-317

tem and diagnose how the LLMs generate the code318

without any issues or the ability to refine the code.319

Lastly, cross-site scripting (XSS) is a common type320

of security vulnerability that occurs in web appli-321

cations. We include prompts that generate Python322

code for Flask, which is a Python web framework323

for creating websites.324

An example of Bandit report.

Issue: [B608:hardcoded_sql_expressions]
Possible SQL injection vector through
string-based query construction.
Line 7:cursor.execute("SELECT COUNT(*)
FROM ".format(table_name))

Figure 2: An example of the report generated by Bandit,
a static code analysis tool, for the vulnerable code in
Code Snippet 1.

4.2 Baselines325

Direct Prompting: This approach involves send-326

ing the generated code back to the LLMs with the327

instruction: Does the provided function have a se-328

curity issue? If yes, please fix the issue. If the329

LLMs detect any security issues in the code, they330

will fix the issue and generate secure code. This331

serves as a baseline to demonstrate the LLM’s abil-332

ity to detect and resolve security issues without333

additional feedback.334

Self-Debugging: The concept of self-debugging335

(Chen et al., 2023) involves LLMs generating code336

and then debugging the generated code themselves337

without help from humans or external tools. The338

initial step in self-debugging is that the LLMs gen-339

erating the code; subsequently, the generated code340

is sent back to the same LLMs to generate feed-341

backFinally, both the generated code and the ex-342

planations are fed back to the LLM to correct any343

existing bugs. This approach has demonstrated an344

improvement in fixing incorrect code that either345

did not compile or failed to pass unit tests. We are346

interested in investigating how the self-debugging347

approach enhances LLMs in addressing security is-348

sues. The feedback, which provides an explanation349

of the code, could enhance the LLMs’ understand- 350

ing of the code and improve their ability to fix 351

security vulnerabilities. 352

Bandit feedback: Bandit produces a report if 353

there is any security issue in the code as shown in 354

Figure 2, we use this report as a feedback to LLMs 355

to refine the vulnerable code. This is similar to 356

prior works where external tools provide feedback 357

to the LLMs to refine their outputs (Gao et al., 2023; 358

Akyürek et al., 2023). In our baseline, we provide 359

the LLMs with the vulnerable code along with the 360

feedback from Bandit, which includes the type of 361

security issue and indicates the specific line of code 362

where the issue is found. Bandit’s feedback does 363

not provide a solution to fix the issue; it simply 364

highlights the problematic line and type of issue. 365

Verbalization: We verbalize the feedback from 366

Bandit, via an LLM, to produce more understand- 367

able and actionable feedback to resolve security 368

issues and defective code. The verbalized feed- 369

back provides a detailed explanation in natural lan- 370

guage of the specialized output from Bandit, as 371

illustrated in Figure 6. This expanded explanation 372

offers deeper insights into the security issues and 373

may suggest solutions to address the vulnerabili- 374

ties. We use verbalized feedback as a baseline and 375

compare it with the direct use of Bandit feedback 376

and FDSP. 377

4.3 Evaluation metrics 378

In our study, we evaluate the accuracy of how fre- 379

quently LLMs generate and refine vulnerable code. 380

This is done by dividing the total number of gener- 381

ated vulnerable code by the total number of gener- 382

ated code. We report the accuracy in Table 1. To 383

verify whether the generated code is vulnerable, we 384

use Bandit, an automated tool designed to identify 385

vulnerabilities in Python code. 386

4.4 Models 387

We aim to evaluate state-of-the-art LLMs for code 388

generation, including GPT-4, GPT-3.5 “gpt-3.5- 389

turbo-instruct"(Brown et al., 2020) using Ope- 390

nAI API, and CodeLlama “CodeLLama-Instruct- 391

34B"(Rozière et al., 2023) from Huggingface, to 392

generate secure code. Additionally, we assess these 393

models’ ability to refine insecure code based on 394

feedback from Bandit. 395

5 Experimental Results 396

In this section, we evaluate our approach to fix 397

the vulnerabilities in code with three LLMs in sub- 398
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section 5.1, and we discuss the main finding in399

