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ABSTRACT

Open set recognition (OSR) requires deep learning models to identify unknown
samples while recognizing known ones. Existing OSR studies focus on single-
modal data but merely discuss how to handle multimodal data. In this paper, we
propose a new task multimodal open set recognition (MMOSR), extending OSR to
more practical scenarios. First, we analyze the necessity of MMOSR and provide
insights into the task. We find that simply combining OSR and multimodal fusion
methods faces the challenge of fusion degradation. The main reason is that the
OSR regularization constrains the fused representations to be excessively compact,
leading to deactivated and limited representations. We design the multimodal
representation reactivation network (MRN) to alleviate fusion degradation by reac-
tivating suppressed representations. MRN includes the mutually enhanced fusion
for enhancing representations and performing cross-modal interaction, and the
adaptive fusion for capturing multiple informative representations and outputting
the adaptively fused prediction. Thus, the proposed method obtains effective and
comprehensive multimodal representations and addresses the challenge of fusion
degradation. Finally, extensive experiments on various settings demonstrate that
the proposed method is superior to existing methods by up to 5.23% on OSCR.

1 INTRODUCTION

Deep neural networks can accurately identify samples from learned classes during training but
struggle to recognize samples from unknown classes (Geng et al., 2020). Open set recognition (OSR)
is proposed to enable models to classify known samples while rejecting unknown ones, which is the
fundamental ability of models to ensure security and know what to learn (Scheirer et al., 2012).

Many researchers have dedicated to the OSR problem on various types of data, such as images, texts,
and time series (Huang et al., 2023; Liu et al., 2023; Yang et al., 2022). Existing OSR methods
can be roughly divided into two groups: generative methods that encode classes into various latent
distributions or synthesizing pseudo-unknown samples for constraining the space occupied by known
classes (Katsumata et al., 2022; Kong & Ramanan, 2021; Yue et al., 2021) and discriminative methods
that reserve space for unknown classes by incorporating placeholders or reciprocal points (Chen et al.,
2020; 2022; Zhou et al., 2021; Xu et al., 2023).

Despite the progress in OSR, existing studies work upon single-modal data but merely address
multimodal data. In fact, humanoid robots (Hirose & Ogawa, 2007) and unmanned systems typically
rely on multimodal sensors, e.g., image-text or vision-audio data, to perceive the environment, which
challenges the mechanism of single-modal OSR methods that requires comprehensively capturing
unknown factors. To address this limitation, we propose a new multimodal open set recognition
(MMOSR) task, analyzing its necessity and challenge by discussing the following questions:

(1) Is it possible to solve MMOSR using existing multimodal fusion and single-modal OSR methods?

(2) If not, what is the main challenge of applying these existing methods to MMOSR?

(3) How to address the aforementioned challenge and design effective MMOSR methods?

To answer these questions, we empirically analyze three types of models: single-modal OSR,
multimodal fusion, and the combination of multimodal fusion and single-modal OSR. As illustrated
in Figure 1, we find that combining multimodal learning and single-modal OSR cannot perform
satisfactorily (Section 3.2). OSR regularization leads to the collapse of multimodal representations by
suppressing the fused representations of each class to be excessively compact. Such an excessively
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Figure 1: Illustration of MMOSR issues. (a) Single-modal OSR accurately detects unknowns but
misclassifies some known samples, (b) Multimodal fusion improves accuracy but struggles with
unknowns, (c) Multimodal OSR over-suppresses the feature space and hinders the performance, (d)
MRN extracts discriminative features comprehensively, enhancing overall performance.

compact suppression results in fusion degradation, which specifically manifests as a suppression
of modality representations and limited representation capability. Fusion degradation reduces the
information learned in a certain modality and makes the model focus only on partial information.
Therefore, the performance significantly decreases with weakened multimodal representations.

