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ABSTRACT

Self-supervised contrastive learning is sensitive to architectural choices and to
how similarity is defined. Motivated by claims that quantum circuits can induce
useful non-classical geometries, we present a systematic empirical analysis of two
natural drop-in quantum components for the projection/similarity stage: (i) varia-
tional quantum circuits (VQCs) as projection heads and (ii) fixed quantum feature
maps whose state fidelities act as similarity measures (“quantum kernels”). Within
a controlled SimCLR pipeline on STL-10 (ResNet18 encoder) using mainstream
analytic simulators, we report three findings. First, under realistic resource con-
straints (low qubit count, shallow depth), a tuned classical MLP head consistently
matches or outperforms VQC heads. Second, fidelity-based quantum kernels
largely mirror cosine similarity without a clear uplift. Third, increasing circuit size
rapidly incurs prohibitive latency, exposing scaling bottlenecks that restrict current
explorability. These results constitute a useful null baseline for hybrid quantum-
classical contrastive learning and point to concrete directions: batching-friendly
simulators for higher throughput, lower-variance/better-conditioned feature maps
to avoid similarity collapse, and modest, low-latency hardware as a realistic near-
term testbed. We release anonymized code and consolidated hyperparameters to
facilitate replication and future extensions.

1 INTRODUCTION

Self-supervised contrastive learning has become a standard recipe for building strong visual repre-
sentations without labels, with simple architectural choices (e.g., a ResNet encoder and a small MLP
projection head) delivering competitive performance across tasks (Chen et al., 2020; He et al., 2020;
Grill et al., 2020). A line of work—SimCLR, MoCo, and BYOL—established that strong augmen-
tations plus a lightweight projection head, optimized with either a large-batch contrastive objective
(SimCLR), a momentum encoder with a queue to supply abundant negatives (MoCo), or even a
negative-free bootstrap objective with a target network and predictor (BYOL), can yield representa-
tions that rival or surpass supervised pretraining on downstream tasks (Chen et al., 2020; He et al.,
2020; Grill et al., 2020). In parallel, enthusiasm for quantum machine learning (QML) has grown
rapidly. Variational quantum circuits (VQCs) and quantum feature maps promise non-classical ge-
ometries, entanglement-enabled correlations, and kernel families that could be hard to emulate clas-
sically (Schuld & Killoran, 2019; Havlı́ček et al., 2019; Schuld et al., 2020; Cerezo et al., 2021). In
particular, Schuld & Killoran (2019) formalized quantum feature maps and kernels (the “quantum
kernel trick”), Havlı́ček et al. (2019) demonstrated supervised learning with quantum-enhanced fea-
ture spaces via instantaneous quantum polynomial time (IQP) style circuits and argued for potential
classical intractability, Schuld et al. (2020) introduced circuit-centric quantum classifiers based on
parameterized rotations and entanglement trained by gradient methods, and Cerezo et al. (2021) sur-
veyed variational quantum algorithms, highlighting expressivity alongside optimization challenges
such as barren plateaus. This “quantum optimism” naturally raises the question: can we swap a
classical projection head with a quantum component, or compute similarities with quantum-induced
fidelities, and obtain a tangible benefit in representation learning?

This paper takes a careful, empirical view. We re-implement a modern contrastive pipeline
(ResNet18 backbone (He et al., 2015), InfoNCE loss (van den Oord et al., 2019), STL-10 (Coates
et al., 2011)) and replace the projection head with (i) a VQC head and (ii) a fixed quantum fea-
ture map used as a fidelity-based similarity inside InfoNCE. We benchmark these against a tuned
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classical MLP head of similar parameter count, as well as a minimal “bottleneck linear” control
that removes nonlinearity in the head. Our implementations use mainstream toolchains (PyTorch +
PennyLane/Qiskit) and reproduce common training protocols and augmentations. The goal is not
to claim quantum advantage, but to establish a clean, auditable baseline for where quantum compo-
nents help, or fail to help, today.

Our contribution is summarized as follows:

• A transparent, end-to-end contrastive baseline on STL-10 (ResNet18 + InfoNCE) that
evaluates variational quantum circuit (VQC) projection heads and fidelity-based quantum
kernels apples-to-apples against classical heads under controlled settings.

• A clear empirical null result under realistic simulator constraints: VQC heads do not
outperform a tuned MLP head, fidelity-based quantum kernels largely mirror cosine simi-
larity, and scaling circuit size rapidly incurs prohibitive latency.

