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ONE SIZE DOES NOT FIT ALL:
CROSS-ARCHITECTURAL LAYER-WISE
REPRESENTATIONS IN DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

Figure 1: Layer-wise feature injection across diffusion architectures. (Top) plots showing SSIM
similarity curves from the original (O) to the edited (E) image of layerwise feature injection, orange
highlight indicates layers where semantic mixing occurs. Orange layers are used for editing (highest
SSIM). Purple for style transfer (second highest) . (Bottom) original image and edited image, editing
prompt over the edited image.

ABSTRACT

Recent advances in diffusion models have enabled powerful text-to-image syn-
thesis and training-free editing. However, despite growing architectural diversity,
most editing techniques rely on implicit assumptions about shared internal rep-
resentations across models. In this paper, we conduct a systematic, layer-wise
analysis of internal representations across a wide range of diffusion architectures,
including Stable Diffusion (SD1.4, SD2, SDXL), Kandinsky, and DiT-based mod-
els (SD3.5, Flux). We quantify how semantic and stylistic information propagates
through U-Net backbones and their transformer-based counterparts using a tar-
geted feature injection protocol. Our findings uncover architecture-specific en-
coding patterns, such as symmetric representational flow in SD1.4/2.0, bottleneck
centrality in SDXL, decoder-centric representation in Kandinsky, and middle-late
semantic representation formation in DiTs. We further show that adversarially
distilled models preserve, but amplify, their teacher’s representational structure.
These insights inform a principled injection-based framework for text-guided im-
age editing and style transfer. To the best of our knowledge, we are the first to
achieve successful editing on such a broad range of models.

1 INTRODUCTION

Diffusion models have emerged as a powerful family of generative models, enabling high-quality
text-to-image synthesis across diverse domains. While their expressive capacity is remarkable, un-
derstanding and controlling their internal representations remains an open challenge. A growing line
of work attempts training-free editing by leveraging feature injection, i.e., transferring activations
between the denoising streams of an original and an editing prompt (Hertz et al.; Tumanyan et al.,
2023; Liu et al., 2024; Jeong et al., 2024b; Jiang & Chen, 2024; He et al., 2024). These methods
demonstrate strong results but rely on an implicit assumption: diffusion backbones share similar
representational structures.
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Table 1: Overview of image editing, style transfer, and personalization methods. Each column marks
the modules used (✓) or not used (–) for injection together with the layers injected, model(s), and
reference. As evidenced in the Model column, existing methods are explicitly tested only on one
or, at most, two models.

Method Model Modules Layers

SelfAtt CrossAtt ResNet Skip Text enc.

Image editing
SDEdit (Meng et al.) DDPM – – – – – —
Prompt-to-Prompt (Hertz et al.) Imagen ✓ ✓ – – – —
Plug-and-Play (Tumanyan et al., 2023) SD 1.4–2 ✓ – ✓ – – Layer 4
DiffQuickFix (Basu et al.) SD 1.4 ✓ ✓ ✓ – ✓ —
PromptFree Editing (Liu et al., 2024) SD 1.5 – ✓ – – ✓ Layers 4–14
Style transfer
InjectFusion (Jeong et al., 2024a) DDPM – – ✓ – – Bottleneck
Artist (Jiang & Chen, 2024) SD 2.1 ✓ – ✓ – – Content: 4–6, Style: 4–12
FreeStyle (He et al., 2024) SD XL – – – ✓ – —
Z* (Deng et al., 2024) SD 1.5 – ✓ – – – Decoder
Personalization
P+ (Voynov et al., 2023) SD 1.4 – ✓ – – ✓ Content: 5-7, Style: 1-4, 8-12
ProSpect (Zhang et al., 2023) SD 1.4 – ✓ – – ✓ —
MATTE (Agarwal et al., 2023) SD – ✓ – – ✓ Content: 5-7, Color: 1-4, 8-12

This assumption is increasingly problematic as architectures diversify. U-Net variants (e.g., Stable
Diffusion 1.x, 2.x, XL (Rombach et al., 2022), Kandinsky (Razzhigaev et al., 2023)) differ in how
they distribute attention, use decoders to image space, and organize residual connections, while re-
cent Diffusion Transformers (DiTs, (Peebles & Xie, 2023)) adopt entirely different representational
dynamics. Yet, as shown in Table 1, most existing methods are only validated on a single model, rais-
ing the question of whether their effectiveness is due to universal principles or architecture-specific
artifacts.

Understanding whether representational roles are consistent across models is crucial for at least three
reasons: (i) it advances mechanistic interpretability by revealing where semantic and stylistic infor-
mation is encoded, (ii) it informs architectural choices by highlighting inductive biases of different
designs, and (iii) it provides a principled foundation for generalizable editing and control methods.

In this paper, we conduct the first systematic, layer-wise analysis of internal representations across
multiple diffusion backbones. We probe how semantic and stylistic information propagates through
models, including Stable Diffusion 1.4, 2, XL, 3.5 (Rombach et al., 2022; Podell et al.; Esser et al.,
2024), Kandinsky (Razzhigaev et al., 2023), Flux (Labs, 2024), and turbo-distilled variants (Sauer
et al., 2024a). Our methodology sequentially injects activations from the original denoising process
into the editing stream and evaluates the resulting images along structural (SSIM, keypoints) and
stylistic (color, texture) dimensions. This probing framework reveals substantial differences in rep-
resentational organization: e.g., SD1.4 and SD2 exhibit symmetric flows through encoder–decoder
blocks, SDXL centralizes information in its bottleneck, Kandinsky shifts representational burden to
decoder layers, while DiT-based models concentrate on middle-late transformer blocks.