To address the aforementioned challenge, we propose the multimodal representation reactivation
network (MRN), which reactivates representations and learns comprehensive representations through
effective fusion across modalities. Concretely, to alleviate fusion degradation, we design an adaptive
fusion module using a mixture of experts to obtain comprehensive representations. To avoid the fusion
suppression of modality, we design a mutually enhanced fusion module to enable full interaction
between different modalities. With effective fusion modules in the model, the learned representations
are more comprehensive and informative. Extensive experiments show that our method achieves an
over 5.23% improvement on OSCR over existing methods, thereby verifying its effectiveness.

The contributions of the paper are three-fold:

• We propose a new multimodal open set recognition (MMOSR) task that extends the existing
OSR task to handling multimodal data.

• We provide insights into MMOSR and find that simply combining single-modal OSR and
multimodal fusion would lead to the challenge of fusion degradation.

• We design a multimodal representation reactivation network with mutually enhanced fusion
and adaptive fusion to enable comprehensive and informative representations.

2 RELATED WORK

2.1 MULTIMODAL FUSION

Multimodal fusion aims to integrate information from diverse sensory modalities (such as vision,
audio, and text) to achieve a more comprehensive and accurate understanding. Simple operations
like addition and concatenation enable the integration of representations from diverse sources (Noja-
vanasghari et al., 2016; Wang et al., 2017). TMC (Han et al., 2023) leverages variational Dirichlet
distribution and Dempster-Shafer theory to improve accuracy and robustness by dynamically integrat-
ing views based on uncertainty. GQA (Ainslie et al., 2023) improves upon multi-query attention by
grouping query heads, achieving near multi-head attention quality with faster inference speed through
minimal uptraining. MLA (Zhang et al., 2024) improves multimodal learning by alternating unimodal
adaptations to reduce interference between modalities and optimize cross-modal interactions.

Moreover, large-scale pre-trained models excel in image-text classification. CLIP (Radford et al.,
2021) employs contrastive learning to align visual and textual representations in a shared embedding
space, CoOp (Zhou et al., 2021) extends CLIP by optimizing learnable prompts to adapt to new
downstream tasks, while MaPLe (Khattak et al., 2023) further enhances this by introducing multiple
prompt vectors that enrich prompt diversity and enhance the connections between image and text.

Even with the recent developments in multimodal fusion (MM) methods, they neglect unknown
samples that may appear, leading to known classes dominating feature space and hindering the
detection of unknown samples. Intuitively, we investigate combining MM and OSR to handle the
MMOSR task in Section 3, but the performance remains unsatisfactory.
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2.2 OPEN SET RECOGNITION

Early OSR methods used conventional machine learning techniques like support vector machines
and extreme value theory (Bendale & Boult, 2016; Scheirer et al., 2012). The maximum Softmax
probability served as the baseline for rejecting unknown samples, representing the highest probability
of a sample belonging to a known class (Hendrycks & Gimpel, 2016).

Recent OSR methods based on deep learning can be categorized into generative and discriminative
methods. Generative methods aim to generate pseudo-unknown samples, enabling models to handle
and distinguish unknown samples accurately (Katsumata et al., 2022; Kong & Ramanan, 2021;
Yue et al., 2021). Several generative methods incorporate an additional component that learns to
reconstruct inputs from features, using the reconstruction errors to estimate whether the test sample is
from known classes (Huang et al., 2023; Oza & Patel, 2019; Perera et al., 2020; Yoshihashi et al.,
2019). Discriminative methods use specific classification strategies for handling OSR tasks, such as
using prototype points as representatives for known classes or setting placeholders to reserve space
for unknown samples (Chen et al., 2020; 2022; Xu et al., 2023; Zhou et al., 2021).

Despite recent advances, existing OSR methods are mainly for single-modal tasks. Extending OSR
to MMOSR using multimodal fusion models before applying OSR strategies is straightforward.
However, exploratory experiments show that simply combining MM and OSR does not achieve
satisfactory performance, highlighting the unique challenge in MMOSR.

3 MMOSR

In this section, we conducted experiments on the proposed MMOSR benchmark to illustrate the
challenge of handling the MMOSR task and the necessity of developing specific MMOSR methods.

