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ABSTRACT

In theoretical neuroscience, recent work leverages deep learning tools to explore
how some network attributes critically influence its learning dynamics. Notably,
initial weight distributions with small (resp. large) variance may yield a rich
(resp. lazy) regime, where significant (resp. minor) changes to network states
and representation are observed over the course of learning. However, in biology,
neural circuit connectivity could exhibit a low-rank structure and therefore differs
markedly from the random initializations generally used for these studies. As such,
here we investigate how the structure of the initial weights — in particular their
effective rank — influences the network learning regime. Through both empirical
and theoretical analyses, we discover that high-rank initializations typically yield
smaller network changes indicative of lazier learning, a finding we also confirm
with experimentally-driven initial connectivity in recurrent neural networks. Con-
versely, low-rank initialization biases learning towards richer learning. Importantly,
however, as an exception to this rule, we find lazier learning can still occur with a
low-rank initialization that aligns with task and data statistics. Our research high-
lights the pivotal role of initial weight structures in shaping learning regimes, with
implications for metabolic costs of plasticity and risks of catastrophic forgetting.

1 INTRODUCTION

Structural variations can significantly impact learning dynamics in theoretical neuroscience studies of
animals. For instance, studies have revealed that specific neural connectivity patterns can facilitate
faster learning of certain tasks (Braun et al., 2022; Raman & O’Leary, 2021; Simard et al., 2005;
Canatar et al., 2021; Xie et al., 2022; Goudar et al., 2023; Chang et al., 2023). In deep learning,
structure, encompassing architecture and initial connectivity, crucially dictates learning speed and
effectiveness (Richards et al., 2019; Zador, 2019; Yang & Molano-Mazón, 2021; Braun et al., 2022).

A key structural aspect is the initial connectivity prior to training. Specifically, the initial connection
weight magnitude can significantly bias learning dynamics, pushing them towards either rich or lazy
regimes (Chizat et al., 2019; Flesch et al., 2021). Lazy learning often induces minor changes in
the network during the learning process. Such minimal adjustments are advantageous given that
plasticity is metabolically costly (Mery & Kawecki, 2005; Plaçais & Preat, 2013), and significant
changes in representations might lead to issues like catastrophic forgetting (McCloskey & Cohen,
1989; Kirkpatrick et al., 2017). On the other hand, the rich learning regime can significantly adapt
the network’s internal representations to task statistics, which can be advantageous for task feature
acquisition and has implications for generalization (Flesch et al., 2021; George et al., 2022). Most
research on initial weight magnitude’s role in learning dynamics has focused on random Gaussian
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or Uniform initializations (Woodworth et al., 2020; Flesch et al., 2021; Braun et al., 2022). These
patterns stand in contrast to the connectivity structures observed in biological neural circuits, which
could exhibit a more pronounced low-rank eigenstructure (Song et al., 2005). This divergence prompts
a pivotal question: how does the initial weight structure, given a fixed initial weight magnitude, bias
the learning regime?

This study examines how initial weight structure, particularly the effective rank, modulates the
effective richness or laziness of task learning within the standard training regime. We note that rich
and lazy learning regimes have well established meanings in deep learning theory. The latter being
defined as a situation where the Neural Tangent Kernel (NTK) stays stationary during training, while
the former refers to the case where the NTK changes. In this work, we slightly extend these definitions
and introduce effective learning richness/laziness. Unlike the traditional definition, which is based
upon initialization, effective learning richness/laziness is defined in terms of post-training adjustment
measurements. From this perspective, a learning process is deemed effectively "lazy" if the measured
NTK movement is small. For example, consider a network whose initialization puts it in standard
rich regime, but for a given task, its NTK moves very little during training. We define learning for this
specific situation as effectively lazy. In other words, while the standard regime definition informs us
(prior to training) whether the network can adapt significantly to task training or not, our "effective"
definition lies in the post-training effects.

1.1 CONTRIBUTIONS

Our main contributions and findings can be summarized as follows:

• Through theoretical derivation in two-layer feedforward linear network, we demonstrate
that higher-rank initialization results in effectively lazier learning on average across tasks
(Theorem 1). We note that the emphasis of the theorem is on the expectation across tasks.

