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Abstract

In this paper, we aim to optimize a contrastive
loss with individualized temperatures in a prin-
cipled manner. The common practice of using a
global temperature parameter τ ignores the fact
that “not all semantics are created equal”, mean-
ing that different anchor data may have different
numbers of samples with similar semantics, es-
pecially when data exhibits long-tails. First, we
propose a new robust contrastive loss inspired by
distributionally robust optimization (DRO), pro-
viding us an intuition about the effect of τ and a
mechanism for automatic temperature individual-
ization. Then, we propose an efficient stochastic
algorithm for optimizing the robust contrastive
loss with a provable convergence guarantee with-
out using large mini-batch sizes. Theoretical and
experimental results show that our algorithm au-
tomatically learns a suitable τ for each sample.
Specifically, samples with frequent semantics use
large temperatures to keep local semantic struc-
tures, while samples with rare semantics use small
temperatures to induce more separable features.
Our method not only outperforms prior strong
baselines (e.g., SimCLR, CLIP) on unimodal and
bimodal tasks with larger improvements on im-
balanced data but also is less sensitive to hyper-
parameters. To our best knowledge, this is the first
methodical approach to optimizing a contrastive
loss with individualized temperatures. Our pro-
posed algorithms are implemented in the LibAUC
library at https://libauc.org/.
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1. Introduction
Self-supervised learning (SSL) is a promising way to learn
data representations that generalize across downstream tasks.
Specifically, contrastive learning (CL) has laid the founda-
tion for state-of-the-art SSL models due to its effective-
ness (Chen et al., 2020; He et al., 2020; Tomasev et al.,
2022; Huang et al., 2022). CL aims to push the similarity
scores between “positive” pairs (e.g., augmented views of
the same image) to be higher than that between “negative”
pairs (e.g., augmented views from different images), which
has great promises in leveraging large amount of unlabelled
data (Goyal et al., 2021; Radford et al., 2021). Moreover, CL
has been extended to a broader scope, e.g., bimodal image-
text SSL (Zhang et al., 2020; Radford et al., 2021), where
images and language text descriptions can be regarded as
multi-modal views of the same underlying concept. The
well-known CLIP (Radford et al., 2021) method shows that
models learned from millions of image-text pairs can attain
impressive recognition performance for a wide range of
visual understanding tasks.

In general, contrastive methods share a common design of
the softmax-based loss function, For a given anchor data i,
a contrastive loss can be written as:

Li
con = − log

exp (sim(zi, z
+
i )/τ)∑

k ̸=i exp (sim(zi, zk)/τ)
, (1)

where zi is the feature of the anchor data, z+i is the feature
of a different ‘view’ of data i and called a positive sample,
zk(k ̸= i) are the features of other samples and called neg-
ative samples, τ is the temperature parameter, and sim(·, ·)
measures the similarity between two input vectors. The pos-
itive pair can be also added to the denominator, which does
not affect our discussion here. A significant property of the
loss is the hardness-aware property (Wang & Liu, 2021;
Zhang et al., 2022; Xia et al., 2022). Consider the gradient
of τLi

con w.r.t. model parameters w, i.e., τ∇wLi
con:

−∇wsim(zi, z
+
i )+

∑
k ̸=i

exp (sim(zi, zk)/τ)∑
k ̸=i

exp (sim(zi, zk)/τ)
∇wsim(zi, zk).

Note that the weight for the gradient of a negative pair
(zi, zk) is proportional to exp (sim(zi, zk)/τ). Thus, the
contrastive loss automatically penalizes negative pairs ac-
cording to their hardness (hard means sim(zi, zk) is large).
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Figure 1. Left: Samples with frequent semantics (e.g., a kitten in a basket) have many more similar samples than that with rare semantics
(e.g., architectural details of a bridge). Middle: An illustration of temperature individualization by our algorithm named iSogCLR, making
“hot” images with frequent semantics use a higher temperature to keep semantic structures, and making “cold” images with rare semantics
use a lower temperature for inducing more separable features. The circular heatmap is plotted using learned temperatures of 100 random
images from the CC3M dataset. Right: Convergence curves of CLIP and iSogCLR, where we use the CLIP implementation and training
settings from open-clip 2. We train the models on CC3M and evaluate image retrieval performance on MS-COCO.

The temperature τ plays a critical role in controlling the
penalty strength on negative samples (Wang & Liu, 2021;
Zhang et al., 2022). Specifically, a small τ penalizes much
more on hard negative samples (i.e., the degree of hardness-
awareness is high), causing separable embedding space.
However, the excessive pursuit to the separability may break
the underlying semantic structures because some negative
samples with high similarity scores to the anchor data might
indeed contain similar semantics, to which we refer as
pseudo negatives. In contrast, a large τ tends to treat all neg-
ative pairs equally (i.e., the degree of hardness-awareness is
low) and is more tolerant to pseudo negative samples, which
is beneficial for keeping local semantic structures.

Real-world data distributions always exhibit long tails (Zhu
et al., 2014; Feldman, 2020) and the frequency of samples
with different semantics can be extremely diverse. In Fig-
ure 1, we show some images with frequent or rare semantics
from the CC3M dataset (Sharma et al., 2018). We further se-
lect two representative images, namely “a kitten in a basket”
that contains frequent semantics and “architectural details of
a bridge” that contains rare semantics, and present the cosine
similarities between these two images and other 100,000
random texts from the same dataset. Note that images with
frequent semantics have much more similar samples. To
improve feature qualities, samples with frequent semantics
should be assigned with a large τ to better capture the local
semantic structure, while using a small τ will push semanti-
cally consistent samples away. On the other hand, samples
with rare semantics should have a small τ to make their fea-
tures more discriminative and separable. We refer to these
effects as semantics harmonizing. Unfortunately, most exist-
ing CL methods treat the temperature parameter as a global
parameter, which does not accommodate different semantics
and restricts their performance in real-world applications.

In this paper, we propose a provable stochastic algorithm for
optimizing a contrastive loss with individualized tempera-
tures. First, inspired by distributionally robust optimization

2https://github.com/mlfoundations/open_clip

(DRO) (Namkoong & Duchi, 2017; Duchi et al., 2021), we
design a novel robust global contrastive loss (RGCL) for
each anchor data. RGCL introduces a distributional variable
for all negative samples of each anchor data (this explains
“global” in RGCL), and a KL divergence constraint between
the distributional variable and the uniform distribution. We
show that RGCL is hardness-aware by optimizing the distri-
butional variable, and the KL constraint affects the degree of
hardness-awareness. We further demonstrate that the dual
formulation of RGCL induces a loss function that can be
solved efficiently and contains an individualized learnable
temperature parameter. In a spirit of stochastic optimization
of a global contrastive loss (SogCLR) (Yuan et al., 2022),
we propose an efficient optimization algorithm named iSog-
CLR for solving the dual formulation of RGCL by syn-
thesizing advanced techniques of compositional optimiza-
tion (Wang & Yang, 2022) and of solving KL constrained
DRO (Qi et al., 2022). We establish a convergence guaran-
tee of our algorithm without large mini-batch sizes, which
is similar to that of SogCLR for optimizing a global con-
trastive loss with a fixed τ . Experiments on unimodal and
bimodal datasets indicate that iSogCLR achieves superior
performance, especially on imbalanced data. More in-depth
analyses demonstrate the relationship between the semantics
of data and their learned temperatures. An illustration of
some images and their learned temperatures by our method
is plotted in Figure 1. Besides, ablation studies show that
iSogCLR is much less sensitive to its hyper-parameters. We
summarize our contributions below:

• We propose a new robust contrastive loss inspired by
DRO, and study its properties and connections with exist-
ing softmax-based contrastive losses.

• We propose a novel and provable stochastic algorithm
called iSogCLR for optimizing the robust contrastive
losses with automatic temperature individualization.

• We conduct comprehensive experiments on unimodal and
bimodal CL to demonstrate the superior performance of
our method, and the relationship between the semantics
of data and their learned temperatures.
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2. Related Work
Self-supervised Learning. SSL methods can be divided
into two main categories: CL methods and non-CL meth-
ods. Although non-CL methods do not rely on negative
samples and achieve comparable performance to CL meth-
ods, they often require additional projector (Grill et al.,
2020), stop gradient (Chen & He, 2021), or momentum
encoder (Richemond et al., 2020). Several non-CL meth-
ods (Ermolov et al., 2021; Zbontar et al., 2021; Bardes et al.,
2021) use information maximization techniques, which
decorrelate the variables of each embedding to avoid an
informational collapse. Nevertheless, CL methods remain a
mainstream framework for SSL and are extended to many
other fields (Khaertdinov et al., 2021; Aberdam et al., 2021;
Eun et al., 2020), and are shown to be better than non-CL
methods in the human learning setting (Zhuang et al., 2022).

CL Methods. Pioneering methods (Chen et al., 2020;
He et al., 2020) construct pairs and optimize InfoNCE
loss (Oord et al., 2018) in a direct way. Later, numerous
works improve the performance by penalizing hard nega-
tives (Wu et al., 2020; Kalantidis et al., 2020; Chen et al.,
2021; Robinson et al., 2021; Xie et al., 2022; Zhang et al.,
2022), generating better views (Tamkin et al., 2021; Tian
et al., 2020; Ge et al., 2021; Wang & Qi, 2021), using proto-
types (cluster centers) for contrasting (Caron et al., 2020; Li
et al., 2020), and handling pseudo negative samples (Chuang
et al., 2020; Dwibedi et al., 2021). Recently, HaoChen et al.
(2021) propose a novel loss based on spectral decompo-
sition on the population graph with accuracy guarantees.
To address the issue that most CL methods rely on large
batch sizes, Yuan et al. (2022) propose a provable algorithm
named SogCLR for optimizing a global contrastive loss, and
achieve promising results without large mini-batch sizes. Al-
though great progress has been made, most methods ignore
the imbalance of semantics in real-world data, and lack the
ability to adapt to different types of semantics automatically.

Bimodal Contrastive Learning. Vision-and-language pre-
training (VLP) is a rapidly growing field. Due to its effec-
tiveness, CL has been extended to representative works such
as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021),
which are pretrained on millions of web-crawled image-text
pairs and achieve astounding results. Later, DeCLIP (Li
et al., 2021b), FILIP (Yao et al., 2021), SLIP (Mu et al.,
2022) and CyCLIP (Goel et al., 2022) improve CLIP by
introducing more supervisions or bringing in fine-grained
cross-modal interactions. Our algorithm tackles a fundamen-
tal problem on optimizing individualized temperatures for a
contrastive loss. Thus it can be applied in bimodal setting
seamlessly. Besides, because the web-crawled bimodal data
often exhibits long tail distributions (Wang et al., 2022), we
observe that our algorithm is more suitable in such scenario
and achieves great improvements compared with baselines.

Optimizing τ in CL. The impact of τ on the success of
CL is remarkable and noticed in prior works. Zhang et al.
(2022); Khaertdinov et al. (2021) propose to improve neg-
ative mining in CL by using different temperatures for
positive and negative samples, where temperatures can be
fixed values or input-dependent functions. In bimodal CL,
CLIP (Radford et al., 2021) proposes to treat τ as a learn-
able variable, which is adopted by later works (Goel et al.,
2022; Li et al., 2021a). However, this approach was never
rigorously justified. Zhang et al. (2021) show that input-
dependent learnable τ is effective to estimate the uncertainty
in out-of-distribution detection, but with the cost of sacrific-
ing the performance on downstream tasks. Different from
previous methods that set or learn temperatures heuristically,
we present a new view of the contrastive loss based on DRO,
which explains the role of τ mathematically, and enables
automatic optimization of individualized temperatures.

Distributionally Robust Optimization. DRO has been
extensively studied in machine learning and statistics (Bert-
simas et al., 2018; Staib & Jegelka, 2019; Duchi et al., 2021).
Mathematically, DRO seeks a model that performs well re-
gardless of perturbing the sample distribution within an
uncertainty set, which is specified by a divergence measure
between the perturbed distribution and the observed empiri-
cal distribution (Ben-Tal et al., 2013; Blanchet et al., 2019;
Duchi et al., 2021). Recent works (Qi et al., 2020; 2021;
2022; Levy et al., 2020; Jin et al., 2021; Gürbüzbalaban
et al., 2022; Zhu et al., 2023) have proposed efficient stochas-
tic algorithms for solving different DRO formulations. Our
algorithm is inspired by that of Qi et al. (2022), which con-
siders a similar DRO problem with the uncertainty set spec-
ified by a KL constraint, and proposes efficient dual-free
algorithms with convergence guarantees. However, different
from their work that considers an ordinary compositional
objective with only one KL constraint, we deal with a more
complex coupled compositional function (Wang & Yang,
2022) and many KL constraints for all anchor data, which
complicate the convergence analysis.

3. Preliminaries
Let D = {x1, . . . ,xn} denote a set of training images with
size n. P denotes a set of data augmentation operators.
Denoted by S−

i = {A(x) : ∀A ∈ P,∀x ∈ D \ xi}
the set of negative data for the anchor image xi. Let
E(·) denote the image encoder. For bimodal tasks, let
D′ = {(x1, t1), . . . , (xn, tn)} denote n image-text pairs.
Let T −

i = {tj ∈ D′, j ̸= i} be the set of negative texts for
the anchor image xi, and I−

i = {xj ∈ D′, j ̸= i} be the
set of negative images for the anchor text ti. Let EI(·) and
ET (·) denote the encoder for images and texts in bimodal
CL, respectively. Let w denote the model parameters. De-
note by ∆n a simplex of dimension n and by δΩ(·) a dirac
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function that returns zero if input belongs to the set Ω or
infinity otherwise. Let KL(·, ·) denote the KL divergence.

For unimodal CL, a global contrastive loss (GCL) (Yuan
et al., 2022) for the i-th image xi can be defined as:

ℓGCL(xi) = −τ log
exp(E(A(xi))

⊤E(A′(xi))/τ)∑
z∈S−

i
exp (E(A(xi))⊤E(z)/τ)

, (2)

where A,A′ ∈ P . Compared with a contrastive loss defined
over mini-batch samples (Chen et al., 2020; He et al., 2020),
GCL multiplies τ on the right side to ensure the gradient is
not illy scaled. Besides, GCL considers all negative samples
S−
i for xi in the denominator, enabling us to analyze the

optimization error and design algorithms to control the error.

