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Abstract

We introduce Ψ-SAMPLER, an SMC-based framework incorporating pCNL-based
initial particle sampling for effective inference-time reward alignment with a
score-based generative model. Inference-time reward alignment with score-based
generative models has recently gained significant traction, following a broader
paradigm shift from pre-training to post-training optimization. At the core of this
trend is the application of Sequential Monte Carlo (SMC) to the denoising process.
However, existing methods typically initialize particles from the Gaussian prior,
which inadequately captures reward-relevant regions and results in reduced sam-
pling efficiency. We demonstrate that initializing from the reward-aware posterior
significantly improves alignment performance. To enable posterior sampling in
high-dimensional latent spaces, we introduce the preconditioned Crank–Nicolson
Langevin (pCNL) algorithm, which combines dimension-robust proposals with
gradient-informed dynamics. This approach enables efficient and scalable posterior
sampling and consistently improves performance across various reward align-
ment tasks, including layout-to-image generation, quantity-aware generation, and
aesthetic-preference generation, as demonstrated in our experiments.
Project Webpage: https://psi-sampler.github.io/

1 Introduction

Recently, a shift in the scaling law paradigm from pre-training to post-training has opened new
possibilities for achieving another leap in AI model performance, as exemplified by the unprecedented
AGI score of GPT-o3 [1] and DeepSeek’s “Aha moment” [2]. Breakthroughs in LLMs have also
extended to score-based generative models [3–7], resulting in significant improvements in user
preference alignment [8]. Similar to the autoregressive generation process in LLMs, the denoising
process in score-based generative models can be interpreted as a Sequential Monte Carlo (SMC) [9–
11] process with a single particle at each step. This perspective allows inference-time alignment to
be applied analogously to LLMs by populating multiple particles at each step and selecting those
that score highly under a given reward function [8, 12–17]. A key distinction is that score-based
generative models enable direct estimation of the final output from any noisy intermediate point via
Tweedie’s formula [18], facilitating accurate approximation of the optimal value function [19, 8, 20]
through expected reward estimation.

However, previous SMC-based approaches [12, 15, 14, 21, 22], where each SMC step is coupled
with the denoising process of score-based generative models, are limited in their ability to effectively
explore high-reward regions, as the influence of the reward signal diminishes over time due to
vanishing diffusion coefficient. Thus, rather than relying on particle exploration during later stages,
it is more critical to identify effective initial latents that are well-aligned with the reward model
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from the outset. In this work, we address this problem and propose an MCMC-based initial particle
population method that generates strong starting points for the subsequent SMC process. This
direction is particularly timely given recent advances in distillation techniques for score-based
generative models [23–27], now widely adopted in state-of-the-art models [28, 29]. These methods
yield straighter generative trajectories and clearer Tweedie estimates [18] from early steps, enabling
more effective exploration from the reward-informed initial distribution.

A straightforward baseline for generating initial particles is the Top-K-of-N strategy: drawing
multiple samples from the standard Gaussian prior and selecting those with the highest reward scores.
Though effective, this naive approach offers limited improvement in subsequent SMC due to its
reliance on brute-force sampling. Motivated by these limitations, we explore Markov Chain Monte
Carlo (MCMC) [30–35] methods based on Langevin dynamics, which are particularly well-suited to
our setting since we sample from the initial posterior distribution, whose form is known. Nevertheless,
applying MCMC in our problem presents unique challenges: the exploration space is extremely high-
dimensional (e.g., 65,536 for FLUX [28]), posing significant challenges for conventional MCMC
methods. In particular, the Metropolis–Hastings (MH) accept-reject mechanism, when used with
standard Langevin-based samplers, becomes ineffective in such high-dimensional regimes, as the
acceptance probability rapidly diminishes and most proposals are rejected.

Our key idea for enabling effective particle population from the initial reward-informed distribution
is to leverage the Preconditioned Crank–Nicolson (pCN) algorithm [36–38], which is designed
for function spaces or infinite-dimensional Hilbert spaces. When combined with the Langevin
algorithm (yielding pCNL), its semi-implicit Euler formulation allows for efficient exploration in a
high-dimensional space. Furthermore, when augmented with the MH correction, the acceptance rate
is significantly improved compared to vanilla MALA. We therefore propose performing pCNL over
the initial posterior distribution and selecting samples at uniform intervals along the resulting Markov
chain. These samples are then used as initial particles for the subsequent SMC process across the
denoising steps. We refer to the entire pipeline—PCNL-based initial particle sampling followed by
SMC-based Inference-time reward alignment—as PSI (Ψ)-Sampler. To the best of our knowledge,
this is the first work to apply the pCN algorithm in the context of generative modeling.

In our experiments, we evaluate three reward alignment tasks: layout-to-image generation (placing
objects in designated bounding boxes within the image), quantity-aware generation (aligning the
number of objects in the image with the specified count), and aesthetic-preference generation
(enhancing visual appeal). We compare our Ψ-SAMPLER against the base SMC method [14] with
random initial particle sampling, SMC combined with initial particle sampling via Top-K-of-N , ULA,
and MALA, as well as single-particle methods [39, 40]. Across all tasks, Ψ-SAMPLER consistently
achieves the best performance in terms of the given reward and generalizes well to the held-out
reward, matching or surpassing existing baselines. Its improvement over the base SMC method
highlights the importance of posterior-based initialization, while its outperformance over ULA and
MALA further confirms the limitations of these methods in extremely high-dimensional spaces.

2 Related Work

2.1 Inference-Time Reward Alignment

Sequential Monte Carlo (SMC) [9–11] has proven effective in guiding the generation process of
score-based generative models for inference-time reward alignment [22, 21, 15, 14, 12]. Prior
SMC-based methods differ in their assumptions and applicability. For instance, FPS [15] and
MCGdiff [22] are specifically designed for linear inverse problems and thus cannot generalize to
arbitrary reward functions. SMC-Diff [21] depends on the idealized assumption that the learned
reverse process exactly matches the forward noising process—an assumption that rarely holds in
practice. TDS [14] and DAS [12] employ twisting and tempering strategies respectively to improve
approximation accuracy while reducing the number of required particles. Despite these variations, all
aforementioned SMC-based approaches share a common limitation that they initialize particles from
the standard Gaussian prior, which is agnostic to the reward function. This mismatch can result in
poor coverage of high-reward regions and reduced sampling efficiency.

In addition to multi-particle systems like SMC, single-particle approaches have also been explored
for inference-time reward alignment [39–42]. These methods guide generation by applying reward
gradients along a single sampling trajectory. However, they are inherently limited in inference-time
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reward alignment, as simply increasing the number of denoising steps does not consistently lead to
better sample quality. In contrast, SMC-based methods allow users to trade computational cost for
improved reward alignment, making them more flexible and scalable in practice.

2.2 Fine-Tuning-Based Reward Alignment

Beyond inference-time methods, another line of work focuses on fine-tuning score-based generative
models for reward alignment. Some approaches perform supervised fine-tuning by weighting
generated samples according to their reward scores and updating the model to favor high-reward
outputs [43, 44], while others frame the denoising process as a Markov Decision Process (MDPs)
and apply reinforcement learning techniques such as policy gradients [45] or entropy-regularized
objectives to mitigate overoptimization [46–48]. These RL-based methods are especially useful when
the reward model is non-differentiable but may miss gradient signals when available. More recent
methods enable direct backpropagation of reward gradients through the generative process [49, 50].
Alternatively, several works [20, 51, 52] adopt a stochastic optimal control (SOC) perspective,
deriving closed-form optimal drift and initial distributions using pathwise KL objectives.
While fine-tuning-based methods are an appealing approach, they have practical limitations in that
they necessitate costly retraining whenever changes are made to the reward function or the pretrained
model. Further, it has been shown that fine-tuning-based methods exhibit mode-seeking behavior [12],
which leads to low diversity in the generated samples.

3 Problem Definition & Background

3.1 Background: Score-Based Generative Models

Given a standard Gaussian distribution p1 = N (0, I) and data distribution p0, score-based generative
models are trained to estimate the score function, which is the gradient of log-density, at intermediate
distributions pt along a probability path connecting p1 to p0.
In score-based generative models [3–7], the data generation process is typically described by a
reverse-time stochastic differential equation (SDE) [4]:

dxt = f(xt, t)dt+ g(t)dW, f(xt, t) = u(xt, t)−
g(t)2

2
∇ log pt(xt), x1 ∼ p1 (1)

where f(xt, t) and g(t) denote the drift and diffusion coefficients, respectively, and W is a d-
dimensional standard Brownian motion. The term u(xt, t) corresponds to the velocity field in
flow-based model [53, 27, 54] and also corresponds to the drift term of the probability flow ODE
(PF-ODE) in diffusion models [4]. We assume that the generation process proceeds in decreasing
time, i.e., from t = 1 to t = 0, following the convention commonly adopted in the score-based
generative modeling literature [4, 5].
The deterministic flow-based generative model can be recovered by setting the diffusion coefficient
g(t) = 0, thereby reducing the SDE to an ODE. Note that flow-based models [53, 27], originally
formulated as an ODE, can be extended to an SDE formulation that shares the same intermediate
distributions pt, thereby allowing stochasticity to be introduced during generation [7, 6, 13]. Moreover,
the velocity field u(xt, t) can be readily transformed into a score function [7, 54]. For these reasons,
we categorize both diffusion and flow-based models as the score-based generative models.