3.1 PROBLEM DEFINITION

In multimodal open set recognition (MMOSR) task, the i-th sample (x1
i , ...,x

|M|
i , yi) comprises data

from |M| modalities and the corresponding label. The training set DK = {(x1
i , ...,x

|M|
i , yi)}ni=1

only contains samples from known classes, whereby yi ∈ {1, . . . , CK} and CK is the num-
ber of known classes. The traditional multimodal classification task aims to classify multi-
modal data under closed-set assumption. However, under the MMOSR setting, the test set
DT = {(x1

j , ...,x
|M|
j , yj)}tj=1 includes samples from both known classes and unknown classes,

where the label yj ∈ {1, ..., CK} ∪ {CK + 1, ..., CK + CU} and CU represents the number of
unknown classes that appear in testing scenario. Since we cannot obtain any prior information about
real scenarios, the model should assign all unknown samples to the unified unknown class as U .

3.2 NECESSITY OF DEVELOPING MMOSR METHODS

With the MMOSR problem defined, we now discuss why existing methods are inadequate and explore
the necessity of developing specialized MMOSR approaches.

Table 1: Comparison of AUROC and ACC on different methods
under MMOSR settings. The best results are marked in bold.

Method Food-101 / 5 Food-101 / 10 Food-101 / 20
AUROC ACC AUROC ACC AUROC ACC

Image-OSR 65.91 77.57 62.21 60.24 60.07 33.37
Text-OSR 91.57 91.17 90.49 89.24 92.03 87.45

Fusion 89.34 93.24 90.48 92.24 91.33 91.37
Gain (∆) (2.23↓) (0.33↑) (0.01↓) (3.00↑) (0.70↓) (3.88↑)

Fusion-OSR 89.23 92.91 88.24 87.01 86.43 85.52
Gain (∆) (2.34↓) (0.33↓) (2.25↓) (5.23↓) (5.60↓) (5.85↓)

We first conducted experiments
on the widely used image-
text multimodal dataset Food-
101 (Wang et al., 2015), which
includes food images paired with
recipe texts across 101 categories.
Following the OSR setting (Chen
et al., 2022), we randomly se-
lected 5, 10, or 20 classes from
Food-101 as known classes for
testing, while samples from the
remaining classes were treated
as unknown during testing. We
applied the recent single-modal
OSR method OpenAUC (Wang et al., 2022) to either the image or text modality (Image/Text-OSR).
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(a) Image-OSR (b) Text-OSR (c) Fusion (d) Fusion-OSR

Figure 2: Comparison of t-SNE downscaled features for each method under the 10 known classes
setting on Food-101. The red dots represent downscaled representations of unknown samples, while
each dot of the same color represents known samples of the same class.

For MM methods, we used a simple fusion approach by adding representations from both modalities
and rejecting unknown samples based on the maximum Softmax probability strategy (Fusion). We
reported average accuracy (ACC) and the area under the receiver operating characteristic curve
(AUROC) in Table 1 to evaluate the model’s closed-set classification performance and its ability to
detect unknown samples. Two key conclusions can be inferred from the results:

Inadequacy of MM and OSR for MMOSR tasks. As depicted in Table 1, applying OSR methods
solely to single-modality data results in low ACC, likely due to the limited information from a
single modality. Though MM improves ACC performance, its performance of AUROC in detecting
unknown samples remains lower than the most discriminative modality (Text).

Limitations of simply combining MM and OSR methods. Relying solely on MM fails to recognize
unknown samples effectively, while using OSR on a single modality leads to significant information
loss. Combining MM representations with OSR (Fusion-OSR) results in lower ACC and AUROC
than either method alone. Our experiments reveal that MM methods lack measures to mitigate open
space risk, which cannot be resolved by simply integrating OSR methods. We propose that MMOSR
should leverage the strengths of both MM and OSR to enhance closed-set and open-set performance.