• We validate our theoretical findings in recurrent neural networks (RNNs) through numerical
experiments on well-known neuroscience tasks (Figure 1) and demonstrate the applicability
to different initial connectivity structures extracted from neuroscience data (Figure 2).

• We identify scenarios where certain low-rank initial weights still result in effectively lazier
learning for specific tasks (Proposition 1 and Figure 3). We postulate that such patterns
emerge when a neural circuit is predisposed — perhaps due to evolutionary factors or
post-development — to certain tasks, ingraining specific inductive biases in neural circuits.

1.2 RELATED WORKS

An extended discussion on related works can also be found in Appendix A.

Theoretical Foundations of Neural Network Regimes and Implications for Neural Circuits:
The deep learning community has made tremendous strides in developing theoretical groundings
for artificial neural networks (Advani et al., 2020; Jacot et al., 2018; Alemohammad et al., 2020;
Agarwala et al., 2022; Atanasov et al., 2021; Azulay et al., 2021; Emami et al., 2021). A focal point
is the ’rich’ and ’lazy’ learning regimes dichotomy, which have distinct impacts on representation
and generalization (Chizat et al., 2019; Flesch et al., 2021; Geiger et al., 2020; George et al., 2022;
Ghorbani et al., 2020; Woodworth et al., 2020; Paccolat et al., 2021; Nacson et al., 2022; HaoChen
et al., 2021; Flesch et al., 2023). The ’lazy’ regime results in minimal weight changes, while the ’rich’
regime fosters task-specific adaptations. The transition between these is influenced by various factors,
including initial weight scale and network width (Chizat et al., 2019; Geiger et al., 2020).

Deep learning theories increasingly inform studies of biological neural network learning dynamics
(Bordelon & Pehlevan, 2022; Liu et al., 2022a; Braun et al., 2022; Ghosh et al., 2023; Saxe et al., 2019;
Farrell et al., 2022; Papyan et al., 2020; Tishby & Zaslavsky, 2015). For the rich/lazy regime theory,
the existence of diverse learning regimes in neural systems is evident through the resource-intensive
plasticity-driven transformations prevalent in developmental phases, followed by more subdued
adjustments (Lohmann & Kessels, 2014), and previous investigations characterized neural network
behaviors under distinct regimes (Bordelon & Pehlevan, 2022; Schuessler et al., 2023) and discerning
which mode yields solutions mimicking neural data (Flesch et al., 2021). Our work extends these
studies by examining how initial weight structures affect learning.
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Neural circuit initialization, connectivity patterns and learning: Extensive research has explored
the influence of various random initializations on deep network learning (Saxe et al., 2013; Bahri
et al., 2020; Glorot & Bengio, 2010; He et al., 2015; Arora et al., 2019). The literature predominantly
focuses on random initialization, but actual neural structures exhibit markedly different connectivity
patterns, such as Dale’s law and enriched cell-type-specific connectivity motifs (Rajan & Abbott,
2006; Ipsen & Peterson, 2020; Harris et al., 2022; Dahmen et al., 2020; Aljadeff et al., 2015).
Motivated by existing evidence of low-rankedness in the brain (Thibeault et al., 2024) and the
overrepresentation of local motifs in neural circuits (Song et al., 2005), which could be indicative
of low-rank structures due to their influence on the eigenspectrum (Dahmen et al., 2020; Shao &
Ostojic, 2023), our study explores the impact of connectivity effective rank on learning regimes. This
focus is driven by the plausible presence of such low-rank structures in the brain, potentially revealed
through these local motifs. With emerging connectivity data (Campagnola et al., 2022; MICrONS
Consortium et al., 2021; Dorkenwald et al., 2022; Winnubst et al., 2019; Scheffer et al., 2020), future
work is poised to encompass rich additional features of connectivity.

