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ABSTRACT

Understanding the quality of a performance evaluation metric is crucial for en-
suring that model outputs align with human preferences. However, it remains
unclear how well each metric captures the diverse aspects of these preferences, as
metrics often excel in one particular area but not across all dimensions. To address
this, it is essential to systematically calibrate metrics to specific aspects of human
preference, catering to the unique characteristics of each aspect. We introduce
METAMETRICS, a calibrated meta-metric designed to evaluate generation tasks
across different modalities in a supervised manner. METAMETRICS optimizes
the combination of existing metrics to enhance their alignment with human pref-
erences. Our metric demonstrates flexibility and effectiveness in both language
and vision downstream tasks, showing significant benefits across various multi-
lingual and multi-domain scenarios. METAMETRICS aligns closely with human
preferences and is highly extendable and easily integrable into any application.
This makes METAMETRICS a powerful tool for improving the evaluation of gen-
eration tasks, ensuring that metrics are more representative of human judgment
across diverse contexts.

1 INTRODUCTION

Evaluating machine-generated sentences has long been one of the main challenges in natural lan-
guage processing (NLP). Callison-Burch et al. (2006) provide multiple examples where a high
BLEU score does not necessarily indicate true sentence similarity, and conversely, highly similar
sentence pairs can receive low BLEU scores. BERTScore (Zhang et al., 2019) is designed to cap-
ture semantic similarities, also falls short in capturing the all the nuances to have a comprehensive
evaluation. Figure 1 illustrates two such cases where traditional metrics either overestimate or under-
estimate the alignment of generated sentences. Such cases highlight a critical limitation for robust
evaluation, as it may fail to account for the multifaceted aspects of language quality.

In light of recent advancements such as Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022), ensuring that generated outputs align with human preferences has
become increasingly critical. Models that optimize for human preference, rather than solely rely-
ing on traditional metrics, have demonstrated superior performance in producing content that aligns
with human preference (Rafailov et al., 2024; Winata et al., 2024). This shift highlights the need for
evaluation metrics that accurately reflect human subjective judgments across multiple dimensions.
Such metrics are essential for guiding models to generate more human-aligned outputs by compar-
ing their results against human judgments. Metrics that exhibit a high correlation with human ratings
are considered more reliable and effective for evaluating model performance.

This is particularly important for NLP tasks, where the subtleties of human language and context
significantly influence quality assessments. For example, in machine translation (Freitag et al., 2023;
Juraska et al., 2023), the accuracy and fluency of the translated text are critical factors considered by
humans. Similarly, in text summarization (Fabbri et al., 2021), the coherence, relevance, and con-
ciseness of the summary are key aspects that need evaluation. Beyond NLP tasks, vision-language
(VL) tasks like image captioning also benefit from reliable evaluation metrics (Hessel et al., 2021).
In these tasks, the generated captions must accurately describe the image content while maintaining
grammatical correctness and contextual relevance. The complexity of these tasks highlights the need
for metrics that can effectively capture the quality of the generated content in a manner consistent
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Figure 1: Examples of image captioning on THumB 1.0 dataset comparing METAMETRICS against
BLEU and CLIP-S scores. METAMETRICS scores of predicted captions are closer to human ratings
compared to BLEU and CLIP-S scores in the left and right images, respectively.

with human judgment. Each metric may be good for a specific human preference aspect, and it is
necessary to identify which metric is suitable for each aspect to ensure comprehensive evaluation.

Many Metrics Are Not Tuned on Human Preferences. Standard metrics that are com-
monly used to evaluate downstream language tasks, such as BLEU (Papineni et al., 2002) and
BERTScore (Zhang et al., 2019), often fail to align with human preferences. In many generation
tasks, it is crucial to assess the quality of outputs based on human judgment, as these evaluations
comprise multiple dimensions of quality. Therefore, we need a comprehensive framework that al-
lows us to identify, refine, and utilize effective metrics for evaluating generated content in a way that
aligns with human judges.

Motivated by this insight, we introduce METAMETRICS, a meta-metric designed to better align with
human preferences by calibrating multiple metrics using human assessment scores. Our method is
both efficient and fast, eliminating the need for extensive training. Our contributions are three-fold:

• We introduce METAMETRICS, a supervisedly calibrated, flexible, and modality- and
language-agnostic metric that aligns closely with human preferences on five different
tasks. Our metric is designed to operate in two distinct settings: reference-based and
reference-free, providing versatility across a wide range of tasks and modalities.

• We demonstrate that METAMETRICS is adaptable to a wide range of requirements, includ-
ing performance optimization and metric efficiency through a comprehensive benchmark-
ing of diverse metrics across a range of language and vision tasks §4. We also show that
METAMETRICS can be used effectively as a reward model. This adaptability ensures that
METAMETRICS can be calibrated to suit various human preference aspects.

• We demonstrate that METAMETRICS outperforms existing metrics by leveraging comple-
mentary metrics to enhance overall performance. We conduct a detailed analysis to un-
derstand how METAMETRICS attributes weight or attention to specific metrics, thereby
measuring the contribution of each component. We will release the code and models to
facilitate reproducibility and empower researchers and practitioners to utilize and extend
our metric for various applications.

2 AREN’T EXISTING METRICS GOOD ENOUGH?

The challenge of developing metrics tailored to specific tasks is not a new issue. For a long time,
researchers have struggled to identify appropriate metrics that align with human preferences. In this
section, we outline the rationale for the need for a new evaluation metric that is both suitable for our
tasks and aligned with human preferences.

Commonly Used Metrics are Not Robust and Unrepresentative. Metrics such as Perplexity
(PPL) (Jelinek et al., 1977; Bengio et al., 2000) and BLEU (Papineni et al., 2002) are widely used
to measure the quality of generated text in various generation tasks. However, they are not al-
ways the most suitable metrics, particularly when accounting for variations in writing styles and
minor character differences due to diacritics (Freitag et al., 2022). Critics have noted that PPL is an
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English-centric metric that performs well for English but is less effective for other languages, such
as Japanese (Kuribayashi et al., 2021). THumB (Kasai et al., 2022) further revealed that widely
used metrics fail to adequately capture the semantic quality and diversity of high-quality human
annotations, leading to misleading evaluations of model performance, particularly for captions.

Limited Capability of an Individual Metric. Single metrics like BERTScore (Zhang et al.,
2019), ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005) are beneficial and capable
of measuring the quality of generated content. However, they have significant limitations. For in-
stance, in summarization tasks, BERTScore (Recall) excels in assessing consistency but falls short
in evaluating coherence. Conversely, BERTScore (f1) performs well in measuring relevance but not
consistency (Fabbri et al., 2021). This variability means that a single metric may perform well in one
aspect but poorly in another, making it challenging to select the appropriate metric without extensive
benchmarking. This ambiguity complicates the process of choosing and utilizing the most suitable
metric for a specific use case.

One Metric with Too Many Variants and Implementations. Metrics like BERTScore allow the
use of various BERT models, but the sheer number of options can make it difficult to identify the best
one without a systematic approach. This can lead to an exhaustive search process. BERT models
trained on English often underperform on non-English languages, and vice versa. Non-English
languages in Latin script may also yield poorer results compared to those in their native scripts.
Compounding these issues, many metrics are heavily parameterized, yet their settings are frequently
undocumented, resulting in score variations across implementations (Post, 2018; Grusky, 2023).

To tackle these challenges, we propose a new paradigm for creating customizable metrics that are
robust across various tasks and closely aligned with human preferences. Our approach will enable
systematic evaluation and automatic selection of the most suitable combination of metrics that is
aligned with human judgments on target tasks, ensuring optimal performance and relevance.

3 METAMETRICS

In this section, we outline the notations and definitions used in our proposed method, and detail
the conditions required for optimizing the method based on human preferences. Additionally, we
discuss the key factors influencing the optimization process.

3.1 PRELIMINARIES

Definition. We define θi as a metric function that maps a sample input x to a score ŷi, where
i ∈ {1, . . . , N} denotes different metrics. Each θi depends on the type of task it is applied to. For
reference-based metric, the data is evaluated in the context of x = (xhyp, xref), where xhyp and xref
correspond to the hypothesis text and the reference text, respectively. For reference-free metric, only
xhyp will be used. In VL tasks, the input is extended to include an image, which would correspond
to x = (xtext, ximage) where xtext and ximage correspond to the caption and image, respectively.

Given a set of N evaluation metrics {ŷ1, . . . , ŷN}, we define Φ to compute a scalar meta-metric
score of ŷMM. The idea of utilizing multiple metrics is to combine scores from multiple metrics
regardless of the metric types. Overall, we define θMM as a meta-metric function where ŷMM is
computed as follows:

ŷi = θi(x), ŷMM = θMM(x) = Φ(ŷ1, · · · , ŷN ). (1)

The METAMETRICS θMM is used to calculate the objective value ρ(ŷMM, z), where ρ is measures
alignment with z ∈ R, the human preference score. In practice, z can represent various scores
annotated by human judges, such as coherence and fluency.

3.2 HUMAN PREFERENCE OPTIMIZATION

Notations and Objective. Recall that we aim to calibrate θMM, that maximizes an objective
calibration function ρ(ŷMM, z), where z denotes human assessment scores–encompassing any
score annotated by human evaluators. ρ is a function that measures alignment between z and
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METAMETRICS scores, ŷMM. METAMETRICS is designed to combine scores of multiple met-
rics θ1(x), θ2(x), . . . , θN (x), learning the weights wi to assign to each ŷi = θi(x) to maximize
ρ(ŷMM, z). Each metric has its score ŷi ranges within a specific minimum and maximum value.
Some metrics, particularly neural-based ones, can fall outside this defined range. To standardize
these metrics, we need to normalize them to a common scale that ranges from 0 to 1. In this scale,
0 represents poor translation performance, while 1 represents perfect translation performance. We
pre-process ŷi before combining these scores during METAMETRICS training, as detailed in Ap-
pendix D.2. The advantage of METAMETRICS lies in its flexibility and adaptability to different
tasks and domains. Certain metrics on certain tasks may exhibit strong correlations with human
judgments, and by constructing a composite metric that learns to integrate these reliable metrics
with human judgments, we can enhance the overall correlation with human evaluations.