• A standardized, reproducible baseline with resource-scaling analysis: anonymized
code release with fixed seeds and consolidated hyperparameters to ensure exact replica-
tion and facilitate future quantum–classical contrastive studies.

Taken together, our findings suggest that quantum components are not a panacea for contrastive
learning today, while outlining concrete simulator and algorithmic improvements that could make
hybrid approaches competitive as tooling advances.

2 METHODS

2.1 EXPERIMENT 0: CLASSICAL BASELINE

We adopt a ResNet-18 encoder (He et al., 2015; Deng et al., 2009) from torchvision. In the
pretrained-frozen regime, the encoder is initialized with ImageNet-pretrained weights and frozen
during training so that only the projection head is updated. In the from-scratch regime, the encoder
is initialized randomly and optimized jointly with the projection head using the contrastive loss. The
baseline projection head is a 2-layer MLP of the form:

MLP(h) =W2 σ(W1h+ b1) + b2, (1)

with hidden dimension 512, output dimension 128, and ReLU nonlinearity σ. We train using the
InfoNCE loss:

LInfoNCE = −
B∑
i=1

log
exp

(
sim(zi, z

+
i )/τ

)∑2B
j=1 1[j ̸=i] exp(sim(zi, zj)/τ)

, (2)

where sim denotes cosine similarity, τ is the temperature, andB is the batch size. We adopt the Sim-
CLR augmentation strategy (random resized crop, color jitter, grayscale, Gaussian blur, horizontal
flip) and train with Adam optimizer (Kingma & Ba, 2017), learning rate 3×10−4, weight decay
10−6, batch size 256, and τ = 0.1.

2.2 EXPERIMENT 1: VARIATIONAL QUANTUM CIRCUIT (VQC) PROJECTION HEAD

Variational quantum circuits (VQCs) are parameterized quantum circuits built from single–qubit
rotations and entangling gates, with parameters optimized by gradient-based methods. They have
been explored as expressive function approximators in quantum machine learning (Schuld et al.,
2020; Cerezo et al., 2021). In contrastive learning, a VQC can be used as a projection head in
place of a classical MLP, potentially inducing different inductive biases via non-classical geometry
and entanglement. Our goal is to assess when, and under which readout choices, a VQC head is
competitive or beneficial.

Given encoder features h ∈ Rd, a linear map produces nqubits angles that are angle–encoded onto
nqubits via single–qubit rotations (e.g., RY ). The circuit applies nlayers blocks, each consisting of
trainable single–qubit rotations followed by ring entanglement. An initial readout measured only
Pauli–Z expectations, yielding zq ∈ Rnqubits . Gradient inspection revealed near–zero updates through
the angle–preprocessing layer and very small VQC parameter gradients (10−4–10−3), with accuracy
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largely insensitive to qubit count or depth, indicating a dead–wire failure mode. To increase the
effective feature capacity of the readout, we expand the measurement set to Pauli–X , Pauli–Y , and
Pauli–Z expectations per qubit, producing

zq =
(
⟨X1⟩, ⟨Y1⟩, ⟨Z1⟩, . . . , ⟨Xnq⟩, ⟨Ynq⟩, ⟨Znq⟩

)
∈ R3nqubits .

A linear lift maps this multi–observable vector to the baseline projection dimension,

z = Wlift zq + blift, ∥z∥2 = 1,

after which cosine similarity is used in the InfoNCE objective exactly as in the classical baseline.

2.3 EXPERIMENT 2: QUANTUM KERNEL FEATURE MAPPING

We replace the projection head with a fixed quantum feature map Uϕ that embeds encoder features
h∈Rd into an nq-qubit state |ψ(h)⟩ = Uϕ(a(h)) |0⟩⊗nq , where a(h) linearly maps h to per-qubit
rotation angles. The map uses angle encoding with depth L and ring entanglement; layers consist
of single-qubit rotations followed by CZ gates. Similarity between samples i, j is the state fidelity
(see (Nielsen & Chuang, 2010))

Kij =
∣∣⟨ψ(hi) | ψ(hj)⟩∣∣2,

computed analytically on a differentiable simulator from the 2B states in each minibatch. We inte-
grate K into contrastive learning by replacing cosine similarity with K/τ inside InfoNCE (standard
NT-Xent layout over 2B items, diagonal masked), keeping the encoder, data pipeline, optimizer, and
schedules identical to the classical baseline. Unless otherwise stated, nq ∈ {4, 8}, L ∈ {1, 2, 3},
angles are squashed via tanh(·) · π, and temperatures τ ∈ {0.5, 0.3, 0.2} are swept. All hyperpa-
rameters and exact versions are consolidated in Appendix A.