subsection 5.2.400

5.1 Results401

Table 1 presents the summary of our results on how402

frequently LLMs generate and refine vulnerable403

code across five approaches.404

For the LLMSecEval and SecurityEval datasets,405

between 28% and 46% of the code generated have406

vulnerabilities. The methods of direct prompting407

and self-debugging slightly help to fix the vulnera-408

bilities, with improvement percentages of less than409

10% for GPT-3.5 and CodeLlama. However, for410

GPT-4, the average improvement is 15%. This sug-411

gests that LLMs can provide feedback to fix their412

generated vulnerable code without external input,413

but the extent of improvement is not satisfactory. In414

the third approach, where LLMs receive feedback415

from the Bandit, there’s about a 30% improvement416

for GPT-4 and up to a 24% improvement for GPT-417

3.5 and CodeLlama. Additionally, verbalization,418

which involves articulating feedback from the Ban-419

dit, shows a slight improvement of about 2%. The420

FDSP approach consistently shows improvement421

in fixing vulnerabilities across the three LLMs and422

the two datasets, LLMSecEval and SecurityEval,423

when compared to the baseline.424

We can observe that more than 40% of the code425

generated by PythonSecurityEval has security is-426

sues across varying LLMs. The effectiveness of427

fixing the vulnerable code is somewhat consistent428

for both direct prompting and self-debugging tech-429

niques across all LLMs. In other approaches, where430

we provide the LLMs with feedback from Bandit,431

the results improve by more than 15% compared432

to direct prompting and self-debugging. The FDSP433

approach shows consistent improvement over the434

verbalization approach, with improvements for435

GPT-4 (from 8.7% to 7.4%), GPT-3.5 (from 23.6%436

to 15.7%), and CodeLlama (from 21.0% to 13.6%).437

This suggests that LLMs can propose potential so-438

lutions and provide useful feedback to fix secu-439

rity issues when they are supplied with feedback440

from static code analysis, and outperforming self-441

refinement or merely passing the feedback from442

static code analysis directly.443

5.2 Analysis444

In this subsection, we discuss the key findings of445

our results regarding the frequency with which446

LLMs generate and fix vulnerable code. We also447

discuss the most common types of code vulnera-448
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Figure 3: The figure illustrates the total number of the
most common types of security issues (Top 10) in code
generated for the PythonSecurityEval dataset.
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Figure 4: The figure displays the total number of top
unresolved security issues for the PythonSecurityEval
dataset.

bilities generated by LLMs, as well as unresolved 449

vulnerabilities in the PythonSecurityEval dataset. 450

The feedback provided by Bandit significantly 451

enhances the LLMs’ capabilities in addressing se- 452

curity issues, unlike other methods that exclude 453

Bandit’s feedback. While simple baselines such as 454

direct prompts and self-debugging can be helpful, 455

but ultimately are not very effective in fixing secu- 456

rity issues in code. These methods are somewhat 457

beneficial in tackling straightforward vulnerabili- 458

ties. As Table 1 shows that all approaches incorpo- 459

rating feedback from Bandit significantly improve 460

accuracy over simple methods across all models 461

and datasets. The FDSP method boosts the LLMs’ 462

ability to generate potential solutions based on Ban- 463

dit’s feedback. It is evident that LLMs lack an 464

understanding of code vulnerabilities and struggle 465

to fix these issues without feedback from Bandit. 466

Our FDSP approach significantly enhances the per- 467

formance of GPT-3.5 and CodaLlama, exceeding 468

the results achieved by either directly incorporating 469
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Dataset Approach GPT 4 GPT 3.5 CodeLlama