3.3 OPTIMIZATION METHODS

In this work, we focus on two optimization methodologies to train METAMETRICS: Bayesian Op-
timization (BO) and Boosting. BO offers the advantage of interpretability, allowing us to clearly
identify which metrics contribute most significantly to the final outcome. Conversely, Boosting ex-
cels in enhancing alignment and accounting for the compositionality of different metrics, even when
dealing with more complex functions. Although we can measure the contribution of each metric, the
clarity and distinctness of these contributions are more pronounced with BO compared to Boosting.

3.3.1 BAYESIAN OPTIMIZATION (BO)

BO constructs a posterior distribution of functions, typically modeled as a Gaussian Process (GP),
to represent the function being optimized. As observations accumulate, the posterior distribution
becomes more precise, allowing the algorithm to identify which regions of the parameter space to
explore and which to ignore. BO is particularly effective for predicting unknown functions based on
observed data, making it a robust method for optimizing complex and costly-to-evaluate functions
such as the correlation between evaluation metric scores and human assessment scores.

Formally, we want to solve for the optimum weights w∗ = argmaxw∈W ρ(ŷMM(w), z), where
ρ(ŷMM(w), z) is the alignment between METAMETRICS score ŷMM(w) with the human preference
score z. In this paper, we apply linear weighting for our metrics. We define w = [w1, w2, . . . , wN ],
ŷMM(w) =

∑
i∈N wiŷi. As part of our ablation study, we explore alternative weighting functions,

such as multiplicative scoring, which calculates the score by applying a weighted sum to the prod-
uct of two metric scores. However, we find that linear weighting outperforms the multiplicative
approach. Further details can be found in the Appendix B.5 and F.5.

We assume a GP prior: that the alignment between the weighted combination of metric scores and
the human preference score follows a GP ρ(ŷMM(w), z) ∼ GP(µ(w), k(w,w′)), where µ(w) is is
the prior mean of the alignment and k(w,w′) is the kernel function that measures the similarity be-
tween two sets of weights w and w′. After observing a set of weight vectors W = [w1,w2, . . . ,wk]
and their corresponding alignments ρ = [ρ1, ρ2, . . . , ρk], the GP posterior can be updated to pre-
dict the alignment for a new weight vector w. To guide the search for the optimal weights w, BO
maximizes a function and selects the next weight vector wk+1 to evaluate using the function. BO’s
function balances exploration and exploitation using the posterior mean and variance, iterating until
convergence or budget exhaustion. While challenging, maximizing the function is computationally
efficient with standard tools, making BO suitable for resource-intensive sampling scenarios. GP em-
ploys a multivariate Gaussian distribution, offering a sparse representation of metrics that enhances
interpretability by identifying key contributors to the objective.

3.3.2 BOOSTING METHOD

The boosting method we investigate is Extreme Gradient Boosting (XGBoost) (Chen & Guestrin,
2016). Gradient-boosted trees have long been recognized as a robust technique, supported by exten-
sive literature demonstrating their effectiveness (Friedman, 2001). To enhance the efficiency of our
metric, we implement iterative pruning to eliminate less important metrics from the input, resulting
in a more compact and faster metric.

Iterative-based Pruning. When training an XGBoost regressor model, we can initially use a large
set of metrics. However, this approach is less efficient than the BO model at inference time. To
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address the scalability and efficiency issues, we propose an iterative pruning method (Algorithm 1).
We conduct k iterations of XGBoost training, starting from the full set of metrics and removing the
metric with the least feature importance at each iteration. We return the best XGBoost model among
k iterations based on the cross-validation value of ρ(ŷMM, z) measured during training.

4 EXPERIMENTS SETUP

In this work, we explore two optimization methodologies: BO and Boosting. BO provides inter-
pretability, highlighting metrics that significantly impact the final outcome. In contrast, Boosting
enhances alignment and addresses the compositionality of metrics, even for complex functions.
While we can measure each metric’s contribution through feature importance in Boosting, BO is
more interpretable than Boosting. We also compare calibrating with all the metrics and calibrating
only using top-5 correlated metrics from the tuning set. For each evaluation task in abstractive text
summarization, question answering, and image captioning, we use a 30%-70% train-test split
as no predefined split was available in the datasets used for these tasks. Alternatively, we follow
existing standardized benchmarks for machine translation and reward model scoring.

Abstractive Text Summarization. For this task, we use the SummEval (Fabbri et al., 2021) for
text summarization evaluation. SummEval, based on CNN/DailyMail (Hermann et al., 2015), is
rated by human annotators on coherence, consistency, fluency, and relevance using a 1 to 5 Likert
scale, and we use the average human annotation score. For additional benchmarking, we also evalu-
ate on BenchmarkLLM (BLLM) (Zhang et al., 2024) dataset, which includes both CNN/DailyMail
and XSUM (Narayan et al., 2018) articles, with summaries assessed for faithfulness (binary scale),
coherence, and consistency (1 to 5 Likert scale). For this dataset, the results are provided in the
Appendix Table 10. We use the Kendall τ correlation function as our objective calibration function
ρ. We refer to our metric as METAMETRICS-SUM (Table 1).

Machine Translation. For this task, we train both reference-free and reference-based versions of
the metric. We train our metric using the 3-year training data from WMT shared tasks datasets from
2020 to 2022 that are annotated using MQM annotation scores. We evaluate on MQM dataset from
WMT23 and WMT24 shared task (Freitag et al., 2023; 2024). We use kendall τ correlation function
as our objective calibration function ρ. We refer to our metric as METAMETRICS-MT (Table 2).

Question Answering. For this task, we evaluate METAMETRICS performance across multiple QA
subtasks, including Open Domain QA (Open-QA) (Rajpurkar, 2016; Berant et al., 2013; Petroni
et al., 2019), Reading Comprehension QA (RCQA) (Bajaj et al., 2016; Fisch et al., 2019; Yang
et al., 2018), and Reasoning QA. Open-QA retrieves answers from large, unstructured datasets like
Wikipedia. RCQA requires the model to read a passage to derive answers directly from it, while
Reasoning QA emphasizes logical inference, where answers cannot be directly extracted from the
passage. Due to the nature of our paper, we require QA datasets with human evaluations. The data
we use are collected from two sources: Evaluating Question Answering Evaluation (EQAE) (Chen
et al., 2019) and EVOUNA (Wang et al., 2024a) and include Open-QA datasets: Natural Questions
(NQ) (Kwiatkowski et al., 2019) and TriviaQA (TQ) (Joshi et al., 2017), RCQA dataset: Nar-
rativeQA (Kočiskỳ et al., 2018), and Reasoning QA dataset: SemEval 2018 Task 11 (SemEval)
(Ostermann et al., 2018). We refer to our metric as METAMETRICS-QA (Table 3).

Image Captioning. For this task, we use Flickr8k-Expert (Hodosh et al., 2013) and THumB 1.0
(Kasai et al., 2022) human evaluation datasets. Flickr8k-Expert consists 5,882 image-caption pairs,
each having 3 human annotators with a scale of 1–4 where 1 is worst and 4 is best. The THumB 1.0
dataset is a rubric-based human evaluation framework applied to a subset of the MSCOCO dataset
(Lin et al., 2014). The final score is of a scale of 1–5 where 1 is worst and 5 is best. We refer to our
metric as METAMETRICS-CAP (Figure 2).

Reward Model Scoring. We use METAMETRICS as reward model to score text generation from
LLM. We use RewardBench (Lambert et al., 2024) as the test benchmark. We use cleaned Sky-
work Reward Data Collection1 for training our METAMETRICS, including HelpSteer2 (Wang et al.,
2024c), OffsetBias (Park et al., 2024), WildGuard (Han et al., 2024), and Magpie (Xu et al., 2024).

1Cleaned Skywork Reward Data Collection can be accessed at https://huggingface.co/
datasets/natolambert/skywork-preferences-80k-v0.1-cleaned.
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Table 1: Kendall and spearman correlation results with human ratings for summarization task on
SummEval. For comprehensive results, please refer to Appendix Table 9. Coh., Cons., Fluency,
and Rel. corresponds to coherence, consistency, and fluency, relevance, respectively. Bold and
underlined values indicate the best and second best performance, respectively.

Metric Kendall Spearman
Coh. Cons. Fluency Rel. Avg. Coh. Cons. Fluency Rel. Avg.

BLEU 0.110 0.126 0.113 0.170 0.130 0.157 0.160 0.145 0.239 0.175
chrF 0.143 0.094 0.071 0.198 0.127 0.205 0.119 0.091 0.278 0.173
METEOR 0.077 0.102 0.072 0.162 0.103 0.108 0.130 0.093 0.229 0.140
ROUGE-WE1 0.115 0.088 0.081 0.169 0.113 0.164 0.112 0.105 0.237 0.115
BLEURT (Max) 0.185 0.070 0.114 0.189 0.140 0.262 0.088 0.062 0.194 0.152
BERTScore (f1) 0.105 0.100 0.120 0.181 0.127 0.150 0.128 0.155 0.256 0.172

LLM-BASED METRICS

BARTScore (Mean) 0.086 0.074 0.040 0.143 0.086 0.123 0.094 0.052 0.202 0.118
UniEval 0.413 0.353 0.359 0.324 0.362 0.577 0.439 0.458 0.446 0.480
G-Eval (GPT4) 0.429 0.413 0.409 0.437 0.422 0.565 0.510 0.470 0.581 0.531

ENSEMBLE BASELINES

Uniform 0.141 0.133 0.117 0.213 0.151 0.201 0.170 0.150 0.298 0.205
Weighted Avg 0.150 0.141 0.122 0.220 0.159 0.215 0.179 0.158 0.309 0.215

METAMETRICS-SUM

GP (All w/o LLM-based metrics) 0.172 0.140 0.130 0.252 0.174 0.244 0.179 0.167 0.354 0.236
XGBoost (All w/o LLM-based metrics) 0.192 0.186 0.186 0.276 0.210 0.274 0.236 0.239 0.386 0.284

W/ LLM-BASED METRICS
GP (All w/ LLM-based metrics) 0.454 0.419 0.409 0.449 0.433 0.609 0.519 0.470 0.601 0.550
GP (Top 2) 0.461 0.428 0.409 0.449 0.437 0.628 0.528 0.470 0.601 0.557
XGBoost (All w/ LLM-based metrics) 0.476 0.367 0.404 0.447 0.424 0.642 0.460 0.512 0.600 0.553
XGBoost (Top 2) 0.476 0.436 0.430 0.445 0.447 0.636 0.508 0.511 0.594 0.562

Table 2: Kendall correlation results with human ratings on WMT23 (MQM). †The results are col-
lected from Freitag et al. (2023). More detailed results for all metrics and their variants can be found
in Table 12 in the Appendix. Bold and underlined values indicate the best and second best per-
formance, respectively. Our METAMETRICS-MT correlates with human judgments better than or
comparably to the best WMT evaluation metrics across different languages and evaluation settings.