2 SETUP AND THEORETICAL FINDINGS

2.1 RNN SETUP

We examine recurrent neural networks (RNNs) because they are commonly adopted for modeling
neural circuits (Barak, 2017; Song et al., 2016). We consider a RNN with Nin input units, N hidden
units and Nout readout units (Figure 1A). The update formula for ht ∈ RN (the hidden state at time
t) is governed by (Ehrlich et al., 2021; Molano-Mazon et al., 2022):

ht+1 = ρht + (1− ρ)(Whf(ht) +Wxxt), (1)

where an exponential Euler approximation is made with ρ = e−dt/τm ∈ R denoting the leak factor
for simulation time step dt and τm denoting the membrane time constant; f(·) : RN → RN is the
activation function, for which we use ReLU ; Wh ∈ RN×N (resp. Wx ∈ RN×Nin) is the recurrent
(resp. input) weight matrix and xt ∈ RNin is the input at time step t. Readout ŷt ∈ RNout , with
readout weights w ∈ RNout×N , is defined as

ŷt = ⟨w, f(ht)⟩. (2)

The objective is to minimize scalar loss L ∈ R, for which we use the cross-entropy loss for
classification tasks and mean squared error for regression tasks. L is minimized by updating the
parameters using variants of gradient descent:

∆W = −η∇WL, (3)

for learning rate η ∈ R and W = [Wh Wx wT ] ∈ RN×(Nin+N+Nout) contains all the trainable
parameters. Details of parameter settings can be found in Appendix C.

2.2 EFFECTIVE LAZINESS MEASURES

As mentioned above, we introduce effective richness and laziness, with effectively lazier (resp. richer)
learning corresponding to less (resp. greater) network change over the course of learning. To quantify
network change, we adopt the following three measures that have been used previously (George et al.,
2022). We note that these measures can be sensitive to other architectural aspects that bias learning
regimes, such as network width, so throughout we hold these variables constant when making the
comparisons.

Weight change norm quantifies the vector norm of change in W . Effectively lazier learning should
result in a lower weight change norm, and it is quantified as:

∥∆W∥ := ∥W (f) −W (0)∥, (4)

where ∥ · ∥ = ∥ · ∥F ; W (0) (resp. W (f)) are the weights before (resp. after) training.

Representation alignment (RA) quantifies the directional change in a representational similarity
matrix (RSM) before and after training. RSM focuses on the similarity between how two pairs
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of input are represented by computing the Gram matrix R of last step hidden activity. Greater
representation alignment indicates effectively lazier learning in the network, and it is obtained by

RA(R(f), R(0)) :=
Tr(R(f)R(0))

∥R(f)∥∥R(0)∥
, where R := HTH, (5)

where H ∈ RN×m is the hidden activity at the last time step; R(0) and R(f) ∈ Rm×m are the initial
and final RSM, respectively; m is the batch size.

Tangent kernel alignment (KA) quantifies the directional change in the neural tangent kernel (NTK)
before and after training; effectively lazier learning should result in higher tangent kernel alignment.
The NTK computes the Gram matrix K of the output gradient. Greater tangent kernel alignment
points to effectively lazier learning, and it is obtained by

KA(K(f),K(0)) :=
Tr(K(f)K(0))

∥K(f)∥∥K(0)∥
, where K := ∇W ŷT∇W ŷ (6)

where K(0) and K(f) ∈ Rm×m (for the Nout = 1 case) denote the initial and final NTK, respectively.

2.3 THEORETICAL FINDINGS

This subsection derives the theoretical impact of initial weight effective rank on tangent kernel
alignment. First, Theorem 1 focuses on task-agnostic settings, treating task definition as random
variables and computing the expected tangent kernel alignment across tasks. With some assumptions,
tangent kernel alignment is maximized when the initial weight singular values are distributed across
all dimensions (i.e. high-rank initialization).

In this section, our theoretical results are framed in a simplified feedforward setting, as we use a two-
layer network with linear activations. However, we return to RNNs (Eq. 1) for the rest of the paper,
and verify the generality of our theoretical findings with numerical experiments for both feedforward
and recurrent architectures. Our choice is motivated by the need for theoretical tractability. While
research on RNN learning in the NTK regime exists (Yang, 2020; Alemohammad et al., 2020; Emami
et al., 2021), we are not aware of any studies featuring the final converged NTK that could serve as a
basis for our comparison of the initial and final kernel. Consequently, we have chosen to focus on
RNNs for neural circuit modeling and employ linear feedforward networks for theoretical derivations,
a strategy also adopted by Farrell et al. (2022); numerous other studies, including Saxe et al. (2019),
(Atanasov et al., 2021), (Arora et al., 2019), and (Braun et al., 2022), have similarly concentrated on
extracting theoretical insights from linear feedforward networks.