Building on these insights, we introduce a principled injection-based pipeline for text-driven image
editing and style transfer that adapts layer selection to each architecture. To the best of our knowl-
edge, this is the first method to perform image editing and style transfer that can be applied to such
a variety of models. We further show that this paradigm generalizes beyond U-Nets to DiT-based
diffusion models (Figure 1). Our findings challenge the assumption of uniformity across backbones,
highlight architecture-specific encoding strategies, and provide both methodological and conceptual
tools for advancing controllability and interpretability in diffusion models.

Contributions. Our main contributions are threefold: (i) We present the first systematic, layer-
wise injection-based probing of internal representations across a wide range of diffusion backbones,
revealing that semantic and stylistic information is encoded in architecture-specific ways. (ii) We
introduce a probing-based methodology that quantifies the representational role of each layer using
structural and stylistic similarity metrics. (iii) Leveraging these insights, we design an injection-
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based pipeline for text-driven image editing and style transfer, and demonstrate its generalization
across both U-Net- and DiT-based diffusion models.

2 RELATED WORK

Current methods for training-free editing largely rely on feature injection (Hertz et al.; Liu et al.,
2024; Tumanyan et al., 2023; Jiang & Chen, 2024; He et al., 2024). These approaches run two
parallel denoising processes, one conditioned on the original image and one on the editing prompt,
and achieve editing by injecting activations from the former into the latter. The effectiveness of such
methods depends critically on the choice of modules, layers, and timesteps of injection, often com-
bined with modulation mechanisms that regulate the strength of the transfer (Table 1). In this sense,
feature injection provides a natural probe of the representational structure of diffusion backbones.

Much of the literature has emphasized the role of attention modules. Self-attention has been linked
to spatial affinity propagation, while cross-attention has been associated with object layout and ge-
ometry (Hertz et al.; Liu et al., 2024; Tumanyan et al., 2023). Yet, findings diverge: for example,
DiffQuickFix (Basu et al.) reports that most cross-attention layers do not causally affect outputs,
whereas FreePromptEdit (Liu et al., 2024) shows that they carry object-level information. By con-
trast, residual blocks and skip connections have received less attention, despite evidence (e.g., Skip-
Inject (Schaerf et al., 2025)) that late encoder skip connections transmit crucial spatial information.
Similarly, the representational roles of the bottleneck and deeper decoder layers remain debated:
some works highlight their importance for content and object information (Jeong et al., 2024b; Haas
et al., 2024), while others stress a coarse division between shallow, style-oriented layers and deeper,
content-oriented ones (Voynov et al., 2023; Agarwal et al., 2023).

While U-Nets reveal systematic representational patterns, it remains unclear whether these general-
ize across architectures. Prior analyses typically focus on a single model, leaving open whether
observed behaviors reflect universal principles of diffusion backbones or model-specific design
choices. Clarifying this distinction is important, as convergence would suggest shared principles
that enable transferable editing and control strategies, whereas divergence would imply the need for
backbone-specific approaches. We address this gap by taking a cross-architectural view, probing
layer- and module-level behaviors in the injection paradigm.

3 PRELIMINARIES

This section provides a brief overview of the diffusion models considered in our analysis. We focus
on architectural differences, which influence internal representations, and we introduce the notation
used throughout the paper.

3.1 MODELS

We analyze models based on two types of backbone architectures: U-Nets and Diffusion Trans-
formers (DiTs). U-Net-based backbones in consideration share three components: (i) an en-
coder–decoder operating in a reduced noise space, (ii) attention modules integrated into intermediate
blocks, and (iii) a text encoder for conditioning. DiTs replace the U-Net with a ViT (Dosovitskiy
et al., 2020) with several stacked transformer blocks. A general description of latent diffusion mod-
els (LDMs) (Rombach et al., 2022) and the U-Net backbone (Ronneberger et al., 2015) is deferred
to the Appendix 7.

These models are selected among the most widely adopted to cover a broad range of backbones (DiT-
U-Net, but also discrete-continuous decoder), as well as cases with minor but known differences (i.e.,
almost the same model trained on different datasets, removal of a layer, different density of attention
modules). We analyze the following models:

• Stable Diffusion 1.4 (Rombach et al., 2022): four encoder and four decoder layers, each with three
attention modules. Text conditioning uses OpenAI’s CLIP (Radford et al., 2021), and outputs are
decoded via a lightweight Variational Autoencoder (VAE) (Kingma & Welling, 2013).

• Stable Diffusion 2: identical to SD1.4, except trained on LAION-5B (Schuhmann et al., 2022)
with OpenCLIP for conditioning, resulting in a larger text embedding space (768 vs. 512).

3
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Table 2: Summary table of the models. CLIP here refers to OpenAI’s CLIP.

Model Backbone Text conditioning Decoder Training Distillation

SD 1.4 U-Net CLIP VAE LAION-5B -
SD 2 U-Net OpenCLIP VAE LAION-5B (w/o NFSW) -
SD 2 turbo U-Net OpenCLIP VAE - ✓
SD XL U-Net CLIP + OpenCLIP VAE NA -
SD XL turbo U-Net CLIP + OpenCLIP VAE - ✓
Kandinsky U-Net OpenCLIP MoVQGAN LAION HD -
SD 3.5 turbo DiT CLIP + OpenCLIP + T5 VAE - ✓
Flux Schnell DiT T5 VAE - ✓

• Stable Diffusion XL (Podell et al.): reduces the number of encoder/decoder layers, concentrating
attention in deeper layers. It conditions jointly on OpenAI CLIP and OpenCLIP and is paired with
a refiner network for high-frequency detail.

• Kandinsky (Razzhigaev et al., 2023): departs more strongly from SD. It replaces the VAE decoder
with MoVQGAN (Zheng et al., 2022), integrates an image prior to map text embeddings into CLIP
image space (similar to unCLIP (Ramesh et al., 2022)), and supports multilingual prompts.

• Turbo Variants (Sauer et al., 2024a): adversarially distilled versions of SD2 and SDXL that
enable generation in a handful of inference steps.