Metric overall en-de he-en zh-en
sys/seg sys seg seg sys seg seg sys seg seg
avg-corr pearson pearson acc-t pearson pearson acc-t pearson pearson acc-t

REFERENCE-BASED METRIC

chrF† 0.694 0.866 0.232 0.519 0.776 0.221 0.460 0.809 0.063 0.485
BLEU† 0.696 0.917 0.192 0.520 0.769 0.220 0.442 0.734 0.119 0.472
BERTScore† 0.742 0.891 0.325 0.528 0.895 0.335 0.515 0.810 0.236 0.499
Yisi-1† 0.754 0.925 0.366 0.542 0.917 0.395 0.529 0.823 0.290 0.504
MetricX-23-XXL† 0.808 0.977 0.585 0.603 0.910 0.548 0.577 0.873 0.625 0.531
XCOMET-Ensemble† 0.825 0.980 0.695 0.604 0.950 0.556 0.586 0.927 0.650 0.543
COMET 0.779 0.990 0.432 0.575 0.940 0.401 0.531 0.898 0.396 0.514

ENSEMBLE BASELINES
Uniform 0.824 0.989 0.688 0.610 0.954 0.546 0.588 0.935 0.641 0.543
Weighted Avg 0.827 0.989 0.690 0.613 0.955 0.545 0.587 0.937 0.642 0.545

METAMETRICS-MT
GP 0.819 0.970 0.638 0.610 0.947 0.546 0.590 0.900 0.646 0.539
XGBoost 0.825 0.992 0.680 0.616 0.957 0.557 0.574 0.929 0.637 0.546

REFERENCE-FREE METRIC

GEMBA-MQM† 0.802 0.993 0.502 0.572 0.939 0.401 0.564 0.991 0.449 0.522
XCOMET-QE-Ensemble† 0.808 0.974 0.679 0.588 0.909 0.498 0.554 0.892 0.647 0.533
MetricX-23-QE-XXL 0.797 0.934 0.547 0.607 0.813 0.459 0.575 0.877 0.652 0.531
CometKiwi-QE-XL 0.786 0.976 0.447 0.571 0.900 0.384 0.533 0.974 0.430 0.522

ENSEMBLE BASELINES
Uniform 0.801 0.935 0.552 0.600 0.816 0.484 0.566 0.948 0.637 0.540
Weighted Avg 0.802 0.934 0.555 0.603 0.811 0.487 0.568 0.943 0.647 0.540

METAMETRICS-MT-QE
GP 0.801 0.934 0.556 0.609 0.815 0.474 0.578 0.900 0.660 0.537
XGBoost 0.805 0.967 0.583 0.604 0.881 0.509 0.568 0.869 0.642 0.526

In addition, we add Preference Test Data2 to increase the size of the human preference dataset. We
refer to our metric as METAMETRICS-RM and report the accuracy of predicting that the chosen
sample is ranked higher than the rejected sample (Table 4).

2Preference Test Data from AI2 can be accessed at https://huggingface.co/datasets/
allenai/preference-test-sets.
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5 RESULTS

In this section, we present the results of our METAMETRICS across five diverse tasks, covering both
NLP and VL downstream applications.

Table 3: Kendall correlation results of METAMETRICS-QA. More detailed results for all metrics and
their variants can be found in Table 11 in the Appendix. Bold and underlined values indicate the best
and second best performance, respectively. In most cases, our METAMETRICS-QA outperforms the
other metrics in correlation with human judgments.

Setup EVOUNA EQAE Combined
NQ TQ NarrativeQA SemEval

ARMORM METRICS

ultrafeedback-honesty 0.202 0.281 0.297 0.335 0.296
helpsteer-helpfulness 0.204 0.293 0.332 0.427 0.302
helpsteer-correctness 0.206 0.300 0.336 0.403 0.305
argilla-judge-lm 0.243 0.301 0.253 0.337 0.332

N-GRAM-BASED METRICS

BLEU1 0.461 0.353 0.362 0.260 0.424
ROUGE-L 0.495 0.399 0.584 0.518 0.454
METEOR 0.517 0.435 0.570 0.461 0.494

ENSEMBLE BASELINES

Uniform 0.425 0.405 0.564 0.487 0.449
Weighted Avg. 0.497 0.423 0.582 0.467 0.484

METAMETRICS-QA

GP (Linear) 0.518 0.448 0.586 0.464 0.512
XGBoost 0.543 0.471 0.601 0.486 0.536
XGBoost (Iterative Top 5) 0.540 0.488 0.626 0.503 0.528

Abstractive Text Summarization. For this task, we refer to our metric as METAMETRICS-SUM.
Table 1 shows the results of abstractive text summarization task. Overall, our proposed model
outperforms all other baselines, including all ensemble models and overall best automatic metric (∆
0.023). The METAMETRICS-SUM with GP also performs considerably well, also outperforms all
other baselines. Additionally, we present the results of BenchmarkLLM in Appendix Table 10.

Machine Translation. In this task, we demonstrate that METAMETRICS-MT in the reference-
based setting outperforms all baseline models, including ensemble methods (Table 2). Notably,
the top competitor, XCOMET-Ensemble, achieves impressive results on the WMT23 evaluation
leaderboard, particularly excelling in the two-segment Pearson correlation metric for en-de and
zh-en. However, METAMETRICS consistently surpasses XCOMET-Ensemble across all other
tasks, leading to a higher average correlation overall, achieving the new state-of-the-art perfor-
mance on WMT23 evaluation. In the reference-free setting, METAMETRICS-MT-QE performs
comparably to XCOMET-QE-Ensemble. While XCOMET-Ensemble shows slightly better average
correlation, our proposed model demonstrates superior performance on the acc-t metric. This is
particularly significant, as the acc-t metric is finely tuned to align with the Kendall correlation τ
objective function, indicating a stronger correlation with human evaluations.

Question Answering. Table 3 presents the results of METAMETRICS-QA, which consistently
outperforms both standard and existing metrics across all evaluation levels. While ROUGE per-
forms slightly better than our method in the SemEval dataset, our proposed model demonstrates a
significant advantage over others in different datasets, achieving improvements of up to 0.044 points.
Notably, our iterative-based approach enhances the performance of the vanilla METAMETRICS-QA
when using XGB, all while utilizing fewer metrics. Additionally, for the GP evaluation, selecting
all metrics or just the top five yields comparable combined scores, indicating the robustness of our
metric selection strategy.
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Figure 2: Kendall correlation results of METAMETRICS-CAP. Cross-Dataset means that
METAMETRICS is tuned on THumB 1.0 and tested on Flickr8k, and vice versa. Our
METAMETRICS-CAP outperforms other metrics across different datasets and shows robustness even
when trained and tested on different datasets (Cross-Dataset setting). More detailed results for all
metrics and their variants can be found in Table 13 in the Appendix.

Image Captioning. Figure 2 presents the results of METAMETRICS-CAP and cross-dataset tun-
ing. METAMETRICS-CAP consistently performs better compared to any individual metric, even
when the tuning is performed on a dataset from a different distribution. Although tuning on the
same distribution yields the best results, we observe that METAMETRICS-CAP still outperforms any
individual metric, demonstrating its robustness across varying data distributions.

Reward Model Scoring. Table 4 highlights the performance of METAMETRICS-RM, which
achieves state-of-the-art results for GP and competes effectively with the top seven metrics, in-
cluding the advanced 70B Nemotron Reward model. These results demonstrate that our proposed
metric is both efficient and effective, showcasing its robustness across diverse categories of tasks,
datasets, and evaluation settings. Overall, METAMETRICS-RM represents a significant advance-
ment in reward metric evaluation, offering high performance and broad applicability for researchers
and practitioners alike.

Table 4: Accuracy results in percentages for Reward-Model-As-A-Metric. More detailed results for
all metrics and their variants can be found in Table 14 in the Appendix. Bold and underlined values
indicate the best and second best performance, respectively. Our METAMETRICS-RM achieves the
best or comparable results in 2 out of the 4 categories in RewardBench.

Metric Score Chat Chat Hard Safety Reasoning
Llama-3.1-Nemotron-70B-Reward 94.1 97.5 85.7 95.1 98.1
Skywork-Reward-Gemma-2-27B 93.8 95.8 91.4 91.9 96.1
TextEval-Llama3.1-70B 93.5 94.1 90.1 93.2 96.4
Skywork-Critic-Llama-3.1-70B 93.3 96.6 87.9 93.1 95.5
SFR-LLaMa-3.1-70B-Judge-r 92.7 96.9 84.8 91.6 97.6

URM-LLaMa-3.1-8B 92.9 95.5 88.2 91.1 97.0
Skywork-Reward-Llama-3.1-8B 92.5 95.8 87.3 90.8 96.2
GRM-Llama3-8B 91.5 95.5 86.2 90.8 93.6
ArmoRM-Llama3-8B-v0.1 90.4 96.9 76.8 90.5 97.3
URM-LLaMa-3-8B 89.9 96.9 78.7 88.2 95.7

ENSEMBLE BASELINES

Uniform 92.5 98.3 83.1 90.8 97.6
Weighted Avg. 92.5 98.3 83.1 90.7 97.6

METAMETRICS-RM

GP 93.5 98.9 86.2 90.7 98.2
XGBoost (Iterative Best) 92.9 95.8 89.7 92.2 94.0
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6 ANALYSIS AND DISCUSSION

In this section, we analyze the advantages of the methods in terms of interpretability, efficiency, and
robustness. We discuss how METAMETRICS enhances the capability of model evaluation.

6.1 INTERPRETABILITY

Figure 3: GP weights (Left) and XGBoost Features Importance (Center) with Intra-Metric Corre-
lation (Right) for METAMETRICS-QA.

Interpretability is a key aspect in METAMETRICS, as the optimization process inherently reveals
the impact of each metric on the final score. The chosen methods, such as feature importance in
Boosting and weights analysis in Bayesian Optimization, provide a straightforward way to quantify
each metric’s contribution to human preference alignment. As shown in Figure 3, this interpretabil-
ity is highlighted in the QA task, showcasing the importance of each metric in human preference
alignment. For example, since ROUGE and ROUGE-L are two highly correlated metrics, Bayesian
Optimization often drops one of them during the tuning process.