For a two-layer linear network with input data X ∈ Rd×m, W1 ∈ RN×d and W2 ∈ R1×N as weights
for layers 1 and 2, respectively, the NTK throughout training, K, is:

K = XT (WT
1 W1 + ∥W2∥2I)X. (7)

Without the loss of generality, suppose the output target Y ∈ R1×m is generated from a linear teacher
network as Y = βTX , for some Gaussian vector β ∈ Rd, with βi ∼ N (0, 1/d).
Theorem 1. (Informal) Consider the network above with its corresponding NTK in Eq. 7, trained
under MSE loss with small initialization and whitened data. The expected kernel alignment across
tasks is maximized with high-rank initialization, i.e. the singular values of W (0)

1 are distributed
across all dimensions. (Formal statement and proof are in Appendix B)

The intuition of Theorem 1 result is that, when two random vectors are drawn in high-dimensional
spaces, corresponding to the low-rank initial network and the task, the probability of them being
nearly orthogonal is very high; this then necessitates greater movement to eventually learn the task
direction. We emphasize again that Theorem 1 is task-agnostic, i.e. it focuses on the expected
tangent kernel alignment across input-output definitions. This is in contrast to task-specific settings
(e.g. Woodworth et al. (2020)) that focus on a given task. In such task-specific settings, certain
low-rank initializations can in fact lead to lazier learning. The following proposition predicts that
if the task structure is known, low-rank initialization that is already aligned with the task statistics
(input/output covariance) can lead to kernel alignment. We revisit this proposition again in Figure 3.
We remark that initializing this way can still have high initial error because of randomized W

(0)
2 .
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Proposition 1. (Informal) Following the setup and assumptions in Theorem 1, rank-1 initializations
of the form W

(0)
1 = σ[βT /∥β∥ 0⃗ ... 0⃗] leads to a high tangent kernel alignment. (Formal

statement and proof are in Appendix B)

Above, we state technical results in terms of one metric of the effective laziness of learning — based
on the NTK; our proof in Appendix B easily extends also to the representation alignment metric.
The impact on weight change is also assessed in Appendix Proposition 2. This is in line with our
simulations with RNNs, which will show similar trends for all three of the metrics introduced in
Section 2.2).

3 SIMULATION RESULTS
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Figure 1: Low-rank initial recurrent weights, generated using SVD, lead to greater changes (or
effectively richer learning) in the recurrent neural network. A) Schematic of RNN training setup.
B) Measurements of effective richness vs laziness of learning (metrics as defined in Section 2.2), for
RNN trained on several cognitive tasks in Neurogym (Molano-Mazon et al., 2022) as well as the
sequential MNIST task (sMNIST). For details on SVD weight creation, see Appendix C. Fewer rank
points were used for sMNIST due to computational time. Each dot represents a single training run,
with each run using a different random initialization (10 runs total for each setting).

In this section we empirically illustrate and verify our main theoretical results, which are: (1) on
average, high-rank initialization leads to effectively lazier learning (Theorem 1); (2) it is still possible
for certain low-rank initializations that are already aligned to the task statistics to achieve effectively
lazier learning (Proposition 1).

Impact on effective laziness by low-rank initialization via SVD in RNNs: As a proof-of-concept,
we start in Figure 1 with low-rank initialization in RNNs by truncating an initial Gaussian random
matrix via Singular Value Decomposition (SVD), which enables us to precisely control the rank,
and rescale it to ensure that the comparison is across the same weight magnitude (Schuessler et al.,
2020). Additionally, all comparisons were made after training was completed, and all these training
sessions achieved comparable losses. For our investigations, we applied this initialization scheme
across a variety of cognitive tasks — including two-alternative forced choice (2AF), delayed-match-
to-sample (DMS), context-dependent decision-making (CXT) tasks — implemented with Neurogym
(Molano-Mazon et al., 2022) and the well-known machine learning benchmark sequential MNIST
(sMNIST). Figure 1 indicates that low-rank initial weights result in effectively richer learning and
greater network changes.
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Figure 2: Low-rank initial weight structures, inspired by biological examples, lead to effectively
richer learning. We present the eigenspectrum and the relative effective rank of connectivity in
A) structures with cell-type-specific statistics, B) structures derived from EM data, C) structures
obeying Dale’s law, and D) structures with an over-representation of chain motifs; we also present the
effective learning laziness for networks initialized with these connectivity structures. These structures
exhibit a lower effective rank compared to standard random Gaussian initialization (null). We plotted
the magnitude of the eigenvalues (Eigval mag) — scaled by the dominant eigenvalue’s magnitude
— against their indices normalized by the network size N (Eigval index). We apply the effective
laziness measures described in Section 2.2 to compare the effective laziness of experimentally-driven
initial connectivity versus standard random Gaussian initialization (null). See Appendix C for details
on network initialization. The boxplots are generated from 10 independent runs with different
initialization seeds. Due to space constraints, we include only the 2AF task here, but Appendix
Figures 5 and 6 show that similar trends hold for the DMS and CXT tasks.