To simplify (2) and facilitate our statements, we define the
following auxiliary function:

hi(z) :=E(A(xi))
⊤E(z)−E(A(xi))

⊤E(A′(xi)). (3)
In fact, hi(z) measures the hardness score of z with respect
to xi. Then (2) can be rewritten as:

ℓGCL(xi) = τ log
∑

z∈S−
i

exp(hi(z)/τ). (4)

For bimodal tasks, we consider the two-way GCL, which
for the i-th image-text pair is defined as

ℓ(xi, ti) =− τ log
exp(EI(xi)

⊤ET (ti)/τ)∑
t∈T −

i
exp(EI(xi)⊤ET (t)/τ)

− τ log
exp(EI(xi)

⊤ET (ti)/τ)∑
x∈I−

i
exp(EI(x)⊤ET (ti)/τ)

,

where the first term is an image-to-text contrastive loss, i.e.,
try to predict ti from t ∈ D′ based on xi, and the second
term is a symmetrical text-to-image contrastive loss.

Similar to (4), we can simplify ℓ(xi, ti) as:

ℓ(xi, ti)=τ log
∑
t∈T −

i

exp

[
hxi

(t)

τ

]
+τ log

∑
x∈I−

i

exp

[
hti(x)

τ

]
,

where hxi
(t) = EI(xi)

⊤ET (t) − EI(xi)
⊤ET (ti) and

hti(x) = EI(x)
⊤ET (ti) − EI(xi)

⊤ET (ti). Our algo-
rithm is applicable to both unimodal and bimodal CL.

A general DRO formulation is given by (Levy et al., 2020):

min
w

max
p∈U

∑n

i=1
pili(w)− λD(p,1/n), (5)

where p is a distributional variable, li(w) is the loss on
sample i, U ⊂ ∆n is an uncertainty set of the distributional
variable specified by some divergence constraint. Maximiz-
ing the objective over p leads to larger weights on samples
with larger losses, which actually finds the worst case loss.
DRO then minimizes the worst-case loss to make models
achieve the robustness against potential distribution shifts.

4. Robust Global Contrastive Objectives
We first introduce a novel robust global contrastive loss
(RGCL), including its formulation and properties. Then
we convert RGCL into a simpler equivalent minimization
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Figure 2. Contours of ℓRGCL(xi) (|S−
i | = 2) in (6) for two hi =

[hi(z1), hi(z2)] vectors: [0.0,−1.0] and [−0.5,−0.5]. One can
observe that ℓRGCL(xi) is hardness-aware, harder sample (hi(z1)
on the left) has larger weight (p1 = 0.8). Moreover, ρ affects the
degree of hardness-awareness. Larger ρ means higher degree of
hardness-awareness.

form with individualized temperatures by Lagrangian dual-
ity theory. We further give a theoretical explanation of our
objective for optimizing temperatures. Due to the limited
space, we describe our method in unimodal setting. For our
method in bimodal setting, we present its final minimization
form and defer detailed derivation to Appendix B.

4.1. Formulations
Motivated by DRO, we define the following loss for an
anchor data xi with a set of m negative samples S−

i :

ℓRGCL(xi) := max
p∈∆m

∑
zj∈S−

i

pjhi(zj)− τ0KL(p,1/m)

s.t. KL(p,1/m) ≤ ρ, (6)
where m = |S−

i |, ρ > 0 is a hyperparameter, and τ0 is a
small positive value by default. There are several features
of (6). (i) Similar to the GCL (2), we use all negative sam-
ples to define the loss. Hence our loss is referred to robust
global contrastive loss. (ii) We mainly use the KL constraint
KL(p,1/n)≤ρ to define an uncertainty set of p. The small
KL regularization term τ0KL(p,1/n) is added to make the
loss function smooth hence facilitate the optimization (Qi
et al., 2022). (iii) Different from (5) that considers a distri-
bution p over all samples, RGCL considers a distribution p
over all negative samples for each anchor data.

To better illustrate the key properties of RGCL, we plot the
contours of ℓRGCL(xi) with two negative data in Figure 2.
For [hi(z1), hi(z2)] values in (6), we consider two settings,
i.e., [0.0,−1.0] and [−0.5,−0.5], which represent z1 is very
similar to the anchor data, and two equally dissimilar neg-
ative samples, respectively. The dashed lines in Figure 2
are the boundaries of the KL constraints with different ρ
values, whose intersections with the red simplex lines define
the feasible regions. From these figures, we observe that
(i) ℓRGCL(xi) is also hardness-aware. By maximizing over
p, harder negative samples will have larger weights (e.g.,
p∗ = (0.8, 0.2) for the first setting when ρ = 0.2). (ii) If
the hardness of two negative samples are similar, then their
weights tend to be similar too (for the second setting). (iii)
The constraint KL(p,1/m)≤ρ actually affects the degree
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of hardness-awareness. In the left of Figure 2, note that if
ρ gets larger, the optimal p will be more non-uniform, i.e.,
the degree of hardness-awareness will increase.

Next, we induce an equivalent loss with an individualized
learnable temperature parameter from (6) and show the
intuition about the effect of τ from the DRO view. Since
directly optimizing (6) is challenging due to maintaining the
high-dimensional distributional variable p, we follow Qi
et al. (2022) and adopt the Lagrangian duality theory to
convert ℓRGCL(xi) into its dual form (cf. Appendix A):
max
p∈∆m

min
λ≥0

∑
zj∈S−

i

pjhi(zj)−τ0KL(p,1/m)−λ(KL(p,1/m)−ρ)

⇔min
λ≥0

(λ+τ0)log
∑

z∈S−
i

exp(hi(z)/λ)−(λ+ τ0) log(m)+λρ

⇔minτ≥τ0 τ logEz∈S−
i
exp(hi(z)/τ)+(τ − τ0)ρ, (7)

where we first introduce a Lagrangian multiplier λ for the
KL constraint, and the last equality is due to a variable
change τ = λ+ τ0. Notice that the Lagrangian multiplier
λ for the KL constraint becomes a learnable parameter τ
for xi. Interestingly, if we fix τ (i.e., using a fixed KL reg-
ularization instead of the KL constraint in (6)), the above
loss will reduce to ℓGCL (xi) in (2) up to a constant differ-
ence. Hence, RGCL introduces the flexibility to optimize
individualized temperatures compared with the GCL.

Based on the dual form of RGCL in (7), we define a robust
global contrastive objective (RGCO) for unimodal SSL :

min
w,τ≥τ0

F (w, τ ) :=
1

n

∑
xi∈D

{
τ i log E

z∈S−
i

exp

(
hi(z)

τ i

)
+τ iρ

}
,

where τ i is the individualized temperature for xi. The
RGCO for bimodal SSL is defined similarly:

min
w,τ ,τ ′≥τ0

FB(w, τ , τ ′) :=
1

n

∑
(xi,ti)∈D′

[
(τ i + τ ′

i)ρ+

τ i logEt∈T −
i
exp

(
hxi

(t)

τ i

)
+τ ′

i logEx∈I−
i
exp

(
hti(x)

τ ′
i

)]
,

with individualized temperatures τ i and τ ′
i for images and

texts, respectively. A small constant can be added inside
the log to ensure its smoothness and Lipschitz continuity as
in (Yuan et al., 2022), which is assumed for analysis.

4.2. An Intuitive Theoretical Explanation
To answer why our RGCL can learn suitable temperatures
for samples with different semantics intuitively, we compare
our iSogCLR (the algorithm for optimizing RCGL) with
CLIP, whose learned global τ is 0.01 on CC3M. Considering
the representative cat and bridge images, we extract the
features of them and 1000 random samples as their negatives
for each method. Then we substitute these features into (6)
and solve the optimal p∗ (i.e., p∗

j =
exp(hi(zj)/τ)∑

z∈S−
i

exp(hi(zj)/τ)
,

cf. Appendix A) of each image for both methods. We plot
the results in Figure 3. Combining these results with the
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Figure 3. For the anchor images of cat and bridge, we select 1000
negative samples and solve (6) for the optimal p∗ by using hi

values of iSogCLR with learned τ i and CLIP with learned τ .

formulation (7), we have the following explanation.

For samples with frequent semantics, due to the hardness-
aware property of RGCL, their optimal p∗ in (6) tend to
be more non-uniform, and KL(p,1/n) ≤ ρ is more likely
to be violated. Therefore, their Lagrangian multipliers λ
in (7) will be large to “push” p back to be closer to uniform.
Due to τ = λ+ τ0, their temperatures will be large. From
Figure 3, it is notable that compared with the optimal p∗

of the cat image from CLIP (the red line in the right), that
from our RGCL (the red line in the left) is more uniform.

For samples with rare semantics, their optimal distribu-
tional variables p in (6) tend to be more uniform, which
makes KL(p,1/n) ≤ ρ being more likely to be satisfied.
At this time, their Lagrangian multipliers λ are probably
small, and thus their temperatures are small. For example,
the learned τ of the bridge image by iSogCLR is 0.006,
which is smaller than the final learned τ=0.01 in CLIP.

5. iSogCLR for Stochastic Optimization
In this section, we design a provable algorithm for optimiz-
ing F (w, τ ). The algorithm for FB(w, τ , τ ′) is similar and
deferred to Appendix B. The objective functions F (w, τ )
and FB(w, τ , τ ′) are special cases of X-risks (Yang, 2022),
making the optimization much more challenging than tra-
ditional empirical risk minimization. Nonetheless, existing
algorithms for deep X-risk optimization are not directly ap-
plicable due to the optimization over temperature variables.

Inspired by Yuan et al. (2022) for solving GCL, we cast
F (w, τ ) as a finite-sum coupled compositional optimization
problem (Wang & Yang, 2022):

min
w,τ∈Ω

F (w, τ ) :=
1

n

∑
xi∼D

fi
(
τ i, gi(w, τ i;S−

i )
)︸ ︷︷ ︸

Fi(w,τ i)

,
(8)

where τ ∈ Ω is to accommodate the constraint on τ and
fi(τ i, ·) = τ i log(·) + τ iρ,

gi(w, τ i;S−
i ) = Ez∈S−

i
exp (hi(z)/τ i) .

The gradients of F w.r.t. w and τ i can be computed by:
∇wF (w, τ ) =

1

n

∑
xi∈D

∇wFi(w, τ i) (9)

=
1

n

∑
xi∈D

∇gifi(τ i, gi(w, τ i;S−
i ))∇wgi(w, τ i;S−

i ),

5
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∇τ iF (w, τ )=
1

n

∑
xj∈D

∇τ iFj(w, τ j)
(a)
=

1

n
∇τ iFi(w, τ i) (10)

=
1

n

(
τ i∇τ igi(w, τ i;S−

i )

gi(w, τ i;S−
i )

+ log(gi(w, τ i;S−
i )) + ρ

)
,

where (a) holds because for j ̸= i, Fj(w, τ j) does not
involve τ i. Note that the major cost for computing (9)
and (10) lies at computing gi(w, τ i;S−

i ) and its gradients
w.r.t. w and τ i, involving all samples in S−

i . At each iter-
ation, we only sample a random mini-batch of B samples
B = {x1,x2, . . . ,xB}, and compute an unbiased estimator
of gi(w, τ i;S−

i ) for each xi ∈ B by:

gi(w, τ i;Bi) =
1

|Bi|
∑

z∈Bi

exp(hi(z)/τ i), (11)

where Bi = {A(x),A′(x) :A,A′∈P,x∈B\xi} contains
the negative samples of xi in B. However, directly substitut-
ing gi(w, τ i;Bi) as the estimator of gi(w, τ i;S−

i ) into (9)
and (10) will yield biased estimators because (9) and (10)
are non-linear w.r.t. gi(w, τ i;S−

i ). The optimization error
will be large when the batch size is small (Yuan et al., 2022).

To control the approximation error and provide a conver-
gence guarantee, we borrow a technique from Yuan et al.
(2022) by using a moving average estimator to keep track
of gi(w, τ i;S−

i ) for each xi ∈ D. To this end, we maintain
a scalar si for each xi and update it at the t-th iteration by:

st+1
i = (1− β0)s

t
i + β0gi(wt, τ

t
i;Bi), (12)

where β0 ∈ (0, 1). Intuitively, when t increases, wt−1 and
τ t−1 are getting close to wt and τ t, hence the previous
value of sti is useful for estimating gi. With these stochastic
estimators, we compute the gradients of (8) in terms of wt

and τ t
i with controllable approximation error by:

G(τ t
i) =

1

n

[
τ t
i

sti
∇τ i

gi(w, τ i;Bi) + log(sti) + ρ

]
, (13)

G(wt) =
1

B

∑
xi∈B

τ t
i

sti
∇wgi(w, τ i;Bi). (14)

The complete procedure is presented in Algorithm 1, named
iSogCLR with i standing for individualization of tempera-
tures. In step 1, we initialize all τ i to τinit. We implement the
momentum update for τ t+1

i and wt+1 in Step 8, 9 and Step
12, 13, respectively, where β1 ∈ (0, 1) is the momentum
parameter. The momentum-style update can be replaced
by an Adam-style update using adaptive step sizes and the
same convergence rate can be established (Guo et al., 2021).