6.2 EFFECTIVENESS AND EFFICIENCY

Improved Performance with Fewer Parameters. Table 4 highlights the compute efficiency and
superior performance of METAMETRICS-RM. METAMETRICS-RM, utilizing GP. Despite this rel-
atively small compute memory footprint, it outperforms models with 70B parameters. This demon-
strates that METAMETRICS-RM offers state-of-the-art accuracy using significantly more cost-
effective models, making it an ideal choice for resource-constrained applications while delivering
even better performance.

High Parallelization. METAMETRICS is designed to be embarrassingly parallel, enabling each
metric to be executed independently without requiring inter-model communication, which results in
exceptional efficiency. Unlike large models with 27 billion parameters that often face bottlenecks,
our approach supports the development of highly effective models without such time constraints.
Furthermore, METAMETRICS excels at selecting a sparse yet impactful set of metrics from a vast
pool of potential evaluation metrics. As shown in Figure 3, both GP and XGBoost can identify a
small subset of key metrics that strongly correlate with human preferences, thereby reducing the
need to evaluate a wide range of metrics. This selective approach identifies essential metrics for
specific tasks while minimizing computational overhead without compromising performance. In
essence, METAMETRICS is ideally suited for low-resource settings, providing superior alignment
with human preferences across multiple tasks.

9
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6.3 ROBUSTNESS

We present our robustness evaluation in both cross-lingual and cross-dataset scenarios. Compre-
hensive experimental results are detailed in Subsection F.5. For the cross-lingual evaluation, we
assess our method on WMT23 and WMT24 using unseen language pairs. Specifically, we evaluate
METAMETRICS on he-en (Hebrew-English), en-es (English-Spanish), and ja-zh (Japanese-
Chinese). Overall, our approach outperforms all existing baseline metrics. We also evaluate the
robustness of METAMETRICS through cross-dataset experiments in image captioning, tuning on
one dataset and testing on another. Despite variations in domain and content, our results consis-
tently demonstrate the effectiveness of METAMETRICS. Figure 2 shows that METAMETRICS-CAP
tuned on THumB 1.0 and tested on Flickr8k and vice-versa out performs all individual metrics. This
robustness indicates that METAMETRICS is not overfitting to specific dataset characteristics, but
rather learning to combine metrics in a way that aligns with general human judgments of caption
quality. This generalization capability is crucial for real-world applications, where the evaluation
metric may need to perform well on diverse and potentially out-of-domain data.

7 RELATED WORK

Performance evaluation metrics for natural language generation tasks can be categorized into several
categories based on how the metric compares generated texts with reference texts.

Surface-level Metrics. These metrics compare the generated text to reference text at the word
level, focusing on n-gram overlap or direct lexical matching. Common metrics include BLEU that
measures precision of n-grams between the generated- and reference-texts (Papineni et al., 2002),
ROUGE that measures recall (Lin, 2004), METEOR (Banerjee & Lavie, 2005) that goes beyond
exact word overlap and considers stemming, synonyms, and paraphrasing, and chrF (Popović, 2015)
that calculates similarity based on character n-grams rather than word n-grams using F-score.

Embedding-based Metrics. These metrics rely on word or sentence embeddings to measure se-
mantic similarity between generated and reference text, capturing deeper meaning rather than sur-
face overlap. Examples include MoverScore (Zhao et al., 2019), which considers semantic similar-
ity at the word level and accounts for word movement (alignment) between texts, and BERTScore
(Zhang et al., 2019), a neural-based metric that compares semantic similarity and understands con-
textual relationships using BERT embeddings. COMET (Rei et al., 2022) and BLEURT (Sellam
et al., 2020) are neural-based metrics that use contextualized embeddings from models like BERT
as inputs to train models to generate prediction estimates of human judgments. For vision-language
tasks, ClipScore (Hessel et al., 2021) uses embeddings to compare vision and language modalities.

Ensemble-based Metrics. Ensemble-based metrics combine multiple individual metrics to en-
hance evaluation robustness through averaging (Adiwardana et al., 2020) or heuristics (Phy et al.,
2020). The Absolute-Rating Multi-Objective Reward Model (ArmoRM) (Wang et al., 2024b) is a
SotA reward model designed for RLHF (Ouyang et al., 2022). ArmoRM uses absolute ratings across
19 objectives trained to predict human preference scores.

8 CONCLUSION

Understanding the quality of a performance evaluation metric is crucial for ensuring alignment with
human preferences. However, it remains unclear how well each metric captures the diverse aspects
of these preferences, as metrics often excel in one particular area but not across all dimensions. To
address this, it is essential to systematically calibrate metrics to specific aspects of human prefer-
ence, catering to the unique characteristics of each aspect. We introduce METAMETRICS, a cali-
brated meta-metric designed to evaluate generation tasks across different modalities in a supervised
manner. METAMETRICS optimizes the combination of existing metrics to enhance their alignment
with human preferences. Our method demonstrates flexibility and effectiveness in both language
and vision downstream tasks, showing significant benefits across various multilingual and multi-
domain scenarios. Our proposed metric aligns closely with human preferences and it is also highly
extendable and easily integrable into any application. This makes it a powerful tool for improving
the evaluation of generation tasks, ensuring that metrics are more representative of human judgment
across diverse contexts.
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Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pp. 1533–1544, 2013.

Mickael Binois and Nathan Wycoff. A survey on high-dimensional gaussian process modeling
with application to bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):1–26, 2022.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297,
2024.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of bleu in machine
translation research. In 11th conference of the european chapter of the association for computa-
tional linguistics, pp. 249–256, 2006.

Anthony Chen, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Evaluating question answering
evaluation. In Proceedings of the 2nd workshop on machine reading for question answering, pp.
119–124, 2019.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.
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A LIMITATIONS AND FUTURE WORK

In our experiment, we utilize metrics that are commonly employed to evaluate each downstream
task. However, due to limitations in computational resources, we exclude LLMs exceeding 10.7B
parameters to ensure that our metrics can be executed on commercial GPU resources with a max-
imum memory capacity of 48GB. Additionally, we restrict our exploration of metrics to avoid ex-
haustively incorporating LLM-based metrics, given our capacity and resource constraints.

Looking ahead, there are significant opportunities for further exploration. We can investigate met-
rics across additional languages and in larger multilingual generation tasks, where we identify
METAMETRICS for multilingual applications (Winata et al., 2019). Furthermore, exploring met-
rics in the context of speech modalities presents another promising avenue for research.

B METRICS

In this section, we list all metrics we use in our experiments.
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B.1 ABSTRACTIVE TEXT SUMMARIZATION

We use the following metrics:

n-Gram-based Metrics: BLEU-4 (Papineni et al., 2002), chrF (Popović, 2015), METEOR (Baner-
jee & Lavie, 2005), ROUGE-1, ROUGE-3 , ROUGE-4, ROUGE-L (Lin, 2004), ROUGE-WE1 (Ng
& Abrecht, 2015).

Embedding-based Metrics: BARTScore (Yuan et al., 2021), BLEURT (Sellam et al., 2020),
BERTScore (Zhang et al., 2019).

LLM-based Metrics: SummaQA (Scialom et al., 2019), UniEval (Zhong et al., 2022), G-Eval (Liu
et al., 2023).

B.2 MACHINE TRANSLATION

We use the following metrics:

n-Gram-based Metrics: chrF (Popović, 2015), BLEU (Papineni et al., 2002);

Embedding-based Metrics: BERTScore (Zhang et al., 2019), Yisi-1 (Lo, 2020);

LLM-based Metrics: MetricX-23 (L, XL, XXL) (Juraska et al., 2023), COMET, CometKiwi (Rei
et al., 2022), XCOMET (Guerreiro et al., 2023), GEMBA-MQM (Kocmi & Federmann, 2023).

For machine translation, we optimize the Kendall correlation during our tuning.

B.3 QUESTION ANSWERING

We use the following metrics:

n-Gram-based Metrics: BLEU-1, BLEU-4 BLEU (Papineni et al., 2002), ROUGE, ROUGE-L
(Lin, 2004), METEOR (Banerjee & Lavie, 2005);

Embedding-based Metrics: BERTScore (Zhang et al., 2019);

LLM-based Metrics: ArmoRM-Llama3-8B-v0.1 (ArmoRM) (Wang et al., 2024b).

B.4 IMAGE CAPTIONING

We use the following metrics:

n-Gram based metrics BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee &
Lavie, 2005), SPICE (Anderson et al., 2016), CIDEr (Vedantam et al., 2015);

Embedding-based Metrics TIGEr (Jiang et al., 2019) and CLIPScore (Both reference-based and
reference-free) (Hessel et al., 2021).

B.5 REWARD MODEL SCORING

The reward model used in the experiment is listed in Table 5.

C METRIC DESIGN

C.1 FRAMEWORK

Figure 4 illustrates the framework for both reference-free and reference-based settings.

C.2 ALTERNATIVE WEIGHTING SCORE
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Table 5: Reward Models.

Reward Model / Metric Hugging Face Link
nvidia/Llama-3.1-Nemotron-70B-Reward https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward

SF-Foundation/TextEval-Llama3.1-70B https://huggingface.co/SF-Foundation/TextEval-Llama3.1-70B

Skywork/Skywork-Critic-Llama-3.1-70B https://huggingface.co/Skywork/Skywork-Critic-Llama-3.1-70B

Salesforce/SFR-LLaMa-3.1-70B-Judge-r https://huggingface.co/Salesforce/SFR-LLaMa-3.1-70B-Judge-r

internlm/internlm2-1 8b-reward (Cai et al., 2024) https://huggingface.co/internlm/internlm2-1_8b-reward

internlm/internlm2-7b-reward (Cai et al., 2024) https://huggingface.co/internlm/internlm2-7b-reward

LxzGordon/URM-LLaMa-3-8B https://huggingface.co/LxzGordon/URM-LLaMa-3-8B

LxzGordon/URM-LLaMa-3.1-8B https://huggingface.co/LxzGordon/URM-LLaMa-3.1-8B

Ray2333/GRM-Gemma-2B-rewardmodel-ft https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft

Ray2333/GRM-Llama3-8B-rewardmodel-ft https://huggingface.co/Ray2333/GRM-Llama3-8B-rewardmodel-ft

sfairXC/FsfairX-LLaMA3-RM-v0.1 https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

Skywork/Skywork-Reward-Llama-3.1-8B https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B

weqweasdas/RM-Mistral-7B https://huggingface.co/weqweasdas/RM-Mistral-7B

Figure 4: METAMETRICS Framework for reference-free (θnoref
MM , left) and reference-based setting

(θref
MM, right). METAMETRICS integrates multiple metrics θi and their scores ŷi, learns a function Φ

to combine them into a score ŷMM that aligns best with the human judgment score.