• Stable Diffusion 3.5 Turbo (Esser et al., 2024): a multimodal diffusion transformer distilled via
Adversarial Diffusion Distillation (ADD) (Sauer et al., 2024b). It integrates three fixed pretrained
text encoders (OpenCLIP-ViT/G, CLIP-ViT/L, T5-XXL), employs Query–Key normalization for
stability, and comprises 38 transformer layers.

• Flux Schnell (Labs, 2024): a rectified-flow hybrid transformer, distilled with Latent Adversarial
Diffusion Distillation (LADD) (Sauer et al., 2024a), achieving high-quality outputs in 1–4 steps.
Its architecture includes 19 transformer blocks and 39 additional single transformer blocks.

A summary of the models and their main characteristics is provided in Table 2.

3.2 NOTATION

Following the naming convention of diffusers, we denote U-Net encoder blocks as down (3–4
groups of 2–3 layers), the bottleneck as mid, and decoder blocks as up. Residual layers are re-
ferred to as resnets, and attention outputs as attentions. Throughout, we use the term layer
to denote the output of a single functional block (convolution, transformer, or residual unit). A
schematic of the U-Net architecture with these notations is shown in Figure 2.

4 ONE SIZE DOES NOT FILL ALL

Next, we show that diffusion backbones lack a one-size-fits-all representational structure; instead,
each architecture exhibits distinct internal structure. We identify these by performing layer-wise
feature injection and quantifying image similarity across structural and stylistic metrics.

Feature Injection. To isolate the influence of individual layers, we perform targeted feature injec-
tion. For a given denoising step

zt−1 = f(zt) = fL ◦ fL−1 ◦ · · · ◦ fi+1 ◦ fi ◦ fi−1 ◦ · · · ◦ f1(zt), (1)

where f denotes U-Net layers and ◦ composition, we replace the activations at layer i from the
editing trajectory E with those from the original image trajectory O:

fl =

{
fO
l , if l = i,

fE
l , otherwise.

(2)

This procedure allows us to attribute downstream changes to the representational contribution of
layer i. This setup is schematized in Figure 2.

4

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/stabilityai/stable-diffusion-2-base
https://huggingface.co/stabilityai/sd-turbo
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/stabilityai/sdxl-turbo
https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder
https://huggingface.co/stabilityai/stable-diffusion-3.5-large-turbo
https://huggingface.co/black-forest-labs/FLUX.1-schnell
https://huggingface.co/docs/diffusers/index


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 “A painting 
of three

 white robots”

“A photo of
 three foxes” +

+

Text Prompt Noise Output image

x x

down.2
resnet.0

down.2
resnet.1

down.2
resnet.2

down.2
attention.1

self
attention

cross
attention

down upmid

=
E (w/o inject)

R (w/ inject)

O

Figure 2: Injection process. Illustration of an example test carried out for the analysis. The selected
layer from the denoising of image O is injected into the denoising of image E, leading to the resulting
image R on the bottom right. The = indicates that both processes start from the same noise.

Similarity Metrics. We evaluate the resulting image R on a scale from 0 (identical to O) to 1
(identical to E), thereby quantifying how strongly layer i drives the image towards the edit. Four
complementary descriptors are used: (i) SSIM for structural fidelity, (ii) SIFT keypoint overlap for
layout consistency, (iii) color histogram similarity, and (iv) Local Binary Patterns (LBP) for texture.
Together, these metrics disentangle semantic, structural, and stylistic influences (details in Appendix
7). We chose to rely solely on low-level descriptors for two primary reasons: i) feature descriptors
such as CLIP (Ramesh et al., 2022) and LPIPS(Zhang et al., 2018) are often used in evaluation,
and we wanted to ensure independence between the two steps; ii) the images are consistent from
the point of view of shift, rotation, constrast and saturation, which makes them good candidates for
quantification using low-level descriptors.

Setup. We test 729 combinations of 27 unique prompts E and O, each specifying a subject, style,
and background. The 27 prompts are generated as follows, to include different combinations: “A
high-resolution image of a {content}, in {background}, in the style of {style}”, where: content =
{ zebra, parrot, elephant, desert } background = { desert, city, forest } style = { black and white,
Japanese anime, neon colors }.

Results. Results for U-Net- and DiT-based backbones are provided in Figure 1. Our analyses
reveal architecture-specific but interpretable representational signatures: U-Nets rely on bottleneck
and early decoding stages, while DiTs concentrate mixing in deep transformer blocks. Several
key patterns emerge. Stable Diffusion 1.4 and 2 exhibit a strong peak at the late encoder and
early decoder layers, while the bottleneck obtains image E without mixing (i.e., values around 0.5).
SD1.4 shows a shorter spike during decoding compared to SD2. Stable Diffusion XL steadily
accumulates editing strength through the encoder, peaking at the deepest block and bottleneck while
still achieving mixing. Kandinsky diverges from SD models, with editing effects emerging late
in the decoder stages. Turbo models closely track their teacher architectures, showing negligible
representational differences. Across all U-Nets, down.2.resnets.1 emerges as a universally
salient layer. SD3.5 obtains mixing around middle/late transformer blocks 22–23. Flux concentrates
on its final transformer block. Lastly, the color and texture mixing are generally lower for DiTs than
U-Nets, compared to structural metrics.

5
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Figure 3: Visualization of the effect of each layer on a scale from the original image O - 0 - to
the editing prompt E - 1. We only keep the common layers across all U-Net models for better
comparison. The bars indicate 95% confidence intervals. As visible in the image, the models and
turbo alternatives internally behave similarly, while the representations across models are largely
different. We highlight the layers according to the explanation in Section 5.

5 FEATUREINJECT

We now introduce our editing and style transfer methodology, derived directly from the probing
analyses.