3 RESULTS

3.1 EXPERIMENT 0: CLASSICAL BASELINE

We evaluate the classical baseline on STL-10 in two regimes: pretrained–frozen (encoder frozen;
only the MLP head trained) and from-scratch (encoder and MLP head trained jointly with InfoNCE).
We report linear-probe accuracy as the primary metric, following SimCLR practice: the encoder is
frozen on trained features (5k images), evaluated on test of 8k images, and a single linear classifier is
trained on top to isolate representation quality independent of head capacity. We also include k-NN
classification with k=200 from a train-feature bank. Table 1 reports mean±std over three seeds:
pretrained–frozen attains 77.9 ± 0.8% (linear probe) and 78.7 ± 0.8% (k-NN), while from-scratch
attains 39.7± 0.3% (linear probe) and 53.1± 0.6% (k-NN).

Regime Linear Probe Acc. (%) k-NN Acc. (%)
Pretrained-frozen 77.9 ± 0.8 78.7 ± 0.8
From-scratch 39.7 ± 0.3 53.1 ± 0.6

Table 1: Classical baseline results on STL-10. Reported as mean ± standard deviation over three
seeds.
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Figure 1: t-SNE visualization of embeddings produced by the classical baseline MLP head. Left:
pretrained-frozen encoder. Right: from-scratch encoder. Clearer clustering is observed in the pre-
trained regime.

Figure 1 compares the embedding space learned by the classical MLP head under two training
regimes. In the pretrained-frozen setting (left), the t-SNE projection (van der Maaten & Hinton,
2008) reveals well-defined clusters corresponding to distinct object categories, with minimal over-
lap between classes such as airplane, bird, and deer. This indicates that the pretrained encoder pro-
vides a strong feature basis from which the MLP can extract class-discriminative representations.
In contrast, when trained entirely from scratch (right), the embedding space lacks clear separation:
clusters are diffuse, class boundaries are poorly defined, and several categories overlap substantially.
These results highlight the value of pretraining, as frozen encoders not only accelerate downstream
learning but also yield embeddings that are more linearly separable, directly supporting the stronger
quantitative results reported in Table 1.

3.2 EXPERIMENT 1: VARIATIONAL QUANTUM CIRCUIT (VQC) PROJECTION HEAD

We evaluate the VQC head on STL-10 under the same training protocol as the classical baseline. To
avoid confounding from pretrained features, we report results in the from-scratch regime (Table 2);
preliminary pretrained–frozen runs showed a “dead-wire” behavior in which the lift layer (linear
expansion before the quantum circuit) absorbed most of the learning signal, rendering the VQC
effectively idle (see Discussion). Hyperparameters (augmentations, optimizer, temperature, batch
size, epochs) are held fixed across heads. With a Z-only readout at 8 qubits and one layer, VQC
achieves 27.6±1.67% LP and 49.13±0.54% k-NN at ∼200 s/batch; switching to a multi-observable
X/Y/Z readout at 8 qubits, one layer improves to 33.57 ± 0.59% LP and 53.37 ± 0.13% k-NN at
∼ 245 s/batch. Increasing width to 12 qubits (X/Y/Z, one layer) yields 34.25 ± 1.31% LP and
52.65 ± 0.30% k-NN with ∼ 460 s/batch, while increasing depth to two layers at 8 qubits gives
32.45 ± 0.43% LP and 52.79 ± 0.19% k-NN at ∼ 300 s/batch. The classical MLP baseline attains
39.7 ± 0.3% LP and 53.1 ± 0.6% k-NN at ∼ 30 s/batch, and a capacity-matched bottleneck linear
control (512→nq→128) reaches 37.07± 0.65% LP and 52.34± 0.21% k-NN with similar latency
to the MLP.
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Head Linear Probe Acc. (%) k-NN Acc. (%) Latency (s/batch)

MLP (baseline) 39.7± 0.3 53.1± 0.6 ≈ 30
VQC (Z–only; 8q, 1nl) 27.6± 1.67 49.13± 0.54 ≈ 200
VQC (X/Y/Z; 8q, 1nl) 33.57± 0.59 53.37± 0.13 ≈ 245
VQC (X/Y/Z; 12q, 1nl) 34.25± 1.31 52.65± 0.3 ≈ 460
VQC (X/Y/Z; 8q, 2nl) 32.45± 0.43 52.79± 0.19 ≈ 300
Bottleneck Linear (nq → 128) 37.07± 0.65 52.34± 0.21 ≈ 30

Table 2: Comparison of the classical MLP head and VQC heads on STL-10 in From-scratch regime.
Mean ± standard deviation over three seeds. The multi–observable readout expands the quantum
head from nq to 3nq outputs and improves downstream accuracy, while increasing latency with
circuit width/depth.