Multiplicative GP Recall that in the linear-weighting scheme for GP, given a set of N evaluation
metrics ŷ = [ŷ1, ŷ2, . . . , ŷN ] with their associated weights of {w1, w2, . . . , wN}, GP linear is given
by ŷMM-LINEAR(w) = w⊤ŷ.

To explore more weighting schemes, we introduce “Multiplicative” GP, which accounts for inter-
actions between metrics through pairwise products. For N metrics, there are c =

(
N
2

)
= N ·(N−1)

2
unique pairwise combinations. Let wpair be the weight vector for these combinations, defined as
wpair = [w1, w2, . . . , wc] and let ŷpair be the vector of pairwise products, where ŷpair = [ŷiŷj | 1 ≤
i < j ≤ N ]. The Multiplicative GP output is then computed as ŷMM-multi(wpair) = wpair

⊤ŷpair.

D DATASETS

In this section, we present the data statistics and outline the preprocessing procedures used in our
work.

D.1 DATA STATISTICS

Table 6 presents the dataset split sizes for tuning and testing.

D.2 DATA PREPROCESSING

Pre-processing. We apply pre-processing before we use the scores in the training. The pre-
processing can be defined as follows:
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Table 6: Dataset statistics used in the experiments.

Dataset Name Type Tuning Size Testing Size
Machine Translation
WMT23 (MQM) (Freitag et al., 2023) Translation - 136,260
WMT20-22 (MQM) (Freitag et al., 2022) Translation 150,343 -

Text Summarization
SummEval (Fabbri et al., 2021) Summarization 510 1,190
BenchmarkLLM (Zhang et al., 2024) Summarization 1,035 2,415
Combined Summarization 1,545 3,605

Question Answering
NQ (Kwiatkowski et al., 2019) Open-QA 4,528 10,567
TQ (Joshi et al., 2017) Open-QA 2,906 6,783
NarrativeQA (Kočiskỳ et al., 2018) RCQA 150 350
SemEval (Ostermann et al., 2018) Reasoning QA 90 210
Combined Multidomain-QA 7,675 17,909

Image Captioning
Flickr8k-Expert (Hodosh et al., 2013) Captioning 1,746 4,076
THumB 1.0 (Kasai et al., 2022) Captioning 600 1,400

Reward Model Scoring
Skywork-Reward-Preference-80K-v0.1 Math, Code, Chat 81,973 -
allenai/preference-test-sets Math, Code, Chat 43,175 -
RewardBench (Lambert et al., 2024) Chat, Safety, Reasoning - 8,108

1. Clipping: Let the valid range for ŷi be defined by [ŷmin
i , ŷmax

i ]. The clipped metric ŷ′i can
be defined as:

ŷ′i =


ŷmin
i if ŷi < ŷmin

i ,

ŷi if ŷmin
i ≤ ŷi ≤ ŷmax

i ,

ŷmax
i if ŷi > ŷmax

i .

(2)

2. Normalization: After clipping, the score is normalized to a common scale of [0, 1]:

ŷi =
ŷ′i − ŷmin

i

ŷmax
i − ŷmin

i

. (3)

3. Inversion (if applicable): If the metric is such that higher scores indicate worse perfor-
mance, we invert the normalized score:

ŷi = 1− ŷi. (4)

E OPTIMIZATION

In this section, we explore the optimization details of METAMETRICS.

E.1 METHOD DETAILS

E.1.1 MATERN KERNEL

We train BO using GP with Matern kernel, a generalization of the RBF, distinguished by an ad-
ditional parameter that controls the smoothness of the resulting function (Williams & Rasmussen,
2006). Conversely, as the parameter approaches infinity, the Matern kernel converges to the RBF
kernel. The kernel is described as below:

k(w,w′) =
1

Γ(ν)2ν−1

(√
2ν

l
d(w,w′)

)ν

Kν

(√
2ν

l
d(w,w′)

)
, (5)
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where d(·, ·) is the Euclidean distance, Kν(·) is a modified Bessel function and Γ(·) is the gamma
function.

E.1.2 ITERATIVE-BASED PRUNING

Below is the implementation of Iterative-based Pruning performed during training.

Algorithm 1 Iterative-based Pruning with XGBoost

1: procedure ITERATIVEXGBOOST(X,y, k)
2: F ← {f1, f2, . . . , fp} ▷ Initial set of features
3: P ← [] ▷ Performance history
4: Fleast ← [] ▷ Feature pruning history
5: for i← 1 to k do
6: Train Φ

(i)
XGB on XF with CV

7: Ii ← Importance(ΦXGB) ▷ Compute feature importance from ΦXGB
8: P[i]← ρ(ΦXGB(XF ),y) ▷ Store performance score
9: fleast[i]← argmin(Ii) ▷ Identify least important feature

10: Fleast ← fleast
11: F ← F \ {fleast} ▷ Remove least important feature
12: end for
13: i∗ ← argmax(P) ▷ Find the best index iteration
14: Fbest ← F ∪ Fleast[i

∗ :] ▷ Best features from highest performance
15: Train final f̂XGB on XFbest

16: return f̂xgb
17: end procedure

E.2 HYPER-PARAMETERS

E.2.1 BAYESIAN OPTIMIZATION

Table 7 describes the hyper-parameter settings that we use for our experiments. For the Bayesian
optimization, we run GP with a Matern kernel Williams & Rasmussen (2006), a generalization of
the RBF kernel, using ν = 2.5.

Table 7: Hyper-parameters used for Gaussian Process on each task.

Metric Hyper-parameter Value
METAMETRICS-SUM init points 5

n iter 100

METAMETRICS-MT init points 5
n iter 100

METAMETRICS-QA init points 5
n iter 40

METAMETRICS-CAP init points 5
n iter 100

METAMETRICS-RM init points 5
n iter 100

E.2.2 BOOSTING METHOD

For XGBoost training, we use a different objective depending on the task. We perform parameter
searching with hyper-parameter values in Table 8.
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Table 8: Initial hyper-parameter values used for parameter searching during XGBoost.

Metric Hyper-parameter Value
METAMETRICS-SUM n estimators low 100

n estimators high 1000
n estimators step 100
n estimators prior Uniform
objective reg:squarederror

METAMETRICS-MT n estimators low 100
n estimators high 1000
n estimators step 100
n estimators prior Uniform
objective reg:absoluteerror

METAMETRICS-QA n estimators low 100
n estimators high 400
n estimators step 25
n estimators prior Uniform
objective reg:squaredlogerror

METAMETRICS-CAP n estimators low 100
n estimators high 1000
n estimators step 100
n estimators prior Uniform
objective reg:squaredlogerror

METAMETRICS-RM n estimators low 100
n estimators high 1000
n estimators step 100
n estimators prior Uniform
objective rank:pairwise

F DETAILED RESULTS

In this section, we provide more detailed results that could not be included in the main paper due to
space constraints.

F.1 ABSTRACTIVE TEXT SUMMARIZATION

Table 9 provides a detailed breakdown of the correlations between various metrics and human pref-
erence measurements for abstractive text summarization on SummEval LLM. Table 10 provides
a detailed breakdown of the correlations between various metrics and human preference measure-
ments for abstractive text summarization on Benchmark LLM.

F.2 MACHINE TRANSLATION

Table 12 describes the detailed breakdown of the correlations between metrics with human annota-
tors in WMT23.

F.3 QUESTION ANSWERING

Table 11 provides a detailed breakdown of the correlations between various metrics and human
ratings for the Question Answering task.

F.4 IMAGE CAPTIONING

Table 13 provides a detailed breakdown of the correlations between various metrics and human
annotations for Image Captioning.
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Table 9: Kendall and spearman correlation detailed results with human ratings for summarization
task on SummEval. Coh., Cons., Fluency, and Rel. corresponds to coherence, consistency, and
fluency, relevance, respectively. Bold and underlined values indicate the best and second best per-
formance, respectively.

Metric Kendall Spearman
Coh. Cons. Fluency Rel. Avg. Coh. Cons. Fluency Rel. Avg.

BLEU 0.110 0.126 0.113 0.170 0.130 0.157 0.160 0.145 0.239 0.175
chrF 0.143 0.094 0.071 0.198 0.127 0.205 0.119 0.091 0.278 0.173
METEOR 0.077 0.102 0.072 0.162 0.103 0.108 0.130 0.093 0.229 0.140
ROUGE-1 0.112 0.103 0.061 0.189 0.116 0.159 0.130 0.079 0.264 0.158
ROUGE-3 0.099 0.115 0.048 0.154 0.104 0.142 0.147 0.063 0.219 0.143
ROUGE-4 0.096 0.122 0.067 0.143 0.107 0.137 0.155 0.087 0.203 0.146
ROUGE-l 0.110 0.087 0.069 0.157 0.106 0.156 0.111 0.089 0.219 0.144
ROUGE-WE1 0.115 0.088 0.081 0.169 0.113 0.164 0.112 0.105 0.237 0.115
BLEURT (Max) 0.185 0.070 0.114 0.189 0.140 0.262 0.088 0.062 0.194 0.152
BLEURT (Mean) 0.099 0.011 0.029 0.130 0.067 0.123 0.094 0.052 0.202 0.118
BERTScore (f1) 0.105 0.100 0.120 0.181 0.127 0.150 0.128 0.155 0.256 0.172
BERTScore (Recall) 0.104 0.111 0.093 0.176 0.121 0.148 0.141 0.120 0.250 0.165
SummaQA (f1) 0.051 0.120 0.106 0.114 0.098 0.073 0.152 0.136 0.165 0.132
SummaQA (Prob) 0.070 0.100 0.070 0.138 0.095 0.098 0.128 0.092 0.196 0.129

LLM-BASED METRICS

BARTScore (Mean) 0.086 0.074 0.040 0.143 0.086 0.123 0.094 0.052 0.202 0.118
UniEval 0.413 0.353 0.359 0.324 0.362 0.577 0.439 0.458 0.446 0.480
G-Eval (GPT4) 0.429 0.413 0.409 0.437 0.422 0.565 0.510 0.470 0.581 0.531

ENSEMBLE BASELINES

Uniform 0.141 0.133 0.117 0.213 0.151 0.201 0.170 0.150 0.298 0.205
Weighted Avg 0.150 0.141 0.122 0.220 0.159 0.215 0.179 0.158 0.309 0.215

METAMETRICS-SUM

GP 0.172 0.140 0.130 0.252 0.174 0.244 0.179 0.167 0.354 0.236
XGBoost 0.192 0.186 0.186 0.276 0.210 0.274 0.236 0.239 0.386 0.284

W/ LLM-BASED METRICS
GP 0.454 0.419 0.409 0.449 0.433 0.609 0.519 0.470 0.601 0.550
GP (Top 2) 0.461 0.428 0.409 0.449 0.437 0.628 0.528 0.470 0.601 0.557
XGBoost 0.476 0.367 0.404 0.447 0.424 0.642 0.460 0.512 0.600 0.553
XGBoost (Top 2) 0.476 0.436 0.430 0.445 0.447 0.636 0.508 0.511 0.594 0.562

F.5 REWARD MODEL SCORING

Table 14 describes the detailed breakdown of accuracy between metrics with human preference.