In terms of the additional memory cost, while it scales with
the number of samples, it typically is not a significant con-
cern in practical applications. Firstly, the additional memory
cost is still small compared with the number of model pa-
rameters. For example, the additional memory cost for 1
million samples is 2× 106×4

10242 = 7.63MB. Secondly, the GPU
memory usage can be optimized by storing variables si, ui

and τ i in the CPU memory. To further minimize the impact

Algorithm 1 iSogCLR
Require: β0, β1, η

1: Initialize w1, s
1,u1,v1, τ 1 = τinit

2: for t = 1, 2, . . . , T do
3: Draw a batch of B samples denoted by B ⊂ D
4: for xi ∈ B do
5: Compute gi(wt, τ

t
i;Bi) according to (11)

6: Update st+1
i according to (12)

7: Compute G(τ t
i) according to (13)

8: Update ut+1
i = (1− β1)u

t
i + β1G(τ t

i)
9: Update τ t+1

i = ΠΩ

[
τ t
i − ηut+1

i

]
10: end for
11: Compute gradient estimator G(wt) according to (14)
12: Compute vt+1 = (1− β1)vt + β1G(wt)
13: Update wt+1 = wt − ηvt+1 (or Adam-style)
14: end for

on training time, one can employ an asynchronous strategy
to transfer data. Specifically, before the t-th iteration, we
can prefetch sti, u

t
i and τ t

i from the CPU and transfer them
to the GPU. After forward propagation, we conduct back-
propagation and asynchronously copy the updated st+1

i ,
ut+1
i and τ t+1

i back to the CPU memory and fetch a new
batch of them from CPU. By utilizing high-bandwidth CPU-
GPU interconnects, such as PCIe4 or NVLink, the time
required to transfer these variables can effectively overlap
with the time of back-propagation. This approach facilitates
fast training and reduces GPU memory consumption.

We highlight the differences between RGCO/iSogCLR and
GCO/SogCLR (Yuan et al., 2022) and our contributions of
analysis: (i) RGCO has additional n temperature variables
τ i; nevertheless we prove the same iteration complexity
as SogCLR. (ii) the constraint τ i ≥ τ0 makes the analysis
more complicated. In particular, to show F (w, τ ) is smooth
in terms of (w, τ ), we follow Qi et al. (2022) to derive an
upper bound τmax for the optimal τ ∗ and use the constraint
set Ω = {τ0 ≤ τ ≤ τmax} in the analysis. (iii) Due to the
constraint on τ , we employ a different notion of stationary
point using the regular subgradient (cf. Appendix D) of
the non-smooth extended objective F̄ (w, τ ) = F (w, τ ) +

δΩ(τ ), i.e., ∂̂F̄ (w, τ ), which also complicates the analysis.
Finally, the convergence guarantee of iSogCLR is:

Theorem 1. Under appropriate conditions and settings
of parameters β0, β1 = O(B′ϵ2), η = O

(
BB′ϵ2

n

)
, where

B = |B|, B′ = |Bi|, after T = O
(

n
BB′ϵ4

)
iterations Algo-

rithm 1 finds an ϵ-stationary solution of the problem, i.e.,
E[dist(0, ∂̂F̄ (wt, τ t))

2]≤ϵ2 for a random t ∈ {1, . . . , T}.

Remark: The theorem indicates that iSogCLR has the same
O
(

1
ϵ4

)
complexity as SogCLR (Yuan et al., 2022). We refer

the interested readers to Appendix D for the proof, where
we also exhibit the conditions similar to (Yuan et al., 2022).
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6. Experiments
In this section, we conduct experiments on unimodal and
bimodal datasets and observe that our algorithm outper-
forms prior strong baselines. Moreover, in-depth analy-
ses show that the samples with different semantics are in-
deed assigned with suitable temperatures. We also per-
form ablation studies to better understand the behaviors
of iSogCLR. The code to reproduce the results in this
paper is available at https://github.com/zhqiu/
contrastive-learning-iSogCLR/.

In unimodal setting, We compare our iSogCLR with
five CL methods: SimCLR (Chen et al., 2020), Flat-
CLR (Chen et al., 2021), SimCo (Zhang et al., 2022),
Spectral CL (HaoChen et al., 2021), SogCLR (Yuan
et al., 2022), and two non-contrastive methods: Barlow
Twins (Zbontar et al., 2021) and VICReg (Bardes et al.,
2021). In bimodal setting, we compare with CLIP (Radford
et al., 2021), CyCLIP (Goel et al., 2022), and SogCLR.

For fair comparison, we set the hyper-parameters of all meth-
ods using grid search. SimCLR, FlatCLR, and SogCLR con-
tain τ , which is tuned in a range of {0.1, 0.3, 0.5, 0.7}. For
other methods, we fine-tune their hyper-parameters around
the recommended values in their papers. Following Radford
et al. (2021); Goel et al. (2022), τ is directly optimized in
CLIP and CyCLIP. The detailed implementation and data
information are in Appendix C.1 and C.2, respectively.

6.1. Unimodal Experiments
Data. We consider three balanced datasets: CIFAR10, CI-
FAR100, ImageNet100 (Wu et al., 2019), and three im-
balanced datasets: CIFAR10-LT, CIFAR100-LT, iNatural-
ist2018 (Horn et al., 2018). ImageNet100 is a subset with
100 classes from ImageNet1K (Russakovsky et al., 2015).
CIFAR10-LT and CIFAR100-LT are created following the
Long-Tailed (LT) imbalance setting (Cui et al., 2019) and
widely used (Cao et al., 2019; Cui et al., 2019; Qi et al.,
2020). The iNaturalist dataset is a large-scale dataset with
dramatically different number of images per category. We
use its official training and validation splits.

Setup. The backbone network, initial learning rate and
batch size are set to ResNet-18, 0.8, and 128 for CIFAR
datasets. While for ImageNet100 and iNaturalist2018, they
are set to ResNet-50, 1.2, and 256, respectively. The pro-
jection head has three linear layers, each with 8192 output
units. The first two layers of the projector are followed by
a BN layer and rectified linear units. We employ LARS
optimizer (You et al., 2017) (with a momentum of 0.9 and
weight decay of 1e-4) and cosine learning rate schedule. We
also use learning rate warm-up for 10 epochs, i.e., learning
rate is gradually increased to the maximum value. We re-
size input images to 224×224 and follow the same image
augmentation strategies as in SimCLR (Chen et al., 2020)

including random crop, color distortion, and Gaussian blur.
For linear evaluation, we train the last classification layer us-
ing SGD with Nesterov momentum with a batch size of 256
for 100 epochs. The initial learning rate is set to 30.0 and de-
cayed by 0.2 at 40, 60, and 80 epochs. We tune β0 and ρ in
our algorithm from {0.7, 0.8, 0.9} and {0.1, 0.2, 0.3, 0.4},
respectively. τinit and τ0 are set to 0.7 and 0.05 by default.

Results. We present partial results in Table 1 and full re-
sults in Table 3, 4 in Appendix C.3. First, comparing iSog-
CLR, SogCLR and SimCLR, we observe that (i) SogCLR
is generally better than SimCLR, showing the advantage of
optimizing a GCL under limited mini-batch sizes; and (ii)
iSogCLR outperforms SogCLR in all cases, confirming the
effectiveness of individualized temperatures. In Figure 4,
we visualize the learned embeddings from these three meth-
ods on CIFAR10, where each color represents a class. Note
that the class boundaries of iSogCLR are more clear than
that of others, indicating that iSogCLR indeed improves fea-
ture qualities. We also observe that iSogCLR outperforms
prior strong baselines, e.g., VICReg, Spectral CL. Besides,
iSogCLR achieves larger improvements on imbalanced data,
e.g., has relative improvements of 2.37% and 7.56% over
SimCLR on CIFAR100 and CIFAR100-LT, respectively.

6.2. Bimodal Experiments
Data. We adopt Conceptual Captions 3M (CC3M) (Sharma
et al., 2018) dataset, which is widely used in vision-and-
language pretraining (Li et al., 2021b; Mu et al., 2022; Goel
et al., 2022). For evaluation, we use two common bimodal
datasets: Flickr30K (Plummer et al., 2015), MSCOCO (Lin
et al., 2014), obtained from the well-known Karpathy
split (Karpathy & Fei-Fei, 2015), and three standard im-
age datasets: CIFAR10, CIFAR100, and ImageNet1K.

Setup. Following recent studies on bimodal SSL (Li et al.,
2021a; Dou et al., 2022), we adopt ResNet-50 and Dis-
tilBert (Sanh et al., 2019) as the image and text encoder,
which are initialized with weights from unimodal pretrain-
ing. Specifically, we use the ResNet-50 model pretrained
on ImageNet from timm library (Wightman, 2019). The
DistilBert model comes from huggingface library (Wolf
et al., 2020), which is pretrained on BookCorpus (Zhu et al.,
2015) and English Wikipedia. The output embedding of
each encoder is then transformed to a lower-dimensional
(256-d) representation by a linear layer and normalized for
computing contrastive loss. We use a batch size of 512
for 30 epochs pre-training, where the image resolution is
256×256. We employ Adam-W optimizer (Loshchilov &
Hutter, 2017) with cosine learning rate decay. The learning
rate is warmed-up to 2e-4 in the first 1000 iterations and
decayed to 1e-6 by a cosine decay scheduler. We employ
Adam-W optimizer (Loshchilov & Hutter, 2017) with the
weight decay of 0.02. We tune β0 and ρ from {0.7, 0.8, 0.9}
and {5.8, 6.0, 6.2, 6.4}, respectively. τinit and τ0 are set to
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Table 1. Linear evaluation results with 400 pretraining epochs on six unimodal image datasets. We report the average top-1 accuracies (%)
and standard deviation over 3 runs with different random seeds. Full results are provided in Table 3 and 4 in Appendix C.3.

METHOD CIFAR10 CIFAR100 IMAGENET100 CIFAR10-LT CIFAR100-LT INATURALIST

SIMCLR 88.74±0.18 62.34±0.09 79.96±0.20 77.09±0.13 49.33±0.12 91.52±0.17
BARLOW TWINS 87.39±0.14 62.28±0.13 79.16±0.13 75.94±0.08 48.39±0.14 91.89±0.21
FLATCLR 88.61±0.10 63.27±0.07 80.24±0.16 77.96±0.12 52.61±0.06 92.54±0.09
SPECTRAL CL 88.77±0.09 63.06±0.18 80.48±0.08 76.38±0.21 51.86±0.16 92.13±0.16
SOGCLR 88.93±0.11 63.14±0.12 80.54±0.14 77.70±0.07 52.35±0.08 92.60±0.08
VICREG 88.96±0.16 62.44±0.13 80.16±0.22 75.05±0.09 48.43±0.13 93.03±0.14
SIMCO 88.86±0.12 62.67±0.06 79.73±0.17 77.71±0.13 51.06±0.09 92.10±0.12
ISOGCLR 89.24±0.15 63.82±0.14 81.14±0.19 78.37±0.16 53.06±0.12 93.08±0.19

Table 2. Results on two bimodal downstream tasks. For image-text retrieval on Flickr30K and MSCOCO, we compute IR@1 and TR@1
for the Recall@1 on image-retrieval (IR) and text-retrieval (TR). For classification tasks, we compute top-1 accuracy (%). We report the
average of scores and standard deviation over 3 runs with different random seeds. Full results are in Table 5, 6, and 7 in Appendix C.3.

METHOD
FLICKR30K RETRIEVAL MSCOCO RETRIEVAL ZERO-SHOT CLASSIFICATION TOP-1 ACC

IR@1 TR@1 IR@1 TR@1 CIFAR10 CIFAR100 IMAGENET1K

CLIP 40.98±0.22 50.90±0.17 21.32±0.12 26.98±0.21 60.63±0.19 30.70±0.11 36.27±0.17
CYCLIP 42.46±0.13 51.70±0.23 21.58±0.19 26.18±0.24 57.19±0.20 33.11±0.14 36.75±0.21
SOGCLR 43.32±0.18 57.18±0.20 22.43±0.13 30.08±0.22 61.09±0.24 33.26±0.12 37.46±0.19
ISOGCLR 44.36±0.12 60.20±0.26 23.27±0.18 32.72±0.13 58.91±0.15 33.81±0.18 40.72±0.23

SimCLR SogCLR iSogCLR

Figure 4. The arrangement of features (projected using t-SNE) for
CIFAR10 samples learned by SimCLR, SogCLR and iSogCLR.
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Figure 5. The class distributions and t-SNE projection for samples
with large and small τ values in CIFAR100-LT. Left: The green
dashed line and left axis denote the number of samples in each
class, the red/blue bars and right axis denote the proportions of
samples with large/small τ values in each class. Right: Each color
represents a superclass in CIFAR100-LT.

0.01 and 0.005 by default. We evaluate models on two down-
stream tasks: cross-modal retrieval and image classification
in zero-shot setting, following the widely-used evaluation
protocol (Radford et al., 2021; Goel et al., 2022).

Results. We present partial results in Table 2 and full results
in Table 5, 6, 7 in Appendix C.3. Compared with baselines,
our algorithm achieves significant improvements on both
downstream tasks. Specifically, iSogCLR improves CLIP
by 4%∼17% and 2%∼8% on image-text retrieval and zero-
short classification, respectively. Large-scale bimodal data
always contain long-tail underlying semantics (Wang et al.,
2022), thus the optimal τ of different samples may vary

greatly. Hence iSogCLR with individualized temperatures
is much more suitable than the methods with a global τ .

6.3. In-depth Analyses
Here, we demonstrate that iSogCLR indeed assigns suitable
temperatures to samples with different types of semantics.
Specifically, we consider the following two scenarios.

Unimodal data. We use CIFAR100-LT to study the charac-
teristics of samples with different τ values. First, we select
top-600 samples with large temperatures and bottom-600
samples with small temperatures. The class distributions of
these two groups of samples are in the left of Figure 5. We
observe that samples with small τ account for a higher pro-
portion of tail classes. Interestingly, although some of sam-
ples belong to tail classes, e.g., ‘sweet peppers’, ‘streetcar’
and ‘pickup truck’, they are semantically similar to some
head classes, e.g., ‘apple’, ‘bus’. Thus these samples actu-
ally have frequent semantics and iSogCLR correctly assigns
them large τ values. The right part of Figure 5 shows the
projection of samples in these two groups. Note that most
of samples with large τ values are in the centers of clusters,
while most of samples with small τ values are separated
from clusters. These results clearly show that iSogCLR
makes samples with frequent semantics have large τ values
to keep semantic structures, and makes samples with rare
semantics have small τ values to be more discriminative.