Method. Our central observation is that effective editing occurs in layers whose injection effect
lies midway between the original image O and the edited prompt E, roughly around a similarity
value of 0.5 in Figure 1. These ’mixing layers’ represent points where structural and stylistic infor-
mation from both trajectories overlap. We first identify all layers whose similarity values fall within
the mixing region (in Figure 3). Then, we conduct ablation studies to test different subsets and com-
binations of these candidate layers. In fact, while the analysis assumes independence between layers
for computational constraints, we overcome this assumption by testing different combinations of the
candidate layers.

Two consistent patterns emerge. Layers where all four metrics (SSIM, keypoints, color, texture) con-
verge around 0.5 yield balanced semantic editing (highlighted in orange in Figure 1). Layers where
only chromatic and textural metrics diverge (highlighted in purple) primarily encode surface-level
appearance and are best suited for style transfer. Our method, FeatureInject, selects and combines
these layers accordingly: orange layers for content editing and purple layers for style transfer. For
DiTs, following the observation that color and texture are never higher than structural metrics, we
do not identify independent style transfer layers. Detailed ablation results validating these choices
are provided in the Appendix 7.

Datasets. For evaluation, we follow established practice in text-guided image editing using the
Wild-TI2I benchmark (Tumanyan et al., 2023). To additionally benchmark style transfer, we in-
troduce Wild-Style, a companion dataset with identical structure and specifications but with edits
restricted to stylistic attributes (dataset in Appendix 7). Each instance pairs an original prompt O
with an edited prompt E describing only a target style. Styles span both historical artistic move-
ments (e.g., Baroque, Impressionism, Cubism) and contemporary aesthetics (e.g., pixel art, neon

6
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Figure 4: Comparison with existing methods for image editing, on the left; and style transfer, on the
right. Whenever possible, we compare the results to SOTA image editing methods. The gray boxes
correspond to applications of the methods that were not possible, to the best of our abilities. The
results highlight both the incredible versatility of the method and its state-of-the-art editing results.

punk). This design ensures that evaluations cover both semantic content edits and surface-level style
modifications.

Metrics and Setup. We adopt three complementary metrics to capture semantic alignment, struc-
tural fidelity, and perceptual similarity: (i) CLIP similarity measures how well generated images
align with the target edit or style prompt (Radford et al., 2021); (ii) Multi-scale SSIM quantifies
preservation of structural layout; (iii) VGG feature similarity evaluates semantic closeness to the
image generated directly from the edited prompt.

All experiments are implemented with the Diffusers library. Feature injection is performed
via PyTorch hooks, and images are generated with AutoPipelineText2Image using default
parameters. For turbo-distilled variants, we follow prior work and use three inference steps. Details
on model weights and the specific layers selected for injection are provided in the Appendix 7.

Results. Quantitative results are reported in Table 3, with qualitative comparisons in Figure 4. We
benchmark against Artist (Jiang & Chen, 2024) for style transfer and Plug-n-Play (PnP) (Tumanyan
et al., 2023), Prompt-to-Prompt (P2P) (Hertz et al.), and FreePromptEditing (FPE) (Liu et al., 2024)
for image editing. When results are not available in Table 3 or Figure 4, it is because we could not,
to the best of our abilities, adapt the implementations to generalize for that model/task. Therefore,
we recognize the first major strength of our method: to generalize to the vastest set of models.

Furthermore, our method achieves a strong balance between prompt alignment and structure preser-
vation. Compared to FPE, which often prioritizes structural fidelity at the cost of coherent edits, and

7
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Table 3: Quantitative comparison of text-based image editing and style transfer across multiple
diffusion models. Dashes (–) indicate methods or models could not be evaluated for that task. Bold
indicates best performance for each model, while italics indicate best performance across models.

Editing Style Transfer
Model Method MS-SSIM ↑ Feature Sim. ↑ CLIP Sim. ↑ MS-SSIM ↑ Feature Sim. ↑ CLIP Sim. ↑

SD1.4 P2P 0.409 0.211 0.276 – – –
FPE 0.625 0.231 0.273 – – –
PnP 0.605 0.253 0.310 – – –
Artist – – – 0.174 0.133 0.175
Ours 0.636 0.249 0.281 0.460 0.140 0.214

SD2 P2P 0.297 0.194 0.266 – – –
FPE 0.466 0.207 0.268 – – –
PnP 0.559 0.260 0.332 – – –
Artist – – – 0.196 0.153 0.183
Ours 0.550 0.267 0.306 0.428 0.180 0.250

SD2-turbo PnP 0.336 0.173 0.174 – – –
Ours 0.516 0.302 0.282 0.400 0.199 0.228

SDXL-turbo P2P 0.283 0.362 0.297 – – –
Ours 0.430 0.441 0.282 0.486 0.161 0.230

SDXL P2P 0.386 0.099 0.290 – – –
Ours 0.560 0.330 0.336 0.577 0.147 0.234

Kandinsky Ours 0.403 0.385 0.368 0.383 0.272 0.295

Flux Schnell Ours 0.491 0.480 0.274 0.426 0.520 0.300

SD3.5 turbo Ours 0.412 0.250 0.238 0.362 0.220 0.266

P2P, which frequently introduces distortions, FeatureInject produces edits that are both consistent
and semantically faithful. For style transfer, our approach yields visually coherent transformations,
outperforming Artist in terms of completeness of stylistic change. Performance is consistently strong
across SDXL, Kandinsky, and turbo variants, and importantly, generalizes effectively to DiT-based
models such as Flux and SD3.5 Turbo.

6 OBSERVATIONS AND INTERPRETATIONS

Our analyses reveal distinct representational patterns across U-Net and DiT architectures. While
causal mechanisms would require targeted ablations, we outline several plausible interpretations
supported by prior work.