F.6 ABLATION STUDY

Table 15 presents the results of an ablation study on the application of GP using three different
weighting methods: linear, multiplicative, and combined (linear and multiplicative) on Summariza-
tion, Machine Translation, and Reward Model tasks as described in B.5. The results indicate that
the linear weighting method generally outperforms the other approaches on average. This is likely
due to GP’s preference for operating on lower-dimensional spaces Li et al. (2016); Frazier (2018);
Nayebi et al. (2019); Malu et al. (2021); Binois & Wycoff (2022).These findings reiterate the benefits
of using fewer metrics for evaluation, which simplifies the optimization process.

Table 16 compares Kendall and Spearman correlations with human ratings for the summarization
task using XGBoost. The results show minimal performance differences between the two objective
functions, which is expected given the similarity of evaluation measurement between Spearman and
Kendall correlations.
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Table 10: Kendall correlation results with human ratings for summarization task on Benchmark
LLM. Faith., Coh., and Cons. correspond to faithfulness, coherence, and consistency, respectively.
Bold and underlined values indicate the best and second best performance, respectively.

Metric Benchmark LLM
Faith. Coh. Cons.

BLEU 0.162 0.246 0.252
chrF 0.272 0.163 0.342
METEOR 0.251 0.182 0.331
ROUGE-1 0.195 0.252 0.290
ROUGE-3 0.138 0.142 0.225
ROUGE-4 0.138 0.085 0.200
ROUGE-l 0.137 0.270 0.239
ROUGE-WE1 0.223 0.218 0.292
BARTScore (Mean) 0.080 0.216 0.166
BLEURT (Max) 0.046 0.264 0.143
BLEURT (Mean) 0.046 0.264 0.143
BERTScore (f1) 0.171 0.280 0.283
BERTScore (Recall) 0.228 0.223 0.333
SummaQA (f1) 0.318 0.038 0.293
SummaQA (Prob) 0.330 -0.003 0.303

ENSEMBLE BASELINES

Uniform 0.226 0.234 0.328
Weighted Avg 0.256 0.264 0.337

METAMETRICS-SUM

GP 0.356 0.308 0.383
XGBoost 0.406 0.411 0.397
XGBoost (Iterative Top 5) 0.377 0.378 0.383

Table 11: Full performance of METAMETRICS-QA compared to the 8 best-performing standalone
metrics and other baseline setups. Bold and underlined values indicate the best and second best
performance, respectively. The Combined column reflects results when all datasets are merged.

Setup EVOUNA EQAE Combined
NQ TQ NarrativeQA SemEval

ARMORM METRICS

ultrafeedback-honesty 0.202 0.281 0.297 0.335 0.296
helpsteer-helpfulness 0.204 0.293 0.332 0.427 0.302
helpsteer-correctness 0.206 0.300 0.336 0.403 0.305
argilla-judge-lm 0.243 0.301 0.253 0.337 0.332

N-GRAM-BASED METRICS

BLEU1 0.461 0.353 0.362 0.260 0.424
ROUGE 0.494 0.399 0.586 0.521 0.454
ROUGE-L 0.495 0.399 0.584 0.518 0.454
METEOR 0.517 0.435 0.570 0.461 0.494

METAMETRICS-QA

GP (All) 0.518 0.448 0.586 0.464 0.512
GP (Top 5) 0.506 0.450 0.570 0.452 0.512
XGBoost (All) 0.543 0.471 0.601 0.486 0.536
XGBoost (Top 5) 0.535 0.491 0.624 0.513 0.534
XGBoost (Iterative Best) 0.545 0.488 0.626 0.510 0.538
XGBoost (Iterative Top 5) 0.540 0.488 0.626 0.503 0.528

F.7 ROBUSTNESS

We demonstrate the robustness of METAMETRICS in two scenarios: cross-lingual and cross-dataset.
The cross-lingual setting assesses our method’s capability with unseen languages, while the cross-
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Table 12: Correlation with human ratings on WMT23 (MQM). †The results are collected from Fre-
itag et al. (2023). Bold and underlined values indicate the best and second best performance, re-
spectively.

Metric overall en-de he-en zh-en
sys/seg sys seg seg sys seg seg sys seg seg
avg-corr pearson pearson acc-t pearson pearson acc-t pearson pearson acc-t

REFERENCE-BASED METRIC

chrF† 0.694 0.866 0.232 0.519 0.776 0.221 0.460 0.809 0.063 0.485
BLEU† 0.696 0.917 0.192 0.520 0.769 0.220 0.442 0.734 0.119 0.472
BERTScore† 0.742 0.891 0.325 0.528 0.895 0.335 0.515 0.810 0.236 0.499
Yisi-1† 0.754 0.925 0.366 0.542 0.917 0.395 0.529 0.823 0.290 0.504
MetricX-23-XXL† 0.808 0.977 0.585 0.603 0.910 0.548 0.577 0.873 0.625 0.531
XCOMET-Ensemble† 0.825 0.980 0.695 0.604 0.950 0.556 0.586 0.927 0.650 0.543
COMET 0.779 0.990 0.432 0.575 0.940 0.401 0.531 0.898 0.396 0.514
XCOMET-XL 0.817 0.970 0.670 0.596 0.949 0.530 0.576 0.928 0.607 0.530
XCOMET-XXL 0.817 0.983 0.660 0.602 0.952 0.465 0.560 0.965 0.597 0.546

METAMETRICS-MT
GP 0.819 0.970 0.638 0.610 0.947 0.546 0.590 0.900 0.646 0.539
XGBoost 0.825 0.992 0.680 0.616 0.957 0.557 0.574 0.929 0.637 0.546

REFERENCE-FREE METRIC

mbr-metricx-qe† 0.788 0.976 0.571 0.584 0.915 0.411 0.553 0.936 0.489 0.537
MetricX-23-QE† 0.800 0.969 0.626 0.596 0.858 0.520 0.564 0.859 0.647 0.527
GEMBA-MQM† 0.802 0.993 0.502 0.572 0.939 0.401 0.564 0.991 0.449 0.522
XCOMET-QE-Ensemble† 0.808 0.974 0.679 0.588 0.909 0.498 0.554 0.892 0.647 0.533
CometKiwi-QE 0.781 0.946 0.475 0.569 0.859 0.387 0.544 0.963 0.442 0.525
MetricX-23-QE-L 0.763 0.868 0.501 0.577 0.616 0.419 0.536 0.835 0.622 0.508
MetricX-23-QE-XXL 0.797 0.934 0.547 0.607 0.813 0.459 0.575 0.877 0.652 0.531
CometKiwi-QE-XL 0.786 0.976 0.447 0.571 0.900 0.384 0.533 0.974 0.430 0.522

METAMETRICS-MT-QE
GP 0.801 0.934 0.556 0.609 0.815 0.474 0.578 0.900 0.660 0.537
XGBoost 0.805 0.967 0.583 0.604 0.881 0.509 0.568 0.869 0.642 0.526

dataset setting evaluates its performance in the face of distribution shifts or when the dataset origi-
nates from a different domain.

F.7.1 CROSS-LINGUAL SETTING

We evaluate our method on WMT23 and WMT24 for unseen language pairs. To calibrate
METAMETRICS, we employ three specific language pairs: zh-en (Chinese-English), en-de
(English-German), and en-ru (English-Russian). For WMT23, we test our calibrated metric on
unseen language pairs, such as he-en (Hebrew-English), with results presented in Table 17. For
WMT24, we extend the evaluation to include en-es (English-Spanish) and ja-zh (Japanese-
Chinese), with results detailed in Table 18.

F.7.2 CROSS-DATASET SETTING

In addition to the cross-lingual setting, we also explore a cross-dataset scenario specifically for image
captioning, as shown in Table 19. Here, we present the results when METAMETRICS-CAP is tuned
on THuMB 1.0 and tested on Flickr8k, and vice versa. Our findings reveal that METAMETRICS-
CAP, whether using GP or XGBoost, outperforms individual metrics, demonstrating its robustness
in the presence of data shifts.

F.8 TIME BENCHMARK

We benchmark the time elapsed to run training and performing inference. All experiments are
run on the same machine with AMD EPYC 9354 32-Core Processor and NVIDIA RTX 6000 Ada
GPU with 48GB memory. We show the detailed runtime for train and test split, and calibration
on SummEval dataset in Table 20. Specifically, for G-Eval (GPT4), it costs around US$82 to run
SummEval benchmark with a max token of 5, temperature of 2, top p of 1, a frequency penalty of 0,
a presence penalty of 0, and completion choices of 20.
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Table 13: Kendall correlation results of METAMETRICS-CAP is tuned on THumB 1.0 and tested
on Flickr8k, and vice versa. Scores are reported for multiple metrics, with the average performance
(avg.) across datasets. Bold and underlined values indicate the best and second best performance,
respectively.

