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Abstract6

In biology, constructing gene co-expression networks presents a significant research chal-7

lenge, largely due to the high dimensionality of the data and the heterogeneity of the8

samples. Furthermore, observations from two or more groups sharing the same biological9

variables require the comparison of gene co-expression patterns with some commonalities10

between the groups. In this context, we propose a mixture of Gaussian graphical models11

for paired data to estimate heterogeneous dependencies and uncover sub-population net-12

works within complex biological datasets, incorporating sparsity and symmetry constraints13

between two groups of dependent variables. We develop an efficient generalized expectation-14

maximization (EM) algorithm for penalized maximum likelihood estimation with the fusion15

of a graphical lasso penalty. As a result, our simulation studies highlight the numerical16

performance of the proposed method, demonstrating its superior model fitting compared17

to the classical graphical lasso approach. We further demonstrate the practical application18

of our approach by estimating gene networks on a high-dimensional ecological transcrip-19

tomics data set of the nine-spined stickleback. Our new approach identified similarities and20

differences between groups of genes from the brain and liver tissues of samples collected21

from two habitats. These results show the efficiency of our approach to the identification of22

complicated interactions from high-dimensional and heterogeneous gene expression data.23

Keywords: Mixture Gaussian graphical models; Paired data; Penalized maximum likeli-24

hood; EM algorithm; Unsupervised machine learning; Bioinformatics.25

1. Introduction26

With recent advances in the development of cost-effective high-throughput RNA sequencing27

technology (Stark et al. (2019)), gene co-expression network analysis (D’haeseleer et al.28

(2000); López-Kleine et al. (2013); Rao and Dixon (2019)) has become increasingly popular29

for studying the complex interactions between genes, proteins, and regulatory elements,30

identifying functionally related groups of genes and how they contribute to the expression31

of desirable traits, and understanding the biological factors underlying phenotypic diversity.32

The Gaussian graphical model (GGM), introduced by Dempster (1972), is one of the most33

commonly and widely applied tools for analyzing biological networks. This is a family of34

multivariate Gaussian models with restriction of the conditional independence of selected35

pairs of variables, given the others, in terms of an undirected graph. Each vertex in the36

graph represents a variable, and the absence of an edge implies that the corresponding37

entry in the concentration matrix, i.e. the inverse of the covariance matrix, is equal to zero,38

see Lauritzen (1996). Inference from these models, when applied to large-scale molecular39

biology experiments, enables us to account for the correlation of marker effects in predicting40
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gene functions, phenotypes, and molecular regulation patterns. See Ursem et al. (2008),41

Valcarcel et al. (2011), Ma et al. (2007), Chang and McGeachie (2011), Kurtz et al. (2015),42

Zheng et al. (2020) and references therein.43

In biological applications, it is common for observed data to originate from various44

sources and exhibit heterogeneous dependencies across the entire population. Addition-45

ally, gene expression data are often collected from different treatments or across different46

tissues, cells, or phenotypes, generating interest in comparing gene co-expression patterns47

under distinct experimental conditions or between groups. In this paper, we focus on the48

joint learning of a mixture of Gaussian graphical models for paired data in heterogeneous49

populations, with an emphasis on high-dimensional scenarios. Different sub-populations or50

classes are modeled by distinct networks. For every sub-population, we assume the presence51

of exactly two dependent groups of homologous variables, i.e. representing two experimental52

conditions, with the association structure of each group captured by a corresponding sub-53

network. The two sub-networks within each sub-population are interconnected, with edges54

linking vertices both within and between the sub-networks. Similarities between groups are55

represented using graph coloring (Højsgaard and Lauritzen (2008)), where vertex coloring56

represents equality constraints on the diagonal entries of the concentration matrix and edge57

coloring represents equality constraints on the off-diagonal entries. We refer to this class of58

models as a mixture of graphical models for paired data with restrictions on concentrations59

or mixture of pdRCON models for short.60

2. Related works and Contribution61

Heterogeneity is a common characteristic in biological studies, where samples are often62

measured at different locations or originate from distinct populations or families. In the63

relevant literature, the mixture of graphical models has proven useful for uncovering genomic64

variations in high-throughput sequencing data that cannot be adequately captured with a65

single distribution (Liang and Jia (2023)). Recent studies employing this type of graphical66

model for analyzing omics data in quantitative genomics include Blein-Nicolas et al. (2024),67