3.2 Inference-Time Reward Alignment Using Score-Based Generative Models

Inference-time reward alignment [8, 12–17] aims to generate high-reward samples x0 ∈ Rd without
fine-tuning the pretrained score-based generative model. The reward associated with each sample
is evaluated using a task-specific reward function r : Rd → R, which may quantify aspects such as
aesthetic quality or the degree to which a generated image satisfies user-specified conditions.
But to avoid over-optimization [46, 20, 12] with respect to the reward function, which may lead to
severe distributional drift or adversarial artifacts, a regularization term is introduced to encourage the
generated samples to remain close to the prior of the pre-trained generative model. This trade-off is
captured by defining a target distribution p∗0 that balances reward maximization with prior adherence,
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formally expressed as:

p∗0 = argmax
q

Ex0∼q[r(x0)]︸ ︷︷ ︸
(a)

−αDKL[q∥p0]︸ ︷︷ ︸
(b)

. (2)

Here, term (a) in Eq. 2 encourages the generation of high-reward samples, while term (b), the
KL-divergence, enforces proximity to the pre-trained model’s prior distribution p0. The parameter
α ∈ R+ controls the strength of this regularization: larger values of α lead to stronger adherence to
the prior, typically resulting in lower reward but higher proximity to the support of the generative
model.
The target distribution p∗0 has a closed-form expression, given by:

p∗0(x0) =
1

Z0
p0(x0) exp

(
r(x0)

α

)
(3)

whereZ0 is normalizing constant. Detailed derivation using calculus of variations can be found in Kim
et al. [13]. This reward-aware target distribution has been widely studied in the reinforcement learning
literature [55–59]. Analogous ideas have also been adopted to fine-tuning score-based generative
models [60, 51, 52, 45, 48–50, 46, 43, 20]. As in our case, this target distribution also serves as the
objective from which one aims to sample in inference-time reward alignment task [8, 12, 13].

Since sample generation in score-based models proceeds progressively through a sequence of
timesteps, it becomes important to maintain proximity with the pretrained model not just at the
endpoint, but throughout the entire generative trajectory. To account for this, the original objective in
Eq. 2 is extended to a trajectory-level formulation. Although there are some works [50, 46, 45] that
frame this problem as entropy-regularized Markov Decision Process (MDPs), where each denoising
step of score-based generative model corresponds to a policy in RL, we adopt a stochastic optimal
control (SOC) perspective [20, 51, 52], which naturally aligns with the continuous-time structure of
score-based generative models and yields principled expressions for both the optimal drift and the
optimal initial distribution.

Building on this, the entropy-regularized SOC framework proposed by Uehara et al. [20] provides
closed-form approximations for the optimal initial distribution, optimal control function, and optimal
transition kernel that together enable sampling from the reward-aligned target distribution defined in
Eq. 3 using score-based generative models.
The optimal initial distribution can be derived using the Feynman–Kac formula and approximated via
Tweedie’s formula [18] as:

p̃∗1(x1) :=
1

Z1
p1(x1) exp

(
r(x0|1)

α

)
(4)

where x0|t := Ex0∼p0|t [x0] denotes Tweedie’s formula [18], representing the conditional expectation
under p0|t := p(x0|xt). Under the same approximation, the transition kernel satisfying the optimality
condition is approximated by:

p̃∗θ(xt−∆t|xt) =
exp(r(x0|t−∆t)/α)

exp(r(x0|t)/α)
pθ(xt−∆t|xt). (5)

where pθ(xt−∆t|xt) is a transition kernel of the pretrained score-based generative model.
Further details on the SOC framework and its theoretical foundations in the context of reward
alignment are provided in the Appendix A.

3.3 Sequential Monte Carlo (SMC) with Denoising Process

For reward-alignment tasks, recent works [12, 15, 14, 21, 22] have demonstrated that Sequential
Monte Carlo (SMC) can efficiently generate samples from the target distribution in Eq. 3. When
applied to score-based generative models, the denoising process is coupled with the sequential
structure of SMC. Specifically, several prior works [8, 12, 14] adopt Eq. 5 as the intermediate target
transition kernel for sampling from Eq. 3.
In general, SMC methods [9–11] are a class of algorithms for sampling from sequences of probability
distributions. Starting fromK particles sampled i.i.d. from the initial distribution, SMC approximates
a target distribution by maintaining a population of K weighted particles, which are repeatedly
updated through a sequence of propagation, reweighting, and resampling steps. The weights are
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updated over time according to the following rule:

w
(i)
t−∆t =

ptar(xt−∆t|xt)
q(xt−∆t|xt)

w
(i)
t (6)

where ptar is an intermediate target kernel we want to sample from, and q(xt−∆t|xt) is a proposal
kernel used during propagation. As the number of particles K increases, the approximation improves
due to the asymptotic consistency of the SMC framework [61, 62].

Following [8, 12, 14], which derives both the intermediate target transition kernel and the associated
proposal for reward-guided SMC, we compute the weight at each time step as:

w
(i)
t−∆t =

exp(r(x0|t−∆t)/α)pθ(xt−∆t|xt)
exp(r(x0|t)/α)q(xt−∆t|xt)

w
(i)
t , (7)

where ptar is set as Eq. 5. The proposal distribution q(xt−∆t|xt) is obtained by discretizing the
reverse-time SDE with an optimal control. This yields the following proposal with the Tweedie’s
formula [18]:

q(xt−∆t|xt) = N (xt − f(xt, t)∆t+ g2(t)∇
r(x0|t)

α
∆t, g(t)2∆tI). (8)

Details on SMC and its connection to reward-guided sampling are provided in the Appendix B.

3.4 Limitations of Previous SMC-Based Reward Alignment Methods

While prior work [12, 15, 14, 21, 22] has demonstrated the effectiveness of SMC in inference-time
reward alignment, these approaches typically rely on sampling initial particles from the standard
Gaussian prior. We argue that sampling particles directly from the posterior in Eq. 4, rather than the
prior, is essential for better high-reward region coverage and efficiency in SMC. First, the effectiveness
of the SMC proposal distribution Eq. 8 diminishes over time making it increasingly difficult to guide
particles toward high-reward regions in later steps. As the diffusion coefficient g(t)2 → 0 as t→ 0,
it weakens the influence of the reward signal ∇r(x0|t), since it is scaled by g2(t) in the proposal.
Second, the initial position of particles becomes particularly critical when the reward function is
highly non-convex and multi-modal. While the denoising process may, in principle, help particles
escape local modes and explore better regions, this becomes increasingly difficult over time, not only
due to the vanishing diffusion coefficient, but also because the intermediate distribution becomes less
perturbed and more sharply concentrated, reducing connectivity between modes [63]. In contrast, at
early time steps (e.g., t = 1), the posterior distribution is more diffuse and better connected across
modes, enabling more effective exploration. Furthermore, recent score-based generative models
distilled for trajectory straightening have made the approximation of the optimal initial distribution
in Eq. 4 sufficiently precise. These observations jointly motivate allocating computational effort to
obtaining high-quality initial particles that are better aligned with the reward signal.

4 Ψ-Sampler: pCNL-Based Initial Particle Sampling

In this work, we propose Ψ-Sampler, a framework that combines efficient initial particle samping with
SMC-based inference-time reward alignment for score-based generative models. The initial particles
are sampled using the Preconditioned Crank–Nicolson Langevin (pCNL) algorithm, hence the name
PCNL-based initial particle sampling followed by SMC-based Inference-time reward alignment.
The key idea is to allocate computational effort to the initial particle selection by sampling directly
from the posterior distribution defined in Eq. 4. This reward-informed initialization ensures that
the particle set is better aligned with the target distribution from the outset, resulting in improved
sampling efficiency and estimation accuracy in the subsequent SMC process.

While the unnormalized density of the posterior distribution in Eq. 4 has an analytical form, drawing
exact samples from it remains challenging. A practical workaround is to approximate posterior
sampling via a Top-K-of-N strategy: generate N samples from the prior, and retain the top K
highest-scoring samples as initial particles. This variant of Best-of-N [64–66] resembles rejection
sampling and serves as a crude approximation to posterior sampling [67, 68]. We find that even
this simple selection-based approximation leads to meaningful improvements. But considering that
sampling space is high-dimensional, one can adopt Markov Chain Monte Carlo (MCMC) [30–35]
which is known to be effective at sampling from high-dimensional space. In what follows, we briefly
introduce Langevin-based MCMC algorithms that we adopt for posterior sampling.
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4.1 Background: Langevin-Based Markov Chain Monte Carlo Methods

Langevin-based MCMC refers to a class of samplers that generate proposals by discretizing the
Langevin dynamics, represented as stochastic differential equation (SDE),

dx =
1

2
∇ log ptar

(
x
)
dt+ dW, (9)

whose stationary distribution is the target density ptar. A single Euler–Maruyama discretization of the
Langevin dynamics with step size ϵ > 0 produces the proposal

x′ = x+
ϵ

2
∇ log ptar(x) +

√
ϵ z, z ∼ N (0, I). (10)

Accepting every proposal yields the Unadjusted Langevin Algorithm (ULA) [31]. As a result,
the Markov chain induced by ULA converges to a biased distribution whose discrepancy arises
from the discretization error. In particular, since ULA does not include a correction mechanism,
it does not guarantee convergence to the target distribution ptar. Metropolis-Adjusted Langevin
Algorithm (MALA) [31, 32] combines the Langevin proposal Eq. 10 with the Metropolis–Hastings
(MH) [69, 30] correction, a general accept–reject mechanism that eliminates discretization bias.
Given the current state x and a proposal x′ ∼ q(x′|x), the move is accepted with probability:

aM(x,x′) = min

(
1,
ptar(x

′) q(x|x′)

ptar(x) q(x′|x)

)
. (11)

This rule enforces detailed balance, so ptar is an invariant distribution of the resulting Markov chain.
While MALA is commonly used in practice due to its simplicity and gradient-based efficiency,
it becomes increasingly inefficient in extremely high-dimensional settings, as is typical in image
generative models (e.g., 65,536 for FLUX [28]). With a fixed step size, its acceptance probability
degenerates as d→ ∞. Theoretically, to maintain a reasonable acceptance rate, the step size must
shrink with dimension, typically at the optimal rate of O(d−1/3) [70], which leads to extremely slow
mixing and inefficient exploration in extremely high-dimension space.