Bimodal data. First, we use the data of “a kitten in a basket”
and “architectural details of a bridge” for more illustrations.
We show several hard negative pairs of the cat and bridge im-
ages in the left of Figure 6. One can observe that for the cat
image, its hard negative pairs contain very similar semantics.
For the bridge image, however, it has fewer hard negative
pairs with similar semantics with it. We also present learned
features of 1500 random image-text pairs with highlights
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red kittens in a basket isolated 
on a white background

architectural details of a bridge

newborn kittens in a basket

detail of a new educational building

kitten in a wooden basket on white background

cute kittens isolated on white background

kittens in a basket on a green lawn at sunrise

puppy and kitten isolated on a white background

short haired cats , isolated on a white background

concrete crumbling under a road bridge

under a bridge going out to sea

architecture by architect , abstract view

building designed by architect with interior 

interior view of the building

an image with a large 𝝉

an image with a small 𝝉
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control panel

Figure 6. In-depth analyses on CC3M. Left: the contents of several hard negative image-text pairs of the cat and bridge images. Right: the
tSNE of learned representations of sampled image-text pairs, with large and small temperatures marked by red and green, respectively.
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Figure 7. Effect of τ and τinit on SimCLR/SogCLR and iSogCLR.

0.30 0.35 0.40 0.45 0.50

τ

0

2500

5000

7500

10000

12500

15000

17500

20000

nu
m

of
sa

m
pl

es

iNaturalist

τinit = 0.1

τinit = 0.3

τinit = 0.5

τinit = 0.7

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

ø

0

200000

400000

600000

800000

nu
m

of
sa

m
pl

es

Images in CC3M

øinit = 0.005

øinit = 0.01

øinit = 0.1

øinit = 0.2

Figure 8. Final distributions of learned temperatures.
on several pairs with large and small τ values in Figure 6
(right). Notice that images with large τ values are very
close to their texts, while images with small τ values are
far from their texts. The reason is that pairs with large τ
values have frequent semantics, thus the model learns their
patterns well and their features are well aligned. By contrast,
the pairs with small τ values have rare semantics and their
features are not learned so well. These results show that
iSogCLR learns suitable temperatures for samples with dif-
ferent semantics. More samples in CC3M data are provided
in Figure 10 and 11 in Appendix C.3, showing that images
with large τ values are related to frequent life scenes, while
images with small τ values correspond to rare scenes.

6.4. Ablation Studies
In this section, we conduct extensive ablation studies to
shed light on the behaviors of iSogCLR. First, we study
the effect of different τinit values on the final performance
and convergence of iSogCLR, and provide the results in
Figure 7. From the left part of Figure 7, one can observe
that iSogCLR is not sensitive to τinit and always outperforms
SimCLR/SogCLR with a tuned τ . More results are in Ta-
ble 8 in Appendix C.3. The results on CC3M in the right of
Figure 7 indicate that CLIP fails to converge when τ is fixed
to a large value (e.g., 0.1, 0.2). On the contrary, regardless
of the values of τinit, iSogCLR converges well and matches
or outperforms CLIP with the tuned or learned τ .

We further visualize the final distributions of learned tem-

peratures on different datasets in Figure 8. Note that these
distributions are similar regardless of τinit values. We also
observe that the distributions on unimodal data usually fol-
low a Gaussian distribution, while that on bimodal CC3M
data has a long-tail (cf. Figure 9 in Appendix C.3 for more
results). It is interesting to observe that the learned tempera-
tures for bimodal dataset are smaller than those for image
datasets, which is consistent with the literature found by
manual tuning (Chen et al., 2020; Liang et al., 2022).

Due to the limited space, more studies are provided in
Appendix C.3. In particular, the results about the effect
of hyper-parameter ρ in Table 9 indicate that iSogCLR is
not sensitive to ρ. We also compare with other heuristic
baselines with individualized learnable temperatures in Ap-
pendix C.3, and show that our method is more advantageous
for learning individualized temperatures (cf. Table 10).

7. Conclusion
In this work, we propose a novel method named iSogCLR
for contrastive SSL with automatic temperature individual-
ization. We first design a novel robust global contrastive ob-
jective based on DRO. Then we propose a provable stochas-
tic algorithm. Theoretical and experimental results show
that iSogCLR finds suitable temperatures for different sam-
ples. Comprehensive experiments demonstrate the effective-
ness of iSogCLR on both unimodal and bimodal tasks.

Several directions can be considered in future work: i) aca-
demic researchers could consider how to further improve
the convergence; ii) industrial researchers could consider
applying our algorithm on large-scale datasets to potentially
beat CLIP; iii) one can also consider how to leverage the
learned temperatures for improving the performance of data
with rare semantics.
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A. Derivation of the Equivalent Minimization Form
In this section, we present the detailed steps for the derivation of (7). Recall the problem:

max
p∈∆

min
λ≥0

∑
zj∈S−

i

pjhi(zj)−τ0KL(p,1/m)−λ(KL(p,1/m)−ρ).

We first apply Sion’s minimax theorem (Sion, 1958) and have:

min
λ≥0

max
p∈∆

∑
zj∈S−

i

pjhi(zj)−τ0KL(p,1/m)−λ(KL(p,1/m)−ρ),

which is equivalent to
min
λ≥0

max
p∈∆

∑
zj∈S−

i

pjhi(zj)−(λ+ τ0)(KL(p,1/m)− ρ)−τ0ρ.

Let τ = λ+ τ0, then we have

min
τ≥τ0

max
p∈∆

∑
zj∈S−

i

pjhi(zj)−τ(KL(p,1/m)− ρ)−τ0ρ.

Then, the original problem is equivalent to the following problem:

min
w

min
τ≥τ0

max
p∈∆

∑
zj∈S−

i

pjhi(zj)−τ(KL(p,1/m)− ρ)−τ0ρ.

Next, we fix x = (w⊤, τ)⊤ and derive the optimal solution p∗(x) that depends on x and solves the inner maximization
problem. To this end, we consider the following problem

min
p∈∆

∑
zj∈S−

i

−pjhi(zj)+τKL(p,1/m),

which has the same optimal solution as our original problem. There are actually three constraints to handle, i.e., pi ≥ 0,∀i,
pi ≤ 1,∀i and

∑m
i=1 pi = 1. Note that the constraint pi ≥ 0,∀i is enforced by the term pi log(pi), otherwise the above

objective will be infinity. Besides, the constraint pi ≤ 1 is automatically satisfied due to
∑m

i=1 pi = 1 and pi ≥ 0,∀i. Hence,
we only to explicitly tackle the constraint

∑m
i=1 pi = 1. To this end, we define the following Lagrangian function:

Lx(p, µ) =
∑

zj∈S−
i

−pjhi(zj)+τ

(
logm+

m∑
i=1

pi log(pi)

)
+ µ

(
m∑
i=1

pi − 1

)
,

where KL(p,1/m) = logm +
∑m

i=1 pi log(pi), and µ is the Lagrangian multiplier for the constraint
∑m

i=1 pi = 1. The
optimal solutions satisfy the KKT conditions:

−hi(zj) + τ(log(p∗j (x)) + 1) + µ = 0 and
m∑
i=1

p∗i (x) = 1.

From the first equation, we can derive p∗j (x) ∝ exp(hi(zj)/τ). Due to the second equation, we conclude that p∗j (x) =
exp(hi(zj)/τ)∑

zj∈S−
i

exp(hi(zj)/τ)
. Plugging this optimal p∗ into the inner maximization problem over p, we have

∑
zj∈S−

i

p∗j (x)hi(zj)−τ
(
logm+

m∑
i=1

p∗i (x) log(p
∗
i (x))

)
=τ log

1

m

∑
zj∈S−

i

exp

(
hi(zj)

τ

)=τ log

(
Ezj∈S−

i
exp

(
hi(zj)

τ

))
.

Therefore, we get the following equivalent problem:

min
τ≥τ0

τ log

(
Ezj∈S−

i
exp

(
hi(zj)

τ

))
+ (τ − τ0)ρ,

which is the dual form in (7) of the original RGCL. The dual form for RGCL in bimodal setting can be derived in a similar
way.
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B. iSogCLR for Bimodal CL Setting
Recall the RGCO for bimodal SSL:

min
w,τ ,τ ′≥τ0

FB(w, τ , τ ′) :=
1

n

∑
(xi,ti)∈D′

{
(τ i + τ ′

i)ρ+ τ i logEt∈T −
i
exp

(
hxi

(t)

τ i

)
+τ ′

i logEx∈I−
i
exp

(
hti(x)

τ ′
i

)}
,

where

hxi(t) = EI(xi)
⊤ET (t)− EI(xi)

⊤ET (ti),

hti(x) = EI(x)
⊤ET (ti)− EI(xi)

⊤ET (ti).

It is worth to mention that an image-text pair can be viewed as two views of the same underlying concept. So essentially,
bimodal RGCO is consistent with unimodal RGCO because they all construct positive (resp. negative) pairs from the
the different views of the same (resp. different) concepts, and pull close positive pairs and push away negative pairs.
The only difference is the bimodal loss gets views from different modalities while the unimodal loss gets views from
different augmentations. Our algorithm is general for softmax-base contrastive loss and does not mind how to extract the
views. Therefore it is applicable to both unimodal and bimodal CL.

The algorithm for optimizing FB(w, τ , τ ′) is very similar to that for optimizing unimodal RGCO F (w, τ ) in Algorithm 1.
Note that we employ the subscript ‘v’ and ‘t’ to represent variables for visual images and texts, respectively. At each
iteration, we sample a random mini-batch of B′ image-text pairs B′ = {x1, t1, . . . ,xB′ , tB′}. Then we compute the
stochastic estimators of gxi

(wt, τ v,i; T ′
i ) and gti(wt, τ t,i; I ′

i) by

gxi(wt, τ v,i; T ′
i ) =

1

|T ′
i |
∑
t∈T ′

i

exp

(
hxi

(t)

τ v,i

)
, (15)

gti(wt, τ t,i; I ′
i) =

1

|I ′
i|
∑
x∈I′

i

exp

(
hti(x)

τ t,i

)
, (16)

where I ′
i = {x1, . . . ,xB′}\{xi} and T ′

i = {t1, . . . , tB′}\{ti}. To control the approximation error, we maintain the
following two moving average estimators:

st+1
v,i = (1− β0)s

t
v,i + β0gxi

(wt, τ v,i; T ′
i ), (17)

st+1
t,i = (1− β0)s

t
t,i + β0gti(wt, τ t,i; I ′

i). (18)

where β0 ∈ (0, 1). With these estimators, we can compute the gradients of FB(w, τ ) w.r.t. w, τ v, and τ t by

G(τ t
v,i) =

1

n

[
τ t

v,i

stv,i
∇τ v,igxi

(wt, τ v,i; T ′
i ) + log(stv,i) + ρ

]
, (19)

G(τ t
t,i) =

1

n

[
τ t

t,i

stt,i
∇τ t,igti(wt, τ t,i; I ′

i) + log(stt,i) + ρ

]
, (20)

G(wt) =
1

|B′|
∑

xi,ti∈B′

(
τ t

v,i

stv,i
∇wgxi(wt, τ v,i; T ′

i ) +
τ t

t,i

stt,i
∇wgti(wt, τ t,i; I ′

i)

)
. (21)

We present the detailed steps of using the momentum-style update in Algorithm 2. A similar convergence guarantee
to Theorem 1 can be established for iSogCLR in bimodal setting. The momentum-style update can be replaced by an
Adam-style update using adaptive step sizes, and the same convergence rate can be established.

C. Experiments
C.1. Details of Implementation

For experiments on unimodal image datasets, we compare our algorithm, iSogCLR, against the following methods.
SimCLR (Chen et al., 2020) is a pioneering work that directly optimize InfoNCE loss (Oord et al., 2018). FlatCLR (Chen
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Algorithm 2 iSogCLR for Bimodal SSL
Require: β0, β1, η

1: Initialize w1, s
1
v , s

1
t ,u

1
v ,u

1
t ,v1, τ 1

v = τ 1
t = τinit

2: for t = 1, 2, . . . , T do
3: Draw a batch of B′ samples denoted by B′ ⊂ D′

4: for xi ∈ B′ do
5: Compute gxi

(wt, τ v,i; T ′
i ) and gti(wt, τ t,i; I ′

i) according to (15) and (16), respectively
6: Update st+1

v,i and st+1
t,i according to (17) and (18), respectively

7: Compute G(τ t
v,i) and G(τ t

i,i) according to (19) and (20), respectively
8: Update ut+1

v,i = (1− β1)u
t
v,i + β1G(τ t

v,i) and ut+1
t,i = (1− β1)u

t
t,i + β1G(τ t

t,i)

9: Update τ t+1
v,i = ΠΩ

[
τ t

v,i − ηut+1
v,i

]
and τ t+1

t,i = ΠΩ

[
τ t

t,i − ηut+1
t,i

]
10: end for
11: Compute gradient estimator G(wt) according to (21)
12: Compute vt+1 = (1− β1)vt + β1G(wt)
13: Update wt+1 = wt − ηvt+1 (or Adam-style)
14: end for

et al., 2021) employs a variant of InfoNCE loss for better performance in the small-batch-size regime. Spectral CL (HaoChen
et al., 2021) is based on spectral decomposition on population graph and has provable accuracy guarantees. SogCLR (Yuan
et al., 2022) utilizes variance reduction techniques to achieve promising performance and has provable convergence
guarantees. SimCo (Zhang et al., 2022) improves negative mining in CL by using dual temperatures. Barlow Twins (Zbontar
et al., 2021) and VICReg (Bardes et al., 2021) are non-contrastive methods and aim to maximize the information content of
embeddings. On bimodal visual-language datasets, we consider the following baselines. CLIP (Radford et al., 2021) is
one of the most popular VLP framework. CyCLIP (Goel et al., 2022) try to improve CLIP by optimizing the features to
be geometrically consistent on image and text space. SogCLR can also be applied to solve bimodal SSL problems and is
included in our comparison.

For unimodal experiments, we adopt a code base from GitHub3 and implement the baseline methods in our experiments based
on their open source implementations. The backbone networks we use are ResNet-18 and ResNet-50 for experiments on
CIFAR dataset and ImageNet100/iNaturalist, respectively. For the projection head, we employ that used by VICReg (Bardes
et al., 2021) for all methods. For bimodal experiments, we conduct experiments on the basis of ALBEF4 (Li et al., 2021a).
We also implement bimodal CL baselines, e.g., CLIP, CyCLIP, and SogCLR, in the code base. We adopt ResNet-50 as the
image encoder and DistilBert (Sanh et al., 2019) as the text encoder. We train our models on Nvidia Tesla V100 GPU with
32GB memory and GTX 3090 GPU with 24GB memory.