LLMSecEval

Generated code 38.2 34.2 28.6

Direct prompting 35.3 (↓ 2.6) 28.0 (↓ 6.0) 24.0 (↓ 4.6)
Self-debugging 24.0 (↓ 14.0) 28.0 (↓ 6.0) 24.6 (↓ 4.0)
Bandit feedback 8.0 (↓ 30.0) 18.6 (↓ 15.33) 18.0 (↓ 10.6)
Verbalization 7.3 (↓ 30.6) 18.0 (↓ 16.0) 16.6 (↓ 12.0)
FDSP 6.0 (↓ 32.0) 12.6 (↓ 21.33) 14.6 (↓ 14.0)

SecurityEval

Generated code 34.7 38.0 46.2

Direct prompting 21.4 (↓ 13.2) 25.6 (↓ 12.4) 38.0 (↓ 8.2)
Self-debugging 16.5 (↓ 18.1) 27.2 (↓ 10.7) 38.8 (↓ 7.4)
Bandit feedback 4.1 (↓ 30.5) 13.2 (↓ 24.7) 21.4 (↓ 24.7)
Verbalization 4.9 (↓ 29.7) 13.22 (↓ 24.7) 17.3 (↓ 28.92)
FDSP 4.1 (↓ 30.5) 5.7 (↓ 32.2) 8.2 (↓ 38.0)

PythonSecurityEval

Generated code 40.21 48.51 42.34

Direct prompting 25.1 (↓ 15.1) 42.5 (↓ 5.9) 31.7 (↓ 10.6)
Self-debugging 24.8 (↓ 15.3) 43.4 (↓ 5.1) 33.4 (↓ 8.9)
Bandit feedback 9.3 (↓ 30.8) 26.3 (↓ 22.1) 20.4 (↓ 21.9)
Verbalization 8.7 (↓ 31.4) 23.6 (↓ 24.8) 21.0 (↓ 21.2)
FDSP 7.4 (↓ 32.7) 15.7 (↓ 32.7) 13.6 (↓ 28.7)

Table 1: The table illustrates the percentage of vulnerable code, with the number in parentheses representing the
percentage of vulnerable code that was fixed relative to the percentage of generated vulnerable code.

Bandit’s feedback or verbalizing it. We evaluate470

the effectiveness of each method in addressing the471

most common security issues in CodeLlama, as472

depicted in Figure 5. These results suggest that473

self-refinement or directly passing the feedback474

from static code analysis is not very useful for475

CodeLlama; however, the approach of verbaliz-476

ing the feedback from static code analysis or FDSP477

performs well for CodeLlama.478
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Figure 5: The figure illustrates the total number of the
five most common types of security issues for CodeL-
Lama across five refinement approaches for the Python-
SecurityEval dataset.

We analyze the most common vulnerabilities in479

generated code, as well as those that remain unre-480

solved, for the PythonSecurityEval dataset. Figure481

3 illustrates the most common types of code vulner- 482

abilities generated by three LLMs, with the top two 483

being CWE-259 (Use of Hard-coded Password) 484

and CWE-400 (Uncontrolled Resource Consump- 485

tion). However, the LLMs are able to fix most of 486

these types of vulnerabilities, as shown in Figure 487

4. We visualize the most frequent unresolved se- 488

curity issues by the same three models in Figure 4, 489

where the top two are related to injection: CWE- 490

78 (OS Command Injection) and CWE-89 (SQL 491

Injection), with percentage of %61.1 and %80.0 re- 492

spectively for GPT-4. Additionally, these injection 493

vulnerabilities are also among the most frequent 494

vulnerabilities generated by LLMs. 495

The refinement process aimed at fixing vulnera- 496

ble code may alter the code’s functionality or pro- 497

duce unrealistic code. We manually review each 498

piece of refined code and compare it with the origi- 499

nally generated vulnerable code. If the refined code 500

is unrealistic, we classify it as unfixed when report- 501

ing our results in Table 1. In the PythonSecurityE- 502

val dataset, we observed that GPT-4 generated 9 503

instances of unrealistic code among all approaches, 504

with 3 of these instances arising from the FDSP 505

approach. GPT-3.5 produced approximately 11 506

instances of unrealistic code, 10 of which were as- 507

sociated with the FDSP approach. CodeLlama had 508

the highest number of unrealistic instances, total- 509
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ing 28, with 13 of these resulting from the FDSP510