4.2 Preconditioned Crank–Nicolson Langevin (pCNL) Algorithm

To address high-dimensional sampling challenges (Sec. 4.1), infinite-dimensional MCMC meth-
ods [36–38] were developed, particularly for PDE-constrained Bayesian inverse problems. These
methods remain well-posed even when dimensionality increases. Among them, the preconditioned
Crank–Nicolson (pCN) algorithm offers a simple, dimension-robust alternative to Random Walk
Metropolis (RWM), though it fails to leverage the potential function, limiting its efficiency.

To overcome this limitation, the preconditioned Crank–Nicolson Langevin (pCNL) algorithm has
been proposed [36, 37], which augments the dimension-robustness of pCN with the gradient-informed
dynamics of Langevin methods (Eq. 9), thereby improving sampling efficiency in high-dimensional
settings. The pCNL algorithm employs a semi-implicit Euler (Crank–Nicolson-type) discretization
of Langevin dynamics as follows:

x′ = x+
ϵ

2

(
−x+ x′

2
+∇

r(x0|1)

α

)
+
√
ϵ z, z ∼ N (0, I). (12)

assuming prior is N (0, I) as in our case. This Crank–Nicolson update admits an explicit closed-form
solution, and hence retains the dimension-robustness of pCN, only when the drift induced by the prior
is linear, as with a standard Gaussian prior. Therefore, in our setting, it is applicable only at t = 1,
making it a particularly useful method that aligns with our proposal to sample particles from the
posterior distribution Eq. 4, where the prior is the standard Gaussian. With ρ = (1− ϵ/4)/(1 + ϵ/4),
we can rewrite above equation as:

x′ = ρx+
√
1− ρ2

(
z+

√
ϵ

2
∇
r(x0|1)

α

)
, z ∼ N (0, I). (13)

Note that pCNL also adopts MH correction in Eq. 11 to guarantee convergence to the correct target
distribution. The pCN algorithm maintains a well-defined, non-zero acceptance probability even
in the infinite-dimensional limit, allowing the use of fixed step sizes regardless of the dimension
d [36, 37]. This property stems from its prior-preserving proposal, which ensures that the Gaussian
reference measure is invariant under the proposal mechanism. This robustness carries over to pCNL,
whose proposal inherits pCN’s ability to handle Gaussian priors in a dimension-independent manner.
We include the detailed acceptance probability formulas for MALA and pCNL in the Appendix C.
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(A) Original (B) Ground Truth (C) SMC (D) MALA+SMC (E) Ψ-SAMPLER

Figure 1: Toy sampling–method comparison. Each panel visualizes both the initial samples (blue) and their
corresponding clean data samples (red). From left to right: (A) samples from the original score-based generative
model; (B) the target distribution defined by Eq. 3; (C) results from SMC; (D) results from MALA+SMC; and
(E) results from our proposed Ψ-Sampler.

4.3 Initial Particle Sampling

To sample initial particles using MCMC for the subsequent SMC process, we follow standard
practices to ensure effective mixing and reduce sample autocorrelation. Specifically, we discard the
initial portion of each chain as burn-in [71] and apply thinning by subsampling at fixed intervals to
mitigate high correlation between successive samples. A constant step size is used across iterations.
Although adaptive step size schemes may improve convergence, we opt for a fixed-step approach for
simplicity. Once the initial particles are sampled, we apply the existing SMC-based method [14, 8].

Comparison of SMC Initialization in a Toy Experiment. In Fig. 1, we present a 2D toy experi-
ment comparing SMC performance when initializing particles from the prior versus the posterior.
We train a simple few-step score-based generative model on a synthetic dataset where the clean data
distribution p0 is a 6-mode Gaussian Mixture Model (GMM), shown as red dots in Fig.1 (A). The
prior distribution is shown in blue, and the gray lines depict sampling trajectories during generation.
We define a reward function that assigns high scores to samples from only a subset of the GMM
modes, yielding a target distribution at t = 0 (Eq. 3), as illustrated in Fig. 1 (B) (red dots). The
corresponding optimal initial distribution—the posterior at t = 1 (Eq. 4)—is shown as blue dots in
Fig. 1 (B). We compare (C) standard SMC with prior sampled particles, (D) SMC with posterior
samples from MALA, and (E) our Ψ-Sampler. All settings use the same total number of function
evaluations (NFE). Prior-based SMC (C) uses 100 NFE; MALA+SMC and Ψ-Sampler allocate 50
NFE for MCMC and use fewer particles for SMC. While MALA-based initialization method (D)
significantly improves alignment with the target distribution (red dots in (B)) over prior-based method
(C), some modes remain underrepresented. In contrast, Ψ-Sampler (E) provides tighter alignment
with the target distribution and the posterior distribution, illustrating its effectiveness in sampling
high-quality samples. Full experimental details are provided in Appendix E.

5 Experiments

5.1 Experiment Setup

We validate our approach across three applications: layout-to-image generation, quantity-aware
generation, and aesthetic-preference image generation. In our experiments, the held-out reward
refers to an evaluation metric that is not accessible during generation and is used solely to assess the
generalization of the method. Full details for each application are provided in Appendix D.
For the layout-to-image generation task, where the goal is to place user-specified objects within
designated bounding boxes, we use predicted bounding box information from a detection model [72]
and define the reward as the mean Intersection-over-Union (mIoU) between the predicted and target
bounding boxes. For the quantity-aware image generation task, which involves generating a user-
specified object in a specified quantity, we use the predicted count from a counting model [73] and
define the reward as the negative smooth L1 loss between the predicted and target counts. In both
tasks, we include evaluations using held-out reward models to assess generalization. Specifically,
for layout-to-image generation, we report mIoU evaluated with a different detection model [74]
(held-out reward model); for quantity-aware image generation, we report mean absolute error (MAE)
and counting accuracy using an alternative counting model [75] (held-out reward model). For
aesthetic-preference image generation task, which aims to produce visually appealing images, we
use an aesthetic score prediction model [76] as the reward model and use its predicted score as the
reward. Across all applications, we further evaluate the generated images using ImageReward [77]
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Single Particle SMC-Based Methods

Tasks Metrics Sampling from Prior Sampling from Posterior

DPS [39] FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

Layout
to

Image

GroundingDINO† [72] ↑ 0.166 0.177 0.417 0.363 0.425 0.370 0.401 0.467
mIoU [74] ↑ 0.215 0.229 0.402 0.342 0.427 0.374 0.401 0.471

ImageReward [77] ↑ 0.705 0.713 0.962 0.938 0.957 0.838 0.965 1.035
VQA [78] ↑ 0.684 0.650 0.794 0.784 0.855 0.783 0.789 0.810

Quantity
Aware

T2I-Count† [73] ↓ 14.187 15.214 1.804 1.151 1.077 3.035 1.601 0.850
MAE [75] ↓ 15.7 15.675 5.3 4.175 3.675 4.825 3.575 2.925

Acc (%) [75] ↑ 0.0 0.0 27.5 15.0 12.5 22.5 25.0 32.5
ImageReward [77] ↑ 0.746 0.665 0.656 0.507 0.752 0.743 0.742 0.796

VQA [78] ↑ 0.957 0.953 0.943 0.907 0.960 0.943 0.941 0.951

Aesthetic
Preference

Aesthetic† [76] ↑ 6.139 6.310 6.853 6.935 6.879 6.869 6.909 7.012
ImageReward [77] ↑ 1.116 1.132 1.135 1.166 1.133 1.100 1.155 1.171

VQA [78] ↑ 0.968 0.959 0.970 0.970 0.961 0.961 0.952 0.963

Table 1: Quantitative comparison of Ψ-SAMPLER and baselines across three task domains. Bold indicates the
best performance, while underline denotes the second-best result for each metric. Metrics marked with † are
used as seen reward during reward-guided sampling, where others are held-out reward. Higher values indicate
better performance (↑), unless otherwise noted (↓).

and VQAScore [78], which assess overall image quality and text-image alignment. The baselines and
our methods are categorized into three groups:

• Single-Particle: DPS [39] and FreeDoM [40] are methods not based on SMC but instead use a
single particle trajectory and perform gradient ascent. They are limited in scaling up the search
space due to the use of a single particle.