Layer specialization. Consistent with the information interpretation of gradient-descent-based
learning as specialization for the task and compression of representation (Shwartz-Ziv & Tishby,
2017), we find that different layers encode different types of information due to their spatial resolu-
tion and embedding dimensionality. Early encoder and late decoder layers (64× 64× 4) emphasize
fine-grained texture, while the bottleneck and deepest blocks (1280×8×8) capture global semantic
composition. In line with prior studies (Voynov et al., 2023; Zhang et al., 2023; Agarwal et al.,
2023), our results show that shallow layers mainly transmit structural fidelity, mid-layers capture
semantic content, and early decoders strongly influence global style.

Distribution of conditioning signals. Stable Diffusion XL diverges from earlier models by con-
centrating 30–40 attention modules in its deepest encoder and shallowest decoder, while incorpo-
rating two separate text encoders. This shift in conditioning distribution may explain its steadily
increasing mixing effect, though the precise causal role of dual conditioning remains open.

Residual connections. SD1.4 and SD2 display symmetric bell-shaped curves, with central layers
almost entirely aligned to the editing prompt and outer layers converging to the same mixing level.
This symmetry is consistent with skip-connection information flow, as also suggested by (Schaerf

8
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et al., 2025; He et al., 2024). Direct probing of residual pathways would be needed to confirm this
mechanism.

Conditioning models and training data. Despite identical architectures, SD1.4 and SD2 differ in
representational dynamics. SD1.4 tends to establish style before content, whereas SD2 produces a
more balanced progression. Since the main difference lies in conditioning (OpenAI CLIP vs. Open-
CLIP trained on LAION-5B), this suggests that the training corpus can subtly shift representational
allocation.

Discrete vs. continuous decoding. Kandinsky departs sharply from SD models. Its reliance
on a MoVQGAN discrete decoder likely imposes higher representational demands on later decoder
stages, explaining why mixing emerges primarily there. The interaction between discrete codebooks
and diffusion dynamics remains an open question.

Turbo distillation. Distilled variants closely mirror their teacher models, but with sharper rep-
resentational peaks. This supports the view that adversarial distillation preserves representational
structure while concentrating information (Surkov et al., 2025). Distilled models may thus be more
efficient but less flexible in how representations are distributed.

Diffusion Transformers. In contrast to U-Net backbones, Diffusion Transformers concentrate
representational mixing in the final layers. We attribute this to the strictly sequential processing
of transformer blocks, which lacks the long-range encoder–decoder connections of U-Nets. As a
result, global interactions, driven by quadratic self-attention across patches and conditioning inputs,
tend to accumulate gradually and manifest most strongly in the deepest layers. This design leads to
more localized salient layers compared to the distributed representational roles observed in U-Nets.

7 CONCLUSION

We conducted a systematic, layer-wise analysis of diffusion backbones, probing representational
structures across Stable Diffusion variants, SDXL, Kandinsky, turbo-distilled models, and two state-
of-the-art DiTs. This led to several key insights. (i) Feature injection methods do not generalize
uniformly: each architecture exhibits distinct representational regimes. (ii) Architectural choices,
i.e., attention distribution, conditioning encoders, or decoder type, systematically influence repre-
sentational allocation. (iii) Distillation preserves structure but amplifies activation peaks. (iv) DiTs
achieve similar content–style–structure partitioning but with more localized layer responsibilities.
Together, these findings argue against one-size-fits-all editing strategies and point to the need for
model-specific probing when designing manipulation pipelines.

Building on these insights, we introduced FeatureInject, a principled editing framework that iden-
tifies and exploits ’mixing layers’ for both semantic editing and style transfer. The method consis-
tently achieves state-of-the-art performance across diverse models, being the first one to generalize
to such a variety of models while maintaining structural fidelity and aligning closely with prompt
semantics. Crucially, we demonstrate that the paradigm extends beyond U-Nets to DiT backbones,
suggesting a general mechanism for training-free editing across diffusion architectures.

For practitioners, our probing methodology provides a systematic way to identify optimal injection
layers in new models, reducing reliance on ad hoc trial-and-error. Our study highlights that archi-
tectural choices fundamentally shape representational structure in diffusion models. These insights
open a path toward more robust, model-aware editing strategies and motivate future work on the
theoretical understanding of representation formation in generative backbones. Future work should
address the interaction between layers and modules more extensively at the level of the analysis.

REPRODUCIBILITY STATEMENT

We added extensive detail regarding the implementation (specifying the library, the function used
for injection, the names of the injected layers, the ablation studies for hyperparameters, and the
links to the model weights). As stated, we used the default parameters for anything not specified.
Furthermore, we specify the dataset used for evaluation and include the dataset introduced in the
paper in Appendix 7. The repository containing the code will be released upon acceptance.
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APPENDIX A: LATENT DIFFUSION

Latent Diffusion Models (LDMs) address the computational and memory limitations of diffusion
models by performing the diffusion process in a compressed latent space rather than the high-
dimensional image space. Specifically, LDMs utilize a pre-trained autoencoder to encode images x0

into a lower-dimensional latent representation z0 = E(x0), where E denotes the encoder. The dif-
fusion process is then applied to z0 instead of x0, significantly reducing the computational resources
required for training and sampling.

The forward diffusion process in the latent space is defined as:

zt =
√
αt · z0 +

√
1− αt · ϵ, (3)

where ϵ ∼ N(0, I) is Gaussian noise, and {αt} represents a predefined noise schedule. The model
learns to predict the added noise ϵ using a neural network ϵθ(zt, t) during training. The training
objective minimizes the expected loss:

L(θ) = Ez0,ϵ,t

[
|ϵ− ϵθ(zt, t)|2

]
, (4)

where t is uniformly sampled from the diffusion steps.

COMPONENTS OF THE U-NET

This work focuses on pre-trained text-conditioned Latent Diffusion Models (LDM) with U-Net
backbone, mainly Stable Diffusion versions 1.4, 2, 2.1 turbo, XL, XL turbo, and Kandinsky 2.
We leave future work to assess the generalizability to pixel-level diffusion models such as Ima-
gen (Ramesh et al., 2022) and DeepFloyd (Saharia et al., 2022), granted the computational resources.
Given the general nature of the pipeline, we believe the extension is straightforward.

