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Abstract 

Streaks due to weather, such as rain or snow, degrade image quality and affect the performance of subsequential high-level vision tasks by 

the generated undesired artifacts. Hence, removing streak interference is an ongoing and challenging issue for many applications in real-

time mobile surveillance systems. In this paper, streak interference removal from a single image is the focus. To sufficiently extract streak 

interference from an observed image, the image was firstly filtered with the nonsubsampled contourlet transform. Then, the residual part 

between the original and filtered image was decomposed into the streak component and detail component of background. Based on the 

additive layer model, we designed two specific priors that constrain the detail and streak interference respectively and established a model 

with joint priors for residual image decomposition. As a result, the resulting image can be synthesized with the filtered image and detail 

component. Experimental results show that our proposed method outperforms existing methods both qualitatively and quantitatively. 
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1. Introduction 

 

In the era of big data, millions of outdoor surveillance systems are placed everywhere throughout our city, and they are 

significant video collection devices in modern life. With these surveillance systems, billions of images are produced every 

day, which can be used to help to improve traffic controlling and public security. Nevertheless, it is inevitable that the 

images are affected by some weather conditions, such as rain or snow. Therefore, some undesired streak interference will be 

presented to degrade the visual quality and produce extra influence on subsequential tasks, such as recognition, object 

detection [1-2], and image analysis [3]. Some analyses on the interference from the view of fractal math have been proposed 

to facilitate improvement [4-6]. Hence, the streak interference removal has attracted much attention and is widely studied in 

recent years. 

 

To our best knowledge, streak interference removal can be categorized into two main kinds based on the type of input 

data. The first kind involves video-based streak removal approaches. Through a comprehensive analysis on the visual effect 

of rain in imaging systems, Garg et al. proposed a rain removal method with two creative visual models [7]. They firstly 

designed a correlation model to capture the dynamics for rain streaks. Then, a physical-based motion model was developed, 

which is used to explain the photometry of rain. In [8], incorporating temporal and chromatic information, a rain removal 

algorithm was proposed for both the stationary and dynamic scenes taken from a stationary camera. In this method, the 

temporal information was used to state that rain could not always cover the same pixels throughout the entire video, and the 

chromatic property told us that the change of values is approximately the same in the three channels of RGB space. Next, 

Barnum et al. [9] thought that dynamic weather interference has a predictable global effect in the frequency domain, so a 

model for shaping the appearance of a single raindrop or snow streak in the spatial space was developed. Then, it was 

combined with the statistic characteristics of streak to generate another model of the overall effect of weather interference in 

the frequency domain. This model can be used to detect the streak firstly, and the weather interference can be removed with 

the detection results. To better separate the streak of rain or snow from the background of sequences, [10] proposed the 

photometry-based selection rules that were used to select the potential streak interference. Then, the histogram of 
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orientations of streaks, which was assumed to follow the Gaussian uniform mixture model, is calculated to help remove the 

weather interference due to the different distributions of streak and noise. Nevertheless, it is noted that, benefiting from the 

sufficient spatial-temporal information, the aforementioned methods can achieve good performance in removing the streaks 

as fast variational components in video. The other category is the streak removal from a single image, which is a more 

challenging problem due to its limited scene information. Kang et al. firstly proposed an effective framework, which took 

the rain removal as an image decomposition problem. In [11], the decomposition is implemented via morphological 

component analysis (MCA). Different from the conventional MCA-based decomposition, the rain component is removed 

from the high-frequency part of the observed image, which avoids the interference of complicated backgrounds and extracts 

purer rain components. Similarly, an extended method based on decomposition is proposed in [12], where the image was 

divided into different groups, and the context-constraint segmentation and group-specific dictionaries were learned to better 

recognized the background and rain patterns. To improve the representation performance, a discriminative dictionary was 

learned in [13] to separate the rain layer upon a nonlinear generative model, which demonstrates an advantage on visual 

effects of rain removal. From the viewpoint based on regularization, Chen et al. [14] proposed a generalized low rank model 

in order to characterize spatial-temporal rain streaks, which extended the conventional prior model from matrix to tensor 

structure. The obtained promising results verified the effectiveness of their proposed method. To better characterize the 

layer in images, Li et al. [15] proposed to take different Gaussian mixture models as the priors to constrain the background 

and rain layers respectively, which was believed to help capture the multiple orientations of complex rain streaks. 