• SMC & Initial Particles from Prior: TDS [14] is the SMC-based method we take as the base
for our methods. DAS [12] is a variant introducing tempering strategy.

• SMC & Initial Particles from Posterior: We evaluate four posterior-based initialization strate-
gies: Top-K-of-N , ULA, MALA, and Ψ-SAMPLER. ULA and MALA use a small step size
(0.05) to ensure non-zero acceptance, while Ψ-SAMPLER employs a larger step size (0.5) for
improved performance (See Sec. 5.4).

We use 25 denoising steps for SMC-based methods and 50 for single-particle methods to compensate
for their limited exploration. For SMC-based methods, we match the total number of function
evaluations (NFE) across all methods, allocating half of the budget to initial particle sampling for
posterior-based methods. We use FLUX [28] as the pretrained score-based generative model. Full
experimental details are provided in Appendix D.

5.2 Quantitative Results

We present quantitative results in Tab.1. Across all tasks, Ψ-SAMPLER consistently achieves the best
performance on the given reward and strong generalization to held-out rewards. For SMC-based
methods, sampling particles from the posterior distribution yields significant improvements over those
that sample directly from the prior, highlighting the importance of posterior-informed initialization.
This improvement is particularly notable in complex tasks where high-reward outputs are rare,
such as layout-to-image generation and quantity-aware generation. For example, in quantity-aware
generation, negative smooth L1 loss improves from 1.804 with TDS (base SMC) to 1.077 with
Top-K-of-N and further to 0.850 with our Ψ-SAMPLER. Similarly, for layout-to-image generation,
mIoU increases from 0.417 (TDS) to 0.425 with Top-K-of-N and 0.467 with Ψ-SAMPLER. In
contrast, initializing with ULA or MALA yields only marginal gains or even degraded performance,
due to the lack of Metropolis-Hastings correction in ULA and the limited exploration capacity of
MALA in high-dimensional spaces. Single-particle methods consistently underperform compared to
SMC-based methods.
Ablation Study. We conduct an ablation study that examines how performance varies under
different allocations of a fixed total NFE between the initial particle sampling stage (via Top-K-of-K
or MCMC) and the subsequent SMC stage; full results and analysis are provided in Appendix G.

Additional Results Conducted with Other Score-Based Generative Models. We additionally
provide quantitative and qualitative results on all three applications using another score-based
generative model, SANA-Sprint [29] in Appendix H.
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Figure 2: Qualitative results for each application demonstrate that Ψ-SAMPLER consistently generates
images aligned with the given conditions. Detailed analysis of each case is provided in Sec. 5.3.
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Acceptance GroundingDINO [72] Salience DETR [74] LPIPS MPD [79]

Figure 3: Performance comparison of MALA and pCNL across different evaluation metrics with varying step
sizes. Conducted on layout-to-image generation application.

5.3 Qualitative Results

We additionally present qualitative results for each application in Fig. 2. For the layout-to-image
generation task, we display the input bounding box locations alongside the corresponding phrases
from the text prompt, using matching colors for each phrase and its associated bounding box. In
the quantity-aware image generation task, we overlay the predicted object centroids—obtained from
a held-out counting model [75]—to facilitate visual comparison. Below each image, we display
the predicted count along with the absolute difference from the target quantity, formatted as (∆·).
The best-performing case is highlighted in blue. For the aesthetic preference task, we display the
generated images alongside their predicted aesthetic scores. The first row corresponds to the prompt
"Tiger", and the second to "Rabbit". As shown, Ψ-SAMPLER produces high-quality results across all
applications, matching the trends observed in the quantitative evaluations.
From the first and second rows of Fig. 2, we observe that baseline methods often fail to place objects
correctly within the specified bounding boxes or generate them in entirely wrong locations. For
instance, in the first row, most baselines fail to position the bird accurately, and in the second row,
none correctly place the car. For quantity-aware generation, the fourth row shows the counted results
corresponding to the third row. While Ψ-SAMPLER successfully generates the target number of
blueberries in an image, the baselines exhibit large errors—Top-K-of-N comes closest but still
misses some. In rows 5 and 6, only Ψ-SAMPLER correctly generates the target number of coins. In
the aesthetic preference task, although all methods produce realistic images, Ψ-SAMPLER generates
the most visually appealing image with the highest aesthetic score. Additional qualitative examples
are provided in the Appendix I.

5.4 Evaluation of Initial Particles

In Fig.4, we compare MALA and pCNL on the layout-to-image generation task across varying step
sizes using four metrics: acceptance probability, reward (mIoU via GroundingDINO [72]), held-out
reward (Salience DETR [74]), and sample diversity (LPIPS MPD [79]). All metrics are directly
computed from the Tweedie estimates [18] of MCMC samples, before the SMC stage. As the step
size increases, MALA’s acceptance probability rapidly drops to near-zero, while pCNL maintains
stable acceptance probability. Larger step sizes generally improve reward scores, with performance
tapering off at excessively large steps. Held-out reward trends mirror this pattern, suggesting that the
improvements stem from genuinely higher-quality samples rather than reward overfitting [60, 20].
Although LPIPS MPD slightly declines with increasing step size due to reduced acceptance, pCNL at
step size 2.0 maintains diversity on par with MALA at 0.05. Additional results for other tasks are
included in the Appendix F.

6 Conclusion and Limitation
We present a novel approach for inference-time reward alignment in score-based generative models
by initializing SMC particles from the reward-aware posterior distribution. To address the challenge
of high-dimensional sampling, we leverage the preconditioned Crank–Nicolson Langevin (pCNL)
algorithm. Our method consistently outperforms existing baselines across tasks and reward models,
demonstrating the effectiveness of posterior-guided initialization in enhancing sample quality under
fixed compute budgets.
Limitations and Societal Impact. A limitation of our approach is that it assumes access to
differentiable reward models and depends on accurate Tweedie approximations at early denoising
steps. Also, while our method improves fine-grained control in generative modeling, it may also
be misused to produce misleading or harmful content, such as hyper-realistic fake imagery. These
risks highlights the importance of responsible development and deployment practices, including
transparency, content verification, and appropriate use guidelines.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not contain new theorems rather provide toy experiments results to
support our claim as well as main experiment results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Our datasets are based on a combination of existing resources, including a
subset of the HRS-Spatial dataset [80], GPT-4o-generated samples [81], and the animal
dataset from [45]. We plan to release both the code and data in future revision.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to limited time and computational resources, we were unable to conduct a
full statistical significance analysis prior to submission. However, we plan to incorporate
appropriate statistical evaluations, such as standard deviations and confidence intervals, as
well as additional ablation studies in a future revision.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Our work does not involve the release of any models or datasets that pose a
high risk of misuse. The models used in our experiments are based on publicly available
architectures, and our dataset construction process avoids the inclusion of any sensitive or
harmful content.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Although our dataset construction includes a set of GPT-4o-generated samples,
which may be considered a new asset, this portion has not been publicly released at the
time of submission. As such, we do not consider any part of our submission to constitute a
released new asset for the purposes of this checklist item. We plan to release all new data in
a future revision.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve any crowdsourcing tasks or experiments with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human participants and therefore does not
require IRB or equivalent ethical review.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We used LLMs such as GPT-4o [81] for auxiliary purposes including dataset
generation, but they were not involved in the development of the core methodology or
experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Reward Alignment with Stochastic Optimal Control

In the reward alignment task for continuous-time generative models [20, 52], which our method builds
upon, Uehara et al. [20] introduce both an additional drift term ψ (often referred to as a control vector
field) and a modified initial distribution p̄1. Then the goal is to find ψ and p̄1 such that the resulting
final distribution at time t = 0 matches the target distribution p∗0 defined in Eq. 3. Accordingly, the
original reverse-time SDE used for generation (Eq. 1) is replaced by a controlled SDE:

dxt = (f(xt, t)− ψ(xt, t)) dt+ g(t)dW, x1 ∼ p̄1. (14)

This entropy-regularized stochastic optimal control framework adopts a pathwise optimization that
integrates KL divergence penalties over trajectories and thus optimization formulation of Eq. 2
changes accordingly:

ψ∗, p∗1 = argmax
ψ,p̄1

EPψ,p̄1 [r(x0)]− αDKL
[
Pψ,p̄1∥Pdata] , (15)

where Pψ,p̄1 is a measure over trajectories induced by the controlled SDE in Eq. 14 and Pdata is a
measure over trajectories induced by the pre-trained SDE in Eq. 1.
KL-divergence term in Eq. 15 can be expressed as the sum of affine control cost ∥ψ(xt,t)∥2

g2(t) and log

Radon–Nikodym derivative at t = 1, i.e., log p̄1(x1)
p1(x1)

:

ψ∗, p∗1 = argmax
ψ,p̄1

EPψ,p̄1 [r(x0)]− αEPψ,p̄1

[
1

2

∫ 1

t=0

∥ψ(xt, t)∥2

g2(t)
dt+ log

p̄1(x1)

p1(x1)

]
, (16)

which can be proved [20, 52] using Girsanov theorem and martingale property of Itô integral.
The optimal control ψ∗ and the optimal initial distribution p∗1 can be derived by introducing the
optimal value function, defined as:

V ∗
t (xt) = max

ψ
EPψ

[
r(x0)−

α

2

∫ t

s=0

∥ψ(xs, s)∥2

g2(s)
ds

∣∣∣∣xt] . (17)

where the expectation is taken over trajectories induced by the controlled SDE in Eq. 14 with current
xt is given.