Metric Flickr8k THumB 1.0 avg.
BLEU-1 0.377 0.264 0.321
BLEU-4 0.361 0.210 0.286
ROUGE 0.375 0.237 0.306
METEOR 0.481 0.281 0.381
CIDEr 0.498 0.263 0.381
SPICE-F 0.591 0.200 0.396
SPICE-PR 0.603 0.170 0.387
SPICE-RE 0.579 0.221 0.400
TIGEr 0.542 0.153 0.348
CLIP-S 0.514 0.292 0.403
RefCLIP-S 0.576 0.210 0.393

METAMETRICS-CAP

GP (All) 0.664 0.329 0.496
GP (Top 5) 0.655 0.277 0.466
XGBoost (All) 0.670 0.277 0.474
XGBoost (Top 5) 0.664 0.283 0.474
XGBoost (Iterative-Best) 0.662 0.285 0.474
XGBoost (Iterative-Top5) 0.659 0.276 0.468

METAMETRICS-CAP (Cross-Dataset)

GP (All) 0.638 0.298 0.468
GP (Top 5) 0.560 0.246 0.403
XGBoost (All) 0.595 0.323 0.449
XGBoost (Top 5) 0.575 0.311 0.443
XGBoost (Iterative-Best) 0.635 0.321 0.478
XGBoost (Iterative-Top 5) 0.634 0.301 0.467

To compare the proper time evaluation on test split with METAMETRICS-SUM, it is important to
account for all the components of METAMETRICS-SUM’s evaluation process. Specifically, for
individual metrics, we can consider the inference time on the test split. On the other hand, for
METAMETRICS-SUM, we need to consider the total time, consisting of inference time on both the
train and test splits, and then the calibration time using the train set. For example, G-Eval (GPT4)
takes 7,173.50 seconds to evaluate on the test split, while XGBoost (all with LLM-based metrics)
takes 3,976.47 + 9,292.83 + 647.08 = 13,916.38 seconds to evaluate on the test split.

Certain metric groups, such as BLEURT, SummaQA, and BERTScore, have multiple variations,
all of which can be computed in a single evaluation pass. Therefore, the time measurement for
METAMETRICS-SUM reflects the total duration of the pass, rather than the summation of time of
all individual rows.

An important observation is that the bottleneck for METAMETRICS-SUM lies in the inference time
for both the train and test splits, which dominates the total runtime compared to the calibration
time. This is particularly evident when METAMETRICS-SUM includes metrics like G-Eval. The
calibration time is relatively minor, with the longest calibration being for GP (all with LLM-based
metrics), which takes 647.08 seconds. However, if the metric outputs are already available, the
inference step can be skipped.

Currently, the reported time for processing the train and test splits for METAMETRICS-SUM as-
sumes a sequential evaluation of metrics. However, this sequential approach can be optimized by
running metrics in parallel, as their evaluations are completely independent of each other. In other
words, these computations are embarrassingly parallelizable. With this optimization, the total run-
time for METAMETRICS-SUM would effectively be the time taken by the slowest metric, plus the
calibration time. For example, for GP (all without LLM), the longest metric that takes to be eval-
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Table 14: Accuracy results for Reward-Model-As-A-Metric. Bold and underlined values indicate
the best and second best performance, respectively.

Metric Score Chat Chat Hard Safety Reasoning
Llama-3.1-Nemotron-70B-Reward 94.1 97.5 85.7 95.1 98.1
Skywork-Reward-Gemma-2-27B 93.8 95.8 91.4 91.9 96.1
TextEval-Llama3.1-70B 93.5 94.1 90.1 93.2 96.4
Skywork-Critic-Llama-3.1-70B 93.3 96.6 87.9 93.1 95.5
URM-LLaMa-3.1-8B 92.9 95.5 88.2 91.1 97.0
SFR-LLaMa-3.1-70B-Judge-r 92.7 96.9 84.8 91.6 97.6
Skywork-Reward-Llama-3.1-8B 92.5 95.8 87.3 90.8 96.2
GRM-Llama3-8B 91.5 95.5 86.2 90.8 93.6
Internlm2-20B-Reward 90.2 98.9 76.5 89.5 95.8
ArmoRM-Llama3-8B-v0.1 90.4 96.9 76.8 90.5 97.3
URM-LLaMa-3-8B 89.9 96.9 78.7 88.2 95.7
Internlm2-7B-Reward 87.6 99.2 69.5 87.2 94.5

METAMETRICS-RM

GP 93.5 98.9 86.2 90.7 98.2
GP (Top 3) 92.8 98.3 84.4 90.7 97.9
XGBoost 92.9 95.8 89.7 92.2 94.0
XGBoost (Iterative Best) 92.7 95.5 89.0 91.6 94.7
XGBoost (Iterative Top 3) 92.3 95.5 87.7 91.2 94.8
XGBoost (Top 3) 92.2 96.6 86.2 91.2 94.7

Table 15: Ablation study on GP using linear, multiplicative, and combined (linear and multiplicative)
weightings on Machine Translation (MT), and Reward Model tasks.

Method MT MT (QE) Reward Model
GP (Linear) 0.819 0.801 93.5
GP (Multiplicative) 0.822 0.798 91.2
GP (Combined) 0.818 0.803 92.1

Table 16: Kendall correlation results with human ratings for summarization task with Spearman
and Kendall as the evaluation functions. Coh., Cons., Rel., and Faith. corresponds to coherence,
consistency, relevance, and faithfulness respectively.

Metric SummEval Benchmark LLM Combined
Coh. Cons. Fluency Rel. Faith. Coh. Cons. Coh. Cons. Avg.

XGBoost (Kendall) 0.475 0.376 0.407 0.439 0.406 0.411 0.397 0.403 0.367 0.409
XGBoost (Spearman) 0.476 0.376 0.403 0.448 0.406 0.411 0.397 0.402 0.369 0.409

uated is SummaQA, which takes 790.11 seconds. Therefore, the total running time when running
METAMETRICS-NUM in a completely parallel manner will be 790.11 + 402.51 = 1,192.62 sec-
onds.

G WEIGHTS AND FEATURE IMPORTANCE

G.1 QUESTION ANSWERING

There are 8 setups for the question-answering task. The resulting weights or feature importance for
each setup are reported in Figure 5.
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Table 17: Results on Cross-lingual settings on WMT23 for Hebrew-English (he-en). Bold and
underline values indicate the best and second best performance, respectively.

Metric he-en
sys seg seg

pearson pearson acc-t

chrF† 0.776 0.221 0.460
BLEU† 0.769 0.220 0.442
BERTScore† 0.895 0.335 0.515
Yisi-1† 0.917 0.395 0.529
MetricX-23-XXL† 0.910 0.548 0.577
XCOMET-Ensemble† 0.950 0.556 0.586
COMET 0.940 0.401 0.531
XCOMET-XL 0.949 0.530 0.576
XCOMET-XXL 0.952 0.465 0.560

METAMETRICS-MT
GP 0.947 0.546 0.590
XGBoost 0.957 0.557 0.574

Table 18: Average Results of acc-t and Soft-pairwise accuracy (SPA) on Cross-lingual settings on
WMT24 (Freitag et al., 2024) for English-Spanish (en-es) and Japanese-Chinese (ja-zh). We report
the number following the metric calculated by WMT24 organizers for language breakdown perfor-
mance since the test set labels are unseen to the authors. Bold and underline values indicate the best
and second best performance, respectively.

Metric en-es ja-zh avg
sentinel-ref-mqm 0.631 0.490 0.561
BLEU 0.596 0.588 0.592
spBLEU 0.602 0.590 0.596
chrF 0.615 0.616 0.616
chrfS 0.630 0.602 0.616
BERTScore 0.594 0.651 0.623
MEE4 0.635 0.625 0.630
damonmonli 0.688 0.633 0.661
YiSi-1 0.657 0.666 0.662
PrismRefSmall 0.666 0.667 0.667
PrismRefMedium 0.734 0.545 0.640
BLCOM 1 0.698 0.676 0.687
BLEURT-20 0.688 0.685 0.687
COMET-22 0.744 0.636 0.690
XCOMET 0.740 0.700 0.720
MetricX-24 (Hybrid) 0.742 0.718 0.730

METAMETRICS-MT (GP) 0.745 0.717 0.731

GP-ALL (NQ). The selected metrics are helpsteer-verbosity, ArmoRM-overall,
meteor, and rougel.

GP-ALL (TQ). The selected metrics are code-inst-following,
helpsteer-coherence, helpsteer-complexity, helpsteer-verbosity,
ultrafb-inst following, ArmoRM-overall, meteor, rouge, and rougel.

GP-ALL (NarrativeQA). The selected metrics are beavertails-is safe,
code-readbility, code-style, ultrafb-inst following,
ultrafb-truthfulness, ArmoRM-overall, bertscore-f1, bertscore-p,
bertscore-r, bleu4, meteor, and rouge.
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Table 19: Kendall correlation Cross-Dataset results of METAMETRICS-CAP when it is tuned on
THumB 1.0 and tested on Flickr8k, and vice versa. The columns correspond to the testing dataset.
Scores are reported for multiple metrics, with the average performance (avg.) across Cross-Dataset
results. Bold and underlined values indicate the best and second best performance, respectively.

Metric Flickr8k THumB 1.0 avg.
BLEU-1 0.377 0.264 0.321
BLEU-4 0.361 0.210 0.286
ROUGE 0.375 0.237 0.306
METEOR 0.481 0.281 0.381
CIDEr 0.498 0.263 0.381
SPICE-F 0.591 0.200 0.396
SPICE-PR 0.603 0.170 0.387
SPICE-RE 0.579 0.221 0.400
TIGEr 0.542 0.153 0.348
CLIP-S 0.514 0.292 0.403
RefCLIP-S 0.576 0.210 0.393

METAMETRICS-CAP

GP (All) 0.638 0.298 0.468
GP (Top 5) 0.560 0.246 0.403
XGBoost (All) 0.595 0.323 0.449
XGBoost (Top 5) 0.575 0.311 0.443
XGBoost (Iterative-Best) 0.635 0.321 0.478
XGBoost (Iterative-Top 5) 0.634 0.301 0.467

GP-ALL (SemEval). The selected metrics are code-complexity,
code-explanation, code-inst-following, code-readability, code-style,
helpsteer-coherence, helpsteer-helpfulness, prometheus-score,
ultrafb-overall, bertscore-r, meteor, and rougel.

GP-ALL (Combined). The selected metrics are code-style, helpsteer-correctness,
helpsteer-verbosity, ArmoRM-overall, bleu4, meteor, and rouge.

GP-Top 5 (NQ). The selected metrics are bertscore-r, bleu1, meteor, rouge and
rougel.

GP-Top 5 (TQ). The selected metrics are helpsteer-correctness, bleu1, meteor,
rouge, and rougel.

GP-Top 5 (NarrativeQA). The selected metrics are bertscore-f1, bertscore-r,
meteor, rouge, and rougel.