To analyze the key challenge in the MMOSR task, Figure 2 visualizes the downscaled representations
of each model. Based on earlier experiments, we identified a critical issue termed fusion degradation,
where basic fusion approaches reduce the distinctiveness of each modality’s representation. We
explain this phenomenon from the following two perspectives:

Weakened discrimination ability of the model on fused representations. Comparing Figure 2a,
Figure 2b, and Figure 2d, we observe that due to high similarity among images from different known
classes, leveraging the text modality through fusion is crucial. However, when OSR methods use fused
representations (Fusion-OSR), the distinction between unknown and known samples diminishes, as
shown by the close alignment of unknown samples with known class clusters. Results in Table 1 also
suggest that fusion suppresses single-modal representations and reduces the model’s discrimination
ability. This phenomenon indicates that existing MM methods are unsuitable for OSR tasks.

Over-compression of representations in OSR methods. To handle the risk of misclassifying
unknown samples, OSR methods compact the representations of known classes to leave space
for unknown samples. However, as seen in Figure 2c and Figure 2d, Fusion-OSR methods over-
compress these representations. This excessive compression limits the model’s ability to represent
and differentiate unknown classes, causing unknown samples to closely resemble known clusters.

4 METHOD

In this section, we present our multimodal representation reactivation network (MRN) for MMOSR,
which can obtain more effective and comprehensive representations that are fused from multiple
modalities to classify known samples while rejecting unknown ones precisely.

4.1 FRAMEWORK

Figure 3 illustrates the architecture of the proposed MRN, which employs data encoders and fusion
modules. The fusion modules consist of a mutually enhanced fusion module that reactivates significant
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Figure 3: The architecture of the MRN includes three modules: (a) encoder E for each modality,
(b) mutually enhanced fusion, and (c) adaptive fusion. f represents the fused prediction used for
closed-set classification and unknown detection.

representations across modalities and an adaptive fusion module that extracts and combines multiple
representations from experts, ensuring a comprehensive and effective representation for classification.

4.2 MULTIMODAL REPRESENTATION REACTIVATION NETWORK

To explain our method clearly, we illustrate it using dual-modality data, where the training sample
is represented as (x1,x2, y). We first input modality 1 data x1 and modality 2 data x2 into the
corresponding encoder for obtaining the representations separately: z1 = E1(x1), z2 = E2(x2).
Then, we input the representations z1, z2 into the following fusion modules to obtain effectively
fused representations with deeply cross-modal interaction for prediction.

4.2.1 MUTUALLY ENHANCED FUSION OF REPRESENTATIONS

Experiments in Section 3.2 show that existing methods suffer from fusion degradation, affecting
their ability to utilize comprehensive information to distinguish unknown samples from known
ones. It is necessary to ensure that the fused representations contain key information from multiple
modalities. In each modality, there is a sharing of class-irrelevant information across classes, which
is not advantageous for the OSR task. Thus, guiding the model to focus on class-relevant significant
information within each modality can enhance representations.

Inspired by the study of Katharopoulos et al. (2020) on attention mechanisms, we use cross-attention
to enhance representations of each modality mutually. We consider that the parts where single
modality representations highly correlate with representations from another modality represent the
class-relevant information that needs to be retained. Therefore, we use cross-attention modules C1
and C2, each dedicated to extracting the crucial information from the corresponding modality, thereby
mutually reactivating suppressed representations and interacting between different modalities.

For module C1, we use the modality 1 representations z1 as the query and the modality 2 representa-
tions z2 as the key and value. As in equation 1, the attention scores represent the relative importance
of each element in z2 concerning the query z1. The normalized attention scores are then used to
compute a weighted sum of z2 and output zc1, which captures the most relevant information from z2.

zc1 = C1 (z1, z2, z2) = Softmax
(
WQ

1 z1z2W
K
1 /
√
d
) (

WV
1 z2

)
, (1)

where d represents the dimension of the query vectors and W∗
1 denotes the learnable parameter

matrix designed to map the original vectors into a representation space that can better match other
vectors, enabling the model to understand the relationship between representations.