Danaher et al. (2014). The former study extended the novel block-diagonal covariance for68

locally linear Gaussian mapping and applied this model to predict drought-related traits69

from protein abundance in maize. Whereas the latter introduced the joint graphical lasso70

to simultaneously construct multiple graphical models for distinct but related conditions,71

analyzing lung cancer microarray data. For further application, see Lotsi and Wit (2016),72

Lee and Xue (2018), Lartigue et al. (2021), and the references therein.73

Moreover, comparing the distribution of a set of variables between two experimental74

conditions or groups is a key focus in numerous applications. When the association struc-75

ture represented by a GGM is of interest, analyzing paired data can be framed as the joint76

learning of a graph structure of each group, with particular attention to the cross-sectional77

association structure between the two graphs. Joint learning of dependent GGMs is com-78

monly applied in genomics to compare co-expression patterns between healthy and cancer79

tissues, as reflected in the transcriptional networks, see Hardcastle and Kelly (2013); Dana-80

her et al. (2014); Aran et al. (2017). Another example involves the comparison of brain81

networks derived from fMRI data, which often exhibit naturally symmetrical structures82

between the two hemispheres. In this context, Roverato and Nguyen (2022, 2024) explored83
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the search space of pdRCON models using an efficient backward elimination procedure to84

better understand the structure of this model class. While this approach offered a fast85

model selection method, model identification remains challenging due to the high dimen-86

sionality and complexity of the model space. Alternatively, penalized maximum likelihood87

methods have been proposed to address high dimensionality by avoiding explicit exploration88

of the model space, potentially yielding solutions closer to the global optimum compared to89

the backward selection. Recent works of Ranciati et al. (2021) and Ranciati and Roverato90

(2023) introduced the graphical lasso for paired data (pdglasso) which extends the sym-91

metric graphical lasso method for the class of GGMs to analyze paired data. These studies92

also developed an alternating directions method of multiplier (ADMM) algorithm to solve93

the pdglasso optimization tasks.94

We develop a novel penalized expectation-maximization (EM) algorithm that simulta-95

neously clusters individuals and infers the graph structure by adapting the original pdglasso96

methods, initially introduced by Ranciati et al. (2021); Ranciati and Roverato (2023), to97

each sub-population. Specifically, we use the graphical lasso to induce sparsity within98

groups and the fused graphical lasso to enforce graph symmetries between groups of vari-99

ables. Regularization parameters are selected based on the asymptotic consistency of the100

extended Bayesian information criterion (eBIC) (Foygel and Drton (2010)), adapted for101

GGMs in scenarios where both the sample size and the number of variables are compara-102

ble. The efficiency of our approach is demonstrated by constructing gene networks using103

both synthetic data sets and real-world ecological transcriptome datasets from nine-spined104

sticklebacks, including a comparison of our method with the classical graphical lasso on105

synthetic data. Our method provides a robust tool for reconstructing gene co-expression106

networks, exploring similar expression patterns within and between condition groups, and107

clustering individuals based on shared biological characteristics. The potential applications108

of this approach extend beyond the gene co-expression network, including its use in con-109

structing other high-dimensional biological networks such as microbial interaction networks110

(Faust (2021)), brain connectivity networks (Bullmore and Bassett (2011)), as well as in111

disease-gene association prediction (Miller and Bishop (2021)).112

The rest of the paper is organized as follows. Section 3 provides an overview of the113

mixture of GGMs for addressing heterogeneity, along with penalized maximum likelihood114

estimations using graphical lasso penalty. In the same section, we introduce the family of115

mixtures of RCON models for paired data, incorporating a fused lasso penalty that enables116

simultaneously learning of both the network structure and similarity between two groups117

of variables. Section 4 describes a penalized EM algorithm for model estimation, with its118

application to both synthetic and real-world data presented in Section 5. Finally, Section119

6 offers a brief discussion and concluding remarks. Technical details for EM algorithm and120

additional results from the numerical experiments are provided in the Supplementary.121

3. The models122

This section focuses on classes of Gaussian mixture graphical models, particularly those123

designed to address the paired data problems. It also covers the fusion of the graphical124

lasso applied to each sub-population in heterogeneous and high-dimensional datasets.125
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3.1. Mixture of Gaussian graphical models126

