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Abstract

Large Language Models (LLMs) have shown
impressive proficiency in code generation. Un-

fortunately, these models share a weakness
with their human counterparts: producing code
that inadvertently has security vulnerabilities.
These vulnerabilities could allow unauthorized
attackers to access sensitive data or systems,
which is unacceptable for safety-critical appli-
cations. We propose Feedback-Driven Secu-
rity Patching (FDSP), where LLMs automat-
ically refine generated, vulnerable code. Our
approach leverages automatic static code anal-
ysis to empower the LLM to generate and im-
plement potential solutions to address vulnera-
bilities. We address the research community’s
needs for safe code generation by introducing
a large-scale dataset, PythonSecurityEval, cov-
ering the diversity of real-world applications,
including databases, websites and operating
systems. We empirically validate that FDSP
outperforms prior work that uses self-feedback
from LLMs by up to 17.6% through our pro-
cedure that injects targeted, external feedback.
Code and data are attached.

1 Introduction

Although Large language models (LLMs), such
as GPT-4 (Brown et al., 2020) and CodeLlama
(Roziere et al., 2023), are powerful tools for code
generation, they are prone to generating vulnerable
code (Pearce et al., 2023). LLMs have shown high-
competency for a wide variety of code generation
tasks, such as for producing code from natural lan-
guage (Yu et al., 2018), code translation (Lachaux
et al., 2020), and code optimization (Shypula et al.,
2023). Utilizing LLMs for code generation has
been shown to increase developers’ productivity
with writing and explaining code, and fixing bugs
(Wong et al., 2023). To enhance code refinement
with LLMs, recent work by (Chen et al., 2023),
proposed a self-debugging technique, where LLMs
generate code, and then the code is sent back to the
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Figure 1: Overview of our approach: Initially, the LLMs
generates code. This code is subsequently analyzed for
security vulnerabilities using Bandit, a tool for static
code analysis, to determine if there are any security is-
sues. Following this, feedback on any identified issues
is incorporated into the LLMs to generate possible so-
lutions for resolving the security issues. Finally, each
proposed solution is sent back to the LLMs for code
refinement.

same LLM to produce feedback and then refine the
code.

However, code generated or refined by LLMs
could produces security vulnerabilities. Vulnera-
bilities in code allow unauthorized users to access
sensitive data or systems. For example, attackers
can manipulate your SQL queries to gain access
to the database, a technique known as SQL injec-
tion. This is due to the following reasons: 1) LLMs
may not always recognize security issues, often
producing code with vulnerabilities, particularly
when the code interacts with external service and
system, and 2) LLMs might struggle to fix security
issues in code due to their limited understanding
of security vulnerabilities and lack of specific secu-
rity knowledge, which has been explored in prior
literature (Athiwaratkun et al., 2023; Siddiq et al.,
2023).

One potential approach to mitigate these se-
curity vulnerabilities is to train LLMs to recog-



nize and patch security vulnerabilities. However,
this method also has several significant challenges.
Firstly, it requires a large labeled dataset that ac-
curately distinguishes between vulnerabilities and
non-vulnerabilities to train the LLMs effectively.
Collecting such a human-labeled dataset is costly
and time-consuming. Additionally, there is a crit-
ical need for robust feedback mechanisms during
the training process. LLMs require accurate feed-
back to learn from their mistakes, and this feedback
must come from security experts.

In this paper, we address the key limitations of
prior work by developing Feedback-Driven Secu-
rity Patching (FDSP) and the PythonSecurityEval
benchmark. In FDSP, LLMs generate potential so-
lutions to fix the security issues in the generated
code. This process involves analyzing the gener-
ated code through static code analysis to identify
any security issues and produce feedback. LLMs
utilize the feedback to generate potential solutions,
and then each potential solution along with the gen-
erated code is sent back to the LLMs to refine the
code. Next, we curate an extensive dataset from
Stack Overflow, called PythonSecurityEval, as ex-
isting security evaluation datasets are quite limited
and insufficient to evaluate a model’s ability to pro-
duce non-vulnerable code. Our dataset originates
from real-world applications, providing diversity
with prompts to generate code for a variety of appli-
cations, including databases (such as SQL, MySQL,
etc.), URLs, operating systems, and websites (e.g.,
Flask). We consider these types of applications
as primary sources of common vulnerabilities, in-
cluding SQL injection, cross-site scripting (XSS),
broken access control, and command injection.