Similarly, we use z2 as the query and z1 as the key and value for C2, and obtain zc2 = C2(z2, z1, z1).
We adopt multi-head attention for combining weights to yield richer and more accurate represen-
tations. The final output of the mutually enhanced fusion module is zc = Concatenate(zc1, z

c
2).
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By interacting multimodal representations with cross-attention, the model mutually enhances each
modality’s representation, reactivating suppressed features. For data with three or more modalities,
pairwise enhancement followed by concatenation can be applied.

4.2.2 ADAPTIVE FUSION OF REPRESENTATIONS

To address the issue of the limited representation capability of the model, we introduce Mixture-of-
Experts (MoE) (Shazeer et al., 2016) to extract diverse representations and adaptively obtain the
fused prediction. By leveraging specialized experts and adaptive weights, the model can reactivate
the important but subtle representations then utilize comprehensive representations for prediction.

The adaptive fusion comprises two main components: the expert network N (·) and the gating
network G(·). The expert network N (·) consists of multiple multilayer perceptron (MLP) experts,
each capable of extracting different aspects or patterns from the data. Let E denotes the number
of experts, and the expert network outputs a set of predictions fa = N (zc) = {fea}Ee=1 ∈ R[E,CK ].
The gating network G(·) determines the contribution of each expert to the final prediction based on
the input zc. In equation 2, G(·) computes expert weights wa by applying Softmax to the top-K
elements of the dot product between zc and parameter matrix Wg , with Gaussian noise ϵ ∼ N (0, I)
added for robustness and to prevent overfitting.

wa = G(zc) = Softmax (top−K ((Wgzc) + ϵ · Softplus (Wnoisezc))) . (2)

Finally, the sum of the outputs fa = from all experts weighted by their corresponding weights in wa

yields the predicted logits f = Softmax (wafa) after normalization by Softmax function.

To ensure that the model can train each expert in a balanced manner, we use the load balancing loss
Lg to constrain the model to train each expert equally, which is calculated as the squared coefficient
of variation of the load gL and importance gI of experts. With λ denotes the scaling factor, our loss
L comprises the classification loss Lcls and the Lg , which is formalized as:

L = Lcls + λLg = −
K∑
i=1

yi log(fi) + λ

(
σ2(gI)

µ2(gI)
+

σ2(gL)

µ2(gL)

)
. (3)

4.3 REJECTING UNKNOWN SAMPLES

In OSR, the scoring function S is used to determine whether a sample is known. If the score of the
sample is higher than the threshold τ , it is classified as a known sample, otherwise, it is rejected as an
unknown sample. We adopt the highest probability predicted by the model across all known classes
as the score. The threshold τ is set to ensure 95% of the known samples are correctly classified.

ŷi =

{
argmaxCK

i=1 fi, if S(x1,x2) = maxCK
i=1 fi ≥ τ

U, else
. (4)

In equation 4, the model outputs the classification results of known samples that have scores higher
than τ , while rejects samples that have scores below the threshold τ as unknown samples.

5 EXPERIMENT

5.1 SETUP

Datasets. We used various multimodal data to evaluate the proposed method under the MMOSR
settings, including IMAGE-TEXT: Food-101 (Wang et al., 2015), a large collection of food images
paired with recipe texts across 101 categories, and Flower-102 (Nilsback & Zisserman, 2008), which
contains 102 flower categories with detailed image and descriptive text, AUDIO-VISUAL: CREMA-
D (Cao et al., 2014), an emotion recognition dataset where actors express different emotions through
spoken sentences, and RGB-DEPTH IMAGES: SUN RGB-D (Song et al., 2015), a large-scale dataset
contains RGB and depth images from diverse indoor environments for scene understanding.