These numerical trends are in line with Theorem 1, which focused on an idealized setting of a two-
layer linear network with numerical results in Appendix Figure 4A. We also demonstrated this trend
for a non-idealized feedforward setting in Appendix Figure 4B, and more explorations in feedforward
settings and across a broader range of architecture is left for future exploration due to our focus
on RNNs. In the Appendix, we show the main trends observed in Figure 1 also hold for Uniform
initialization (Figure 7), soft initial weight rank (Figure 8), various network sizes (Figure 9), learning
rates (Figure 10), gains (Figure 11), and finer time step dt (Figure 12). We note that, in addition to
fixing the weight magnitude across comparisons, the dynamical regime might also confound learning
regimes. A common method for controlling the dynamical regime is through the leading weight
eigenvalue, which affects the top Lyapunov exponent. Controlling in this manner led to similar trends
(Appendix Figure 13). Investigating the relationship between learning regimes and various concepts
of dynamical regimes further is a promising direction for future work. Moreover, since our emphasis
is on the effective learning regime, which is based on post-training changes, we concentrated on the
laziness measures computed from networks after training, rather than during the learning process.
However, we also tracked the alignment with the initial kernel and task kernel alignment during
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Figure 3: Low-rank initializations can still achieve high alignment for specific tasks (see
Proposition 1). A) The student-teacher two-layer linear network setup as described in Section 2.3,
but with feature anisotropy controlled by a feature modulation matrix F , i.e. z = Fx. The condition
number of F dictates the relative feature strength. We set the top half of the singular values of F are
set to κ, while the bottom half are set to 1, where κ represents the condition number of F . B) The
aligned initialization (green) is achieved by setting W1 as described in Proposition 1 (with β = wTF ,
w is as illustrated), so that the initialization aligns with the task statistics. The partial alignment (blue)
mirrors the aligned case, but F is substituted with its rank-(d/2) truncation, causing the network
to align only with the dominant features. We observe that a considerably higher alignment can
be achieved when the initialization aligns solely with the dominant features, especially when
the relative strength of these dominant features is high. C) The analysis from B) is replicated for
RNNs learning the sMNIST task. As the ground truth network function is elusive, we use a teacher
network with pre-trained weights. Once again, we replace F with its rank-(d/2) truncation for partial
alignment. Details on the input/output definitions and initializations, as well as other simulation
specifics, are available in Appendix C. We note that in all scenarios presented here, the initial errors
are high since the readout weights are initialized randomly, rendering it a valid learning problem.

training (Appendix Figure 14). We also examined how the kernel’s effective rank evolves throughout
the training period (Appendix Figure 15).

Low-rank initialization via biologically motivated connectivity in RNNs: To establish a closer
connection with biological neural circuits, we have tested our predictions on low-rank initialization
using a variety of biologically motivated structures capable of resulting in low-rank connectivity.
Here are some of the examples: (A) connectivity with cell-type-specific statistics (Aljadeff et al.,
2015), where each block in the weight matrix corresponds to the connections between neurons of
two distinct cell types, with the variance of these connections differing from one block to another. In
terms of block-specific connectivity statistics, there are infinite possibilities for defining the blocks,
each resulting in a unique eigenspectrum. For the example provided here, we adopted the setup
from Figure S3 in Aljadeff et al. (2015), with parameters set as α = 0.02, γ = 10, and 1− ϵ = 0.8;
these correspond to the fraction of hyperexcitable neurons, gain of hyperexcitable connections and
gain of the rest, respectively. We follow this particular setup because it has been demonstrated
to create an outlier leading eigenvalue, thereby reducing the effective rank. We also consider (B)
connectivity matrix derived from the electron microscopy (EM) data (Allen Institute, 2023), where
the synaptic connections between individual neurons are meticulously mapped to create a detailed