From the optimal value function at t = 1, we can derive explicit formulation of the optimal initial
distribution p∗1 in terms of V ∗

1 (xt) by plugging the definition of optimal value function at t = 1
(Eq. 17) into Eq. 16:

p∗1 = argmax
p̄1

Ep̄1 [V ∗
1 (x1)]− αDKL [p̄1∥p1] . (18)

Solving this yields the following closed-form expression for the optimal initial distribution (derivable
via calculus of variations [13]), similarly to Eq. 3:

p∗1(x1) =
1

Z1
p1(x1) exp

(
V ∗
1 (x1)

α

)
. (19)

The optimal control ψ∗ can be obtained from the Hamilton–Jacobi–Bellman (HJB) equation and is
expressed in terms of the gradient of the optimal value function:

ψ∗(xt, t) = g2(t)∇V ∗
t (xt)

α
. (20)

Moreover, the optimal value function itself admits an interpretable closed-form expression via the
Feynman–Kac formula:

V ∗
t (xt) = α logEPdata

[
exp

(
r(x0)

α

)∣∣∣∣xt] . (21)

23



Importantly, Uehara et al. [20] further proved that the marginal distribution p∗t (xt) induced by the
controlled SDE (with optimal control ψ∗ and optimal initial distribution p∗1) is given by:

p∗t (xt) =
1

Zt
pt(xt) exp

(
V ∗
t (xt)

α

)
, (22)

where pt(xt) is the marginal distribution of the pretrained score-based generative model at time t.
Similarly, the optimal transition kernel under the controlled dynamics is:

p∗θ(xt−∆t|xt) =
exp(V ∗

t−∆t(xt−∆t)/α)

exp(V ∗
t (xt)/α)

pθ(xt−∆t|xt), (23)

where pθ(xt−∆t|xt) denotes the transition kernel of the pretrained model, i.e., corresponding to
the discretization of the reverse-time SDE defined in Eq. 1. For detail derivation, see Theorem
1 and Lemma 3 in Uehara et al. [20]. Notably, Eq. 22 implies that by following the controlled
dynamics defined by Eq. 14, initialized with the optimal distribution p∗1 and guided by the optimal
controlψ∗, the resulting distribution at time t = 0 will match the target distribution p∗0 defined in Eq. 3.

Note that the optimal control, optimal initial distribution, and optimal transition kernel are all
expressed in terms of the optimal value function. However, despite their interpretable forms, these
expressions are not directly computable in practice due to the intractability of the posterior p(x0|xt).
This motivates the use of approximation techniques, most notably Tweedie’s formula [18], which
is widely adopted in the literature [39, 42, 14, 12] to make such expressions tractable. Under
this approximation, the posterior is approximated by a Dirac-delta distribution centered at the
posterior mean denoted by x0|t := Ex0∼p0|t [x0], representing the conditional expectation under
p0|t := p(x0|xt). Consequently, the optimal value function simplifies to:

V ∗
t (xt) = α log

∫
exp

(
r(x0)

α

)
p(x0|xt)dx0 ≃ α log

∫
exp

(
r(x0)

α

)
δ(x0 − x0|t)dx0 = r(x0|t),

(24)

where x0|t is a deterministic function of xt. Using this approximation, we have following approxima-
tions for the optimal initial distribution p̃∗1, the optimal control ψ̃∗, and the optimal transition kernel
p̃θ

∗, which are used throughout the paper:

p̃∗1(x1) :=
1

Z1
p1(x1) exp

(
r(x0|1)

α

)
(25)

ψ̃∗(xt) = g2(t)∇
r(x0|t)

α
(26)

p̃∗θ(xt−∆t|xt) =
exp(r(x0|t−∆t)/α)

exp(r(x0|t)/α)
pθ(xt−∆t|xt). (27)

It is worth noting that sampling from the optimal initial distribution is essential to theoretically
guarantee convergence to the target distribution Eq. 3. Simply following the optimal control alone
does not suffice and can in fact bias away from the target, a phenomenon known as the value function
bias problem [52]. To the best of our knowledge, this is the first work to explicitly address this
problem in the context of inference-time reward-alignment with score-based generative models.

B Sequential Monte Carlo and Reward-Guided Sampling

Sequential Monte Carlo (SMC) methods [9–11], also known as particle filter, are a class of algo-
rithms for sampling from sequences of probability distributions. Beginning with K particles drawn
independently from an initial distribution, SMC maintains a weighted particle population, {x(i)

t }Ki=1,
and iteratively updates it through propagation, reweighting, and resampling steps to approximate
the target distribution. During propagation, particles are moved using a proposal distribution; in
the reweighting step, their importance weights are adjusted to reflect the discrepancy between the
target and proposal distributions; and resampling preferentially retains high-weight particles while
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eliminating low-weight ones (this is performed only conditionally, see below). The weights are
updated over time according to the following rule:

w
(i)
t−∆t =

ptar(xt−∆t|xt)
q(xt−∆t|xt)

w
(i)
t (28)

where ptar is an intermediate target kernel we want to sample from, and q(xt−∆t|xt) is a proposal
kernel used during propagation.

At each time t, if the effective sample size (ESS), defined as
(∑K

j=1 w
(j)
t

)2
/
∑K
i=1

(
w

(i)
t

)2
falls

below a predefined threshold, resampling is performed. Specifically, a set of ancestor indices
{a(i)t }Ki=1 is drawn from a multinomial distribution based on the normalized weights. These indices

are then used to form the resampled particle set {x(a
(i)
t )

t }Ki=1. If resampling is not triggered, we
simply set a(i)t = i.
In the propagation stage, particle set {x(i)

t−∆t}Ki=1 is generated via sampling from proposal distribution,

x
(i)
t−∆t ∼ q(xt−∆t|x

(a
(i)
t )

t ). When resampling is applied, the weights are reset to uniform values, i.e.,

w
(i)
t = 1 for all i. Regardless of whether resampling occurred, new weights {w(i)

t−∆t}Ki=1 are then
computed using Eq. 28.
In the context of reward-alignment tasks, SMC can be employed to approximately sample from the
target distribution defined in Eq. 3. As the number of particles K grows, the approximation becomes
increasingly accurate due to the consistency of the SMC framework [61, 62]. To make this effective,
the proposal kernel should ideally match the optimal transition kernel given in Eq. 23. However, as
discussed in Appendix A, this kernel is computationally intractable. Therefore, prior work [14, 12, 8]
typically resorts to its approximated form, as expressed in Eq. 27. This leads to the weight at each
time being computed as:

w
(i)
t−∆t =

p̃∗θ(xt−∆t|xt)
q(xt−∆t|xt)

w
(i)
t =

exp(r(x0|t−∆t)/α)pθ(xt−∆t|xt)
exp(r(x0|t)/α)q(xt−∆t|xt)

w
(i)
t , (29)

where pθ(xt−∆t|xt) denotes the transition kernel of the pretrained score-based generative model.
The pretrained model follows the SDE given in Eq. 1, which upon discretization yields a Gaussian
transition kernel, pθ(xt−∆t|xt) = N (xt − f(xt, t)∆t, g(t)

2∆tI). On the other hand, for reward-
guided sampling, i.e., to sample from the target distribution in Eq. 3, we follow controlled SDE
in Eq. 14. At each intermediate time, the SOC framework (Appendix A) prescribes the use of the
optimal control defined in Eq. 20. However, due to its intractability, the approximation in Eq. 26 is
typically adopted in practice. Discretizing the controlled SDE under this approximation leads to the
following proposal distribution at each time:

q(xt−∆t|xt) = N (xt − f(xt, t)∆t+ g2(t)∇
r(x0|t)

α
∆t, g(t)2∆tI). (30)

A similar proposal has also been used in [12, 8], where a Taylor expansion was applied in the context
of entropy-regularized Markov Decision Process.

C Acceptance Probability of MALA and pCNL

In this section we provide the Metropolis–Hastings (MH) [69, 30] acceptance rule that under-
pins both the Metropolis-Adjusted Langevin Algorithm (MALA) [31, 32] and the preconditioned
Crank–Nicolson Langevin algorithm (pCNL) [36, 37]. Metropolis-Hastings algorithms form a class
of MCMC methods that generate samples from a target distribution by accepting or rejecting proposed
moves according to a specific acceptance function. Let ptar denote a density proportional to the target
distribution. Given the current state x and a proposal x′ ∼ q(x′|x), the MH step accepts the move
with probability:

a(x,x′) = min

(
1,
ptar(x

′)q(x|x′)

ptar(x)q(x′|x)

)
. (31)

If the proposal kernel q(x′|x) is taken to be the one–step Euler–Maruyama discretization of Langevin
dynamics then it becomes the MALA, and Eq. 31 corresponds to the acceptance probability of
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MALA. Choosing instead the semi-implicit (Crank–Nicolson-type) discretization yields the proposal
used in the pCNL, and Eq. 31 becomes the corresponding pCNL acceptance probability.