Implementation details. We employed ResNet34 (He et al., 2016) as the RGB / depth images and
audio encoder while employing attention-based Bi-LSTM (Zhou et al., 2016) as the text encoder.
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Table 2: Comparison of open set recognition results on different methods. The best results are marked
in bold and gains (∆ ↑/↓) were calculated within each setting group.

Method Food-101 Flower-102 CREMA-D SUN RGB-D
AUROC OSCR AUROC OSCR AUROC OSCR AUROC OSCR

Single-modal OSR methods
ARPL (TPAMI’22) 62.19 41.48 66.37 54.80 53.09 17.15 62.63 40.31
OpenAUC (NeurIPS’22) 62.21 43.72 65.74 48.85 53.90 19.95 61.46 39.73
CSSR (TPAMI’23) 70.72 57.91 68.01 55.96 55.02 22.53 62.87 41.88
ASH (ICLR’23) 68.41 55.76 70.40 63.15 60.12 33.64 65.35 47.52

Multimodal fusion methods
TMC (TPAMI’23) 88.78 86.07 69.33 60.15 66.41 52.79 64.14 46.05
GQA (EMNLP’23) 89.84 85.92 68.81 59.61 67.19 53.07 64.53 46.68
MLA (CVPR’24) 91.44 87.78 73.76 64.47 67.83 57.50 62.95 45.02
MRN 92.16 89.16 76.23 69.70 66.78 57.32 65.72 47.53

Gain (∆) (0.72↑) (1.38↑) (2.47↑) (5.23↑) (1.05↓) (0.18↓) (0.37↑) (0.01↑)

Multimodal fusion with OSR methods
ARPL-ADD 90.45 86.21 68.10 56.39 64.12 51.90 63.70 45.21
ARPL-CAT 90.92 86.35 67.63 57.37 63.34 49.35 64.19 44.67
ARPL-GQA 90.76 84.31 69.93 59.57 63.30 53.07 63.34 45.12
ARPL-MRN 91.24 86.76 72.68 65.54 64.37 56.79 64.50 46.08

Gain (∆) (0.32↑) (0.41↑) (2.75↑) (5.97↑) (0.25↑) (3.72↑) (0.31↑) (0.87↑)

CSSR-ADD 91.41 87.94 71.52 63.33 64.54 53.81 64.95 46.32
CSSR-CAT 91.56 87.53 72.48 64.91 64.58 53.77 65.18 46.36
CSSR-GQA 91.23 87.37 71.82 63.69 65.22 54.26 65.01 45.87
CSSR-MRN 91.82 88.51 74.02 66.21 66.86 56.90 65.37 46.59

Gain (∆) (0.26↑) (0.57↑) (1.54↑) (1.30↑) (1.64↑) (2.64↑) (0.19↑) (0.23↑)

We set the expert number N to 15 and the selected number K to 4. To avoid introducing unknown
information, we trained all models from scratch only with known classes.

Baselines. We set the baselines based on the existing OSR method and multimodal fusion method.
For the single modality, we used advanced OSR and out-of-distribution detection methods (Chen
et al., 2022; Wang et al., 2022; Huang et al., 2023; Djurisic et al., 2023). For the multimodal fusion
methods, we used TMC (Han et al., 2023), GQA (Ainslie et al., 2023), and MLA (Zhang et al., 2024).

5.2 RESULTS ON OPEN SET RECOGNITION

Following the standard OSR setting (Chen et al., 2022; Huang et al., 2023), we randomly selected ten
classes as known for the Food-101, Flower-102, and SUN RGB-D datasets. For the six-class dataset
CREMA-D, we used three emotion classes as known. In addition to the AUROC metric, we adopted
OSCR, which evaluates both closed-set and open-set classification performance. All reported results
for other methods were reproduced by us using the official code and the same encoder.

(1) MRN consistently demonstrates exceptional MMOSR performance across various datatypes.
Results in Table 2 indicate that even in more challenging scenarios, such as with increased unknown
classes and higher closed-set similarity, MRN maintains strong performance in both closed-set
classification and unknown detection. These results underscore the robustness and effectiveness of
MRN in tackling the MMOSR task, further validating its utility in real-world multimodal settings.