To summarize, Our work presents three key con-
tributions:

* We proposes (FDSP), a technique that en-
hances LLMs to generate potential solutions
for fixing security issues in the generated code
by receiving feedback from static code analy-
sis.

* We demonstrate that FDSP outperforms prior
works that use self-feedback by up to 17.6%.
We empirically evaluate the capabilities of
the most advanced LLMs, including GPT-4,
GPT-3.5, and CodeLlama, in generating and
refining insecure code. We utilize three bench-
marks (including ours) and apply five baseline
techniques for this evaluation.

* We present PythonSecurityEval, a dataset de-
signed to evaluate the ability of LLMs to gen-
erate secure code. Our dataset contains 470
natural language prompts.

2 Related work

We discuss three a categories of previous work:
LLMs for code generation and refinement of LLMs,
as well as the source of feedback.

Language models for code: Code genera-
tion models have become a very popular research
area among Machine Learning (ML) and Soft-
ware Engineering (SE) communities. The most
common application of Code Generation models
is the text-to-code generation task, where users
prompt an LLM with natural language instruc-
tions about the coding task, and the LLM gener-
ates the corresponding code. Examples include
CodeLllama (Roziere et al., 2023) and CodeGeeX
(Zheng et al., 2023), which achieve state-of-the-
art performance on the Mostly Basic Program-
ming Problems (MBPP) dataset (Austin et al.,
2021). The DocPrompting approach furtherdemon-
strates that prompting language models with code-
documentation improves code generation perfor-
mance on models such as CodeT5, CodeX, and
GPT-Neo on MBPP (Zhou et al., 2023). Beyond
code-generation, the proficiency of LLMs also ex-
tends to code-translation (Roziere et al., 2020),
code-repair (Allamanis et al., 2021), creating docu-
mentation (Nam et al., 2024), code-testing (Wang
et al., 2024) and defect-prediction (Alrashedy et al.,
2023). Our interest lies in exploring how these var-
ious capabilities shown by LLMs can be applied to-
wards addressing security issues in LLM-generated
code.

Refinement of LLMs: Recent works have
demonstrated that LLMs can refine their own out-
put or adapt based on feedback from external tools
or human input. Self-Refine (Madaan et al., 2023)
generates feedback and refines its output to im-
prove the quality of the generated answers across
7 tasks using state-of-the-art models such as GPT-
3.5 and GPT-4. Additionally, a similar technique
called self-debug (Chen et al., 2023) enables code-
generation models to debug initially generated code
using feedback either from the same LLM, unit
test results, or compiler error messages. The feed-
back from the LLM explains the code line-by-line,
which is then used to refine the generated code.
This approach has shown improvement in three



different code generation applications. An alter-
nate approach, called Self-Repair (Olausson et al.,
2023), where sought to produce feedback specifi-
cally focusing on why any faulty code-snippet is
incorrect. Another study (Gou et al., 2023) intro-
duced CRITIC, which enables the model to engage
with external tools, such as a code interpreter, cal-
culator, and search engine to receive feedback and
improve the generated output. In our work, we
build on these self-refinement methods towards en-
abling large language models to fix security issues
in generated code.

The source of feedback: Human-feedback is
the most effective and accurate source of feedback;
however, it is also costly and time-intensive (Elgo-
hary et al., 2021; Yuntao Bai, 2023). An alternative
way to obtain feedback is from external tools such
as compiler error messages for program repair (Ya-
sunaga and Liang, 2020) and Pylint, a static code
analyzer, for improving Python coding standards
(Bafatakis et al., 2019). Additionally, previous stud-
ies have proposed techniques on how to obtain feed-
back from LLMs, including the LLM-Augmenter
system (Peng et al., 2023) and Recursive Reprompt-
ing and Revision framework (Yang et al., 2022).
Unlike these works, which utilize feedback from
either LLMs or external tools, our approach com-
bines feedback from both external tools and LLMs,
where the static code analysis provides feedback
about the generated code, and then LLMs generate
potential solutions for addressing security issues in
code.