We first show that preconditioned Crank-Nicolson (pCN), which is a modification of the Random-
Walk Metropolis (RWM), preserves the Gaussian prior. pCN can be viewed as a special case of pCNL
obtained when the underlying Langevin dynamics is chosen so that the Gaussian prior N (0, I) is its
invariant distribution. This leads to the proposal mechanism [36, 37]:

x′ = ρx+
√
1− ρ2z, z ∼ N (0, I). (32)

where ρ = (1− ϵ/4)/(1 + ϵ/4) with ϵ > 0 corresponding to the step size of the Langevin dynamics.
Assume that the prior is the standard Gaussian N (0, I) and let x ∼ N (0, I), then Eq. 32 expresses x′

as a linear combination of two independent Gaussian random variables with unit covariance. Hence,
by the closure of the Gaussian family under affine transformations, x′ ∼ N (0, I) as well, thus
preserving the Gaussian prior.
Next, in the case of pCN, p1(x′)q0(x|x′), is symmetric, i.e., p1(x′)q0(x|x′) = p1(x)q0(x

′|x), where
p1(·) denotes Gaussian prior and q0(·|·) denotes the proposal kernel of the pCN, i.e., Eq. 32.

Remark 1. Let p1(·) as Gaussian prior N (0, I) and q0(·|·) as the proposal kernel of the pCN,
i.e., N (ρx, (1− ρ2)I), then p1(x′)q0(x|x′) = p1(x)q0(x

′|x).

Proof. Apart from normalization constants, p1(x′)q0(x|x′) can be calculated as:

exp

(
−x′2

2

)
exp

(
− (x− ρx′)2

2(1− ρ2)

)
= exp

(
−x′2 + x2 − 2ρxx′

2(1− ρ2)

)
.

Repeating the same calculation with p1(x)q0(x′|x) merely swaps x and x′, leaving the numerator
unchanged. Hence the two products are identical.

We provide additional remark for ease of calculation.

Remark 2. Let N (x;µ,C) be the density of a multivariate Gaussian with mean µ and positive-
definite covariance C. For fixed C, the ratio of two such densities that differ only in the mean
is

N (x; µ,C)

N (x; 0,C)
= exp

(
−1

2
∥µ∥2C + ⟨µ,x⟩C

)
where ∥µ∥2C := µ⊤C−1µ and ⟨µ,x⟩C := µ⊤C−1x.

In our case, C corresponds to the identity matrix.

Acceptance Probability of pCNL. As before, let q0 be a proposal kernel of the pCN (Eq. 32) and
qp be a proposal kernel of the pCNL:

q0(x
′|x) : x′ = ρx+

√
1− ρ2z, z ∼ N (0, I) (33)

qp(x
′|x) : x′ = ρx+

√
1− ρ2

(
z+

√
ϵ

2
∇
r(x0|1)

α

)
, z ∼ N (0, I). (34)

Let x̃ := x′−ρx√
1−ρ2

, and q̃0, q̃p be the distributions of x̃ under q0 and qp, respectively. Then we obtain:

q̃0(x̃|x) = N (x̃; 0, I) (35)

q̃p(x̃|x) = N (x̃;

√
ϵ

2
∇
r(x0|1)

α
, I). (36)

Note that x0|1 is a function of x. Then by Remark 2,

qp(x
′|x)

q0(x′|x)
=
q̃p(x̃|x)
q̃0(x̃|x)

= exp

(
− ϵ

8

∥∥∥∥∇r(x0|1)

α

∥∥∥∥2
I

+

√
ϵ

2

〈
∇
r(x0|1)

α
, x̃

〉
I

)
. (37)
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For the fraction part of the acceptance probability (Eq. 31) of pCNL, we have:

p∗1(x
′)qp(x|x′)

p∗1(x)qp(x
′|x)

=
(p∗1(x

′)qp(x|x′))/(p1(x
′)q0(x|x′))

(p∗1(x)qp(x
′|x))/(p1(x′)q0(x|x′))

(38)

=
(p∗1(x

′)qp(x|x′))/(p1(x
′)q0(x|x′))

(p∗1(x)qp(x
′|x))/(p1(x)q0(x′|x))

:=
φp(x

′,x)

φp(x,x′)
, (39)

where the target distribution is set as Eq. 25. In Eq. 38, we divide both numerator and denominator
by a common term, and in Eq. 39, we utilized Remark 1.
Denominator can be calculated utilizing Eq. 37:

φp(x,x
′) =

p∗1(x)qp(x
′|x)

p1(x)q0(x′|x)
(40)

= exp

(
r(x0|1)

α

)
exp

(
− ϵ

8

∥∥∥∥∇r(x0|1)

α

∥∥∥∥2
I

+

√
ϵ

2

〈
∇
r(x0|1)

α
,
x′ − ρx√
1− ρ2

〉
I

)
, (41)

with numerator being simply interchanging x and x′. The acceptance probability of pCNL is
min

(
1,

φp(x
′,x)

φp(x,x′)

)
.

Acceptance Probability of MALA. In the case of MALA, the proposal is given as:

x′ = x+
ϵ

2
∇ log ptar(x) +

√
ϵz, z ∼ N (0, I) (42)

= x+
ϵ

2

(
−x+∇

r(x0|1)

α

)
+

√
ϵz, z ∼ N (0, I) (43)

where as in pCNL we set the target distribution as Eq. 25. Thus the proposal kernel of MALA qM
can be expressed as:

qM (x′|x) = N
(
x′; x

(
1− ϵ

2

)
+
ϵ

2
∇
r(x0|1)

α
, ϵI

)
. (44)

The fraction part of the acceptance probability (Eq. 31) of MALA is given as:

p∗1(x
′)qM (x|x′)

p∗1(x)qM (x′|x)
=

N (x′; 0, I) exp(r(x′
0|1)/α)N (x; x′(1− ϵ/2) + ϵ/2 · ∇r(x′

0|1)/α, ϵI)

N (x; 0, I) exp(r(x0|1)/α)N (x′; x(1− ϵ/2) + ϵ/2 · ∇r(x0|1)/α, ϵI)
(45)

:=
φM (x′,x)

φM (x,x′)
(46)

where we denote x′
0|1 := x0|1(x

′), i.e., we calculate Tweedie’s formula with x′. Thus the denomina-
tor, which is φM (x,x′), is proportional to the following expression:

exp

(
−∥x∥2I

2
+
r(x0|1)

α
−

∥x′ − {x
(
1− ϵ

2

)
+ ϵ

2∇
r(x0|1)

α }∥2I
2ϵ

)
. (47)

After simplifying the expression—specifically, canceling out the cross terms involving x and x′

that will appear symmetrically in the numerator and denominator—the expression for φM (x,x′)
becomes:

φM (x,x′) (48)

= exp

(
r(x0|1)

α

)
exp

(
− ϵ

8

∥∥∥∥∇r(x0|1)

α

∥∥∥∥2
I

− ϵ

8
∥x∥2I +

1

2

〈
∇
r(x0|1)

α
,
(
x′ −

(
1− ϵ

2

)
x
)〉

I

)
.

(49)

The numerator φM (x′,x) can be obtained by simply interchanging x and x′. The acceptance
probability of MALA is then, min

(
1, φM (x′,x)

φM (x,x′)

)
.
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D Experimental Setup and Details

In this section, we provide comprehensive details for each application: layout-to-image generation,
quantity-aware image generation, and aesthetic-preference image generation. We also include full
experimental details.

Layout-to-Image Generation. This task involves placing user-specified objects within designated
bounding boxes [82–85]. We evaluate performance on 50 randomly sampled cases from the HRS-
Spatial [80] dataset. As the reward model, we use GroundingDINO [72], and measure the alignment
between predicted and target boxes using mean Intersection-over-Union (mIoU). For the held-out
reward, we compute mIoU using a different object detector, Salience DETR [74].
Quantity-Aware Image Generation. This task involves generating a user-specified object in a
specified quantity [86–88]. We evaluate methods on a custom dataset constructed via GPT-4o [81],
comprising 20 object categories with randomly assigned counts up to 90, totaling 40 evaluation cases.
As the reward model, we used T2ICount [73], which takes a generated image and the corresponding
text prompt as input and returns a density map. Summing over this density map yields a differentiable
estimate of the object count npred. The reward is defined as the negative smooth L1 loss:

rcount =

{
−0.5(npred − ngt)

2 |npred − ngt| < 1,

−|npred − ngt|+ 0.5 |npred − ngt| ≥ 1.

where ngt denotes the input object quantity. For the held-out reward, we used an alternative counting
model, CountGD [75]. This model returns integer-valued object counts. We apply a confidence
threshold of 0.3 and evaluate using mean absolute error (MAE) and counting accuracy, where a
prediction is considered correct if npred = ngt.
Aesthetic-Preference Image Generation This task involves generating visually appealing images.
We evaluate performance using 45 prompts consisting of animal names, provided in [45]. As the
reward model, we use the LAION Aesthetic Predictor V2 [76], which estimates the aesthetic quality
of an image and is commonly used in reward-alignment literature [12, 51, 60, 45].
Common Held-Out Reward Models. For all applications, we additionally evaluate the gener-
ated images using widely adopted held-out reward models for image quality and text alignment.
Specifically, we use ImageReward [77], fine-tuned on human feedback, and VQAScore [78], which
leverages a visual question answering (VQA) model. Both are based on vision-language models and
assess how well the generated image aligns with the input text prompt.
Experimental Details. We use FLUX-Schnell [28] as the score-based generative model for our
method and all baselines. Although FLUX is a flow-based model, SMC-based inference-time reward
alignment can be applied by reformulating the generative ODE as an SDE [7, 13], as described in
Sec. 3.1. Further to ensure diversity between samples during SMC, we applied Variance Preserving
(VP) interpolant conversion [13, 54]. Apart from FLUX, we additionally report quantitative and
qualitative results using another score-based generative model, SANA-Sprint [29], in Appendix H.
These results demonstrate that the our claims are not tied to a specific model architecture, and
additionally highlighting the robustness of Ψ-SAMPLER.