In Latent Diffusion, the traditional U-Net (Ronneberger et al., 2015) is augmented with attention
modules - residual blocks, self-attention blocks, and cross-attention blocks—with cross-attention
enabling text conditioning.

In particular, the residual block processes the latent features ϕl−1
t from the previous layer l − 1 to

produce intermediate features f l
t and the latent features inputted to the following block ϕl

t:

f l
t , ϕ

l
t = ResBlock(ϕl−1

t ), (5)

where ResBlock includes convolutional operations and activation functions that capture local pat-
terns in the data.
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The self-attention block enables long-range interactions between latent features by computing at-
tention scores among all spatial positions:

f̂ l
t = SelfAttn(f l

t) = Al
tv

l
t, (6)

where the attention matrix Al
t is computed using the queries qlt and keys klt:

Al
t = Softmax

(
qltk

l
t
⊤

√
dk

)
, (7)

with
qlt = W l

qf
l
t , klt = W l

kf
l
t , vlt = W l

vf
l
t . (8)

Here, W l
q,W

l
k,W

l
v are learnable projection matrices, and dk is the dimensionality of the keys used

for scaling.

The cross-attention block incorporates the text prompt P into the image generation process. The
text prompt is first embedded using a text encoder to obtain token embeddings e = TextEncoder(P ).
The cross-attention between the latent features f l

t and the text embeddings e is computed as:

f̃ l
t = CrossAttn(f l

t , e) = Softmax
(
qlte

⊤
√
dk

)
e, (9)

where qlt = W l
qf

l
t are the queries from the latent features, and e serves as the keys and values.

APPENDIX B: ANALYSIS SPECIFICATIONS

METRICS

We compute four low-level image descriptors to quantify the amount of mixing between the orig-
inal image O and the editing image E in the resulting image R. We assess the layout and content
preservation using structural similarity (SSIM) and keypoint overlap (SIFT). Moreover, we con-
sider color histogram similarity and texture similarity using Local Binary Pattern (LBP) for the style
preservation.

For each macro layer in the U-Net - we do not consider the single multi-head attention modules - we
compute the similarity to O and to E, as SSIMO between the original image IO and the resulting
image with layer l changed IR(l), and SSIME between IE and IR(l).

SSIM(I1, I2) =
(2µI1µI2 + C1) (2σI1I2 + C2)(

µ2
I1

+ µ2
I2

+ C1

) (
σ2
I1

+ σ2
I2

+ C2

) (10)

where I1 and I2 represent the grayscale images, µ1 and µ1 are their means, σ1 and σ1 their standard
deviations, and σ2

I1
σ2
I1

their covariance. C1 and C2 are constants to stabilize the division.

To enrich the comparison on the layout, we use SIFT descriptors with K-Nearest Neighbor (KNN)
matching and cosine similarity.

Keypoint Similarity =

∑n1

i=1 I
(
d
(1)
i < 0.75 d

(2)
i

)
max

(
|KP1|, |KP2|

) , (11)

where KP1 and KP2 are the sets of SIFT keypoints detected in images 1 and 2, respectively, n1 =

|KP1| is the number of points found for image I1, d(1)i and d
(2)
i are the smallest and second smallest

Euclidean distances from the ith SIFT descriptor in image 1 to the descriptors in image 2 (obtained
via KNN matching with k = 2), and I is the indicator function that equals 1 if the condition is true
and 0 otherwise.

Finally, we measure features inherent to style as HSV color histogram similarities and Local Binary
Patterns (LBP) histogram similarity for texture.
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Color / Texture Similarity =
⟨H1 − H̄1, H2 − H̄2⟩
∥H1 − H̄1∥ ∥H2 − H̄2∥

(12)

where H is the HSV histogram and H̄ the mean in the color similarity case, and LBP histogram for
the texture.

Lastly, we normalize the similarity score by subtracting the similarity between the two input images,
which is considered a baseline, and then normalizing their sum to 1.

s̃(O,R) =
sim(O,R)− sim(O,E)

sim(O,R) + sim(E,R)
(13)

s̃(E,R) =
sim(E,R)− sim(O,E)

sim(O,R) + sim(E,R)
(14)

Model Layers MS-SSIM ↑ Feature Sim. ↑ CLIP Sim. ↑
SD1.4 up.0.res.0, up.0.res.1, up.0.res.2 0.3890 0.3295 0.3366
SD1.4 up.0.res.0, up.0.res.1 0.6356 0.2483 0.2813
SD1.4 up.0.res.2, up.0.res.0 0.3890 0.3295 0.3366
SD1.4 up.0.res.0 0.3964 0.3318 0.3398
SD1.4 up.0.res.0, up.0.res.1, up.0.res.2 0.6356 0.2483 0.2813
SD1.4 up.0.res.1, up.0.res.0 0.4082 0.3286 0.3359
SD2 down.2.res.0, down.2.att.1 0.4895 0.2992 0.3348
SD2 down.2.res.1, down.2.att.1 0.4737 0.2967 0.3314
SD2 down.2.res.0, down.2.att.1, down.2.res.1 0.5455 0.2669 0.3060
SD2 down.2.res.0, down.2.att.1, down.2.res.1 0.5177 0.2740 0.3129
SDXL mid.res.0 0.5141 0.3739 0.3628
SDXL mid.res.0, mid.res.1, down.2.res.1 0.5581 0.3290 0.3352
SDXL down.2.res.1 0.5139 0.3741 0.3634
SDXL mid.res.0, mid.res.1, down.2.res.1 0.5593 0.3283 0.3356
SDXL mid.res.0, mid.res.1 0.5033 0.3540 0.3529
Kandinsky up.1.res.0, down.2.res.1, up.0.res.2 0.4031 0.3852 0.3681
Kandinsky up.1.res.0, down.2.res.1, up.0.res.2 0.3909 0.3989 0.3697
Kandinsky down.2.res.1, up.0.res.2 0.3909 0.3989 0.3697
Kandinsky up.1.res.0, down.2.res.1 0.3203 0.5217 0.3763
Kandinsky up.0.res.2, up.1.res.0 0.3331 0.4569 0.3756
SD2 turbo down.2.res1 0.4311 0.3362 0.3094
SD2 turbo down.2.res0 0.4218 0.3372 0.3062
SD2 turbo down.2.att1 0.5164 0.3022 0.2817
SD2 turbo down.2.res1, down.2.res0 0.4782 0.3140 0.2895
SDXL turbo down.2.res1 0.4304 0.4407 0.3659
SDXL turbo mid.res0 0.4796 0.3745 0.3308
SDXL turbo mid.res1 0.4311 0.4390 0.3655
SDXL turbo down.2.res1, down.2.att1, mid.res0 0.4255 0.4402 0.3622
SDXL turbo down.2.res1, mid.res0, mid.res1, down.2.att1 0.4803 0.3749 0.3309
SDXL turbo mid.res0, mid.res1 0.3437 0.3179 0.3672
SDXL turbo down.2.res1, mid.res0, mid.res1 0.3368 0.3162 0.3709
SD3.5 turbo trans.23 0.412 0.2464 0.2383
SD3.5 turbo trans.22 0.4104 0.2309 0.213
SD3.5 turbo trans.22, trans.23 0.4114 0.2267 0.2131
Flux Schnell trans.18 0.4911 0.4797 0.2742