Create side-by-side images of t-sne plots for retrained and from scratch models 
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Figure 2: t-SNE embeddings for the VQC head with multi–observable readout (left) and the clas-
sical MLP head (right) under matched training protocol. The multi–observable VQC reduces the
dead–wire effect observed with Z–only readout and yields clearer class structure, though overall
quality remains sensitive to circuit width and depth.

Figure 2 contrasts the embedding quality of the VQC head with multi–observable readout against
the classical MLP head under an identical training setup. The VQC embeddings (left) exhibit more
coherent class clusters, suggesting that multi–observable readout mitigates the dead–wire problem
seen in Z-only measurements and allows information from the encoder to propagate more effec-
tively. Although separation remains imperfect, categories such as airplane and truck are more dis-
tinctly isolated compared to the MLP baseline (right), where clusters are fuzzier and overlap is
more pronounced. These improvements demonstrate that multi–observable quantum readouts can
enhance representational structure, albeit with sensitivity to circuit hyperparameters such as width
and depth.

Lastly, we quantify the similarity between representations learned by the classical MLP head and
the quantum VQC head using Centered Kernel Alignment (CKA) (Kornblith et al., 2019). We report
both linear CKA (computed directly from feature matrices) and kernel CKA (computed from cosine
Gram matrices), under two training regimes: (i) a pretrained–frozen encoder and (ii) a from-scratch
encoder trained jointly with the head. As shown in Table 3, CKA values are consistently low (≈ 0.2)
across regimes, indicating limited alignment between the two heads’ embeddings despite identical
inputs from the backbone.
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Training Regime Linear CKA Kernel CKA (cosine)

Pretrained-frozen encoder 0.228± 0.094 0.22± 0.103
From-scratch encoder 0.279± 0.089 0.238± 0.095

Table 3: CKA similarity between MLP and VQC projection-head representations reported as Mean
± standard deviation over three random seeds. Linear CKA is computed on feature matrices; Kernel
CKA is computed on cosine similarity Gram matrices.

3.3 EXPERIMENT 2: QUANTUM FEATURE MAPS (QFM)

We use the same encoder, data pipeline, and optimizer as the baseline; the projection head is re-
moved and InfoNCE operates on fidelity similarities Kij from the QFM in Sec. 2.3. We evaluate
pretrained–frozen and from-scratch encoders, sweeping nq ∈ {4, 8} and L ∈ {2, 3} at fixed tem-
perature τ=0.5 with angles tanh(·)π. Per run we log per-epoch loss, the off-diagonal mean and
standard deviation of K, and the positive–negative gap ∆ under the NT-Xent layout; after training
we report STL-10 linear-probe and k-NN (k=200) accuracy. Table 4 summarizes mean±std over
three seeds (kernel statistics averaged over the last five epochs). In the pretrained regime, the highest
scores occur at nq=4, L=2 with raw fidelities (LP 72.50±0.01%, k-NN 75.67±0.04%); FS–RBF at
the same setting yields nearly identical metrics. Increasing nq and/or L lowers LP and k-NN (e.g.,
nq=8, L=2 gives LP 60.42±0.03%). From-scratch models follow the same pattern with lower abso-
lute accuracies (e.g., LP ∼ 37% at nq=4, L=2). Across settings, InfoNCE exceeds MMD with the
same kernels. Off-diagonal means of K lie in the range 0.08–0.19 with small standard deviations,
and ∆ is consistently high for InfoNCE runs (≈ 0.65–0.74).