 

In this paper, we addressed the problem of streak interference removal from a single image. Motivated by the 

aforementioned works, we proposed to establish a comprehensive optimization model for streak removal based on joint 

priors. Firstly, instead of implementing removal on the original, we filtered the image with nonsubsampled contourlet 

transform to separate the streak interference sufficiently. Next, two layer-based priors were individually designed to 

constrain the details of background and streak interference, and an objective function for the removal model was proposed 

with these two joint priors to obtain the streak interference layer. Finally, the desired streak removal image was synthesized 

with the pure details of the background and filtered image. 

 

The rest of the paper is organized as follows. Section 2 presents the details of our proposed method, including the 

designed priors and comprehensive framework. Section 3 develops a numerical scheme for the objective function in the 

proposed framework. Several experimental results on test data are presented in Section 4. Section 5 summarizes the paper. 

 

2. Our Streak Interference Removal Model 

 

2.1. Image Filtering with Nonsubsampled Contourlet Transform 

 

A key problem in our proposed framework is how to model the layer of the background and streak interference respectively. 

Due to the redundant background information in outdoor nature images, it is difficult to find the separable and suitable 

priors to directly characterize the different layers in images. Moreover, pure streak interference extraction plays an 

important role in capturing the streak patterns, which was firstly detected with the temporal information in video-based 

removal methods. However, in a single image, no sufficient temporal background information can be utilized, resulting in 

the streak removal being more challenging. In addition, due to the large mixture of complicated backgrounds and streak 

interference, it is not easy task to separate them. Hence, similar to the idea presented in [11], the image must be roughly 

separated into two parts: the basic background part and the streak interference part with contour details. Suppose that an 

observed image I  can be modeled as follows.  

 

  B SCI I I  (1) 

 

Where 
BI  denotes the coarse background image and 

SCI  denotes the streak interference image with contour details. 

 

Recently, the multi-scale analysis tools (MSAT) were proposed and are widely used in many applications of image 

problems, such as restoration [16] and fusion [17]. It is noted that MSAT have a powerful ability to decompose images in 

terms of frequency division and capture the texture details. In our method, the nonsubsampled contourlet transform [18], 

which has favorable scale-preserving property, is used to separate the observed image I  into BI  and .SCI  Assuming that 

 NSCTT  denotes the nonsubsample contourlet filtering operator, the background 
BI  can be obtained by the following formulation. 

 

  ˆ B NSCTI T I  (2) 
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Next, the 
SCI  can be computed as the residential component between the observer image and the coarse background with 

 

   SC NSCTI I T I  (3) 

 

Figure 1 shows the separation results of our filtered method, from which we can obviously see that the streak 

interference with parts of detailed textures are explicitly separated. The results are helpful to extract the pure geometric 

details and streak interference. 

 

 
(a) Observed rainy image 

 

 
(b) Filtered image                                                         (c) Residual image 

Figure 1. Separated images with nonsubsampled contourlet transform 

 

2.2. Proposed Objective Function 

 

In this section, we will discuss how to establish an effective objective function that can decompose the image into geometric 

and streak interference components. In our framework, instead of implementing the decomposition to the observed image 

directly, we will decompose the residual image 
SCI  to alleviate the influence of the complicated background scene. That is, 

due to the compact contour information and massive streak interference included in the 
SCI , it is easier to extract the streak 

layer and geometric component accurately. Assuming that 
SCI  is synthesized with the following layer-based model, 

 

  SCI S G  (4) 

 

Where S  and G  denote the streak interference component and geometric details component respectively. 

 

With the formulation in (4), what we desire is to construct a suitable decomposition method that can separate the two 

latent components sufficiently. To this end, by the maximum posterior in Bayesian theory, the following objective function 

is proposed to implement the decomposition. 

 

     2

,
min    SC FS G

I S G S G  (5) 

 

Where 
F

  denotes the Frobenius norm to control the fidelity between the residual image and its decomposed 

components. The second and third terms are used to constrain some joint priors on streak interference and geometric details. 

It is noted that the form of the joint priors plays a significant role in the performance of streak removal. Next, we will focus 

on the construction of these two priors to obtain a better decomposition result. 
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As for the geometric details component, a sparse representation-based prior is designed as follows. 