We use 25 denoising steps for all SMC-based methods and 50 for single-particle methods to compen-
sate for their reduced exploration capacity. To ensure fair comparison, we fix the total number of
function evaluations (NFE) across all SMC variants—1,000 for layout-to-image and quantity-aware
generation tasks, and 500 for aesthetic-preference image generation. For aesthetic-preference image
generation, we used half the NFE compared to other tasks because we found it sufficient for perfor-
mance convergence. For methods that sample from the posterior, half of the NFE is allocated to the
initial sampling stage, resulting in 20 particles during SMC, while prior-based methods use all NFE
for SMC with 40 particles. For the aesthetic-preference image generation, we use half the number of
particles in both settings to reflect the halved NFE. The ablation study comparing the performance on
varying NFE allocation is provided in Appendix G. For all experiments, we used NVIDIA A6000
GPUs with 48GB VRAM.

E Toy Experiment Setup and Details
In this section, we describe the setup for the toy experiment presented in the main paper. Specifi-
cally, the data distribution p0 is a six-mode Gaussian mixture with covariance 0.3I, consisting of
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six equally weighted components uniformly arranged on a circle of radius 6. The reward func-
tion is defined as the sum of three Gaussian components centered at points evenly spaced on the
circle: r(x) =

∑3
i=1 exp (−0.5∥x− pi∥2), where p1 = (6.5, 0), p1 = (−3.25, 3.25

√
3), and

p3 = (−3.25,−3.25
√
3). We trained a few-step score-based generative model using 4-layer MLP

with hidden dimension 128. For sampling, we fixed the total NFE to 100 across all methods and
visualized the results using 2,000 generated samples. We used step size 0.1 for MALA and 0.2 for
pCNL. We deliberately used a smaller step size for MALA than for pCNL to better reflect the actual
experimental settings used in the main experiments (Sec. 5.1).

F Additional Evaluation Results of MALA and pCNL Initializations under
Varying Step Size

We presented a comparison between MALA and pCNL under varying MCMC step sizes for the
layout-to-image generation task in the Sec. 5.4. Here, we extend this analysis to the remaining two
tasks. In Fig. 4, we report results for quantity-aware generation (top row) and aesthetic-preference
generation (bottom row), comparing MALA and pCNL across a range of step sizes.
For the quantity-aware image generation task, we report acceptance probability, reward (negative
smooth L1 loss via T2I-Count[73]), held-out reward (mean absolute error (MAE) via CountGD [75]),
and LPIPS Mean Pairwise Distance (MPD) [79] (which measures the sample diversity). For the
aesthetic-preference task, we report acceptance probability, reward (aesthetic score [76]), and LPIPS
MPD [79]. All metrics are directly computed from the Tweedie estimates [18] of MCMC samples,
before the SMC stage.

As the step size increases, MALA’s acceptance probability quickly falls to near zero, whereas
pCNL retains a stable acceptance rate across a wider range. In quantity-aware image generation,
pCNL achieves its best T2I-Count reward and lowest MAE at moderate step sizes (approximately
0.5–1.0), while MALA’s performance deteriorates sharply beyond 0.05. Although pCNL’s LPIPS
MPD decreases at larger step sizes, it consistently outperforms MALA in diversity across the same
settings. In aesthetic-preference generation, pCNL generally achieves higher aesthetic scores, with
only a slight drop at the smallest step size, and maintains higher LPIPS MPD across all settings. In
contrast, MALA’s aesthetic scores decline rapidly once its acceptance rate vanishes.

These results demonstrate that pCNL can effectively leverage larger step sizes to improve sample
quality, with only minimal trade-offs in diversity.

Quantity-aware Generation
Acceptance T2I-Count [73] MAE [75] LPIPS MPD [79]

Aesthetic-preference Generation
Acceptance Aesthetic Score [76] LPIPS MPD [79]

Figure 4: Performance comparison of MALA and pCNL across different evaluation metrics under
two generation settings: quantity-aware generation (top row) and aesthetic-preference generation
(bottom row). Each graph illustrates the performance trend with varying step sizes.
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G Ablation Study: Varying NFE Allocation for Initial Particle Sampling
Stage

In this section, we present an ablation study examining how performance varies with different
allocations of the total number of function evaluations (NFE) between the initial particle sampling
stage (via Top-K-of-N or MCMC) and the subsequent SMC stage. In our main experiments, we
adopt a balanced allocation, with 50% of the NFE budget used for initial particle sampling and the
remaining 50% for SMC (denoted as 50%/50%).

To assess the effect of this design choice, we evaluate two alternative NFE splits: 25% for initial
particle sampling and 75% for SMC (denoted as 25%/75%), and 75% for initial particle sampling
with only 25% for SMC (denoted as 75%/25%). We conduct this analysis on both Top-K-of-N
and Ψ-SAMPLER. For consistency, we fix the number of SMC steps to 25, adjusting the number of
particles accordingly: 30 particles for the 25%/75% setting and 10 particles for the 75%/25% setting.
For the aesthetic-preference image generation, we use half the number of particles in both settings to
reflect the halved NFE. Tab. 2 summarizes the results.

The 75%/25% split overinvests compute to initial particle sampling, resulting in inefficiency due to
the significantly reduced number of particles used during the SMC phase. As a result, it consistently
showed the worst performance across all reward metrics. Conversely, the 25%/75% split dedicates too
little budget to initial particle sampling, limiting exploration despite using 1.5 times more particles
than the 50%/50% split. This leads to weaker performance, particularly under held-out reward
evaluations. In contrast, the balanced 50%/50% split consistently yields the most robust performance
across both seen and held-out rewards across all tasks.

Top-K-of-N Ψ-SAMPLER
Tasks Metrics

25%/75% 50%/50% 75%/25% 25%/75% 50%/50% 75%/25%

Layout
to

Image

GroundingDINO† [72] ↑ 0.424 0.425 0.390 0.454 0.467 0.433

mIoU [74] ↑ 0.439 0.427 0.401 0.463 0.471 0.426

ImageReward [77] ↑ 1.142 0.957 0.913 1.128 1.035 0.884

VQA [78] ↑ 0.822 0.855 0.770 0.825 0.810 0.766

Quantity
Aware

T2I-Count† [73] ↓ 1.021 1.077 2.934 0.804 0.850 1.892

MAE [75] ↓ 4.6 3.675 5.65 3.6 2.925 3.7

Acc (%) [75] ↑ 22.5 12.5 25.0 25.0 32.5 30.0

ImageReward [77] ↑ 0.739 0.752 0.714 0.693 0.796 0.694

VQA [78] ↑ 0.910 0.960 0.937 0.932 0.951 0.943

Aesthetic
Preference

Aesthetic† [76] ↑ 6.958 6.879 6.853 7.015 7.012 6.868

ImageReward [77] ↑ 1.114 1.133 1.076 1.040 1.171 1.062

VQA [78] ↑ 0.964 0.961 0.969 0.968 0.963 0.952

Table 2: Ablation study results on varying NFE allocation conducted with Ψ-SAMPLER and Top-K-
of-N across three task domains. Bold indicates the best performance, while underline denotes the
second-best result for each metric. Metrics marked with † are used as seen reward during reward-
guided sampling, where others are held-out reward. Higher values indicate better performance (↑),
unless otherwise noted (↓).
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H Ψ-SAMPLER with Other Score-Based Generative Model

To evaluate the generality of Ψ-SAMPLER and further support our claims, we additionally conduct
experiments using SANA-Sprint [29], which is a few-step flow-based generative models.

Despite architectural differences, SANA-Sprint integrates seamlessly with our Ψ-SAMPLER. As
shown in Tab. 3, it demonstrates reward and quality improvements consistent with those observed
using FLUX [28] in Tab. 1, indicating that our method generalizes beyond a specific backbone.
Notably, Ψ-SAMPLER delivers the highest performance across all seen reward models and maintains
strong generalization to held-out metrics. Moreover, among SMC-based methods, those that initialize
particles from the posterior consistently outperform prior-based variants (except for few case),
highlighting the benefit of posterior-informed initialization.

These results further highlight the robustness of Ψ-SAMPLER and its applicability to a various
few-step score-based generative models.