GP-Top 5 (SemEval). The selected metrics are helpsteer-coherence, bleu4, meteor,
rouge, and rougel.
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Table 20: Runtime for inference time on train and test split and the calibration time for
METAMETRICS. Rows with exact same run time is due to the groups of metrics (e.g., BLEURT
(Max) and BLEURT (Mean)) being calculated in a single pass. †G-Eval (GPT4) costs around US$82
to run SummEval benchmark with a max token of 5, temperature of 2, top p of 1, a frequency
penalty of 0, a presence penalty of 0, and completion choices of 20. The running time reported for
METAMETRICS-SUM for train and test split is in a sequential manner. In other words, running
each metric in an embarrassingly parallel way can reduce the overall inference time. To compare
the proper time evaluation on test split with METAMETRICS-SUM, it is important to account for all
the components of METAMETRICS-SUM’s evaluation process. Specifically, for individual metrics,
we can consider the inference time on the test split. On the other hand, for METAMETRICS-SUM,
we need to consider the inference time on both the train and test splits, and then the calibration time
using the train set. For example, G-Eval (GPT4) takes 7,173.50 seconds to evaluate on the test split,
while XGBoost (all with LLM-based metrics) takes 3,976.47 + 9,292.83 + 647.08 = 13,916.38
seconds to evaluate on the test split.

Metric Inference Time (in sec) Calibration Time (in sec)
Train Split Test Split

BLEU 0.72 1.73 N/A
chrF 3.37 8.67 N/A
METEOR 5.74 13.57 N/A
ROUGE-1 57.19 162.77 N/A
ROUGE-3 68.24 151.90 N/A
ROUGE-4 70.43 149.65 N/A
ROUGE-l 66.53 155.15 N/A
ROUGE-WE1 56.35 100.19 N/A
BLEURT (Max) 139.87 336.22 N/A
BLEURT (Mean) 139.87 336.22 N/A
BERTScore (f1) 1.74 3.99 N/A
BERTScore (Recall) 1.74 3.99 N/A
SummaQA (f1) 322.07 790.11 N/A
SummaQA (Prob) 322.07 790.11 N/A

LLM-BASED METRICS

BARTScore (Max) 22.39 50.83 N/A
BARTScore (Mean) 22.39 50.83 N/A
UniEval 80.37 194.55 N/A
G-Eval (GPT4) 3,081.46† 7,173.50† N/A

ENSEMBLE BASELINES

Uniform 3,976.47† 9,292.83† N/A
Weighted Avg 3,976.47† 9,292.83† N/A

METAMETRICS-SUM

GP (all without LLM-based metrics) 792.25 1,873.95 402.51
XGBoost (all without LLM-based metrics) 792.25 1,873.95 276.52

W/ LLM-BASED METRICS
GP (all with LLM-based metrics) 3,976.47† 9,292.83† 647.08
GP (Top 2) 3,161.83† 7,368.05† 187.73
XGBoost (all with LLM-based metrics) 3,976.47† 9,292.83† 337.88
XGBoost (Top 2) 3,161.83† 7,368.05† 223.69

GP-Top 5 (Combined). The selected metrics are argilla-judge llm, bleu1, meteor,
rouge, and rougel.

G.2 MACHINE TRANSLATION

There are 2 settings for MT: reference-based and reference-free. Both setups’ resulting weights or
feature importance are reported in Figure 6. The weights selected for GP are as follows:
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Figure 5: Weights and Feature Importance for METAMETRICS-QA.

GP-ALL (Reference-based). The selected metrics are MetricX-XXL, COMET, and
XCOMET-XL.

GP-ALL (Reference-free). The selected metrics are MetricX-QE-XXL,
MetricX-QE-Large, COMETKiwi-QE, and COMETKiwi-XL-QE.

G.3 IMAGE CAPTIONING

We utilize two datasets for Image Captioning, each with two setups: a) cross-dataset and b) in-
dataset. The resulting weights and feature importance are presented in Figure 7.

The weights selected in GP are as follows:

GP-ALL (Flickr8k). The selected metrics are cider, clipscore, meteor,
ref-clipscore, spice f, spice pr, spice re, and tiger.

GP-ALL (THumB 1.0). The selected metrics are bleu1, clipscore, meteor,
ref-clipscore, rouge, spice re, and tiger.
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Figure 6: Weights and Feature Importance for METAMETRICS-MT.

Figure 7: Weights and Feature Importance for METAMETRICS-CAP.

GP Top 5 (Flickr8k). The selected metrics are ref-clipscore, spice f, spice pr,
spice re, and tiger.

GP Top 5 (THumB 1.0). The selected metrics are bleu1, cider, clipscore, meteor, and
rouge.

G.4 TEXT SUMMARIZATION

The weights and feature importance from the resulting optimization are reported in Figure 8, Figure
9, and Figure 10 for SummEval, BLLM, and the merged dataset respectively. The weights selected
in GP are as follows:

G.4.1 W/O LLM-BASED METRICS

GP-ALL (SummEval: Coherence). The selected metrics are BLEURT (Max), chrF,
Rouge-1, Rouge-4, and SummaQA (Prob).
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GP-ALL (SummEval: Consistency). The selected metrics are BERTScore (Recall),
BLEURT (Max), chrF, SummaQA (f1), and SummaQA (Prob).

GP-ALL (SummEval: Fluency). The selected metrics are BERTScore (Recall), BLEURT
(Max), chrF, SummaQA (f1), and SummaQA (Prob).

GP-ALL (SummEval: Relevance). The selected metrics are BERTScore (Recall),
BLEURT (Mean), chrF, Rouge-WE1, Rouge-1, Rouge-4, and SummaQA (Prob).

G.4.2 W/ LLM-BASED METRICS

GP-ALL (SummEval: Coherence). The selected metrics are BARTScore (Mean), BLEURT
(Max), BLEURT (Mean), Rouge-3, Rouge-4, SummaQA (Prob), G-Eval, and
UniEval.

GP-ALL (SummEval: Consistency). The selected metrics are BLEURT (Max), SummaQA
(Prob), G-Eval, and UniEval.

GP-ALL (SummEval: Fluency). The selected metric is G-Eval.

GP-ALL (SummEval: Relevance). The selected metrics are BLEURT (Mean), chrF,
Rouge-3, Rouge-4, SummaQA (Prob), G-Eval, and UniEval.

GP-Top 2 (SummEval: Coherence). The selected metrics are G-Eval and UniEval.

GP-Top 2 (SummEval: Consistency). The selected metrics are G-Eval and UniEval.

GP-Top 2 (SummEval: Fluency). The selected metrics are G-Eval and UniEval.

GP-Top 2 (SummEval: Relevance). The selected metrics are G-Eval and UniEval.

GP-ALL (BLLM: Faithfulness). The selected metrics are chrF, SummaQA (f1), and
SummaQA (Prob).
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GP-ALL (BLLM: Coherence). The selected metrics are BARTScore, BERTScore (f1),
BLEURT, Rouge-1, and Rouge-L.

GP-ALL (BLLM: Relevance). The selected metrics are BERTScore (Recall), chrF,
METEOR, Rouge-WE1, SummaQA (f1), and SummaQA (Prob).

GP-Top 5 (BLLM: Faithfulness). The selected metrics are METEOR, ROUGE-WE1, SummaQA
(f1) and SummaQA (Prob).

GP-Top 5 (BLLM: Coherence). The selected metrics are BERTScore (f1), BLEURT,
Rouge-1, and Rouge-L.

GP-Top 5 (BLLM: Relevance). The selected metrics are BERTScore (Recall), chrF,
METEOR, Rouge-WE1, and SummaQA (Prob).

GP-ALL (Combined: Coherence). The selected metrics are BARTScore (Mean),
BERTScore (f1), and BLEURT (Mean).

GP-ALL (Combined: Relevance). The selected metrics are BERTScore (f1), BERTScore
(Recall), BLEURT (Mean), SummaQA (f1) and SummaQA (Prob).

GP-Top 5 (Combined: Coherence). The selected metrics are BERTScore (f1) and BLEURT
(Mean).

GP-Top 5 (Combined: Relevance). The selected metrics are BERTScore (f1), BERTScore
(Recall), Rouge-WE1, and Rouge-1.

G.5 REWARD MODELING

The weights and feature importance from the resulting optimization are reported in Figure 11. The
weights selected in GP are as follows:

GP-ALL. The selected metrics are GRM-Gemma-2B-rewardmodel-ft all,
GRM-Llama3-8B-rewardmodel-ft all, Skyword-Reward-Llama-3.1-8B all,
URM-LLaMa-3.1-8B all, internlm2-1 8b-reward all, and
internlm2-7b-reward all.

GP-Top 3. The selected metrics are GRM-Llama3-8B-rewardmodel-ft all,
Skyword-Reward-Llama-3.1-8B all, and internlm2-7b-reward all.
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Figure 8: Weights and Feature Importance for METAMETRICS-SUMM on the SummEval dataset.

H CORRELATION MEASUREMENT DETAILS

This section describes the details of correlation measurements used in our experiments.

Kendall’s Tau Kendall’s Tau measures rank correlation by assessing the agreement between two
rankings based on the proportion of concordant and discordant pairs. It is commonly used to eval-
uate how closely an evaluation metric’s rankings align with human rankings in tasks like Machine
Translation.

H.1 MACHINE TRANSLATION TASK CORRELATION

System-Level Pearson Correlation (sys pearson) This metric evaluates the correlation between
metric and human scores aggregated at the system level. It is calculated as the Pearson correlation
coefficient between the averaged scores of each system.

Segment-Level Pearson Correlation (seg pearson) At the segment level, correlation is computed
by flattening the system × segment score matrices into vectors and comparing the metric-generated
vector with the human-evaluation vector. This provides a more granular assessment of alignment.

System-level pairwise ranking accuracy (seg acc-t) System-level pairwise ranking accuracy, as
proposed by Kocmi et al. (2021) measures the agreement between a metric and human judgments in
ranking translation systems. It is computed as the percentage of system pairs for which the metric’s

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Figure 9: Weights and Feature Importance for METAMETRICS-SUMM on the BLLM dataset.

ranking matches human-provided rankings. Rankings are based on pooled data across all language
pairs, making this metric robust for system comparisons.
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Figure 10: Weights and Feature Importance for METAMETRICS-SUMM on the merged dataset.
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Figure 11: Weights and Feature Importance for METAMETRICS-RM.
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