3 FDSP Framework

Our approach, FDSP, seeks to identify and resolve
vulnerabilities in code generated by an LLM. The
principal component of FDSP is the use of static
code analysis (Bandit) to generate solutions to po-
tentially vulnerable code We take a four-step ap-
proach: (i) code generation, (ii) code testing, (iii)
solution generation and (iv) code refinement. The
complete algorithm for FDSP is provided in Algo-
rithm 1.

3.1 Code generation

Given a natural language description of a Python
function denoted as z, an LLM generates a Python
program y according to P/ (y|x). Then, the pro-
gram y is executed and if there is compiler error
message, we send the program y with {e.} to the
LLMs to fix the error, as describe in Eqn 2. The

Algorithm 1 FDSP algorithm

Require: Input x, LLMs Pr, s, number of poten-
tial solutions .JJ, number of iterations K
Ensure: Refine vulnerable code y from the LLMs
Pr(yilx)
Initialize output y; from Pr /()
/l Generate potential solutions (Eqn. 4)
S~ Pry(y, R, 4, p)
/Mteration for each potential solution (Eqn. 5)
for s € S do
for k < 1to K do
Yi < Pru(y, s)
if d(y;) is secure then > Stop condition
Return y;
end if
end for
: end for
: Return y
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initial generated code can be describe as follows:

y; ~ P (yilx) )]

Y~ Poy(y|m, yi, ec) )

We consider a zero-shot setting because, in real-
world use cases, users prompt LLMs to generate
code directly without providing examples.

3.2 Code testing

Static code analysis tools are utilized by software
engineers to evaluate the quality of the code and
identify any potential vulnerabilities. We use Ban-
dit', a static code analysis tool designed to detect
common vulnerabilities in Python functions. Ban-
dit constructs the Abstract Syntax Tree? (AST) for
a Python function and conducts analysis on the
AST nodes. Subsequently, Bandit, denoted by 9,
generates a report Jt about the code y. Then, we
pass the report R from Bandit to the LLMs to gen-
erate potential solutions to fix the vulnerabilities.
we can describe the Bandit report as follows:

R =4(y) (3)

Figure 2 shows an example of Bandit feedback
for the code snippet in 1.

'https://github.com/PyCQA/bandit
“https://greentreesnakes.readthedocs.io/en/latest/



3.3 Generating potential solutions

Static code analysis can detect vulnerabilities but
cannot fix them. The primary contribution of FDSP
is to leverage static code analysis to enable LLMs
to generate or suggest multiple solutions S to ad-
dress these vulnerabilities, as represented in equa-
tion 4.

SNPLM(y)éR)j)p) (4)

Where the J present the total number of gener-
ated potential solutions, and the p is the instruction
that given to the LLMs. Figure 1 illustrates this pro-
cess: the LLM generates code vulnerable to SQL
injection, we then provide the LLM with report
from Bandit, and subsequently, the LLM generates
three different potential solutions: /) Use Parame-
terized Queries, 2) Manual Escape and Quote Ta-
ble Name and 3) Use an ORM (Object-Relational
Mapping) Library.

3.4 Code refinement

We use the generated potential solutions S ~
51 s2 ... sj, from the previous step as feedback
to fix the vulnerable code y. In the previous step
the LLMs generate J unique solutions to fix the
security issues. Then, each potential solution and
vulnerable code is fed back into the LLM multi-
ple times, denoted as K. The idea behind the K
iterations for each solution is to allow the LLMs
to generate as many fixes as possible for the vul-
nerable code. The refinement process is terminated
when the Bandit detects no security issues or when
the iteration reaches the maximum number of itera-
tions, K, for all potential solutions .5, as shown in
Algorithm 1.

Yirk ~ Pt Wik |Yirh—1,0) Yoo 3y (9)

4 Experimental Settings

Existing benchmarks, LLMSecEval and SecurityE-
val, are insufficient for large-scale evaluation due
to their limited size. To address this limitation,
we introduce PythonSecurityEval, comprising 470
natural language prompts for diverse real-world
applications, collected from Stack Overflow. We
utilize PythonSecurityEval to compare FDSP with
existing strategies for fixing security issues.