We further provide qualitative results for each applications, conducted with SANA-Sprint, in Fig. 5.
For the layout-to-image generation task, each example shows the input layout with color-coded
phrases and corresponding bounding boxes for clarity. In the quantity-aware image generation task,
we overlay the predicted object centroids from a held-out counting model [75] on each image to
facilitate comparison. The predicted count along with its absolute difference from the target quantity
are shown beneath each image in the format (∆·), with the best-performing result highlighted in blue.
Note that for the aesthetic-preference generation task, the first row corresponds to the prompt “Dog”
and the second to “Turkey”. We display the generated images alongside their predicted aesthetic
scores [76].

Single Particle
SMC-Based Methods

Tasks Metrics Sampling from Prior Sampling from Posterior

DPS [39] FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

Layout
to

Image

GroundingDINO† [72] ↑ 0.144 0.159 0.403 0.338 0.406 0.388 0.392 0.429

mIoU [74] ↑ 0.229 0.242 0.405 0.343 0.406 0.393 0.394 0.432

ImageReward [77] ↑ 1.241 1.068 1.363 1.263 1.478 1.227 1.326 1.502

VQA [78] ↑ 0.779 0.754 0.835 0.808 0.851 0.776 0.832 0.853

Quantity
Aware

T2I-Count† [73] ↓ 11.290 12.839 0.110 0.122 0.0628 0.220 0.148 0.027

MAE [75] ↓ 12.3 13.8 3.475 4.55 2.825 3.025 2.375 2.175

Acc (%) [75] ↑ 0.0 0.0 30.0 22.5 27.5 22.5 30.0 32.5

ImageReward [77] ↑ 0.680 0.526 0.954 0.889 0.803 0.789 0.840 0.845

VQA [78] ↑ 0.920 0.859 0.934 0.920 0.916 0.928 0.922 0.930

Aesthetic
Preference

Aesthetic† [76] ↑ 6.432 6.281 7.436 7.324 7.452 7.343 7.412 7.469

ImageReward [77] ↑ 1.106 1.045 1.233 1.258 1.144 1.367 1.217 1.262

VQA [78] ↑ 0.891 0.902 0.894 0.907 0.888 0.905 0.904 0.909

Table 3: Quantitative comparison of Ψ-SAMPLER and baselines across three task domains, conducted
on SANA-Sprint [29]. Bold indicates the best performance, while underline denotes the second-best
result for each metric. Metrics marked with † are used as seen reward during reward-guided sampling,
where others are held-out reward. Higher values indicate better performance (↑), unless otherwise
noted (↓).
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FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

L
ay

ou
t-

to
-I

m
ag

e

“A photo of a bear sitting between a surfboard and a chair with a bird flying in the sky.”

“A person is sitting on a chair and a bird is sitting on a horse while horse is on the top of a car.”

Q
ua

nt
ity

-A
w

ar
e

“63 olives”

19 (∆44) 51 (∆12) 59 (∆4) 59 (∆4) 54 (∆9) 54 (∆9) 64 (∆1)

“42 grapes”

31 (∆11) 48 (∆6) 47 (∆5) 45 (∆3) 46 (∆4) 48 (∆6) 42 (∆0)

A
es

th
et

ic 6.333 7.599 7.627 7.621 7.559 7.660 7.958

6.054 7.197 6.979 7.339 7.427 7.112 7.498

Figure 5: Qualitative results for each application on SANA-Sprint [29].
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I Additional Qualitative Results

In this section, we present additional qualitative results that extend the examples shown in Fig. 2 of
the main paper. Consistent with the Fig. 2, all results here are generated using FLUX [28].

Layout-to-Image Generation. We present additional qualitative results for the layout-to-image
generation task in Fig. 6. Each example visualizes the input layout with color-coded phrases and
their corresponding bounding boxes for clarity. Ψ-SAMPLER consistently respects both the spatial
constraints and object presence specified in the layout. The first four rows (Row 1–4) illustrate
failure cases where baseline methods generate objects in incorrect locations—either misaligned
with the bounding boxes or placed in unrelated regions. For instance, in Row 1, baseline methods
fail to accurately place objects within the designated bounding boxes—both the dog and the eagle
appear misaligned. Similarly, in Row 4, objects such as the cat and skateboard do not conform to
the specified spatial constraints, spilling outside their intended regions in the baseline outputs. In
contrast, Ψ-SAMPLER successfully generates all objects within their designated bounding boxes.
The last four rows (Rows 5–8) illustrate more severe failure cases by baselines, where not only is
spatial alignment severly violated, but some objects are entirely missing. For example, in Row 5,
DAS [12] fails to generate the apple altogether, while the other baselines exhibit significant spatial
misalignment. In Row 7, some baselines produce unrealistic object combinations—such as the apple
and red cup being merged—and misinterpret the layout, placing the apple inside the red cup instead
of correctly positioning it in the wooden bowl. Ψ-SAMPLER not only positions each object correctly
but also ensures that all described entities are present and visually distinct.

Quantity-Aware Image Generation. We provide additional qualitative results for the quantity-
aware image generation task in Fig. 7 and Fig. 8. The examples cover a variety of object categories
and target counts, showing that Ψ-SAMPLER works reliably across different scenarios. For each
image, we overlay the predicted object centroids from a held-out counting model [75] for easier
comparison. Additionally, we display the predicted count below each image, along with the absolute
difference from the target quantity in the format (∆·). We highlight best case with blue color. Ψ-
SAMPLER consistently generates the correct number of objects, even in more challenging cases like
cluttered scenes or small, overlapping items. On the other hand, baseline methods often produce
too many or too few objects, and sometimes include misleading objects. This trend holds across all
categories, from food to everyday objects.

Aesthetic-Preference Image Generation. Further qualitative results for aesthetic-preference image
generation are presented in Fig. 9. For each prompt (e.g., “Horse”, “Bird”), we show the predicted
aesthetic score [76] below each image. While all methods generate visually plausible outputs, Ψ-
SAMPLER consistently produces images with higher aesthetic appeal, as reflected in both qualitative
impressions and the predicted aesthetic scores.
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Layout FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

“A dog and a bird sitting on a branch while an eagle is flying in the sky.”

“A banana and an apple are beneath a book and a flower is lying on the book in a room.”

“A photo of a bear sitting between a surfboard and a chair with a bird flying in the sky.”

“A cat is sitting on top of a skateboard, a dog is standing next to a car, and an airplane is flying in the sky.”

“A photo of an apple and a vase and a hamburger and a pizza.”

“A banana and an apple and an elephant and a backpack in the meadow with bird flying in the sky.”

“A realistic photo of a wooden bowl with an apple and a red cup and a yellow tulip in a blue vase and a lemon.”

“A realistic photo, a hamburger and a donut and a couch and a bus and a surfboard in the beach.”

Figure 6: Qualitative results for layout-to-image generation. Examples show how different methods place objects based on
input layouts. Ψ-SAMPLER aligns well with the given boxes, while baselines often misplace or miss objects.
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FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

“17 acorns”

8 (∆9) 7 (∆10) 14 (∆3) 12 (∆5) 18 (∆1) 8 (∆9) 17 (∆0)

“59 bottle-caps”

2 (∆57) 35 (∆24) 34 (∆25) 50 (∆9) 64 (∆5) 61 (∆2) 58 (∆1)

“26 breads”

6 (∆20) 15 (∆11) 17 (∆9) 31 (∆5) 23 (∆3) 16 (∆10) 26 (∆0)

“42 olives”

15 (∆27) 33 (∆9) 46 (∆4) 39 (∆3) 48 (∆6) 45 (∆3) 42 (∆0)

Figure 7: Qualitative results for quantity-aware image generation. Across various object types and target counts,
Ψ-SAMPLER generates the right number of instances more reliably than baseline methods, which tend to over- or
under-count.
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FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

“30 chocolates”

15 (∆15) 34 (∆4) 13 (∆17) 32 (∆2) 21 (∆9) 28 (∆2) 29 (∆1)

“18 potatoes”

16 (∆2) 20 (∆2) 23 (∆5) 21 (∆3) 21 (∆3) 20 (∆2) 18 (∆0)

“35 macarons”

7 (∆28) 29 (∆6) 23 (∆12) 31 (∆4) 21 (∆14) 31 (∆4) 37 (∆2)

“48 wooden-cubes”

8 (∆40) 27 (∆21) 34 (∆14) 35 (∆13) 34 (∆14) 46 (∆2) 48 (∆0)

Figure 8: Qualitative results for quantity-aware image generation. Across various object types and target counts,
Ψ-SAMPLER generates the right number of instances more reliably than baseline methods, which tend to over- or
under-count.
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FreeDoM [40] TDS [14] DAS [12] Top-K-of-N ULA MALA Ψ-SAMPLER

“Horse”

5.671 6.844 6.818 6.580 6.755 6.586 7.213
“Bird”

6.516 7.251 7.489 7.272 6.482 7.494 7.555
“Dolphin”

6.701 6.827 6.889 6.949 6.890 6.892 7.213
“Duck”

6.036 6.222 6.958 6.773 6.557 7.041 7.117

Figure 9: Qualitative results for aesthetic-preference image generation. Ψ-SAMPLER produces images
that are not only realistic but also more visually appealing, with better focus, balance, and overall look
compared to baseline outputs.
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