Regime Setting Kernel Loss τ / σ2 LP (%) k-NN (%) off-diag µ±σ ∆

Pre. nq=4, L=2 Fidelity InfoNCE τ=0.5 72.5 ± 0.01 75.67 ± 0.04 0.1 ± 0.001 0.74 ± 0.02
Pre. nq=4, L=2 FS–RBF InfoNCE σ2=2.09 ± 0.02 72.46 ± 0.01 75.67 ± 0.04 0.1 ± 0.001 0.74 ± 0.02
Pre. nq=4, L=2 Fidelity MMD — 53.73 ± 0.03 61.14 ± 0.03 0.16 ± 0.02 0.38 ± 0.02
Pre. nq=8, L=2 Fidelity InfoNCE τ=0.5 60.42 ± 0.03 68.71 ± 2.4 0.08 ± 0.003 0.71 ± 0.007
Pre. nq=8, L=3 FS–RBF InfoNCE σ2=2.29 ± 0.004 56.04 ± 0.02 66.27 ± 0.02 0.08 ± 0.007 0.7 ± 0.008
Pre. nq=8, L=3 Fidelity MMD — 40.38 ± 0.03 55 ± 0.02 0.13 ± 0.03 0.35 ± 0.017

Scr. nq=4, L=2 Fidelity InfoNCE τ=0.5 37.4 ± 0.003 53.9 ± 0.01 0.11 ± 0.02 0.69 ± 0.003
Scr. nq=4, L=2 FS–RBF InfoNCE σ2=2.02 ± 0.02 37.36 ± 0.003 53.85 ± 0.005 0.11 ± 0.002 0.69 ± 0.003
Scr. nq=4, L=2 Fidelity MMD — 34.41 ± 0.005 52.54 ± 0.005 .19 ± 0.009 0.55 ± 0.007
Scr. nq=8, L=2 Fidelity InfoNCE τ=0.5 37.5 ± 0.01 54 ± 0.01 0.09 ± 0.02 0.65 ± 0.054
Scr. nq=8, L=3 FS–RBF InfoNCE σ2=2.21 ± 0.04 35.86 ± 0.006 54 ± 0.01 0.08 ± 0.003 0.69 ± 0.004
Scr. nq=8, L=3 Fidelity MMD — 33.13 ± 0.01 53.01 ± 0.008 0.18 ± 0.004 0.55 ± 0.01

Table 4: Quantum Feature Map (QFM) results on STL-10. Mean ± std over three seeds. Off-
diagonal µ±σ is computed on the kernel matrix excluding the diagonal; ∆ is the mean positive–
negative gap.

4 DISCUSSION

4.1 EXPERIMENT 0: CLASSICAL BASELINE

The pretrained–frozen regime exhibits strong linear separability on STL-10, consistent with prior
SimCLR-style results, whereas performance drops substantially when training from scratch on this
small dataset. This gap clarifies how to interpret our quantum experiments: in the pretrained–frozen
setting, downstream heads predominantly refine already informative features (risking “dead-wire”
behavior for weakly expressive heads), while in the from-scratch setting the head must actively shape
representational geometry under limited data and stricter optimization, providing a more sensitive
testbed for potential quantum gains. Accordingly, we use the pretrained–frozen scores as a ceiling
reference and focus comparative analysis on from-scratch runs in subsequent sections.

4.2 EXPERIMENT 1: VARIATIONAL QUANTUM CIRCUIT (VQC) PROJECTION HEAD

Table 2 indicates three main effects. First, measurement expressivity matters: moving from a Z-
only to an X/Y/Z readout (expanding the head from nq to 3nq outputs) consistently narrows the
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gap to the MLP, suggesting that readout richness, not just circuit depth, is a primary bottleneck.
Second, scaling width/depth increases latency sharply (from ∼200 to ∼460 s/batch across the shown
grid) without delivering commensurate accuracy gains, reinforcing that current simulators constrain
practical VQC operating regimes. Third, the bottleneck linear control recovers much of the MLP’s
performance at MLP-like cost, implying that part of the observed uplift comes from projection
capacity rather than uniquely quantum transformations. We therefore focus on from-scratch results;
in the pretrained–frozen setting the lift layer preceding the VQC absorbed the available gradient
signal and the circuit behaved as a “dead wire,” masking any incremental benefit from the quantum
module. Overall, while multi-observable VQCs show meaningful dependence on qubit count and
improve over Z-only designs, the MLP head remains stronger under our budgets, with VQC latency
scaling as the dominant practical limitation.