C.2. Details of Datasets

CIFAR-10 and CIFAR-100 are two widely-used image datasets. Both of them contain 50,000 images for training and
10,000 images for test. The full version of ImageNet contains 1000 classes (about 1.2M images) and we denote it as
ImageNet-1K (Russakovsky et al., 2015). ImageNet-100 (Wu et al., 2019) is a subset with randomly selected 100 classes
(about 128K image) from ImageNet-1K. We also consider two imbalanced datasets: CIFAR100-LT and ImageNet-LT.
We construct CIFAR100-LT following a widely-used strategy in the literature (Cao et al., 2019; Qi et al., 2022) with the
imbalance ratio ρ=100, and keep the test set unchanged. The imbalance ratio ρ is defined as the ratio between sample sizes
of the most frequent and least frequent classes. The LT imbalance follows the exponentially decayed sample size between
different classes. The iNaturalist species classification and detection dataset (Horn et al., 2018) is a real-world large-scale
dataset with 437,513 images from 8142 classes in its 2018 version.

Conceptual Captions 3M (CC3M) dataset (Sharma et al., 2018) contains about 2.9 million image-caption pairs crawled from
the Internet. Note that as time goes by, some images are not available. Thus the number of image-caption pairs we use in
our experiments is smaller than that in the original papers. Each image in MSCOCO and Flickr30K datasets has about 5
captions. MSCOCO dataset (Lin et al., 2014) contains 113K images and 567K captions, and Flickr30K dataset (Plummer
et al., 2015) has 32K images and 158K captions. We employ the well-known Karpathy split (Karpathy & Fei-Fei, 2015) for

3https://github.com/HobbitLong/SupContrast
4https://github.com/salesforce/ALBEF
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Table 3. Linear evaluation (top-1 accuracy (%)) under different training epochs on three balanced unimodal image datasets.

METHOD CIFAR10 CIFAR100 IMAGENET100

400EP 800EP 400EP 800EP 200EP 400EP

SIMCLR 88.74±0.18 89.64±0.12 62.34±0.09 64.78±0.14 78.84±0.18 79.96±0.20
BARLOW TWINS 87.39±0.14 88.39±0.16 62.28±0.13 64.33±0.13 77.02±0.14 79.16±0.13
FLATCLR 88.61±0.10 89.22±0.06 63.27±0.07 64.51±0.08 79.06±0.09 80.24±0.16
SPECTRAL CL 88.77±0.09 90.30±0.11 63.06±0.18 64.32±0.17 78.38±0.17 80.48±0.08
SOGCLR 88.93±0.11 90.07±0.10 63.14±0.12 65.18±0.10 79.12±0.07 80.54±0.14
VICREG 88.96±0.16 89.90±0.12 62.44±0.13 64.18±0.09 79.58±0.23 80.16±0.22
SIMCO 88.86±0.12 89.79±0.15 62.67±0.06 64.74±0.12 77.36±0.16 79.73±0.17
ISOGCLR 89.24±0.15 90.25±0.09 63.82±0.14 65.95±0.07 79.42±0.15 81.14±0.19

Table 4. Linear evaluation (top-1 accuracy (%)) under different training epochs on three imbalanced unimodal image datasets.

METHOD CIFAR10-LT CIFAR100-LT INATURALIST

400EP 800EP 400EP 800EP 200EP 400EP

SIMCLR 77.09±0.13 78.36±0.07 49.33±0.12 51.89±0.09 90.79±0.14 91.52±0.17
BARLOW TWINS 75.94±0.08 77.12±0.14 48.39±0.14 50.74±0.15 90.57±0.22 91.89±0.21
FLATCLR 77.96±0.12 79.19±0.08 52.61±0.06 54.14±0.08 91.48±0.15 92.54±0.09
SPECTRAL CL 76.38±0.21 78.63±0.13 51.86±0.16 53.46±0.17 91.28±0.11 92.13±0.16
SOGCLR 77.70±0.07 79.16±0.09 52.35±0.08 53.58±0.13 91.89±0.18 92.60±0.08
VICREG 75.05±0.09 77.84±0.15 48.43±0.13 51.68±0.06 92.18±0.06 93.03±0.14
SIMCO 77.71±0.13 78.56±0.19 51.06±0.09 52.31±0.14 91.03±0.18 92.10±0.12
ISOGCLR 78.37±0.16 79.69±0.08 53.06±0.12 54.42±0.18 92.33±0.23 93.08±0.19

these two datasets.

C.3. Additional Experimental Results

Unimodal experimental results. We present the full results on three balanced datasets and three imbalanced datasets in
Table 3 and Table 4, respectively. One can observe than our iSogCLR matches or outperforms prior strong baselines.

Bimodal experimental results. We provide the full results of the zero-shot image-text retrieval tasks on Flickr30K and
MSCOCO in Table 5 and Table 6, respectively. It is notable that our method has large improvements compared with
baselines. We also present the full results of the zero-shot classification tasks on three standard image datasets in Table 7,
and observe that our method achieves the best performance in most cases.

More ablation studies

Effect of τinit. We present more ablation studies on the hyper-parameters of iSogCLR. In Table 8, we first present the
effect of τ and τinit on the performance of SimCLR and iSogCLR, respectively. One can observe that τ is an important
hyper-parameter for SimCLR. SimCLR equiped with a tuned τ can be a strong baseline on many dataset. Besides, we
find that our iSogCLR is not sensitive to τinit in a range of 0.1∼0.7. Moreover, iSogCLR with any τinit is this range can
outperforms SimCLR with a tuned τ . These results demonstrate the effectiveness of our method.

Effect of ρ. We provide the effect of ρ on the performance of iSogCLR in Table 9. We observe that although the parameter
ρ in RGCL affects the degree of hardness-awareness, this parameter does not have a big impact on the performance of
iSogCLR in most cases. We believe the reason is that we introduce a learnable Lagrangian multiplier λ for each KL
constraint in our derivation. Thus the degree of hardness-awareness of each anchor data is largely affected by λ, i.e., the
individualized temperature, which is flexible and updated during learning.

Effect of β0. Another hyper-parameter in iSogCLR is the moving average parameter β0 for updating st+1 in (12).
Following Yuan et al. (2022) (cf. Table 8 in their paper), we tune this parameter in a range of {0.7, 0.8, 0.9}. We find that
when β0 of iSogCLR is set in this range, the performance of the algorithm does not differ much in most cases.

Comparing with other baselines containing individualized learnable parameters.
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Table 5. Zero-shot image-text retrieval (text-to-image and image-to-text) results (Recall@k), where k ∈ {1, 5, 10}, on Flickr30K dataset.

METHOD IMAGE RETRIEVAL TEXT RETRIEVAL

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 40.98±0.22 69.60±0.19 79.22±0.08 50.90±0.17 81.00±0.16 87.90±0.22
CYCLIP 42.46±0.13 69.56±0.16 78.74±0.21 51.70±0.23 79.90±0.18 88.40±0.11
SOGCLR 43.32±0.18 71.06±0.13 79.54±0.19 57.18±0.20 81.03±0.26 88.62±0.18
ISOGCLR 44.36±0.12 72.64±0.17 80.92±0.13 60.20±0.26 84.60±0.21 90.50±0.14

Table 6. Zero-shot image-text retrieval (text-to-image and image-to-text) results (Recall@k), where k ∈ {1, 5, 10}, on MSCOCO dataset.

METHOD IMAGE RETRIEVAL TEXT RETRIEVAL

R@1 R@5 R@10 R@1 R@5 R@10

CLIP 21.32±0.12 45.52±0.17 57.30±0.16 26.98±0.21 54.86±0.15 66.86±0.19
CYCLIP 21.58±0.19 45.46±0.13 57.56±0.22 26.18±0.24 53.24±0.18 65.86±0.22
SOGCLR 22.43±0.13 46.74±0.11 58.32±0.20 30.08±0.22 56.94±0.17 67.39±0.24
ISOGCLR 23.27±0.18 47.23±0.24 59.07±0.19 32.72±0.13 59.52±0.11 70.78±0.21

Unimodal TaU+SimCLR. We first compare our method with TaU+SimCLR (Zhang et al., 2021), which adopts the
framework of SimCLR and optimizes an input-dependent temperature as the uncertainty for the input. Specifically, for an
input x, Zhang et al. (2021) edit the encoder network to return d+ 1 entries, where the first d entries are the embedding
of x, and the last entry (let e denote its value) is used to compute a temperature for the input by sigmoid(e)

t (t is a fixed
hyper-parameter). We implement TaU+SimCLR following the pseudo code in the paper (Zhang et al., 2021), and present
the results on CIFAR dataset in Table 10. One can observe that iSogCLR outperforms TaU+SimCLR by large margins.
TaU+SimCLR learns input-dependent τ to estimate the uncertainty in out-of-distribution detection effectively, but with the
cost of sacrificing the performance on downstream tasks.

Directly Optimizing CLIP with individualized temperatures. Besides, we also try to implement a variant of CLIP with
individualized learnable temperatures. Similar to the CLIP with a global learnable temperature, we construct a learnable
temperature for each image or text, compute the loss on each pair using their own temperatures, and optimize them by the
automatic differentiation in PyTorch. We initialize all temperature parameters to 0.01. However, we observe that this variant
is hard to converge. Specifically, we observe that the average of learnable temperature parameters is getting larger and
larger during training. We believe the reason is this. Let us consider the ordinary bimodal contrastive loss on a image-text
pair (xi, ti):

ℓ(xi, ti)= log
∑
t∈T −

i

exp

(
hxi

(t)

τ

)
+ log

∑
x∈I−

i

exp

(
hti(x)

τ

)
,

where hxi
(t) = EI(xi)

⊤ET (t)−EI(xi)
⊤ET (ti) and hti(x) = EI(x)

⊤ET (ti)−EI(xi)
⊤ET (ti). If xi are very similar

to ti (e.g., a pair with frequent semantics, or the encoders are good), then hxi
(t) and hti(x) are always negative. At this

time, the larger the temperature, the smaller the loss function. Hence naively optimizing contrastive loss with individualized
temperatures probably does not work.

More results of the distributions of learned temperatures. We present the final distributions of the learned temperatures
with different τinit values on all datasets in Figure 9. One can observe that the distributions for unimodal datasets are close
to the Gaussian distribution. For CC3M dataset, we plot the distributions of learned temperatures of images and texts,
respectively. We observe that these two distributions are very similar, and are close to the long-tail distribution with most
samples have small temperatures.

The connection between the proposed RGCL and prior hard negative mining. Below, we compare our approach
with (Robinson et al., 2021). First, our approach uses temperature individualization to achieve hard negative mining for
data with rare semantics. In particular, our method assigns a low temperature for data with rare semantics data to select
true hard negatives, and for data with frequent semantics, our method assigns the high temperature to avoid selecting false
negative data. In comparison, Robinson et al. (2021) take a more direct approach to achieve the hard negative sampling by
approximating the hard negative sampling distribution through unlabeled data and augmented data. The pros of (Robinson
et al., 2021) is that it might achieve hard negative mining for both rare semantics and frequent semantics. The cons is that
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Table 7. Zero-shot top-k classification accuracy (%), where k ∈ {1, 3, 5}.

METHOD CIFAR10 CIFAR100

TOP-1 TOP-3 TOP-5 TOP-1 TOP-3 TOP-5

CLIP 60.63±0.19 87.29±0.12 95.02±0.16 30.70±0.11 49.49±0.13 58.51±0.14
CYCLIP 57.19±0.20 85.02±0.14 93.94±0.23 33.11±0.14 52.99±0.17 61.01±0.22
SOGCLR 61.09±0.24 88.12±0.19 94.92±0.18 33.26±0.12 52.46±0.22 60.71±0.15
ISOGCLR 58.91±0.15 86.27±0.24 93.43±0.11 33.81±0.18 53.21±0.21 61.83±0.19

METHOD IMAGENET1K

TOP-1 TOP-3 TOP-5

CLIP 36.27±0.17 51.03±0.17 56.84±0.22
CYCLIP 36.75±0.21 51.32±0.18 57.08±0.23
SOGCLR 37.46±0.19 52.68±0.16 58.04±0.10
ISOGCLR 40.72±0.23 54.38±0.14 59.11±0.17

Table 8. The effect of τ (τinit) to SimCLR (iSogCLR). We report top-1 accuracy after pretraining for 400 epochs.

METHOD CIFAR10 CIFAR100 IMAGENET100

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

SIMCLR 85.85 88.34 88.74 88.27 60.49 62.34 62.02 61.73 78.64 79.96 79.78 79.42
ISOGCLR 89.00 89.17 89.24 89.23 63.30 63.73 63.41 63.50 80.82 80.90 80.86 81.14

their optimization might have large errors due to the Monte Carlo importance sampling based on mini-batch samples. The
pros of our approach is that it enjoys optimization guarantee even with a small batch size, and it achieves hard negative
mining for rare semantics. The cons of our approach is that it incurs additional cost of maintaining and updating the
temperature parameters.

More examples from CC3M dataset. We present more images and texts with large and small learned temperatures in
Figure 10 and 11, respectively. One can observe that the images with large temperatures contain frequent semantics like
person, house, animals, flowers, and natural landscape. While for images with small temperatures, their semantics could be
abstract or rare in daily life.

D. Convergence Analysis
We first introduce some notations. Let || · || denote the Euclidean norm of a vector. We denote the combination of w and
τ , i.e., (w⊤, τ⊤)⊤ ∈ Rd+n by z. Recall that hi(e)=E(A(xi))

⊤E(e)−E(A(xi))
⊤E(A′(xi)), where we employ a new

variable e in place of z used in (3) to avoid conflicts.