Let Y = (Y1, . . . , YP ) be a vector of continuous random variables indexed by V = {1, . . . , P}127

with the observation y ∈ RP . In heterogeneous populations, observations are assumed to128

originate from one of K different network models. We define Z = (Z1, . . . , ZK) as the vector129

of binary latent variables, where Zk = 1 indicates that the observation y belongs to the130

k-th class. We model each class separately by assuming a Gaussian graphical model (GGM)131

for Y, where (Y | Zk = 1) ∼ N (0,Θ−1
k ), with the concentration matrix Θk corresponding132

to the undirected graph Gk. Specifically, each missing edge in the graph implies that the133

corresponding entry of the concentration matrix is zero. In GGMs, the zero pattern of134

the concentration matrix reflects the conditional independence between two corresponding135

variables in the joint distribution. Our interest lies in the structure of Θ. Therefore, without136

loss of generality, we assume throughout the paper that the random variables Y have zero137

means. The GGM of Y | Z with respect to Gk can be expressed as138

p(y | Zk = 1,Θk) = (2π)−P/2 det(Θk)
1/2 exp

(
− yTΘky

2

)
, (1)

where Θk is a positive-definite concentration matrix restricted on graph Gk. By marginal-139

izing equations (1) according to the latent variable Z, the density of Y is then specified as140

the weighted multivariate Gaussian graphical models, which is141

p(y | w,Θ) =
K∑
k=1

wkp(y | Zk = 1,Θk) (2)

with the parameter vectors w = (w1, . . . , wK) and Θ = (Θ1, . . . ,ΘK), where for k =142

1, . . . ,K, the probability P(Zk = 1) = wk represents the mixture proportion, subject to143 ∑K
k=1wk = 1, and p(y | Zk = 1,Θk) refers to a GGM defined in (1) with respect to Gk.144

For a sample of independent and identically distributed observations y1, . . . ,yN and the145

allocation values Zn = (Zn1, . . . , ZnK) associated with the observation yn, the maximum146

likelihood estimations (MLE) of (w,Θ) are the values that maximize the log-likelihood147

function148

l(w,Θ) =

N∑
n=1

log

{
K∑
k=1

wkp(yn | Znk = 1,Θ
k
)

}
. (3)

To handle high-dimensional settings, which are particularly commom in genomics, graph-149

ical lasso (glasso) (Yuan and Lin (2007), Friedman et al. (2008)) has been widely used to150

estimate precision matrices by incorporating a lasso penalty term into the likelihood func-151

tion, producing sparse solutions. Specifically, in Gaussian mixture graphical models, sparse152

estimators of Θ can be obtained by minimising the penalized log-likelihood function153

lλ1,...,λK
(w,Θ) = −l(w,Θ) +

K∑
k=1

λk∥Θk∥1, (4)

where l(·) is the log-likelihood function defined in (3), and ∥ · ∥1 denotes the l1-norm, which154

is the sum of the absolute values of the matrix entries. Here, the regularization parameters155
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λ1, . . . , λK are non-negative and control the level of penalization for each sub-population.156

For every class k, as λk increase, the off-diagonal entries of the concentration matrix are157

shrunk towards zero. This allows the graphical lasso to perform the estimation and model158

selection simultaneously within the GGM framework. For various applications of the glasso159

and its variant in heterogeneous data, see Zhou et al. (2009); Lotsi and Wit (2016); Lartigue160

et al. (2021).161

3.2. Mixture of RCON models for paired data162

Paired data. In a paired data problem, the variables on every statistical unit are mea-163

sured twice from two different conditions, e.g. across different tissues or treatments. There-164

fore, the random vector Y is partitioned into two sets of homologous variables Y =165

(YL,YR) so that every variable Yi ∈ YL corresponds to a homologous variable Yj ∈ YR.166

Accordingly, the concentration matrix Θ is naturally divided into blocks such that167

Θ =

(
ΘLL ΘLR

ΘRL ΘRR

)
.