7



Published as a conference paper at ICLR 2024

and comprehensive representation of neural circuits. Also, we consider (C) connectivity obeying
Dale’s law, where each neuron is either excitatory or inhibitory, meaning it can only send out one
type of signal – either increasing or decreasing the activity of connected neurons – a principle
inspired by the way neurons behave in biological systems (Song et al., 2005). Additionally, (D) the
over-representation of certain localized connectivity patterns (or network motifs) — such as the chain
motif, where two cells are connected via a third intermediary cell — creates outliers in the weight
eigenspectrum, subsequently lowering the effective rank (Zhao et al., 2011; Hu et al., 2018; Dahmen
et al., 2020). Details of these initial connectivity structures are provided in Appendix C.

As illustrated in Figure 2, these connectivity structures, motivated by known features of biological
neural networks, exhibit a lower effective rank compared to standard random Gaussian initialization,
thereby serving as natural testbeds for our theoretical predictions. To quantify (relative) effective rank,
we used (

∑
i |λi|)/(|λ1|N), which indicates the fraction of eigenvalues on the order of the dominant

one and captures the (scaled) area under the curve of the eigenspectrum plots. We also tried effective
rank based on singular values, i.e. (

∑
i |si|)/(|s1|N), in Appendix Figure 16 and observed similar

trends. Importantly, Figure 2 show that these different low-rank biologically motivated structures
can lead to effectively richer learning compared to the standard random Gaussian initialization.
This finding supports our overarching prediction, that lower rank initial weights leads to effectively
richer learning. We note that to test our theoretical predictions based on gradient-descent learning
without specific constraints on the solutions, the structures are enforced only at initialization and
not constrained during training. In Appendix Figure 17, we also constrained Dale’s Law throughout
training and found similar trends.

Low-rank initialization aligned with task statistics: These simulations may be considered to be
within our task-agnostic framework. That is, we have chosen a “random” battery of tasks that is not
directly matched to the initial network connectivity structures. Thus, our findings that lower rank
initializations lead to richer learning are expected from our theoretical prediction on the task-averaged
alignment (Theorem 1), rather than something task-specific. However, Proposition 1 also predicts
that low-rank initialization can lead to lazy learning if the initialization is already aligned to the task
structure. To test this, we observe in Figure 3 that a considerably higher alignment can be achieved
when the initialization aligns solely with the dominant task features, especially when the relative
strength of these dominant features is high. We postulate that such alignment may occur in biological
settings if the circuit has evolved to preferentially learn specific tasks.

4 DISCUSSION

Our investigation casts light on the nuanced influence of initial weight effective rank on learning
dynamics. Anchored by Theorem 1, our theoretical findings underscore that high-rank random
initialization generally facilitates effectively lazier learning on average across tasks. This focus on the
expectation across tasks can provide insights into the circuit’s flexibility in learning across a broad
range of tasks as well as predict the effective learning regime when the task structure is uncertain.
However, certain low-rank initial weights, when naturally predisposed to specific tasks, may lead to
effectively lazier learning, suggesting an interesting interplay between evolutionary or developmental
biases and learning dynamics (Proposition 1). Our numerical experiments on RNNs further validate
these theoretical findings illustrating the impact of initial rank in diverse settings.