(2) MRN extracts multimodal representations comprehensively for the MMOSR tasks. We
integrated OSR methods ARPL (Chen et al., 2022) and CSSR (Huang et al., 2023) with various
multimodal fusion approaches and the proposed MRN, then compared the performance in Table 2.
MRN has more significant improvements on OSR methods than other fusion strategies with its ability
to capture crucial multimodal features that other fusion methods miss mitigates fusion degradation.

(3) MRN establishes effectiveness across varying scenarios, even outperforming pre-trained
multimodal models. We conducted experiments with numbers of known classes from 5 to 80 to
represent different scenarios on the Food-101 dataset. Since it is an image-text dataset, we included
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Table 3: Comparison of open set recognition results on different methods under varying scenarios.
The best results are marked in bold and gains (∆ ↑/↓) were calculated within each group.

Method
# of known classes / # of unknown classes

5 / 96 20 / 81 50 / 51 80 / 21

AUROC OSCR AUROC OSCR AUROC OSCR AUROC OSCR

Single-modal OSR methods
ARPL (TPAMI’22) 71.88 61.91 69.94 53.28 71.00 51.96 70.83 53.52
CSSR (TPAMI’23) 75.83 67.10 72.49 60.68 75.10 63.59 73.90 60.29
ASH (ICLR’23) 75.24 66.64 71.34 54.41 71.05 50.94 69.22 47.44

Zero-shot / 16-shot fine-tune large-scale pretrained model
CLIP (ICML’21) 90.20 86.23 84.15 73.04 79.58 65.36 73.95 57.67
CoOp (IJCV’22) 86.75 83.88 79.05 68.01 73.75 58.93 68.61 52.03
MaPLe (CVPR’23) 87.16 84.47 78.63 68.11 75.47 61.24 70.23 54.47

Multimodal fusion methods
TMC (TPAMI’23) 95.17 92.30 85.19 83.63 78.87 84.42 83.16 82.02
GQA (EMNLP’23) 95.31 92.51 91.66 86.79 90.01 85.15 89.46 82.51
MLA (CVPR’24) 97.07 93.82 91.81 86.56 91.37 85.80 89.84 82.07
MRN 97.30 94.86 94.80 88.24 92.89 86.23 91.83 83.30

Gain (∆) (0.23↑) (1.04↑) (2.99↑) (1.45↑) (1.52↑) (0.43↑) (1.99↑) (0.79↑)

Multimodal fusion with OSR methods
CSSR-ADD 96.32 94.11 92.24 88.41 91.95 86.68 88.93 83.61
CSSR-CAT 96.55 94.29 92.40 88.64 90.51 86.03 88.71 83.25
CSSR-GQA 96.13 93.86 92.35 88.51 91.14 86.20 88.60 83.08
CSSR-MRN 96.81 94.69 92.60 88.93 92.03 86.88 90.14 84.19

Gain (∆) (0.26↑) (0.40↑) (0.20↑) (0.29↑) (0.08↑) (0.20↑) (1.21↑) (0.58↑)

the pre-trained image-text model CLIP (Radford et al., 2021) and fine-tuning methods (Khattak et al.,
2023; Zhou et al., 2021) as baselines.

Table 3 shows that MRN outperforms across scenarios, excelling in MMOSR tasks. In contrast,
large-scale pretrained models designed for general image-text classification, struggle with specific
downstream tasks and noisy datasets (Zhou et al., 2021). Their reliance on limited prompts hampers
full use of the text modality, highlighting the need for tailored methods like MRN.

5.3 FURTHER ANALYSIS

5.3.1 ABLATION STUDY

Table 4: Ablation study on the fusion mod-
ules. The ✓indicates using the module and
the first line refers to the results obtained
only with encoders and adaptive fusion.