A practical takeaway from our latency measurements shown in Table 2 is a simple scaling rule of
thumb for when VQC heads are worth revisiting on simulators. With parameter–shift and statevector
backends, per–batch time grows roughly like B 2nq (nqL)

2 (constants suppressed); anchored to our
measurement of ∼200 s/batch at nq=8, L=1, this suggests a feasible envelope near nq ≤ 6, L≤ 1
(approximately keeping nqL ≲ 8) if one aims to stay within tens of seconds per batch. Faster dif-
ferentiation (e.g., adjoint) and true circuit batching would relax the scaling toward Beff 2nq (nqL),
materially enlarging the search space; absent these improvements, deeper/wider circuits quickly be-
come time–prohibitive regardless of accuracy. As a coarse guideline, VQCs become compelling to
revisit when simulator and/or batching upgrades yield a net≥ 4–8× speedup over our anchor, or
when modest low–latency hardware can keep batch times in the 30–60 s range. Side note: these
thresholds are hardware–dependent; see Appendix C for the laptop configuration used in our exper-
iments.

Lastly, Table 3 shows CKA values near zero imply that two representations are largely dissimilar,
whereas values near one indicate strong alignment up to invertible linear transforms and isotropic
rescaling. The persistently low CKA observed here suggests that the VQC head induces an em-
bedding geometry that is substantially different from the MLP head. In the pretrained-frozen case,
this points to a projection mismatch given identical encoder inputs; in the from-scratch case, it im-
plies that joint optimization with a VQC head biases the learned space away from the MLP solution
manifold. Together with downstream metrics, these results support the view that the present VQC
configuration either (a) lacks capacity to preserve or shape the encoder’s structure in a manner sim-
ilar to the MLP, or (b) optimizes toward a qualitatively different (and possibly less informative)
geometry. This motivates exploring more expressive variational ansätze, richer measurement sets,
or hybrid heads that better couple to the encoder’s feature statistics.

4.3 EXPERIMENT 2: QUANTUM FEATURE MAPS (QFM)

Table 4 indicates that, under analytic simulation and standard budgets, QFM–InfoNCE tracks but
does not surpass the classical cosine baseline. The decline in accuracy with larger nq/L aligns
with kernel concentration signals (low off-diagonal means with narrow spread) (Huang et al., 2021),
suggesting reduced discriminability as depth/qubits increase. High ∆ despite small raw fidelities
implies that NT-Xent can separate positives from negatives even when the kernel’s dynamic range
is limited, but the resulting representation quality plateaus. FS–RBF yields outcomes similar to
raw fidelities and is sensitive to bandwidth selection, while MMD underperforms InfoNCE with the
same kernels, indicating that contrastive normalization and temperature scaling are beneficial in this
regime. Overall, these results support a conservative reading: the particular angle-encoding, shal-
low ring-entangled maps explored here do not provide a measurable uplift on STL-10; improving
quantum-induced similarity likely requires better-conditioned feature maps (e.g., alternative encod-
ings or data re-uploading schemes that avoid similarity collapse), stronger pre-normalization of en-
coder features, or different temperatures, alongside engineering advances that permit broader sweeps
(larger grids, longer schedules) without prohibitive latency.

5 CONCLUSION

We presented a systematic empirical study of two common quantum insertions into a SimCLR-
style contrastive pipeline on STL-10: (i) a variational quantum circuit (VQC) used as the projection
head and (ii) a fixed quantum feature map (QFM) whose state fidelities replace cosine similarity
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in InfoNCE. Experiments were run in realistic simulator regimes (few qubits, shallow depth) with
classical baselines matched for data and optimization.

After observing in the pretrained–frozen setting that a preceding lift layer absorbed most of the
learning signal, leaving the VQC effectively a “dead wire”, we used from-scratch training as the
primary testbed. In this setting, the VQC head did not outperform a tuned MLP head; increasing
qubits or depth sharply increased latency without commensurate accuracy gains, reflecting stat-
evector throughput limits and parameter-shift costs. For QFMs, fidelity-based similarity was a sta-
ble drop-in but closely tracked cosine similarity, yielding no measurable uplift consistent with our
kernel-concentration diagnostics.

These negative results are informative: they narrow the plausible claim space for near-term quan-
tum components in contrastive learning and indicate where progress would matter most. Con-
cretely, higher-throughput, batching-friendly/adjoint simulators; lower-variance gradient estimators
and better-conditioned encodings that avoid similarity collapse; and modest, low-latency hardware
backends could open training regimes that current software cannot emulate efficiently.

Finally, to address external validity beyond STL-10, we will include in the supplementary mate-
rial a minimal CIFAR-10/100 replication that mirrors our protocol (same encoder and linear-probe
evaluation, reduced hyperparameter sweeps). The goal is not exhaustive tuning, but to test whether
the VQC latency–accuracy trade-offs and the fidelity-versus-cosine behavior seen on STL-10 also
appear on these standard benchmarks.