 

     2

12
    i S i i

i

S v S D     (6) 

 

Where  v  denotes a vectorized operator, 
iS  presents a patch centralized around 

thi  pixel of S , 
SD  denotes the local 

dictionary to sparsely represent the patches, 
i  denotes the sparse coefficient for 

thi  patch, and   is a positive scalar to 

balance the two terms. Considering the complicated textures of the geometric details component, we utilize the sparsity 

prior to constrain its patches. Also, it is worth noticing that the geometric details have more abundant structures than the 

streak interference, whose local orientations are nearly consistent in the whole image. Thus, to capture more details, a local 

dictionary 
SD  is pre-learned, by KSVD [19], from massive non-rainy training images. 

 

Though a similar sparsity constraint can be forced on the streak interference layer, there are two main drawbacks that 

will limit the performance. First, we cannot obtain enough training samples for streak interference as the general natural 

image. Nevertheless, the sufficient samples have a great influence on the dictionary performance. Second, due to the 

different patterns of streak in different images, it is a good choice to train a better prior from the observed image itself. The 

Gaussian mixture model (GMM) is a recent popular prior and extensively used in many image inverse problems [20]. In 

[20], GMM has been verified to be a better learning-based prior and is advantageous in the patch-based method to obtain a 

high quality whole image. Based on this discussion, the following prior for streak interference is defined as: 

 

      
2

ln    i F
i

G GMM v G G   (7) 

 

Where   and   are two positive scalars to balance the two terms.  GMM  stands for the Gaussian mixture function. 

 

   
1

,


 
N

k k k

k

GMM x N x   

 

Where  N  stands for the Gaussian distribution, 
k  and k

 respectively denote the mean and covariance matrix for 

the 
thk  Gaussian component, and 

k  denotes the weight such that 
1

1



N

k

k

 . The first term in Equation (7) is the expected 

patch-based log likelihood to model the streak interference. The second term is the power constraint versus the large 

oscillation controlled by the image bound. 

 

Substituting Equations (6) and (7) into Equation (5), we can obtain the proposed objective function for decomposition 

model as follows. 

 

 

  
   

22

12

2,
min

ln

     
 
 
   
 





SC i S i iF
i

S G

iF
i

I S G v S D

G GMM v G

  

 
 (8) 

 

With the approximation such that   i S iv S D  , Equation (8) can be rewritten as the following more compact form. 

 

    2 2

1,
min ln

 
     

 
SC S iF FG

i

I D G G GMM v G


      (9) 

 

Where  

 
1( ) ( )T T

S i i i S i

i i

S D R R R D      
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iR  is the operator to extract  iv S  from ,S  and 
1 1

. i

i

     In Equation (9), the local dictionary, which was 

learned from various training images, is used to represent the abundant textures existing in the geometric details of the 

background. Meanwhile, the GMM prior, which has distinguished ability to characterize the patterns of patches, is forced on 

the streak interference component to obtain a purer streak layer. 

 

3. Solution Scheme for Objective Function 

 

In this section, a numerical solution scheme is developed to solve the proposed objective function in Equation (9). As 

noticed in Equation (9), it is non-convex with the two variables. Therefore, some splitting techniques could be exploited to 

obtain the approximate optimal solution alternatively. To this end, an auxiliary variable 
ip  is firstly introduced, and 

Equation (9) can be rewritten as follows. 

 

 
  

 

2 2

1,
min ln

. . ,

 
     

 

 

SC S iF FG
i

i i

I D G G GMM p

s t p v G i


    

 (10) 

 

Then, transform Equation (10) to the unconstraint form as: 

 

  
    

2 2

1

2

2

ˆˆ ˆ, , arg min
ln

    
 

    
 
 

SC S F F

i

i i i

i i

I D G G

G p
p v G GMM p

   


 

 (11) 

 

Where   is a regularization parameter increasing during the iteration, which will make the solution closer to that of 

Equation (9). The detailed iterative scheme is presented as follows. 

 

In the 
thn  iteration, with a fixed 

 n
G  and 

 n

ip , the sub-problem for 
 1n

  can be obtained as:  

 

 
    

2
1

1
arg min


   

n n

SC S
F

I D G     (12) 

 

With the definition in Equation (9), the problem in (12) can be approximately solved in the following patch-wise way. 