I # The prompt: Write a Python function
to return the total number of rows
in SQLite.

import sqglite3

4 def get_total_rows(database_name,
table_name):
conn = sqlite3.connect(
database_name)

6 cursor = conn.cursor ()

7 cursor.execute ("SELECT COUNT (%)
FROM {}".format(table_name))

8 result = cursor.fetchone()

9 conn.close ()

10 return result[0]

Code Snippet 1: An example of a prompt from
PythonSecurityEval dataset where GPT-4 generates
vulnerable code of the SQL injection type. The report
from Bandit is shown in 2.

4.1 Benchmarks

LLMSecEval: A dataset containing natural lan-
guage prompts to evaluate LLMs on generating
secure source code (Tony et al., 2023). This dataset
covers the majority of the Top 25 Common Weak-
ness Enumeration (CWE) scenarios from 2021, ad-
dressing various security concerns. It consists of
a total of 150 prompts, where each prompt is a
natural language description for generating code.

SecurityEval: This dataset, proposed by (Siddiq
and Santos, 2022), is used to evaluate LLMs on
their ability to generate secure Python programs. It
comprises 121 natural language prompts covering
75 different types of vulnerabilities. Each prompt
includes the header of a Python function along with
comments that describe the function’s purpose.

PythonSecurityEval: We collected a new large
dataset from Stack Overflow to address the limita-
tion of the existing dataset. The current datasets are
limited in size and diversity, which is not very effi-
cient in evaluating the ability of LLMs to generate
secure code and their capacity to fix security vul-
nerabilities. The PythonSecurityEval includes nat-
ural language prompts intended to generate Python
functions that cover diverse real-world applications.
Our dataset is three times larger than those used in
LLMSecEval and SecurityEval, with a total of 470
prompts.

Our benchmark is diverse, covering the major-
ity of real-world applications that consider the pri-
mary sources of common vulnerabilities. For ex-
ample, SQL injection occurs when Python code
connects to, inserts into, and queries from a SQL
database. There are several examples in our bench-
mark where the prompt involves writing Python



code to insert a value into an SQL database. An-
other example is command injection, where the
Python code interacts with the operating system,
allowing attackers to gain unauthorized access to
data and systems. We include examples that gen-
erate Python code with access to the operating sys-
tem and diagnose how the LLMs generate the code
without any issues or the ability to refine the code.
Lastly, cross-site scripting (XSS) is a common type
of security vulnerability that occurs in web appli-
cations. We include prompts that generate Python
code for Flask, which is a Python web framework
for creating websites.

An example of Bandit report.

Issue: [B608:hardcoded_sql_expressions]
Possible SQL injection vector through
string-based query construction.

Line 7:cursor.execute("SELECT COUNT(*)
FROM ".format(table_name))

Figure 2: An example of the report generated by Bandit,
a static code analysis tool, for the vulnerable code in
Code Snippet 1.

4.2 Baselines

Direct Prompting: This approach involves send-
ing the generated code back to the LLMs with the
instruction: Does the provided function have a se-
curity issue? If yes, please fix the issue. If the
LLMs detect any security issues in the code, they
will fix the issue and generate secure code. This
serves as a baseline to demonstrate the LLM’s abil-
ity to detect and resolve security issues without
additional feedback.

Self-Debugging: The concept of self-debugging
(Chen et al., 2023) involves LLMs generating code
and then debugging the generated code themselves
without help from humans or external tools. The
initial step in self-debugging is that the LLMs gen-
erating the code; subsequently, the generated code
is sent back to the same LLMs to generate feed-
backFinally, both the generated code and the ex-
planations are fed back to the LLM to correct any
existing bugs. This approach has demonstrated an
improvement in fixing incorrect code that either
did not compile or failed to pass unit tests. We are
interested in investigating how the self-debugging
approach enhances LLMs in addressing security is-
sues. The feedback, which provides an explanation

of the code, could enhance the LLMs’ understand-
ing of the code and improve their ability to fix
security vulnerabilities.

Bandit feedback: Bandit produces a report if
there is any security issue in the code as shown in
Figure 2, we use this report as a feedback to LLMs
to refine the vulnerable code. This is similar to
prior works where external tools provide feedback
to the LLMs to refine their outputs (Gao et al., 2023;
Akyiirek et al., 2023). In our baseline, we provide
the LLMs with the vulnerable code along with the
feedback from Bandit, which includes the type of
security issue and indicates the specific line of code
where the issue is found. Bandit’s feedback does
not provide a solution to fix the issue; it simply
highlights the problematic line and type of issue.