To simplify the notations, we use gi(z) and gi(z,B) to represent gi(w, τ i;S−
i ) and gi(w, τ i;Bi), respectively. We can

see that EB[gi(z,B)] = gi(z). Then the objective (8) can be expressed as F (z) = F (w, τ ) = 1
n

∑
xi∈D fi(τ i, gi(z)). We

denote the batch sizes B = |B| and B′ = |Bi|.
Then we make the following standard assumptions regarding to problem (8).

Assumption 1. There exists R, σ,Cg, Cf , Lf , Lg, C such that

(i) The domain of model parameter w ∈ W is bounded by R, i.e., for all w ∈ W , we have ||w|| ≤ R.

(ii) EB[||gi(z)− gi(z,B)||2] ≤ σ2

B and EB[||∇gi(z)−∇gi(z,B)||2] ≤ σ2

B .

(iii) Functions gi and fi satisfy ||∇gi|| ≤ Cg and ||∇fi|| ≤ Cf for all i.

(iv) Functions ∇fi(·), ∇gi(·) are Lf ,Lg-Lipschitz continuous for all i.

(v) Functions hi(e) is bounded by C for all i, i.e., |hi(e)| ≤ C.
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Table 9. Effect of ρ on iSogCLR (τinit is set to 0.3). We report the average top-1 accuracies (%) for 400 epochs pretraining.

DATA
ρ 0.1 0.2 0.3 0.4

CIFAR10 88.98 89.03 88.99 88.75
CIFAR100 63.02 63.12 63.27 63.82
IMAGENET100 80.70 80.96 80.54 80.18
CIFAR10-LT 77.86 78.05 78.31 78.37
CIFAR100-LT 52.60 52.75 52.92 53.04
INATURALIST 92.13 92.30 92.79 92.66

Table 10. Comparison between TaU+SimCLR and iSogCLR. We report the top-1 accuracies (%) after 400 epochs pretraining on CIFAR
datasets.

METHOD CIFAR10 CIFAR100 CIFAR10-LT CIFAR100-LT

TAU+SIMCLR 86.80 59.35 76.41 49.62
ISOGCLR 89.24 63.82 78.37 53.06

Remark: Assumption 1(i) is also assumed by Levy et al. (2020) and Qi et al. (2022), and is mainly used for convex analysis.
Assumption 1(ii) assumes that the stochastic estimators of gi(z) and ∇gi(z) have bounded variance. Assumption 1(iii)
and (iv) are also standard for convergence analysis. Note that E (A (xi)), E (A′ (xi)) and E (e) are all normalized vectors,
thus their inner products are bounded and Assumption 1(v) holds.

However, F (w, τ ) is not necessarily smooth in terms of z = (w⊤, τ⊤)⊤ if τ is unbounded. To address this concern, we
have the following lemma:

Lemma 1. The optimal solution of τ ∗
i , i = 1, 2, . . . , n to problem (8) is upper bounded by τ̃ = τ0 + C/ρ, where C is the

upper bound for functions hi(e) and ρ is the constraint parameter.

Proof. Recall the primal problem for each xi ∈ D:

p∗ = max
{p∈∆,KL(p,1/m)≤ρ}

∑
ej∈S−

i

pjhi(ej)− τ0KL(p,1/m),

where p∗ is the optimal value of the above problem.

Invoking dual variable λ̄i, we obtain the dual problem

q∗ = min
λ̄≥0

max
p∈∆

∑
ej∈S−

i

pjhi(ej)− τ0KL(p,1/m)− λ̄i (KL(p,1/m)− ρ) .

Set p̄ = (1/m, . . . , 1/m), a Slater vector satisfying KL(p̄,1/m) − ρ ≤ 0. Applying Lemma 3 in (Nedić & Ozdaglar,
2009), we have

|λ̄∗
i | ≤

1

ρ

q∗ −
∑

ej∈S−
i

p̄jhi(ej)− τ0KL(p̄,1/m)

 .

Since the primal problem is concave in terms of p, we have p∗ = q∗. Therefore,

|λ̄∗
i | ≤

1

ρ

p∗ −
∑

ej∈S−
i

p̄jhi(ej)


≤ 1

ρ

 ∑
ej∈S−

i

p∗
jhi(ej)− τ0D(p∗,1/m)−

∑
ej∈S−

i

p̄jhi(ej)


≤ C

ρ
,

(22)
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Figure 9. Distributions of the final learned temperatures with different τinit values on seven different datasets.

where the last inequality is because |hi(ej)| ≤ C. Let τ i = λ̄i + τ0, we have

q∗ = min
τ≥τ0

max
p∈∆

∑
ej∈S−

i

pjhi(ej)− τ (KL(p,1/m)− ρ)− τ0ρ.

By (22), we know that the optimal solution for above problem |τ ∗
i | ≤ |λ̄∗

i |+ τ0 ≤ C
ρ + τ0, which completes the proof.

Due the boundness of functions hi(e) (cf. Assumption 1(v)) and τ i (cf. Lemma 1), we have the following lemma:

Lemma 2. Functions gi(zt) and gi(zt,B) are lower bounded by ĝ = exp(−C/τ̃), where −C is the lower bound for
functions hi(e) and τ̃ is the upper bound for τ ∗

i .

Proof. Recall the definitions of hi(e), gi(zt) and gi(zt,B):

hi(e) =E(A(xi))
⊤E(e)−E(A(xi))

⊤E(A′(xi)),

gi(z) = gi(w, τ i;S−
i ) =

1

|S−
i |

∑
e∈S−

i

exp

(
hi(e)

τ i

)
,

gi(z,B) = gi(w, τ i;Bi) =
1

Bi

∑
e∈Bi

exp

(
hi(e)

τ i

)
.

Using τ i ≤ τ̃ and hi(e) ≥ −C, we have gi(z) ≥ exp
(−C

τ̃

)
. Similarly, we have gi(z,B) ≥ exp

(−C
τ̃

)
, which completes

the proof.

We will also see that the constraint on the domain of τ guarantees the smoothness of F (w, τ ), which is critical for the
proposed algorithm to enjoy fast convergence rate.

Lemma 3. For all w ∈ W , τ i ∈ [τ0, τ̃ ], and i = 1, 2, . . . , n, Fi(z) = Fi(w, τ i) = fi(τ i, gi(z)) is LF -smooth for some
constant LF .
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actor arrives at the premiere

a windmill at dusk with clouds in the sky

we have been looking forward to this cake all year
your horses are very used to this trail

senior adult woman in a park

pictures of funny animals

a white cat sits in his box at the animal shelter

cat sitting on the stairs

actor as tv character in tv teen drama

life is better with a dog

a dog sleeps on the steps

pink flower in the summer rain

what is the name of cat

person built this house in the 1920s

just when i thought i was running out of pictures i found this one

group of horses grazing on the meadow

cat after taking a bath in small white bathtub isolated on white 

person in a shirt wearing a dark red vest

national park in blossom near the village

it s gonna be a winner of a beach day

garden in front of the house

main house from across the river

flowers border design after the raining

the earth laughs in flowers

man looking out the window

bee eating honey in biological species in the morning

a woman with her dog on animal by artist during the documenta art exhibition

home is where the heart is

Figure 10. The images with large learned temperatures and their texts form CC3M. In general, they are very common in daily life, e.g.,
people, dogs, cats, flowers, houses, natural landscape, etc.

art of internet encyclopedia project website

view from under the main dome

tree stump in the shape of a heart
the pregnant woman in the nature a vector illustration vector

beetles are black and white

coffee table could do it with any country or state too

the crew of a military ship in a group photo

a man operating the control panel

political map with the several provinces where administrative division is highlighted

if its always sunny was a video game
what jewish holiday sounded like years ago sung today

orest in autumn with leaves fallen on the ground

fast underground train riding in a tunnel of the city

vector hand drawn illustration of female diver with marine waves in the mask
one of the earliest illustrations of fairy tales by visual artist for an edition

traffic on a foggy highway
muscles of the face vintage engraved illustration

find the side of a square inscribed in a circle of radius

a beige and blue carpet from our collection

my lord of the rings tattoo

prepare the dough for western christian holiday

organisation founder designed these shoes chosen by noble person

sometimes it s the little details that make all the difference

medieval knight on a horse in full armor ready for war vintage engraving

detour rectangular yellow sign is pointing to the right way put over the traffic cones
animal escapes into the hole

thousands of tents housing pilgrims are crowded together in a city

statue of person of the church

Figure 11. The images with small learned temperatures and their texts form CC3M. Most of them are not common in our lives or contain
abstract concepts.
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Note that Lemma 3 naturally follows that function F (z) is also LF -smooth.

Proof. We have gradients

∇wFi(w, τ i) = ∇wgi(w, τ i)∇gifi(τ i, gi(w, τ i))

=
τ i

gi(w, τ i)
∇wgi(w, τ i)

∇τFi(w, τ i) = ∇τ gi(w, τ i)∇gifi(τ i, gi(w, τ i)) +∇τfi(τ i, gi(w, τ i))

=
τ i

gi(w, τ i)
∇τ gi(w, τ i) +∇τfi(τ i, gi(w, τ i))

=
τ i

gi(w, τ i)


0
...

∇τ i
gi(w, τ i)

...
0

+


0
...

log(gi(w, τ i)) + ρ
...
0


For any arbitrary z, z̃, we have

∥∇zFi(z)−∇zFi(z̃)∥2

= ∥∇wFi(z)−∇wFi(z̃)∥2 + ∥∇τFi(z)−∇τFi(z̃)∥2

=

∥∥∥∥ τ i

gi(w, τ i)
∇wgi(w, τ i)−

τ̃ i

gi(w̃, τ̃ i)
∇wgi(w̃, τ̃ i)

∥∥∥∥2
+

∥∥∥∥ τ i

gi(w, τ i)
∇τ i

gi(w, τ i) + log(gi(w, τ i))−
(

τ̃ i

gi(w̃, τ̃ i)
∇τ i

gi(w̃, τ̃ i) + log(gi(w̃, τ̃ i))

)∥∥∥∥2
Under assumption 1, we obtain∥∥∥∥ τ i

gi(w, τ i)
∇wgi(w, τ i)−

τ̃ i

gi(w̃, τ̃ i)
∇wgi(w̃, τ̃ i)

∥∥∥∥2
≤ 2

∥∥∥∥ τ i

gi(w, τ i)

[
∇wgi(w, τ i)−∇wgi(w̃, τ̃ i)

]∥∥∥∥2 + 2

∥∥∥∥[ τ i

gi(w, τ i)
− τ̃ i

gi(w̃, τ̃ i)

]
∇wgi(w̃, τ̃ i)

∥∥∥∥2
≤ 2τ̃Lg

ĝ
(∥w − w̃∥2 + ∥τ i − τ̃ i∥2) +

2τ̃C2
g

ĝ2
(∥w − w̃∥2 + ∥τ i − τ̃ i∥2)

and ∥∥∥∥ τ i

gi(w, τ i)
∇τ igi(w, τ i) + log(gi(w, τ i))−

(
τ̃ i

gi(w̃, τ̃ i)
∇τ igi(w̃, τ̃ i) + log(gi(w̃, τ̃ i))

)∥∥∥∥2
≤ 4

(
Cg

ĝ
+

τ̃C2
g

ĝ2
+

τ̃Lg

ĝ
+

Cg

ĝ

)
(∥w − w̃∥2 + ∥τ i − τ̃ i∥2)

Define LF =
2τ̃Lg

ĝ +
2τ̃C2

g

ĝ2 + 4
(

Cg

ĝ +
τ̃C2

g

ĝ2 +
τ̃Lg

ĝ +
Cg

ĝ

)
, then ∥∇zFi(z)−∇zFi(z̃)∥2 ≤ Lf∥z− z̃∥2.

Below, we let χ = {z|w ∈ W, τ0 ≤ τ i ≤ τ̃ , i = 1, 2, . . . , n}. δχ(z) = 0 if z ∈ χ, and δχ(z) = ∞ if z /∈ χ. Then
problem (8) is equivalent to:

min
z∈Rd+n

F̄ (z) := F (z) + δχ(z). (23)

Now the update step of zt can be written as zt+1 = Πχ(zt − ηdt+1), where Πχ denotes the Euclidean projection onto the
domain χ, and dt+1 = (v⊤

t+1,u
t+1⊤)⊤.

Since F̄ is non-smooth, we define the regular subgradients as follows.
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Definition 1 (Regular Subgradient). Consider a function Φ : Rn → R̄ and Φ(x̄) is finite. For a vector v ∈ Rn, v is a
regular subgradient of Φ at x̄, written v ∈ ∂̂Φ(x̄), if

lim inf
x→x

Φ(x)− Φ(x)− v⊤(x− x)

∥x− x∥ ≥ 0.

Since F (z) is differentiable, we use ∂̂F̄ (z) = ∇F (z) + ∂̂δχ(z) (see Exercise 8.8 in Rockafellar & Wets (2009)) in the
analysis. The dist(0, ∂̂F̄ (z)) measures the distance between the origin and the regular subgradient set of F̄ at z. The oracle
complexity is defined below:

Definition 2 (Oracle Complexity). Let ϵ > 0 be a small constant, the oracle complexity is defined as the number of
processing samples in order to achieve E[dist(0, ∂̂F̄ (z))] ≤ ϵ for a non-convex loss function or E[F (z)− F (z∗)] ≤ ϵ for a
convex loss function.

To prove the main theorem, we present some required lemmas.

Lemma 4. Under Assumption 1, run Algorithm 1 with ηLF ≤ 1
4 , and the output zR of Algorithm 1 satisfies

E[dist(0, ∂̂F̄ (zR))] ≤
2 + 40LF η

T

T∑
t=1

||dt+1 −∇F (zt)||2 +
2∆

ηT
+

40LF∆

T
,

where ∆ := F̄ (z1)− infz∈χ F̄ (z).

Proof. Recall the update of zt+1 is

zt+1 = Πχ(zt − ηdt+1)

= argmin
z∈Rd+n

{
δχ(z) + ⟨dt+1, z− zt⟩+

1

2η
||z− zt||2

}
.