The interest is in explicitly studying symmetries between and across the two sub-networks168

in the form of identities of concentrations in ΘLL with the corresponding concentration in169

ΘRR and identities of concentrations in ΘLR with the corresponding concentrations in ΘRL.170

Symmetries can be presented by graph colorings.171

RCON models for paired data (pdRCON). Roverato and Nguyen (2022) approached172

the paired data problems by introducing the class of colored graphs for paired data (pdCGs)173

denoted by G = (V, E). Each vertex of the graph presents a random variable and the174

associated graph can be split into two sub-networks corresponding to the vertex sets, called175

L = {1, . . . , Q} and R = {1′, . . . , Q′}, with Q = P/2 and i′ = i + Q for i ∈ L, so that176

V = L ∪ R and L ∩ R = ∅. The vertex coloring V = {V1, . . . , Vv} is a partition of V with177

specific types of color classes that is either twin-pairing {i, i′} or atomic {i}, and the edge178

coloring E = {E1, . . . , Ee} is a partition of the edge set E into edge color classes that is179

twin-pairing {(i, j), (i′, j′)} between groups or {(i, j′), (i′, j)} across groups, or atomic class180

with single edge element. In the graphical representation, if two homologous vertices or181

edges belong to a twin-pairing class, they are depicted in the same color. For vertices and182

edges of the atomic classes, they are all depicted in black.183

RCON models for paired data (pdRCONs) are GGMs with additional equality con-184

straints of the concentrations restricted by a pdCG G. In particular, the vertex class {i, i′}185

implies the equality of diagonal entries θii = θi′i′ and the edge classes {(i, j), (i′, j′)} and186

{(i, j′), (i′, j)} imply the equality of off-diagonal entries θij = θi′j′ and θij′ = θi′j , respec-187

tively. For vertices and edges belonging to the atomic color classes, there are no equality re-188

strictions of the associated parameters in the model. In this way, equality constraints reveal189

symmetries concerning both the structure of the network and the values of the parameters190

associated with vertices and edges and also have the practical advantage of reducing the191

number of parameters, see Roverato and Nguyen (2022, 2024) for more information.192

Mixture of pdRCON models. With K classes in the heterogeneous data, we denote193

ΘG = (ΘG1 , . . . ,ΘGK
) the concentration matrices restricted on pdCGs G = (G1, . . . ,GK).194
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The density of Y is then specified as a mixture of weighted pdRCON models, which is195

p(y | w,ΘG) =

K∑
k=1

wkp(y | Zk = 1,ΘGk
). (5)

To learn both sparsity in the graph structures and similarities between two groups in the196

heterogeneous data, we apply the fused lasso to every sub-population model. The estimators197

of (w,ΘG) are then obtained by198

(ŵ, Θ̂λ1,λ2) = argmin
w,ΘG

− 1

N

N∑
n=1

log
{ K∑

k=1

wkp(yn | Znk = 1,ΘGk
)
}
+ penλ1,λ2

(ΘG) (6)

where p(yn | Znk = 1,ΘGk
) specified in (1) is a GGM with respect to pdCG Gk and the199

penalty function200

penλ1,λ2
(ΘG) =

K∑
k=1

λ
[1]
k ∥ΘGk

∥1 +
K∑
k=1

λ
[2]
k ∥Θ

LL
Gk
−ΘRR

Gk
∥1 +

K∑
k=1

λ
[2]
k ∥Θ

LR
Gk
−ΘRL

Gk
∥1, (7)

with λ1 =
(
λ
[1]
1 , . . . , λ

[1]
K ), λ2 =

(
λ
[2]
1 , . . . , λ

[2]
K

)
denoting the non-negative regularization201

parameter vectors. The first term of (7) encourages sparsity in the graph structure to each202

class k controlled by λ
[1]
k , and the last two terms encourage the identities of Θ̂LL

k and Θ̂RR
k203

between groups and the identities of Θ̂LR
k and Θ̂RL

k across groups controlled by λ
[2]
k . Here,204

we do not introduce any penalty to w given the fact that its dimension is unlikely to be205

high in most of the biological applications. Because (6) is a non-convex problem and it is206

difficult to obtain MLE in a direct way, we develop a penalized expectation-maximization207

(EM) algorithm to find maximum likelihood estimates for models with latent variables.208

4. Penalized EM algorithm for the mixture of pdRCON models209

In fact, if we know the variable Z we can simply derive the estimations through the samples210

of Y such that (Y | Zk = 1) ∼ N (0,Θ−1
Gk

). Generally, Z is unobserved, we thus use the211

posterior probability p(Z | Y) to approximate Z. In this section, we describe a more abstract212

view of the penalized EM algorithm for the mixture of pdRCON models via complete data.213

A more detailed of the computational algorithm is given in Section S1 of the Supplementary.214