Verbalization: We verbalize the feedback from
Bandit, via an LLM, to produce more understand-
able and actionable feedback to resolve security
issues and defective code. The verbalized feed-
back provides a detailed explanation in natural lan-
guage of the specialized output from Bandit, as
illustrated in Figure 6. This expanded explanation
offers deeper insights into the security issues and
may suggest solutions to address the vulnerabili-
ties. We use verbalized feedback as a baseline and
compare it with the direct use of Bandit feedback
and FDSP.

4.3 Evaluation metrics

In our study, we evaluate the accuracy of how fre-
quently LLMs generate and refine vulnerable code.
This is done by dividing the total number of gener-
ated vulnerable code by the total number of gener-
ated code. We report the accuracy in Table 1. To
verify whether the generated code is vulnerable, we
use Bandit, an automated tool designed to identify
vulnerabilities in Python code.

4.4 Models

We aim to evaluate state-of-the-art LLMs for code
generation, including GPT-4, GPT-3.5 “gpt-3.5-
turbo-instruct”"(Brown et al., 2020) using Ope-
nAl API, and CodeLlama “CodeLLama-Instruct-
34B"(Roziere et al., 2023) from Huggingface, to
generate secure code. Additionally, we assess these
models’ ability to refine insecure code based on
feedback from Bandit.

5 Experimental Results

In this section, we evaluate our approach to fix
the vulnerabilities in code with three LLMs in sub-



section 5.1, and we discuss the main finding in
subsection 5.2.

5.1 Results

Table 1 presents the summary of our results on how
frequently LLMs generate and refine vulnerable
code across five approaches.

For the LLMSecEval and SecurityEval datasets,
between 28% and 46% of the code generated have
vulnerabilities. The methods of direct prompting
and self-debugging slightly help to fix the vulnera-
bilities, with improvement percentages of less than
10% for GPT-3.5 and CodeLlama. However, for
GPT-4, the average improvement is 15%. This sug-
gests that LLMs can provide feedback to fix their
generated vulnerable code without external input,
but the extent of improvement is not satisfactory. In
the third approach, where LLMs receive feedback
from the Bandit, there’s about a 30% improvement
for GPT-4 and up to a 24% improvement for GPT-
3.5 and CodeLlama. Additionally, verbalization,
which involves articulating feedback from the Ban-
dit, shows a slight improvement of about 2%. The
FDSP approach consistently shows improvement
in fixing vulnerabilities across the three LLMs and
the two datasets, LLMSecEval and SecurityEval,
when compared to the baseline.

We can observe that more than 40% of the code
generated by PythonSecurityEval has security is-
sues across varying LL.Ms. The effectiveness of
fixing the vulnerable code is somewhat consistent
for both direct prompting and self-debugging tech-
niques across all LLMs. In other approaches, where
we provide the LLMs with feedback from Bandit,
the results improve by more than 15% compared
to direct prompting and self-debugging. The FDSP
approach shows consistent improvement over the
verbalization approach, with improvements for
GPT-4 (from 8.7% to 7.4%), GPT-3.5 (from 23.6%
to 15.7%), and CodeLlama (from 21.0% to 13.6%).
This suggests that LLMs can propose potential so-
lutions and provide useful feedback to fix secu-
rity issues when they are supplied with feedback
from static code analysis, and outperforming self-
refinement or merely passing the feedback from
static code analysis directly.