Then by Exercise 8.8 and Theorem 10.1 of Rockafellar & Wets (2009), we know

−dt+1 −
1

η
(zt+1 − zt) ∈ ∂̂δχ(zt+1),

which implies that

∇F (zt+1)− dt+1 −
1

η
(zt+1 − zt) ∈ ∇F (zt+1) + ∂̂δχ(zt+1) = ∂̂F̄ (zt+1). (24)

By the update of zt+1, we also have

δχ(zt+1) + ⟨dt+1, zt+1 − zt⟩+
1

2η
||zt+1 − zt||2 ≤ δχ(zt).

Since F (z) is LF -smooth, we have

F (zt+1) ≤ F (zt) + ⟨∇F (zt), zt+1 − zt⟩+
LF

2
||zt+1 − zt||2.

Combining the above two inequalities, we obtain

⟨dt+1 −∇F (zt), zt+1 − zt⟩+
1

2

(
1

η
− LF

)
||zt+1 − zt||2 ≤ F̄ (zt)− F̄ (zt+1).

Thus we have
1

2

(
1

η
− LF

)
||zt+1 − zt||2 ≤ F̄ (zt)− F̄ (zt+1)− ⟨dt+1 −∇F (zt), zt+1 − zt⟩,
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where the last inequality uses ⟨a,b⟩ ≤ ||a||2 + ||b||2
4 . Then by rearranging the above inequality and summing it across

t = 1, 2, . . . , T , we have

T∑
t=1

1− 2ηLF

4η
||zt+1 − zt||2 ≤ F̄ (z1)− F̄ (zT+1) +

T∑
t=1

η||dt+1 −∇F (zt)||2

≤ F̄ (z1)− inf
z∈χ

F̄ (z) +

T∑
t=1

η||dt+1 −∇F (zt)||2

= ∆+

T∑
t=1

η||dt+1 −∇F (zt)||2

(25)

Using the same method in the proof of Theorem 2 in (Xu et al., 2019), we obtain the following relationship:

T∑
t=1

||dt+1 −∇F (zt+1) +
1

η
(zt+1 − zt)||2 ≤ 2

T∑
t=1

||dt+1 −∇F (zt)||2 +
2∆

η

+

(
2L2

F +
3LF

η

) T∑
t=1

||zt+1 − zt||2
(26)

Recalling ηLF ≤ 1
4 and combining (25) and (26), we have

T∑
t=1

||dt+1 −∇F (zt+1) +
1

η
(zt+1 − zt)||2

(a)

≤ 2

T∑
t=1

||dt+1 −∇F (zt)||2 +
2∆

η
+

5LF

η

(
4

1− 2ηLF

)(
η∆+

T∑
t=1

η2||dt+1 −∇F (zt)||2
)

(b)

≤ 2

T∑
t=1

||dt+1 −∇F (zt)||2 +
2∆

η
+ 40LF∆+ 40ηLF

T∑
t=1

||dt+1 −∇F (zt)||2,

(27)

where (a) is due to (2L2
F + 3LF

η ) ≤ 5LF

η and (b) is due to 4
1−2ηLF

≤ 8.

Recalling (24) and the output rule of Algorithm 1, we have

E[dist(0, ∂̂F̄ (zR))
2] ≤ 1

T

T∑
t=1

E[||dt+1 −∇F (zt+1) +
1

η
(zt+1 − zt)||2]. (28)

At last, we combine (27) and (28) and have

E[dist(0, ∂̂F̄ (zR))
2] ≤ 2 + 40ηLF

T

T∑
t=1

E[||dt+1 −∇F (zt)||2] +
2∆

Tη
+

40LF∆

T
. (29)

Lemma 5. Under Assumption 1, run Algorithm 1 and we have

T∑
t=1

E[||dt+1 −∇F (zt)||2] ≤ ∆v +∆u +

(
4L2

F

β2
1

+
72n3L2

F

B2β2

) T∑
t=1

E[||zt − zt−1||2]

+ C1

T∑
t=1

E[||g(zt)− st+1||2] + C2β1

B
T +

C3β

B
T,

where ∆v,∆u, C1, C2, C3 are constants defined in the proof.
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Proof. Recalling dt+1 = (v⊤
t+1,u

t+1⊤)⊤ and ∇F (zt) = (∇wF (zt),∇τF (zt))
⊤, we have

||dt+1 −∇F (zt)||2 = ||vt+1 −∇wF (zt)||2 + ||ut+1 −∇τF (zt)||2

We first establish the bound for ||vt+1 −∇wF (zt)||2. Recall the define the following notations

∇F (zt) =
1

n

∑
xi∈S

∇wfi(gi(zt))∇wgi(zt),

∇F (zt, s
t) =

1

n

∑
xi∈S

∇wfi(s
t
i)∇wgi(zt),

vt+1 = (1− β1)vt + β1G(wt),

G(wt) =
1

B

∑
xi∈B

∇wfi(s
t
i)∇wgi(zt,B).

By expansion, we have

Et[||∇wF (zt)− vt+1||2]
=Et[||∇wF (zt)− (1− β1)vt − β1G(wt)||2]
=Et[||(1− β1)(∇wF (zt−1)− vt) + (1− β1)(∇wF (zt)−∇wF (zt−1))

+ β1(∇wF (zt)−∇wF (zt, s
t)) + β1(∇wF (zt, s

t)−G(wt))||2]
(a)
= ||(1− β1)(∇wF (zt−1)− vt) + (1− β1)(∇wF (zt)−∇wF (zt−1))

+ β1(∇wF (zt)−∇wF (zt, s
t))||2 + β2

1Et[||∇wF (zt, s
t)−G(wt)||2]

(b)

≤(1 + β1)(1− β1)
2||∇wF (zt−1)− vt||2

+ 2

(
1 +

1

β1

)[
||∇wF (zt)−∇wF (zt−1)||2 + β2

1 ||∇wF (zt)−∇wF (zt, s
t)||2

]
+ β2

1Et[||∇wF (zt, s
t)−G(wt)||2]

(c)

≤(1− β1)||∇wF (zt−1)− vt||2 +
4L2

F

β1
||zt − zt−1||2 + 4β1||∇wF (zt)−∇wF (zt, s

t)||2

+ β2
1Et[||∇wF (zt, s

t)−G(wt)||2],

(30)

where (a) is due to Et[G(wt)] = ∇wF (zt, s
t), (b) is due to Young’s inequality ||a+ b||2 ≤ (1 + γ)||a||2 + (1 + 1

γ )||b||2,
and (c) is due to β1 ≤ 1 → 1 + 1

β1
≤ 2

β1
.

Furthermore, one may bound Et[||∇wF (zt)−∇wF (zt, s
t)||2] as follows:

Et[||∇wF (zt)−∇wF (zt, s
t+1)||2]

=Et

∥∥∥∥∥ 1n ∑
xi∈D

∇wfi(gi(zt))∇wgi(zt)−
1

n

∑
xi∈D

∇wfi(s
t
i)∇wgi(zt)

∥∥∥∥∥
2


≤ 1

n

∑
xi∈D

C2
gL

2
fEt[||gi(zt)− sti||2]

=
C2

gL
2
f

n
Et[||g(zt)− st||2].

(31)
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On the other hand, Et[||∇wF (zt, s
t)−G(wt)||2] can be bounded by some constants:

Et[||∇wF (zt, s
t)−G(wt)||2]

=Et

∥∥∥∥∥ 1n ∑
xi∈D

∇wfi(s
t
i)∇wgi(zt)−

1

B

∑
xi∈B

∇wfi(s
t
i)∇wgi(zt,B)

∥∥∥∥∥
2


≤Et

2 ∥∥∥∥∥ 1n ∑
xi∈D

∇wfi(s
t
i)∇wgi(zt)−

1

B

∑
xi∈B

∇wfi(s
t
i)∇wgi(zt)

∥∥∥∥∥
2

2

∥∥∥∥∥ 1

B

∑
xi∈B

∇wfi(s
t
i)∇wgi(zt)−

1

B

∑
xi∈B

∇wfi(s
t
i)∇wgi(zt,B)

∥∥∥∥∥
2


≤
2C2

fC
2
g

B
+

2C2
fσ

2

B′ .

(32)

Substituting (31) and (32) into (30), we have

Et[||∇wF (zt)− vt+1||2] ≤ (1− β1)||∇wF (zt−1)− vt||2 +
4L2

F

β1
Et[||zt − zt−1||2]

+
4β1C

2
gL

2
f

n
Et[||g(zt)− st||2] +

2β2
1C

2
f (C

2
g + σ2)

min{B,B′} .

(33)

Taking summation over t = 1, 2, . . . , T , we obtain

T∑
t=1

E[||∇wF (zt)− vt+1||2] ≤
1

β1
∆v +

4L2
F

β2
1

T∑
t=1

E[||zt − zt−1||2]

+
4C2

gL
2
f

n

T∑
t=1

E[||g(zt)− st||2] +
2β1C

2
f (C

2
g + σ2)

min{B,B′} T,

(34)

where ∆v denotes ||∇wF (z0)− v1||2.

Next, we derive the bound for ||ut+1 −∇τF (zt)||2. Note that

||ut+1 −∇τF (zt)||2 =
∑
xi∈D

||ut+1
i −∇τ i

F (zt)||2 =
∑
xi∈D

∥∥∥∥ut+1
i − 1

n
∇τ i

Fi(zt)

∥∥∥∥2

Recall and define the following notations

ut+1
i =

{
(1− β)ut

i + βG(τ t
i) if xi ∈ B

ut
i o.w.

, ũt
i := (1− β)ut

i + βG(τ t
i),xi ∈ B,

∇τ i
F (zt) =

1

n

(
τ t
i

gi(zt)
∇τ i

gi(zt) + log(gi(zt)) + ρ

)
,

∇τ iF (zt, s
t
i) =

1

n

(
τ t
i

sti
∇τ igi(zt) + log(sti) + ρ

)
,

G(τ t
i) =

1

n

(
τ t
i

sti
∇τ i

gi(zt,B) + log(sti) + ρ

)
.
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Then we obtain

||ũt
i −∇τ i

F (zt−1)||2

=||(1− β)ut
i + βG(τ t

i)−∇τ iF (zt−1)||2

=||(1− β)(ut
i −∇τ i

F (zt−1)) + (1− β)(∇τ i
F (zt)−∇τ i

F (zt−1))

+ β(∇τ iF (zt, s
t
i)−∇τ iF (zt)) + β(G(τ t

i)−∇τ i
F (zt, s

t
i))||2

(a)
= ||(1− β)(ut

i −∇τ iF (zt−1)) + (1− β)(∇τ iF (zt)−∇τ iF (zt−1))

+ β(∇τ i
F (zt, s

t
i)−∇τ i

F (zt))||2 + β2||(∇τ i
F (zt, s

t
i)−G(τ t

i))||2

+ 2⟨(1− β)(ut
i −∇τ iF (zt−1)) + (1− β)(∇τ iF (zt)−∇τ iF (zt−1))

+ β(∇τ i
F (zt, s

t
i)−∇τ i

F (zt)), β(G(τ t
i)−∇τ i

F (zt, s
t
i))⟩

(b)

≤(1 + β)(1− β)2||∇τ i
F (zt−1)− ut

i||2

+ 2

(
1 +

1

β

)[
||∇τ i

F (zt)−∇τ i
F (zt−1)||2 + β2||∇τ i

F (zt)−∇τ i
F (zt, s

t
i))||2

]
+ β2||(∇τ i

F (zt, s
t+1
i )−G(τ t

i))||2 + 2⟨(1− β)(ut
i −∇τ i

F (zt−1))

+ (1− β)(∇τ iF (zt)−∇τ iF (zt−1)) + β(∇τ iF (zt, s
t
i)−∇τ iF (zt)), β(G(τ t

i)−∇τ iF (zt, s
t
i))⟩

(c)

≤(1− β)||∇τ i
F (zt−1)− ut

i||2 +
4L2

F

n2β
||zt − zt−1||2 + 4β||∇τ i

F (zt)−∇τ i
F (zt, s

t
i))||2

+ β2||(∇τ i
F (zt, s

t
i)−G(τ t

i))||2 + 2⟨(1− β)(ut
i −∇τ i

F (zt−1))

+ (1− β)(∇τ i
F (zt)−∇τ i

F (zt−1)) + β(∇τ i
F (zt, s

t
i)−∇τ i

F (zt)), β(G(τ t
i)−∇τ i

F (zt, s
t
i))⟩,

(35)

where (b) is due to Young’s inequality ||a+ b||2 ≤ (1 + γ)||a||2 + (1 + 1
γ )||b||2, and (c) is due to β ≤ 1 → 1 + 1

β ≤ 2
β .

For simplicity, we denote the first term in the last inner product as At
i and note that At

i does not depend on the randomness
of iteration t.

Subsequently, we derive the bound for ||∇τ iF (zt)−∇τ iF (zt, s
t
i))||2

||∇τ i
F (zt)−∇τ i

F (zt, s
t+1
i ))||2

=

∥∥∥∥ 1n
(

τ t
i

gi(zt)
∇τ igi(zt) + log(gi(zt))

)
− 1

n

(
τ t
i

sti
∇τ igi(zt) + log(sti)

)∥∥∥∥2
≤ 2

n2

∥∥∥∥ τ t
i

gi(zt)
∇τ i

gi(zt)−
τ t
i

sti
∇τ i

gi(zt)

∥∥∥∥2 + 2

n2

∥∥ log(gi(zt))− log(sti)
∥∥2

≤2(τ̃2C2
g + ĝ2)

ĝ4n2
||sti − gi(zt)||2,

(36)

where τ̃ denotes the upper bound for τ i and ĝ denotes the lower bound for gi.