Potential implications to neuroscience: We investigate the impact of effective weight rank on
learning regimes due to its relevance in neuroscience. Learning regimes reflect the extent of change
through learning, implicating metabolic costs and catastrophic forgetting (McCloskey & Cohen,
1989; Plaçais & Preat, 2013; Mery & Kawecki, 2005). The presence of different learning regimes is
demonstrated in neural systems, since during developmental phases where neural circuits undergo
extensive, plasticity-driven transformations. In contrast, mature neural circuits exhibit more subtle
synaptic adjustments (Lohmann & Kessels, 2014). We hypothesize that a circuit’s task-specific
alignment might be established either evolutionarily or during early development. The specialization
of neural circuits, such as ventral versus dorsal (Bakhtiari et al., 2021), may arise from engaging in
tasks with similar computational demands. Conversely, circuits with high-rank structures may be less
specialized, handling a wider array of tasks. Our framework could be used to compare connectivities
across brain regions and species in order to predict their function and flexibility, assessing their
functional specialization based on effective connectivity rank. Additionally, our framework predicts
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that connectivity rank will affect the degree of change in neural activity during the learning of new
tasks. This hypothesis could be tested through BCI experiments, as shown in Sadtler et al. (2014) and
Golub et al. (2018), to explore how learning dynamics vary with connectivity rank.

Regarding deep learning, low-rank initialization is not a common practice, yet adaptations like
low-rank updates have gained popularity in training large models (Hu et al., 2021). LoRA, the study
cited, concentrates on parameter updates rather than initializations, but understanding how update
rank affects learning regimes is crucial. Our results offer a starting point for further exploration in this
area. Although different rank initializations are less explored, with some exceptions like Vodrahalli
et al. (2022), our findings suggest that this area should receive more attention due to its potential
effects on learning regimes and, consequently, on generalization (George et al., 2022).

Limitations and future directions: Our study predominantly focused on the weight (effective) rank,
leaving the exploration of other facets of weight on the effective learning regime as an open avenue.
Also, the ramifications of effective learning regimes on learning speed — given the known results on
kernel alignment and ease of learning (Bartlett et al., 2021) and present mixed findings in the existing
literature (Flesch et al., 2021; George et al., 2022) — warrant further exploration.

Expanding the scope of our study calls for examining a wider variety of tasks, neural network
architectures, and learning rules. Although our work is based on the backpropagation learning rule,
its implications for biologically plausible learning rules remain unexplored. Our primary criterion
for selecting tasks was their relevance to neuroscience, aligning with our main objectives. However,
given the diverse range of tasks performed by various species, future research could benefit from
exploring a more extensive array of tasks. Exploring more complex neuroscience tasks, such as
those in Mod-Cog (Khona et al., 2023), could provide valuable insights. On that note, we tested the
pattern generation task from Bellec et al. (2020), a neuroscience task differing in structure from the
Neurogym tasks, and observed similar trends (refer to Appendix Figure 18).

Additionally, we ensured the consistency of outcomes against factors like width, learning rate, and
initial gain (see Appendix D), but other factors such as dynamical regime and noise (HaoChen et al.,
2021) remain underexamined. On that note, the study’s focus on RNNs with finite task duration
prompts further investigation into the implications for tasks with extended time steps and how
conclusions for feedforward network depth (Xiao et al., 2020; Seleznova & Kutyniok, 2022) translate
to RNN sequence length. Examining several mechanisms at once is beyond the scope of one paper,
but our theoretical work constitutes the foundation for future investigations.

Moreover, it is crucial to further explore the neuroscientific implications of effective learning regimes,
as well as their diverse impacts on aspects such as representation, including kernel-task alignment
(see Appendix Figure 14), and generalization capabilities (Flesch et al., 2021; George et al., 2022;
Schuessler et al., 2023). Our current study did not delve into how initial weight rank affects these
facets of learning, representing an essential future direction in connecting weight rank to these
theoretical implications in both biological and artificial neural networks.

Furthermore, while there exists evidence for low-rankedness in the brain (Thibeault et al., 2024), the
extent to which the brain uses low-rank structures remains an open question, especially as neural
circuit structures can vary across regions and species. While local connectivity statistics (Song
et al., 2005) can offer some predictive insight into the global low-rank structure, this relationship
is not always immediately apparent (Shao & Ostojic, 2023). Our theoretical results contribute to
understanding the role of connectivity rank in the brain by linking effective connectivity rank with
learning dynamics.

Lastly, we have primarily examined low-rank tasks and there remains unexplored terrain regarding the
interplay between the number of task classes and weight rank, which is pivotal to uncovering a more
precise relationship between the effective learning regime and the initial weight rank (Dubreuil et al.,
2022; Gao et al., 2017). Overall, this dynamic area of learning regimes is ripe for many explorations,
integrating numerous factors; our work contributes to this exciting area with new tools.
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