5.2 Analysis

In this subsection, we discuss the key findings of
our results regarding the frequency with which
LLMs generate and fix vulnerable code. We also
discuss the most common types of code vulnera-

ities
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Figure 3: The figure illustrates the total number of the
most common types of security issues (Top 10) in code
generated for the PythonSecurityEval dataset.
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Figure 4: The figure displays the total number of top
unresolved security issues for the PythonSecurityEval
dataset.

bilities generated by LLMs, as well as unresolved
vulnerabilities in the PythonSecurityEval dataset.
The feedback provided by Bandit significantly
enhances the LLMs’ capabilities in addressing se-
curity issues, unlike other methods that exclude
Bandit’s feedback. While simple baselines such as
direct prompts and self-debugging can be helpful,
but ultimately are not very effective in fixing secu-
rity issues in code. These methods are somewhat
beneficial in tackling straightforward vulnerabili-
ties. As Table 1 shows that all approaches incorpo-
rating feedback from Bandit significantly improve
accuracy over simple methods across all models
and datasets. The FDSP method boosts the LLMs’
ability to generate potential solutions based on Ban-
dit’s feedback. It is evident that LLMs lack an
understanding of code vulnerabilities and struggle
to fix these issues without feedback from Bandit.
Our FDSP approach significantly enhances the per-
formance of GPT-3.5 and Codal.lama, exceeding
the results achieved by either directly incorporating



Dataset Approach GPT 4 GPT 3.5 CodeLlama
Generated code 38.2 34.2 28.6
Direct prompting  35.3 (} 2.6)  28.0 (J 6.0) 24.0 (J 4.6)
LLMSecEval Self-debugging ~ 24.0 (| 14.0)  28.0 (1 6.0)  24.6 (] 4.0)
Bandit feedback 8.0 (] 30.0) 18.6 (1 15.33)  18.0 (] 10.6)
Verbalization 73(130.6) 18.0 (1 16.0) 16.6 (] 12.0)
FDSP 6.0 (1 32.0) 12.6 (] 21.33) 14.6 (] 14.0)
Generated code 34.7 38.0 46.2
Direct prompting  21.4 (| 13.2) 25.6 (} 12.4)  38.0 (] 8.2)
SecurityEval Self-debugging 16.5 (4 18.1) 27.2 () 10.7) 38.8 (4 7.4)
Bandit feedback 4.1 (] 30.5) 13.2(} 24.7) 214 (] 24.7)
Verbalization 49 (4 29.7) 1322 (}24.7) 173 (] 28.92)
FDSP 4.1(1305) 57(1322)  8.2(]38.0)
Generated code 40.21 48.51 42.34
Direct prompting  25.1 ({ 15.1)  42.5(1 5.9) 31.7 (4 10.6)
PythonSecurityEval ~Self-debugging 248 (1 15.3) 434 (15.1) 33.4 (4 8.9)
Bandit feedback 9.3 (1 30.8) 263 (] 22.1) 204 (] 21.9)
Verbalization 8.7(131.4) 23.6(,248) 21.0(}21.2)
FDSP 7.4 (132.7)  157(132.7)  13.6 (] 28.7)

Table 1: The table illustrates the percentage of vulnerable code, with the number in parentheses representing the
percentage of vulnerable code that was fixed relative to the percentage of generated vulnerable code.

Bandit’s feedback or verbalizing it. We evaluate
the effectiveness of each method in addressing the
most common security issues in CodeLlama, as
depicted in Figure 5. These results suggest that
self-refinement or directly passing the feedback
from static code analysis is not very useful for
CodeLlama; however, the approach of verbaliz-
ing the feedback from static code analysis or FDSP
performs well for CodeLlama.
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Figure 5: The figure illustrates the total number of the
five most common types of security issues for CodeL-
Lama across five refinement approaches for the Python-
SecurityEval dataset.

We analyze the most common vulnerabilities in
generated code, as well as those that remain unre-
solved, for the PythonSecurityEval dataset. Figure

3 illustrates the most common types of code vulner-
abilities generated by three LLMs, with the top two
being CWE-259 (Use of Hard-coded Password)
and CWE-400 (Uncontrolled Resource Consump-
tion). However, the LLMs are able to fix most of
these types of vulnerabilities, as shown in Figure
4. We visualize the most frequent unresolved se-
curity issues by the same three models in Figure 4,
where the top two are related to injection: CWE-
78 (OS Command Injection) and CWE-89 (SQL
Injection), with percentage of %61.1 and %80.0 re-
spectively for GPT-4. Additionally, these injection
vulnerabilities are also among the most frequent
vulnerabilities generated by LLMs.