Table 4: Ablation study of image editing configurations. Layers follow compact notation:
down/up/mid.block.res/att-idx.
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APPENDIX C: ABLATION STUDIES

Based on the layers highlighted in the comparative figure, we carry out an ablation study to deter-
mine the ideal combination of the identified layers. We use for all experiments injection timesteps
[1000,200]. The results of these ablation studies can be found in Tables 4 and 5. The results show
how the layers can be successfully identified using the analysis proposed in the main paper.

Model Layers MS-SSIM ↑ Feature Sim. ↑ CLIP Sim. ↑
SD1.4 down.2.res0, mid.res1, mid.res0 0.4569 0.1403 0.2138
SD1.4 mid.res0 0.2864 0.2325 0.2774
SD1.4 down.2.res0, mid.res1 0.3067 0.1839 0.2404
SD1.4 down.2.res0 0.2528 0.2895 0.2781
SD1.4 down.2.res0, mid.res1 0.3800 0.1595 0.2265
SD2 up.1.res0, up.1.res1 0.3890 0.1994 0.2568
SD2 up.1.res0, up.1.res1 0.4275 0.1807 0.2477
SD2 up.1.res0, up.1.res1 0.5892 0.1301 0.1970
SD2 up.1.res1 0.5930 0.1309 0.1983
SDXL up.0.res0, up.0.att0 0.5769 0.1470 0.2341
SDXL up.0.res0, up.0.att0, up.0.res1 0.7686 0.1137 0.1693
Kandinsky up.1.att1, up.1.att0, up.1.att2 0.3827 0.2723 0.2945
Kandinsky up.1.att0, up.1.att1 0.3510 0.2858 0.3025
Kandinsky up.1.att0, up.1.att1 0.3311 0.2934 0.3046
Kandinsky up.1.att1 0.3510 0.2858 0.3025
Kandinsky up.1.att2, up.1.att1 0.3827 0.2723 0.2945
SD2 turbo up.1.res0, up.1.res1 0.4475 0.1685 0.2153
SD2 turbo up.1.res0, up.1.res1 0.4003 0.1991 0.2279
SD2 turbo up.1.res0, up.1.res1 0.6637 0.1073 0.1663
SD2 turbo up.1.res1 0.6637 0.1073 0.1663
SDXL turbo up.0.res0, up.0.att0 0.4855 0.1614 0.2303
SDXL turbo up.0.res0, up.0.att0, up.0.res1 0.6322 0.1081 0.1768
SD3.5 turbo trans.23 0.3623 0.2198 0.2664
SD3.5 turbo trans.22 0.3562 0.1349 0.1882
SD3.5 turbo trans.22, trans.23 0.3593 0.126 0.1822
Flux Schnell trans.18 0.4259 0.52 0.2981
Flux Schnell trans.17, trans.18 0.4514 0.2961 0.2136

Table 5: Ablation study of style transfer configurations. Layers follow compact notation:
down/up/mid.block.res/att-idx.

APPENDIX D: EVALUATION SPECIFICATIONS

DATASETS

We evaluate the results using two datasets as explained in the main text. The first dataset,
wild-ti2i-fake.yaml has been released by (Tumanyan et al., 2023), at the following link:
Wild-ti2i. We chose this dataset as it is widely used in the literature and it tests a variety of editing
prompts, specifying the seed for randomness, DDIM (Song et al.) steps and classifier free guidance
(Ho & Salimans). As real image editing strongly depends on the inversion technique, we chose to
test only on the ’fake’ dataset of generated image editing. We further introduce a second dataset
wild-style-fake.yaml that mirrors all the specs of the previous, but the editing is focused on
style transfer only. The full dataset is shown in the Style Dataset section.

METRICS

As explained in the main text, we use three metrics to evaluate the results. We choose CLIP to
compare the text of the editing to the generated image, as standard in the field. We load CLIP using
OpenCLIP ’ViT-B-32’ trained on laion2b s34b b79k. To evaluate the content of the edited image
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with the image generated by the editing prompt we use VGG16 from torchvision. Lastly,
we compute the multiscale structural similarity to assess structural coherence between the original
image and the edited image.

In the main text, when methods are not available, it is because the code released and rationale for
these methods do not natively work on those models, and the authors could not find other imple-
mentations nor implement them themselves without changing the rationale.