4.1. Penalized complete log-likelihood function215

For the complete data Dc = {(y1, z1), . . . , (yN , zN )}, the complete log-likelihood of (w,ΘG)216

can be computed as217

lλ1,λ2(Dc | w,ΘG) =
N∑

n=1

K∑
k=1

znk

(
logwk + log p(yn | ΘGk

)
)
− penλ1,λ2

(ΘG),

where penλ1,λ2
(·) is the fused lasso penalty function defined in (7). In practice, we can-218

not derive the value of the (penalized) complete log-likelihood function due to unobserved219
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variables Zn, we consider the expectation of the (penalized) complete log-likelihood with220

respect to the posterior of the latent variables, which is221

EZ|Y

(
lλ1,λ2(Dc | w,ΘG)

)
=

N∑
n=1

K∑
k=1

τnk

(
logwk + log p(yn | ΘGk

)
)
− penλ1,λ2

(ΘG) (8)

where τnk is denoted the conditional expectation of Znk given observations yn, which can222

be specified by using Bayes’ theorem, for every n ∈ {1, . . . , N}, k ∈ {1, . . . ,K}, as223

τnk = EZ|Y(Znk) = P(Znk = 1 | yn,w,ΘG)

=
p(yn, | Znk = 1,ΘG ,w)× P(Znk = 1 | w)

p(yn | ΘG ,w)

=
wkp(yn | ΘGk

)∑K
l=1wlp(yn | ΘGl

)
. (9)

The quantity τnk is known as the posterior distribution of Znk given the observations and224

is used to find the MLE of the model parameters in the EM algorithm, which is described225

in the following section.226

4.2. The algorithm227

EM algorithm alternates between the expectation step (E-step), which computes the con-228

ditional expectation of the penalized complete log-likelihood with current values of param-229

eters, and the maximization step (M-step), which updates the parameters based on maxi-230

mizing the conditional expectation computed in E-step, until convergence, e.g., when there231

is no longer significant change in the variation of the parameter estimation. In particular,232

(E-step) given the observed data y1, . . . ,yN with current values of parameters (w(t),Θ
(t)
G )233

at t-th iteration of the algorithm, the posterior distribution of the latent variables is given234

by τ
(t)
nk = p(Znk | yn,w

(t),Θ
(t)
G ) specified by (9).235

(M-step) We use τ
(t)
nk to evaluate the conditional expectation of the penalized complete236

log-likelihood, which is defined by237

Open

(
(w,ΘG), (w

(t),Θ
(t)
G )

)
=

N∑
n=1

K∑
k=1

τ
(t)
nk

(
logwk + log p(yn | ΘGk

)
)
− penλ1,λ2

(ΘG).

(10)

We observe that (10) can be decomposed into independent expressions as238

Open

(
(w,ΘG), (w

(t),Θ
(t)
G )

)
= O(w,w(t)) +Open(ΘG ,Θ

(t)
G ),

where239

O(w,w(t)) =
N∑

n=1

K∑
k=1

τ
(t)
nk logwk, and

Open(ΘG ,Θ
(t)
G ) =

N∑
n=1

K∑
k=1

τ
(t)
nk log p(yn | ΘGk

)− penλ1,λ2
(ΘG).
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We update new parameters
(
w(t+1),Θ

(t+1)
G

)
by separately maximizing the two independent240

components of (10) as follows:241

1. Update mixture proportion w(t+1). By applying the Lagrange multiplier method242

to constraint
∑K

k=1wk = 1,we obtain the new update of wk as243

ŵ
(t+1)
k = N

(t)
k /N with N

(t)
k =

N∑
n=1

τ
(t)
nk (11)

where N
(t)
k is denoted as the effective number of observations assigned to class k.244

2. Update models’ parameters ΘG. The second term of (10) can be written as245

Open(ΘG ,Θ
(t)
G )

=

N∑
n=1

K∑
k=1

τ
(t)
nk log p(yn | ΘGk

)−
K∑
k=1

λ
[1]
k ∥ΘGk

∥1 −
K∑
k=1

λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)