The refinement process aimed at fixing vulnera-
ble code may alter the code’s functionality or pro-
duce unrealistic code. We manually review each
piece of refined code and compare it with the origi-
nally generated vulnerable code. If the refined code
is unrealistic, we classify it as unfixed when report-
ing our results in Table 1. In the PythonSecurityE-
val dataset, we observed that GPT-4 generated 9
instances of unrealistic code among all approaches,
with 3 of these instances arising from the FDSP
approach. GPT-3.5 produced approximately 11
instances of unrealistic code, 10 of which were as-
sociated with the FDSP approach. CodeLlama had
the highest number of unrealistic instances, total-



ing 28, with 13 of these resulting from the FDSP
approach. This is due to the FDSP method generat-
ing three multiple solutions from LLMs, some of
which may be unrealistic. Our approach demon-
strates that GPT-4 can generate potentially more
effective solutions than both CodeLlama and GPT-
3.5.

To better understand the effectiveness of FDSP
in outperforming the baseline, we conducted an
evaluation experiment using an external vulnerabil-
ity detection tool other than Bandit. We used Cod-
eQL?, an open-source codebase utilized to discover
the similarity of vulnerability patterns in code. In
Table 2, we report the percentage of vulnerable
code in the PythonSecurityEval dataset across the
three LLMs and the refinement approaches. The
FDSP outperformed the baseline across the LLMs.

GPT4 GPT3.5 CodeLlama
Generated code 314 20.8 25.5
Direct prompting 18.5 13.6 12.1
Self Debug 16.1 13.8 159
Bandit feedback 13.8 9.3 10.4
Verbalization 12.9 10.6 11.9
FDSP 11.9 9.1 8.2

Table 2: The table illustrates the percentage of vulnera-
ble code in PythonSecurityEval dataset using CodeQL.

6 Conclusion

As LLMs are capable of generating code, we assess
the frequency with which they produce vulnerable
code. We conduct an empirical evaluation of LLMs
using existing datasets and approaches, and discuss
their limitations. We propose a novel approach
and introduce a new dataset to address the current
limitations of both datasets and approaches. Our
approach is called FDSP, where the LLMs gener-
ate potential solutions to fix their own generated
vulnerable code by leveraging feedback from static
code analysis. Our results demonstrate that the
FDSP approach outperforms the baselines across
all three benchmarks and three models, achieving
an improvement of about 17.6% in the PythonSe-
curityEval dataset for GPT-4.

7 Limitations

One of the limitations of our study is that our eval-
uation may not identify all security issues in the
code. Detecting vulnerabilities in code is an active

3https://codeq].github.com/

area of research, where recent studies have shown
that some vulnerabilities cannot be detected by ei-
ther static code analysis or deep learning-based
vulnerability detection methods (Chakraborty et al.,
2021). Additionally, we evaluate LLMs in gener-
ating and refining vulnerable code at the function
level; however, in real-life scenarios, vulnerabili-
ties often occur when code interacts with other code
or services. Lastly, our approach to fixing security
issues involves making changes to the code, which
might inadvertently render the program incorrect.
It is very challenging to ensure the correctness of
the code or to write unit tests, as all the generated
code interacts with other services or systems such
as databases or operating systems.
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A Example Appendix

An example of verbalization.

The feedback from the static code analysis regarding the issue tagged as "B608: hardcoded sql
expressions” indicates a security concern with the way SQL queries are being constructed in the
code. Specifically, the issue points out that the code might be vulnerable to SQL injection attacks
due to the use of string-based query construction. This vulnerability arises when input data is
concatenated directly into SQL queries without proper sanitization or parameterization, allowing
an attacker to manipulate the queries to execute arbitrary SQL commands.

The problematic code is found at line 7, where a cursor’s execute method is called to perform a
SQL query. The query attempts to count the rows in a table by dynamically inserting the table
name into the SQL statement. However, the method of constructing this query by formatting a
string is unsafe if the table name comes from an untrusted source or is not properly validated, as
it can be exploited to inject malicious SQL.

To mitigate this risk, it’s recommended to use parameterized queries or prepared statements
provided by the database interface, which ensure that input data is treated as parameters rather
than part of the SQL command. This approach helps prevent SQL injection by separating the data
from the code that queries the database.

Figure 6: An example of how GPT-4 verbalizes the feedback from the Bandit shown in the Figure 2.
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