Substituting (36) into (35), we have

||ũt
i −∇τ i

F (zt−1)||2

≤(1− β)||∇τ iF (zt−1)− ut
i||2 +

4L2
F

n2β
||zt − zt−1||2 +

8β(τ̃2C2
g + ĝ2)

ĝ4n2
||sti − gi(zt)||2

+ β2||(∇τ i
F (zt, s

t
i)−G(τ t

i))||2 + 2⟨At
i, β(G(τ t

i)−∇τ i
F (zt, s

t
i))⟩

(37)
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Et[||ut+1 −∇τF (zt−1)||2]

= Et

∑
xi∈B

∥ut+1
i −∇τ i

F (zt−1)∥2 +
∑
xi ̸∈B

∥ut
i −∇τ i

F (zt−1)∥2


= Et

[∑
xi∈B

∥ũt
i −∇τ iF (zt−1)∥2

]
+

n−B

n
∥ut −∇τF (zt−1)∥2

≤ Et

[ ∑
xi∈B

(1− β)||∇τ iF (zt−1)− ut
i||2 +

4L2
F

n2β
||zt − zt−1||2 +

8β(τ̃2C2
g + ĝ2)

ĝ4n2
||sti − gi(zt)||2

+ β2||(∇τ i
F (zt, s

t
i)−G(τ t

i))||2 + 2⟨At
i, β(G(τ t

i)−∇τ i
F (zt, s

t
i))⟩
]
+

n−B

n
∥ut −∇τF (zt−1)∥2

≤ B

n
(1− β)||∇τF (zt−1)− ut||2 + 4BL2

F

n2β
||zt − zt−1||2 +

8Bβ(τ̃2C2
g + ĝ2)

ĝ4n3
||st − g(zt)||2

+ β2Et

[∑
xi∈B

||(∇τ i
F (zt, s

t
i)−G(τ t

i))||2
]
+ 2Et

[∑
xi∈B

⟨At
i, β(G(τ t

i)−∇τ i
F (zt, s

t
i))⟩
]

+
n−B

n
∥ut −∇τF (zt−1)∥2

(a)

≤ (1− Bβ

n
)||∇τF (zt−1)− ut||2 + 4BL2

F

n2β
||zt − zt−1||2 +

8Bβ(τ̃2C2
g + ĝ2)

ĝ4n3
||st − g(zt)||2

+
β2Bτ̃2σ2

ĝ2B′n2

where the last inequality uses the following facts

Et

[∑
xi∈B

||∇τ iF (zt, s
t
i)−G(τ t

i)||2
]
=

1

|B|
∑
B∈B

∑
xi∈B

||∇τ iF (zt, s
t
i)−G(τ t

i)||2

=
1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

||∇τ iF (zt, s
t
i)−G(τ t

i)||2

≤ 1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

∥∥∥∥ 1n τ t
i

sti
∇τ i

gi(zt)−
1

n

τ t
i

sti
∇τ i

gi(zt,B)
∥∥∥∥2

≤ 1

|B|
∑
xi∈D

|Bi|
τ̃2σ2

ĝ2B′n2
=

Bτ̃2σ2

ĝ2B′n2

and

Et

[∑
xi∈B

⟨At
i, β(G(τ t

i)−∇τ iF (zt, s
t
i))⟩
]

=
1

|B|
∑
B∈B

∑
xi∈B

⟨At
i, β(G(τ t

i)−∇τ i
F (zt, s

t
i))⟩

=
1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

⟨At
i, β(G(τ t

i)−∇τ i
F (zt, s

t
i))⟩

=
1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

〈
At

i, β

(
1

n

τ t
i

sti
∇τ i

gi(zt)−
1

n

τ t
i

sti
∇τ i

gi(zt,B)
)〉

= 0

where B denotes the set of all possible batch B ⊂ D of size B, and Bi denotes {B : xi ∈ B,B ∈ B}.
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Furthermore,

Et[||ut+1 −∇τF (zt)||2]
(a)

≤
(
1 +

Bβ

2n

)
Et[||ut+1 −∇τF (zt−1)||2] +

(
1 +

2n

Bβ

)
||∇τF (zt−1)−∇τF (zt)||2

(b)

≤
(
1− Bβ

2n

)
||∇τF (zt−1)− ut||2 + 8BL2

F

n2β
||zt − zt−1||2

+
16Bβ(τ̃2C2

g + ĝ2)

n3ĝ4
||st − g(zt)||2 +

2Bτ̃2σ2β2

n2ĝ2B′ +
4L2

F

Bβ
||zt − zt−1||2

(c)

≤
(
1− Bβ

2n

)
||∇τF (zt−1)− ut||2 + 2Bτ̃2σ2β2

n2ĝ2B′

+
16Bβ(τ̃2C2

g + ĝ2)

n3ĝ4
||st − g(zt)||2 +

36L2
F

Bβ
||zt − zt−1||2,

where we use Young’s inequality in (a), and use the assumption Bβ
2n ≤ 1 in (b) and (c).

Taking summation over t = 1, 2, . . . , T , we obtain
T∑

t=1

E[||ut+1 −∇τF (zt)||2] ≤
2n

Bβ
∆u +

72nL2
F

B2β2

T∑
t=1

E[||zt − zt−1||2]

+
32(τ̃2C2

g + ĝ2)

n2ĝ4

T∑
t=1

E[||st − g(zt)||2] +
4τ̃2σ2β

nB′ĝ2
T,

(38)

where ∆u denotes ||∇τF (z0)− u1||2.

At last, we combine (34) and (38), and establish the following inequality:
T∑

t=1

E[||dt+1 −∇F (zt)||2] =
T∑

t=1

E[||vt+1 −∇wF (zt)||2] +
T∑

t=1

E[||ut+1 −∇τF (zt)||2]

≤ 1

β1
∆v +

2n

Bβ
∆u +

(
4L2

F

β2
1

+
72nL2

F

B2β2

) T∑
t=1

E[||zt − zt−1||2]

+

(
4C2

gL
2
f

n
+

32(τ̃2C2
g + ĝ2)

n2ĝ4

)
T∑

t=1

E[||g(zt)− st||2] +
2β1C

2
f (C

2
g + σ2)

min{B,B′} T +
4τ̃2σ2β

nB′ĝ2
T

≤ 1

β1
∆v +

2n

Bβ
∆u +

(
4L2

F

β2
1

+
72nL2

F

B2β2

) T∑
t=1

E[||zt − zt−1||2]

+
C1

n

T∑
t=1

E[||g(zt)− st||2] + C2β1

min{B,B′}T +
C3β

nB′ T,

where C1 =
(
4C2

gL
2
f +

32(τ̃2C2
g+ĝ2)

ĝ4

)
, C2 = 2C2

f (C
2
g + σ2) and C3 = 4τ̃2σ2

ĝ2 .

Lemma 6. Under Assumption (1), run Algorithm 1 and we have
T∑

t=1

E[||st − g(zt)||2] ≤
2n

Bβ
∆s +

8n3C2
g

B2β2

T∑
t=1

E[||zt − zt−1||2] +
4nβσ2T

B′ .

where ∆s is a constant defined in the proof.

Proof. Recall and define the following notations:

st+1
i =

{
(1− β)sti + βgi(zt,B) if xi ∈ B
sti o.w.

, s̃ti := (1− β)sti + βgi(zt,B),xi ∈ B.
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Then we obtain

||s̃ti − gi(zt)||2

=||(1− β)sti + βgi(zt,B)− gi(zt)||2

=||(1− β)(sti − gi(zt)) + β(gi(zt,B)− gi(zt))||2

=(1− β)2∥(sti − gi(zt))∥2 + β2||(gi(zt,B)− gi(zt))||2 + 2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩.

Considering the randomness of iteration t, we have

Et[||st+1 − g(zt)||2]

= Et

∑
xi∈B

||st+1
i − gi(zt)||2 +

∑
xi ̸∈B

||sti − gi(zt)||2


= Et

[∑
xi∈B

||s̃ti − gi(zt)||2
]
+

n−B

n
||st − g(zt)||2

= Et

[ ∑
xi∈B

(1− β)2∥(sti − gi(zt))∥2 + β2||gi(zt,B)− gi(zt)||2

+ 2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩
]
+

n−B

n
||st − g(zt)||2

=
B

n
(1− β)||st − g(zt)||2 + Et

[∑
xi∈B

β2||gi(zt,B)− gi(zt)||2
]

+ Et

[∑
xi∈B

2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩
]
+

n−B

n
||st − g(zt)||2

(a)

≤ (1− Bβ

n
)||st − g(zt)||2 +

Bβ2σ2

B′

where (a) uses the following facts

Et

[∑
xi∈B

β2||gi(zt,B)− gi(zt)||2
]
=

1

|B|
∑
B∈B

∑
xi∈B

β2||gi(zt,B)− gi(zt)||2

=
1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

β2||gi(zt,B)− gi(zt)||2

≤ 1

|B|
∑
xi∈D

|Bi|
β2σ2

B′ =
Bβ2σ2

B′

and

Et

[∑
xi∈B

2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩
]

=
1

|B|
∑
B∈B

∑
xi∈B

2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩

=
1

|B|
∑
xi∈D

|Bi|
1

|Bi|
∑
B∈Bi

2⟨(1− β)(sti − gi(zt)), β(gi(zt,B)− gi(zt))⟩ = 0

where B denotes the set of all possible batch B ⊂ D of size B, and Bi denotes {B : xi ∈ B,B ∈ B}.

31



Not All Semantics are Created Equal: Contrastive Self-supervised Learning with Automatic Temperature Individualization

Furthermore, we use Young’s inequality and derive the following relationship:

Et[||st+1 − g(zt+1)||2] ≤
(
1 +

Bβ

2n

)
Et[||st+1 − g(zt)||2] +

(
1 +

2n

Bβ

)
Et[||g(zt)− g(zt+1)||2]

(a)

≤
(
1− Bβ

2n

)
||st − g(zt)||2 +

2Bβ2σ2

B′ +
4n2C2

g

Bβ
Et[||zt − zt+1||2],

where (a) is due to Bβ
2n ≤ 1.

Taking expectation over all randomness and taking summation over all xi ∈ S and t = 1, 2, . . . , T , we obtain

T∑
t=1

E[||st − g(zt)||2] ≤
2n

Bβ
∆s +

8n3C2
g

B2β2

T∑
t=1

E[||zt − zt−1||2] +
4nβσ2T

B′ .

where ∆s denotes ||s0 − g(z0)||2.

Now we present the proof for the convergence guarantee of Algorithm 1.

Proof. Now we present the proof for Theorem 1. First of all, we establish the following relationship using (25)

T∑
t=1

E[||zt − zt−1||2] ≤ 8η∆+ 8η2
T∑

t=1

E[||dt+1 −∇F (zt)||2], (39)

where we use ηLF ≤ 1
4 .

On the other hand, we combine Lemma (5) and Lemma (6), and obtain

T∑
t=1

E[||dt+1 −∇F (zt)||2] =
T∑

t=1

E[||vt+1 −∇wF (zt)||2] +
T∑

t=1

E[||ut+1 −∇τF (zt)||2]

≤ 1

β1
∆v +

2n

Bβ
∆u +

(
4L2

F

β2
1

+
72nL2

F

B2β2

) T∑
t=1

E[||zt − zt−1||2]

+
C1

n

[
2n

Bβ
∆s +

8n3C2
g

B2β2

T∑
t=1

E[||zt − zt−1||2] +
4nβσ2T

B

]
+

C2β1

min{B,B′}T +
C3β

nB′ T

≤ 1

β1
∆v +

2n

Bβ
∆u +

2C1

Bβ
∆s +

(
4L2

F

β2
1

+
72nL2

F

B2β2
+

8C1n
2C2

g

B2β2

)
T∑

t=1

E[||zt − zt−1||2]

+
4C1βσ

2T

B′ +
C2β1

min{B,B′}T +
C3β

nB′ T

≤ 1

β1
∆v +

2n

Bβ
∆u +

2C1

Bβ
∆s +

4C1βσ
2T

B′ +
C2β1

min{B,B′}T +
C3β

nB′ T

+

(
4L2

F

β2
1

+
72nL2

F

B2β2
+

8C1n
2C2

g

B2β2

)[
8η∆+ 8η2

T∑
t=1

E[||dt+1 −∇F (zt)||2]
]

By setting η2 ≤ min
{

β2
1

192L2
F
, B2β2

3456nL2
F
, B2β2

384C1n2C2
g

}
= O(min{β2

1 ,
B2β2

n2 }), we have

T∑
t=1

E[||dt+1 −∇F (zt)||2] ≤
1

β1
∆v +

2n

Bβ
∆u +

2C1

Bβ
∆s +

4C1βσ
2T

B′ +
C2β1

min{B,B′}T +
C3β

nB′ T

+ 8η∆
1

16η2
+

1

2

T∑
t=1

E[||dt+1 −∇F (zt)||2],
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which follows

T∑
t=1

E[||dt+1 −∇F (zt)||2] ≤
2

β1
∆v +

4n

Bβ
∆u +

4C1

Bβ
∆s +

∆

η
+ T

(
8C1βσ

2

B′ +
2C2β1

min{B,B′} +
2C3β

nB′

)
(40)

Combining (40) and Lemma (4), using assumption ηLF ≤ 1
4 we obtain

E[dist(0, ∂̂F̄ (zR))
2]

≤ 2 + 40ηLF

T

T∑
t=1

E[||dt+1 −∇F (zt)||2] +
2∆

Tη
+

40LF∆

T

≤ 12

[
1

T

(
2

β1
∆v +

4n

Bβ
∆u +

4C1

Bβ
∆s +

3∆

η
+ 40LF∆

)
+

8C1βσ
2

B′ +
2C2β1

min{B,B′} +
2C3β

nB′

]

By setting β ≤ min{ B′ϵ2

288C1σ2 ,
nB′ϵ2

72C3
} = O(B′ϵ2), β1 ≤ min{B,B′}ϵ2

72C2
= O(B′ϵ2), we have

E[dist(0, ∂̂F̄ (zR))
2] ≤ 12

[
1

T

(
2

β1
∆v +

4n

Bβ
∆u +

4C1

Bβ
∆s +

3∆

η
+ 40LF∆

)]
+

2ϵ2

3
.

It implies that with

T = max

{
360∆v

β1ϵ2
,
720n∆u

Bβϵ2
,
720C1∆s

Bβϵ2
+

540∆

ηϵ2
+

7200LF∆

ϵ2

}
= O

(
max

{
1

β1ϵ2
,

n

Bβϵ2

})
= O

( n

BB′ϵ4

)
we have E[dist(0, ∂̂F̄ (zR))

2] ≤ ϵ2, which completes the proof.
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