=
1

2

K∑
k=1

N
(t)
k

[
log det(ΘGk

)− tr
(
S
(t)
k ΘGk

)]
−

K∑
k=1

λ
[1]
k ∥ΘGk

∥1 −
K∑
k=1

λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)
, (12)

where, for k ∈ {1, . . . ,K}, S(t)
k =

∑N
n=1 τ

(t)
nky

T
nyn/N

(t)
k is denoted as a weighted sample246

covariance matrix, and tr(·) is denoted the trace of a square matrix, i.e. the sum of247

elements on the main diagonal entries. As shown in (12), performing the update for248

the Gaussian networks’ parameters corresponds to solving K separated fused lasso249

problems using the alternating direction method of multiplier (ADMM) algorithm250

proposed by Boyd et al. (2011). In particular, for every k ∈ {1, . . . ,K},251

Θ̂
(t+1)
Gk

= argmin
{
−N

(t)
k

[
log det(ΘGk

)− tr
(
S
(t)
k ΘGk

)]
+ λ

[1]
k ∥ΘGk

∥1 + λ
[2]
k

(
∥ΘLL

Gk
−ΘRR

Gk
∥1 + ∥ΘLR

Gk
−ΘRL

Gk
∥1
)}

. (13)

We refer the readers to Ranciati et al. (2021), Ranciati and Roverato (2023) for the252

application of ADMM to the graphical lasso for paired data. A more detailed technical253

computation for updating new parameter ΘGk
using ADMM method is provided in254

Section S1 of Supplementary.255

In summary, the pseudocode of the penalized EM algorithm for a mixture of pdRCON256

models is given in Algorithm 1.257

5. Application258

The fused penalized EM algorithm for a mixture of pdRCON models is implemented by the259

programming language R on synthetic and real data. Parameter initialization, model selec-260

tion and stopping rule of the EM algorithm will be considered in a specific case. Numerical261
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Algorithm 1: Penalzied EM for a mixture pdRCON model

Data: samples (y1, . . . ,yN ), regularizations (λ1,λ2), maximum iteration number Tmax

initialization w(current), Θ
(current)
G , and t← 0;

while (convergence = false) and (t < Tmax) do

(E-step) evaluate τ
(current)
nk using w(current), Θ

(current)
G by equation (9);

(M-step) update w(new) using τ
(current)
nk by equation (11);

update Θ
(new)
G using τ

(current)
nk by ADMM method solving (13);

check for convergence;
if (convergence = true) then

break and return (w(new),Θ
(new)
G );

else
t← t+ 1;

w(current) ← w(new) and Θ
(current)
G ← Θ

(new)
G ;

end

end

performance is presented for different sparsity and symmetry of parameters, including a262

comparison with the glasso method for graphical Gaussian mixture models.263

5.1. Initialization, model selection and stopping rule264

In the application, we implement the EM algorithm with initial values of w by the fractions265

of data points assigned to each class obtained by the k-means method, and the initial values266

of the concentration matrices are therefore considered as diagonal matrices whose diagonal267

entries are equal to the inverse of the sample variance of the data points within the sub-268

population, i.e. 1/(S̃k)pp for p ∈ {1, . . . , P}. This is a reasonable choice, as the variables269

are generally at different scales in many real-life applications.270

We apply the fused lasso for 5 different logarithmically spaced values of λ1 and λ2, in271

particular, for every k = 1, . . . ,K, Λ
[1]
k /5 ≤ λ

[1]
k ≤ Λ

[1]
k and Λ

[2]
k /5 ≤ λ

[2]
k ≤ Λ

[2]
k where272

Λ
[1]
k = max |(S̃k)ij | and Λ

[2]
k = max{|(S̃LL

k )ij − (S̃RR
k )ij |, |(S̃LR

k )ij − (S̃RL
k )ij |}, respectively.273

This setting is suitable for large-scale biological datasets which encourages more sparsity274

and symmetry constraints on parameters. Furthermore, implementing the EM algorithm275

on an exhaustive search for (λ1,λ2) over K components leads to a very costly computation,276

hence, we will first fix λ2 to a low value, which could be zero, and perform the dense grid277

search for λ1 over K classes. After selecting the best value of λ1, a grid search for λ2 can be278

performed to select the final pair of optimal values of (λ1,λ2). As the criteria for choosing279

the optimal value of regularization parameters, we apply an approximation of the extended280

BIC (eBIC) criterion (Foygel and Drton (2010)), which is computed as281

eBIC(λ1,λ2) = −
2

N

N∑
n=1

log
{ K∑

k=1

wkp(yn | Θ̂(λ
[1]
k ,λ

[2]
k )