 

 i ,
      

2
1

1
2

arg min
  

    
 

n n

i SC i S i ii
v I G D     (13) 

 

Note that Equation (13) is a standard 
1l -norm based sparse coding problem, and each 

 1n

i  can be computed with the 

pursuit algorithm in [21]. 

 

Similarly, given 
 1n

  and 
 n

ip , the sub-problem for 
 1n

G  is expressed as: 

 

 
       

2 221

2
arg min

  
      

 


n n n

SC S i iFF
i

G I D G G p v G    (14) 

 

This is a quadratic problem, and the closed-form solution can be computed by the following formulation. 

 

 
    1

  
n n

SC SG I D   (15) 

 

Where   is a scalar such that 
1

1


 


 
, and   presents the aggregation image such that 

 
1

   
     

   
 

nT T

i i i i

i i

R R R p . 
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By fixing 
 1n

G  and  1
,

n
  the sub-problem associated with 

ip  is separable for each patch and can be formulated as:  

 

 
      

2
1

2

arg min ln


  
n

i i i ip p v G GMM p  (16) 

 

For the objective function in (16), an approach, which implemented the Wiener filtering to the Gaussian component 

with largest weight, is suggested in [20] to obtain its approximate solution and guarantee the convergence. To train a more 

effective GMM for representing the pattern of streak interference, as suggested in [15], we can select some smooth area in 

the image to extract the training samples. It can make the patches more approachable to the pure streak component. 

 

With the discussion, the overall scheme is summarized as follows. 

 
Table 1. Solution scheme 

Solution scheme for Equation (10) 

Initial: Residual image ,SCI  Learned dictionary ,SD  GMM, and 

maximum iteration number ;N  

while n N  

1. For , i  computed  1n

i  with Equation (13); 

2. Computed  1n
G  with Equation (15); 

3. For  i , computed  1n

ip  with Equation (16); 

4. 1 n n ; 

end while 

 

By the decomposition result of the scheme, the geometric detail component can be computed as:  

 

 ˆ ˆ SCS I G  (17) 

 

Then, the streak interference removal image 
SIRI  is synthesized as: 

 

 ˆˆ SIR BI I S  (18) 

 

4. Result 
 

To verify the effectiveness of our proposed method, some experiments on several outdoor images with weather streak 

interference (e.g. rain or snow) are presented in this section. In our experiments, two kinds of streaks are used to test the 

performance. One kind is rainy image, which is synthesized with streak interference and ground truth manually. The other is 

images with real snowy interference. The compared algorithms include the MCA-based streak removal (MCASR) method 

in [11], the layer removal with discriminative dictionary (LRDD) method in [13], the segmentation-based streak removal 

method (SSRM) with multiple dictionary learning in [12], and our proposed method. The parameters in the compared 

algorithms are tuned as suggested in literatures. Some parameters of our proposed are set as follows. The patch size 88 is 

used in both GMM and local dictionary learning. 30 Gaussian components in GMM are utilized here due to the limitation 

patterns of streak interference. The number of atoms in the local dictionary is set to 256, considering the high computational 

complexity. Furthermore, the peak signal-to-noise ratio (PSNR) is used to objectively evaluate the streak removal 

performance for the synthesized rainy image. The results of synthesized rain removal are presented in Figure 2, and the 

removal results of real snowy are shown in Figure 3. Moreover, the PSNR results for the test synthesized rainy images are 

depicted in Figure 4. 
 

 
(a) Rainy Image 
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(b) MCASR                                            (c) LRDD 

 
(d) SSRM                                                (e) Ours 

Figure 2. Rain removal results of buildings 

 

 
(a) Snowy Image 

 

 
(b) MCASR                                            (c) LRDD 

 
(d) SSRM                                                (e) Ours 

Figure 3. Snow removal results of mailbox 

 

 
Figure 4. PSNR results of rainy images 
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5. Conclusion 
 

In this paper, we proposed an approach to solve the problem of weather streak interference removal. Similar to the previous 

works, we also take the removal task as a layer decomposition problem. The coarse scene background and high-frequency 

details are firstly separated with the multi-scale analysis tool. Then, different from the previous works, we proposed a joint 

priors framework to be implemented on the high-frequency component, which learned the dictionary for geometric details 

and GMM for the streak interference layer. Then, an iterative numerical scheme is also developed to solve the objective 

function in the proposed framework. Some extensive works can be studied on the priors design to better realize the width 

pattern steak removal such as snow streak in the future. 
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