Lastly, we choose the best performing model in the ablation based on a tradeoff between the struc-
tural similarity and the VGG-CLIP similarities.

STYLE DATASET

1 # horse in mud
2 - source_prompt: a photo of a horse in mud
3 seed: 50
4 scale: 5.0
5 ddim_steps: 50
6 target_prompts:
7 - A Renaissance painting image
8 - A Cubism image
9 - A Surrealism image

10 - A Pop Art image
11
12 # Spider man
13 - source_prompt: a photo of spider man in superhero pose
14 seed: 90
15 scale: 5.0
16 ddim_steps: 50
17 target_prompts:
18 - An Impressionism image
19 - A Baroque style image
20 - A Futurism image
21
22 # Two cats
23 - source_prompt: a photo of two cats in the garden
24 seed: 50
25 scale: 7.5
26 ddim_steps: 50
27 target_prompts:
28 - A Dadaism image
29 - An Art Nouveau image
30 - A Minimalism image
31
32 # White tesla
33 - source_prompt: a photo of a white Tesla
34 seed: 62
35 scale: 7.5
36 ddim_steps: 50
37 target_prompts:
38 - A Chinese Ink image
39 - An Embroidery Art image
40 - An Oil Painting image
41
42 # three foxes
43 - source_prompt: a photo of three foxes
44 seed: 123
45 scale: 7.5
46 ddim_steps: 50
47 target_prompts:
48 - A Watercolor Painting image
49 - A Studio Ghibli image
50 - A Cyberpunk image
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51
52 # christmas trees
53 - source_prompt: a photo of christmas trees above snow
54 seed: 3000
55 scale: 7.5
56 ddim_steps: 50
57 target_prompts:
58 - A Pixel Punk image
59 - A Wasteland image
60 - A Sketching image
61 - A Renaissance painting image
62
63 # bunny doll
64 - source_prompt: a photo of a blue bunny doll
65 seed: 1010
66 scale: 7.5
67 ddim_steps: 50
68 target_prompts:
69 - A Cubism image
70 - A Surrealism image
71 - A Pop Art image
72 - An Impressionism image
73
74 # white bird
75 - source_prompt: a photo of a white bird on the grass
76 seed: 1010
77 scale: 7.5
78 ddim_steps: 50
79 target_prompts:
80 - A Baroque style image
81 - A Futurism image
82 - A Dadaism image
83 - An Art Nouveau image
84
85 # green ducks
86 - source_prompt: a photo of green ducks walking on street
87 seed: 7000
88 scale: 7.5
89 ddim_steps: 50
90 target_prompts:
91 - A Minimalism image
92 - A Chinese Ink image
93 - An Embroidery Art image
94
95 # Cake
96 - source_prompt: a photo of a cake
97 seed: 30
98 scale: 7.5
99 ddim_steps: 50

100 target_prompts:
101 - An Oil Painting image
102 - A Watercolor Painting image
103 - A Studio Ghibli image
104
105 # songbird
106 - source_prompt: a beautiful image of a song bird
107 seed: 77
108 scale: 7.5
109 ddim_steps: 50
110 target_prompts:
111 - A Cyberpunk image
112 - A Pixel Punk image
113 - A Wasteland image
114
115 # sand cars
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116 - source_prompt: a photo of a car made of sand
117 seed: 800
118 scale: 7.5
119 ddim_steps: 50
120 target_prompts:
121 - A Sketching image
122 - A Renaissance painting image
123 - A Cubism image
124
125 - source_prompt: a photo of a car made of sand
126 seed: 3003
127 scale: 7.5
128 ddim_steps: 50
129 target_prompts:
130 - A Surrealism image
131 - A Pop Art image
132 - A Impressionism image
133
134 # black bycicle
135 - source_prompt: a photo of a black bicycle
136 seed: 9090
137 scale: 5.0
138 ddim_steps: 50
139 target_prompts:
140 - A Baroque style image
141 - A Futurism image
142 - A Dadaism image
143
144 # cat face
145 - source_prompt: a photo of a cat face
146 seed: 500
147 scale: 7.5
148 ddim_steps: 50
149 target_prompts:
150 - An Art Nouveau image
151 - A Minimalism image
152 - A Chinese Ink image
153
154 # mouse painting
155 - source_prompt: a painting of a gray mouse
156 seed: 12
157 scale: 7.5
158 ddim_steps: 50
159 target_prompts:
160 - An Embroidery Art image
161 - An Oil Painting image
162 - A Watercolor Painting image
163
164 # fish drawing
165 - source_prompt: a drawing of goldfishes in the ocean
166 seed: 500
167 scale: 5.0
168 ddim_steps: 50
169 target_prompts:
170 - A Studio Ghibli image
171 - A Cyberpunk image
172 - A Pixel Punk image
173
174 # Minimal bird
175 - source_prompt: a minimal drawing of a bird
176 seed: 77
177 scale: 7.5
178 ddim_steps: 50
179 target_prompts:
180 - A Wasteland image
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181 - A Sketching image
182 - A Renaissance painting image
183 - A Cubism image
184
185 # blue car cartoon
186 - source_prompt: a cartoon of a blue car
187 seed: 310
188 scale: 7.5
189 ddim_steps: 50
190 target_prompts:
191 - A Surrealism image
192 - A Pop Art image
193 - An Impressionism image
194
195 # sketch mountain
196 - source_prompt: a sketch of a mountain
197 seed: 310
198 scale: 7.5
199 ddim_steps: 50
200 target_prompts:
201 - A Baroque style image
202 - A Futurism image
203 - A Dadaism image
204
205 # silhouette cat
206 - source_prompt: a silhouette drawing of a cat
207 seed: 610
208 scale: 7.5
209 ddim_steps: 50
210 target_prompts:
211 - An Art Nouveau image
212 - A Minimalism image
213 - A Chinese Ink image
214 - An Embroidery Art image
215 - An Oil Painting image
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