)
}
+ d log(N) + 4dγ log(P ), (14)
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where Θ̂
(λ

[1]
k ,λ

[2]
k )

is the penalized maximum likelihood estimation, d is the number of pa-282

rameters of the associated model and γ ∈ [0, 1]. According to Foygel and Drton (2010), we283

set γ = 0.5. The optimal choice of (λ1,λ2) is determined by a two-step procedure: (i) we284

first select the optimal values of λ1 that are λ∗
1 = argmin eBIC(λ1,λ2 = 0), and (ii) given285

λ∗
1, the optimal values of λ1 are obtained by λ∗

2 = argmin eBIC(λ∗
1,λ2).286

Regarding the stopping condition of the EM algorithm, we check the convergence by287

the change of the current estimate of solutions using a convenient matrix norm, i.e. if the288

Frobenius norm ∥Θ(new)
Gk

− Θ
(current)
Gk

∥2F is less than a chosen tolerance threshold for all289

classes, the algorithm is stopped and has converged.290

5.2. Simulation study291

In this section, we conduct a simulation study of the mixture of pdRCON models in K = 2292

sub-populations. We consider three scenarios, called A, B, and C, that differ in the graphs’293

density degree, i.e. the ratio between the edges present in a graph and the maximum294

number of edges. In particular, the density degrees of the two mixture components are295

approximately equal to (0.6, 0.6) for scenario A, (0.15, 0.15) for scenario B, and (0.15, 0.6)296

for scenario C. For each scenario, we generate three pdCGs with P = 50 vertices on different297

symmetry densities between two components based on the edges present. For every pdCG298

G, a concentration matrix ΘG was randomly generated such that the Gaussian distribution299

N (0,Θ−1
Gk

) for each class k restricted on Gk. Then 100 samples y1, . . . ,y100 were simulated300

from the two-component multivariate normal mixture model with two different settings of301

the (true) mixture proportions: w(1) = (0.3, 0.7) and w(2) = (0.5, 0.5). To each simulated302

dataset, we apply the penalized EM algorithm for a mixture of pdRCON models with fused303

lasso proposed in (6)-(7) compared to graphical lasso introduced in (4).304

Moreover, averaged Kullback-Leibler (KL) loss was used as a measure of model perfor-305

mance which is computed as306

1

N

N∑
n=1

log
p(yn | wtrue,Θtrue

G )

p(yn | westimate,Θestimate
G )

,

where p(· | ·) is the density function given by (5). Another measure we used here is the307

Frobenuis norm of the difference between the true and estimated concentration matrices for308

each sub-population, i.e. ∥Θtrue
Gk
−Θestimate

Gk
∥2F for k ∈ {1, . . . ,K}.309

The quantile values of these measurements over 100 replicates are presented in Figures310

1-3 for the first case of mixture proportion w(1) = (0.3, 0.7) and in Section S2 of Supple-311

mentary material for the second case of w(2) = (0.5, 0.5). The recorded results of using312

both KL (Figure 1) and Frobenuis measure (Figure 2 and 3) reveal that the fused graphical313

lasso for paired data we have proposed performs significantly better than the graphical lasso314

approach, observing that the median values for both measures from the graphical lasso are315

greater than the interquartile range of the fused lasso method.316

5.3. Application to transcriptomic data317

We consider a transcriptomic dataset originally published in Wang et al. (2020). Briefly,318

the study focused on the marine-freshwater divergence in nine-spined sticklebacks, where319
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Figure 1: The quantile values of averaged Kullback-Leibler losses obtained from 100 repli-
cations of the graphical lasso method and fused lasso for the two-components
pdRCON models with the mixture proportion w = (0.3, 0.7). Subfigures (a),
(b), and (c) show the results recorded for scenario A, scenario B, and scenario C,
respectively, of the generated concentrations.
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Figure 2: The quantile values of Frobenius norm values of the difference between the true
and estimated concentration matrices for sub-population k = 1. Subfigures (a),
(b), and (c) show the results recorded for scenario A, scenario B, and scenario C,
respectively, of the generated concentrations of two-component pdRCON models
with the mixture proportion w = (0.3, 0.7).
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Figure 3: The quantile values of Frobenius norm values of the difference between the true
and estimated concentration matrices for sub-population k = 2. Subfigures (a),
(b), and (c) show the results recorded for scenario A, scenario B, and scenario C,
respectively, of the generated concentrations of two-component pdRCON models
with the mixture proportion w = (0.3, 0.7).