6 REPRODUCIBILITY STATEMENT

We provide the materials necessary to reproduce our results. Model architectures (ResNet18 en-
coder, MLP head, and VQC head), quantum feature maps/kernels, and training procedures are de-
scribed in Sect. 2. Implementation details and hyperparameters (optimizer settings, learning rates,
batch sizes, temperature, augmentation pipeline, qubit counts/layers, entanglement patterns) are con-
solidated in Appendix A. Dataset sources and preprocessing steps for STL-10 and any additional
benchmarks are documented in Appendix B. An anonymized code archive is included in the supple-
mental materials with training/evaluation scripts, configuration files with fixed random seeds, and
environment specifications (version pins for PyTorch (Paszke et al., 2019), PennyLane (Bergholm
et al., 2022), and Qiskit (Aleksandrowicz et al., 2019)), along with shell scripts to regenerate all
tables and figures. Instructions for verifying numerical stability (e.g., precision settings) and for re-
producing figures from logged artifacts are provided in the supplemental Reproducibility.md
file, which also contains the link to the anonymized repo.

7 ETHICS STATEMENT

This work uses publicly available datasets and simulators, and it does not involve human subjects or
personal data.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap your own latent - a new
approach to self-supervised learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 21271–21284.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf.
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A HYPERPARAMETERS

This appendix consolidates all training and evaluation hyperparameters referenced in the main text.
We group them into (i) common settings, (ii) classical (MLP head) settings, and (iii) quantum (VQC
head and quantum kernels/feature maps) settings. Tables 5–7 list the exact fields you need to re-
produce each experiment; Section numbers in the rightmost column indicate where each item is
discussed in the paper. When a value was swept, we list the grid; the default used for the main report
is bolded. Random seeds are fixed unless otherwise noted.

Environment and versions. We pin library versions used in all reported runs: PyTorch, Torchvi-
sion, PennyLane, and Qiskit, with exact version strings and CUDA/toolchain details recorded in
the project’s requirements.txt (or environment.yml) included in the supplemental code
archive. Reproduction scripts (run.sh, make figures.sh) invoke the configurations behind
Tables 5–7 with fixed random seeds.

Determinism settings. Unless otherwise stated, we set
torch.backends.cudnn.benchmark=False and enable deterministic algorithms where
available; any unavoidable nondeterminism (e.g., from low-level kernels) is documented in the code
README.

Category Hyperparameter Value(s) Notes

Dataset Benchmark STL-10 Unlabeled for pretraining; stan-
dard labeled split for linear eval.

Dataset Resolution / Norm. 96×96; mean/std (0.5, 0.5, 0.5) As in common STL-10 setups.
Augmentation Pipeline RRC, HFlip, CJitter, Gray, Blur See Table 6 for probabili-

ties/ranges.
Optimization Optimizer AdamW (β=(0.9, 0.999))
Optimization Learning rate 3e-4 Cosine decay; warmup = 10% of

steps.
Optimization Weight decay 1e-4 Excludes bias/norm params.
Optimization Batch size 256 Global (use accumulation if

needed).
Training Epochs 200
Training Grad clip None If enabled: norm = 1.0.
Contrastive Temperature τ 0.1 InfoNCE temperature.
Precision Mixed precision fp16 PyTorch AMP with loss scaling.
Determinism Seeds 42 Torch/NumPy/PL seeds;

cudnn.benchmark=False.
Eval Linear probe Logistic regression / 100-epoch

linear head
Frozen backbone; early stopping
on val acc.

Table 5: Common hyperparameters (data, optimization, evaluation).

Transform Param Value(s) Notes

RandomResizedCrop scale; ratio [0.2,1.0]; [3/4,4/3]
HorizontalFlip prob 0.5
ColorJitter (b, c, s, h); prob (0.4,0.4,0.4,0.1); 0.8 Before grayscale.
Grayscale prob 0.2
GaussianBlur kernel; σ; prob 23; [0.1,2.0]; 0.5 Kernel may scale with image size.
Normalization mean/std (0.5,0.5,0.5) / (0.5,0.5,0.5) After tensor conversion.

Table 6: Augmentation hyperparameters.
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Component Hyperparameter Value(s) Notes

Backbone Encoder ResNet18 Torchvision baseline; use pooled
features.