approach. This is due to the FDSP method generat-511

ing three multiple solutions from LLMs, some of512

which may be unrealistic. Our approach demon-513

strates that GPT-4 can generate potentially more514

effective solutions than both CodeLlama and GPT-515

3.5.516

To better understand the effectiveness of FDSP517

in outperforming the baseline, we conducted an518

evaluation experiment using an external vulnerabil-519

ity detection tool other than Bandit. We used Cod-520

eQL3, an open-source codebase utilized to discover521

the similarity of vulnerability patterns in code. In522

Table 2, we report the percentage of vulnerable523

code in the PythonSecurityEval dataset across the524

three LLMs and the refinement approaches. The525

FDSP outperformed the baseline across the LLMs.526

GPT4 GPT3.5 CodeLlama

Generated code 31.4 20.8 25.5
Direct prompting 18.5 13.6 12.1
Self Debug 16.1 13.8 15.9
Bandit feedback 13.8 9.3 10.4
Verbalization 12.9 10.6 11.9
FDSP 11.9 9.1 8.2

Table 2: The table illustrates the percentage of vulnera-
ble code in PythonSecurityEval dataset using CodeQL.

6 Conclusion527

As LLMs are capable of generating code, we assess528

the frequency with which they produce vulnerable529

code. We conduct an empirical evaluation of LLMs530

using existing datasets and approaches, and discuss531

their limitations. We propose a novel approach532

and introduce a new dataset to address the current533

limitations of both datasets and approaches. Our534

approach is called FDSP, where the LLMs gener-535

ate potential solutions to fix their own generated536

vulnerable code by leveraging feedback from static537

code analysis. Our results demonstrate that the538

FDSP approach outperforms the baselines across539

all three benchmarks and three models, achieving540

an improvement of about 17.6% in the PythonSe-541

curityEval dataset for GPT-4.542

7 Limitations543

One of the limitations of our study is that our eval-544

uation may not identify all security issues in the545

code. Detecting vulnerabilities in code is an active546

3https://codeql.github.com/

area of research, where recent studies have shown 547

that some vulnerabilities cannot be detected by ei- 548

ther static code analysis or deep learning-based 549

vulnerability detection methods (Chakraborty et al., 550

2021). Additionally, we evaluate LLMs in gener- 551

ating and refining vulnerable code at the function 552

level; however, in real-life scenarios, vulnerabili- 553

ties often occur when code interacts with other code 554

or services. Lastly, our approach to fixing security 555

issues involves making changes to the code, which 556

might inadvertently render the program incorrect. 557

It is very challenging to ensure the correctness of 558

the code or to write unit tests, as all the generated 559

code interacts with other services or systems such 560

as databases or operating systems. 561
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A Example Appendix 730

An example of verbalization.

The feedback from the static code analysis regarding the issue tagged as "B608: hardcoded sql
expressions" indicates a security concern with the way SQL queries are being constructed in the
code. Specifically, the issue points out that the code might be vulnerable to SQL injection attacks
due to the use of string-based query construction. This vulnerability arises when input data is
concatenated directly into SQL queries without proper sanitization or parameterization, allowing
an attacker to manipulate the queries to execute arbitrary SQL commands.
The problematic code is found at line 7, where a cursor’s execute method is called to perform a
SQL query. The query attempts to count the rows in a table by dynamically inserting the table
name into the SQL statement. However, the method of constructing this query by formatting a
string is unsafe if the table name comes from an untrusted source or is not properly validated, as
it can be exploited to inject malicious SQL.
To mitigate this risk, it’s recommended to use parameterized queries or prepared statements
provided by the database interface, which ensure that input data is treated as parameters rather
than part of the SQL command. This approach helps prevent SQL injection by separating the data
from the code that queries the database.

Figure 6: An example of how GPT-4 verbalizes the feedback from the Bandit shown in the Figure 2.
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