RNA-seq data were collected from 24 fish representing two marine and four freshwater320

populations in Finland and Sweden. The two groups of variables correspond to brain tissue321

and liver tissue, with each gene in brain tissue paired with its homologous gene in liver322

tissue. After filtering out genes with low variance and outliers, we selected expression data323

of 214 genes, comprising 107 genes from the brain and their 107 homologous genes from324

the liver, which were identified as top differential expressed genes in Wang et al. (2020),325

as a basis to estimate the gene network. We choose K = 2 representing the two ecological326

populations, i.e. marine and freshwater. In this application, we apply a mixture of pdRCON327

models with the following aims: (1) to evaluate whether the mixture of pdRCON models328

can accurately classify data points into marine and freshwater groups, and (2) to learn329

graphical networks that reveal distinct topological structures between the subpopulations,330

(3) to explore the similarity between variables in the two groups corresponding to RNA-seq331

data collected from brain and liver tissues, and (4) to identify a set of genes that may play332

a key role within the gene network.333

The selected model classifies 6 sticklebacks into class 1 and 18 into class 2. Notably, two334

individuals are misclassified based on their known habitat origin. However, a principal com-335

ponent (PC) analysis on the same RNA-seq data, conducted by Wang et al. (2020) revealed336

that some marine fish collected from the Helsinki Baltic Sea are genetically closer to the337

freshwater population than to the marine population, according to the first two PCs. Thus,338

our method performs well and aligns with existing approaches in the clustering task. Figure339

4 illustrates the gene co-expression networks of brain and liver tissues derived from GGMs340

using a fused graphical lasso. This representation effectively highlights key features of the341

model, such as network structures and symmetries that differ between classes and tissues.342

Interestingly, in both habitats, the ASPG gene emerges as a hub, connected to numerous343

other genes. The ASPG gene has previously been reported to be expressed in response to344

salinity and is implicated in salt-sensitive hypertension in three-spined sticklebacks (Wang345

et al. (2020); Gibbons et al. (2017)), underscoring its important role in explaining fresh-346
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Figure 4: Colored graphical representations of gene co-expression networks highlight genes
that are highly correlated with other genes in brain and liver tissues of the nine-
spined stickleback collected in two habitats with (a) presenting for habitat class
1 and (b) presenting for habitat class 2.

water/marine divergence in sticklebacks. In addition, the network for class 2 reveals more347

parsimonious gene connections in the brain, while more hub genes are identified in the liver,348

providing an interesting direction for further biological investigation.349

6. Concluding remarks350

We consider high-dimensional and heterogeneous gene expression data, where observations351

from each sub-population originate from two dependent groups of variables across tissues,352

cells, or observable physical properties of an organism. We address this problem within the353

framework of a mixture of Gaussian graphical models, represented by colored graphs for354

paired data. We propose a fused graphical lasso method for maximum likelihood estimation355

in a mixture of GGMs for paired data, aimed at uncovering relationships between genes356

with expression measured under different conditions and comparing group-specific gene net-357

works. Our simulation studies demonstrate that the fused graphical lasso to the mixture358

GGMs for paired data outperforms the standard graphical lasso method in model estima-359

tion. Additionally, we applied our method to a high-dimensional transcriptomic dataset of360

nine-spined sticklebacks, collected from marine and freshwater environments across brain361

and liver tissues, where the number of genes greatly exceeds the number of individuals (e.g.362

214 > 24). The results align with other studies in terms of estimating gene networks, iden-363

tifying hub genes, classifying individuals according to common biological characteristics,364

and providing new insights into the differentiation of gene networks across habitats. It is365

also noteworthy that the mixture of pdRCON models with the fused graphical lasso can be366
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effectively applied in clustering scenarios with an unknown number of mixture components,367

which necessitates model selection based on specific criteria to determine the appropriate368

number of classes K. Furthermore, improving the estimation process involves the selection369

of an appropriate set of starting values for the parameters, as well as the development of370

theoretical theorems and practical techniques concerning the consistency and convergence371

rate of the fusion lasso penalized MLE for a mixture of pdRCON models and the overlap372

between mixture components in the clustering algorithm.373
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