Backbone Feature dim d 512 ResNet18 output width.
MLP head Hidden dim 2048 Two-layer MLP unless stated.
MLP head Output dim 128 Normalized embeddings.
MLP head Nonlinearity / Norm ReLU; BN/LN Applied between/after linears as

specified.
Bottleneck (alt.) Linear(nq→128) optional Used for comparisons with VQC

head.
VQC head Qubits nq 4 ({2,4,6,8}) Circuit wires.
VQC head Layers L 2 ({1,2,3}) Rotation + entanglement blocks.
VQC head Rotations RX/RY/RZ Angle embedding from linear map

of h ∈ Rd.
VQC head Entanglement Ring CZ/CNOT ring per layer.
VQC head Measurement ⟨Z⟩ Aggregated to Rnq then normal-

ized.
VQC head Shots None Analytic; if stochastic, 1024 shots.
VQC head Output dim nq or 128 Optional classical bottleneck.
VQC head Backend PL default.qubit / Qiskit Aer Exact simulator unless noted.
Quantum kernels Feature map depth 2 Angle-encoding depth for kernel

experiments.
Quantum kernels Similarity Fidelity / inner product Used inside InfoNCE.
Stability Gradients Parameter-shift Default in PennyLane for diff.

circuits.

Table 7: Encoder + heads: classical MLP and quantum VQC settings.

B DATASETS AND PREPROCESSING

This appendix documents dataset sources and the exact preprocessing pipelines used in pretrain-
ing and evaluation. When applicable, we cite canonical hosting locations and provide the trans-
forms in functional form so that the same behavior can be reproduced with common libraries (e.g.,
torchvision). No custom curation or filtering was applied beyond what is stated here.

STL-10 (source, protocol, and preprocessing). STL-10 is a 10-class natural image dataset with
96 × 96 RGB images comprising an unlabeled split (100,000 images) and a labeled train/test
split (5,000/8,000 images); we use the official release via torchvision.datasets.STL10
(mirrored from the original Stanford CS hosting). For self-supervised pretraining we use only
the unlabeled split and ignore labels; for linear evaluation we freeze the encoder, fit a
linear/logistic head on the official train split, and evaluate on the official test split; un-
less noted otherwise, we hold out 10% of the labeled train images as validation for tem-
perature tuning and early stopping. Images are decoded with the default PNG/JPEG decoders
in Pillow and treated as RGB without additional color-space conversions. Pretraining uses
two augmented views per image with the pipeline RRC(scale=[0.2, 1.0]) → HFlip(p=0.5) →
ColorJitter(b=0.4, c=0.4, s=0.4, h=0.1, p=0.8) → Grayscale(p=0.2) → GaussianBlur(σ ∈
[0.1, 2.0], p=0.5) → ToTensor → Normalize(µ=(0.5, 0.5, 0.5), σ=(0.5, 0.5, 0.5)); linear-eval
(train) uses RRC(scale=[0.2, 1.0]) → HFlip(0.5) → ToTensor → Normalize(µ, σ); linear-
eval (test) uses CenterCrop(96) → ToTensor → Normalize(µ, σ). Because STL-10 is natively
96 × 96, no resizing is applied beyond random/center crops. Normalization constants are fixed
to (µ, σ)=(0.5, 0.5, 0.5) to maintain parity across experiments and avoid data-dependent statistics.
Data-loader settings are: global batch size 256 (with gradient accumulation if needed), shuffling
enabled for training, pin memory=True, and num workers set per machine; random seeds are
fixed (Appendix A). No class rebalancing, deduplication, or corruption filtering is applied, and we
do not use the historical “folds” protocol; we train on the full labeled train split (minus the validation
holdout) for linear probing and report accuracy on the official test split.
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C COMPUTER HARDWARE

All experiments were executed on a single laptop: Apple M4 Max (Apple Silicon) with 64 GB
unified memory running macOS Sequoia 15.6.1. We used PyTorch’s Metal Performance Shaders
(MPS) backend for the classical encoder when available and CPU execution for quantum circuit
simulation (statevector, analytic). Reported wall–clock latencies and throughput reflect this config-
uration and may vary on other systems (e.g., CUDA GPUs, different CPU cores, or simulators with
batched/adjoint differentiation).

D LLM DISCLOSURE

We used large language models (LLMs) in three limited ways: (1) to tighten prose and correct
grammar; (2) to suggest robustness checks and sanity-check intermediate results and interpretations;
and (3) to help diagnose ambiguous errors encountered when using PyTorch, Qiskit, and PennyLane.
All outputs from LLMs were reviewed, edited, and validated by the authors, who remain solely
responsible for the analyses, code, and conclusions.
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