Module Food-101 Flower-102

C1 C2 AUROC ACC AUROC ACC

89.93 90.81 74.28 82.51
✓ 90.52 91.45 74.83 83.05

✓ 91.31 92.03 75.61 83.77
✓ ✓ 92.16 92.35 76.23 84.10

To analyze the effectiveness of each fusion module,
we conducted ablation experiments under the open set
recognition setting and results are recorded in Table 4.

The mutually enhanced module effectively reacti-
vates representations and enables cross-modal inter-
action to improve model performance. It is worth
noting that the improvement is even more pronounced
in relatively difficult tasks. Comparing the results of
only using C1 or only using C2, we considered that when
images serve as queries, leverage their richer visual in-
formation, leading to improved alignment with textual
descriptions, thus enhancing overall performance.

5.3.2 SENSITIVITY OF HYPERPARAMETERS

To evaluate the sensitivity of the model on the total number E and selected number K of experts, we
conducted experiments on Food-101 and Flower-102 datasets under the open set recognition setting.
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Figure 4: The changes in multiple metrics as the
total number E of experts is varying.
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Figure 5: The changes in multiple metrics as the
selected number K of experts is varying.

MRN maintains outstanding performance with different total numbers of experts and selected
numbers. Figure 4 shows that with the total number of experts varying from 10 to 20, the overall
performance remains stable, indicating that the model is insensitive to hyperparameter expert number
E. Considering the top-K strategy of the gating network, we varied K from 2 to 7 to test its impact
on the model. Figure 5 shows that the MRN maintains consistency except for slight performance
drop when adopting either extremely low or high K.

5.3.3 VISUALIZATION AND DISCUSSION

MRN exhibits stronger discriminative ability and more comprehensive representations. We
employed t-SNE to visualize the feature scatter of our method in Figure 6. Unknown representations
(red dots) exhibit considerable distance from each known class, with known clusters dispersed across
the entire space, validating that MRN can distinguish unknown samples from similar known ones. We
present the Grad-CAM results of the baseline and MRN in Figure 7. The representations of MRN are
more accurate and comprehensive than the baseline, validating its superior representation capability.

(a) Food-101 (b) Flower-102

Figure 6: The scatters of downscaled features with
t-SNE on different datasets.

(a) Grad-CAMs of ARPL (b) Grad-CAMs of MRN

Figure 7: Grad-CAMs of ARPL and MRN on
Food-101 and Flower-102 datasets.

The necessity of designing specific methods for the MMOSR task. Comparing the performance of
multimodal fusion methods with that of methods combined with OSR techniques, we can observe
that the constraints imposed by existing OSR methods do not result in consistent improvements
on multimodal features. This indicates that the unique challenges posed by MMOSR need to be
addressed through designs tailored to its characteristics.

The significance of MRN in the MLLMs era. No matter how much data a model has learned, it
must be able to clearly identify unknown samples outside the current task. Although large-scale
pretrained models have significantly improved performance, they still face substantial challenges in
recognizing what they truly don’t know. We hope the academic community will further explore this
task to enhance the human-like perception capabilities of large models (Cheng et al., 2024; Rawte
et al., 2023).
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6 CONCLUSION

We discuss a new MMOSR task in this paper by analyzing its research necessity and main challenges.
We first find that introducing OSR to multimodal fusion would lead to fusion degradation, which
seriously affects the model’s ability to represent multimodal data by the feature suppression of
modality and limited representation capability of the model. To address the aforementioned problems,
we then propose a multimodal representation reactivation network that yields comprehensive and
informative multimodal representations via mutually enhanced fusion and adaptive fusion. The
mutually enhanced fusion module uses cross-attention to enable full modality interactions and
enhance the representations, while the adaptive fusion module uses the mixture-of-experts to obtain
comprehensive representations. We conducted various experiments and verified the effectiveness of
the proposed MRN. Results show that, compared to single-modal OSR, multimodal fusion methods,
and simple combinations of OSR and multimodal fusion methods, the proposed multimodal fusion
method can significantly enhance the learned representations to facilitate OSR.
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A APPENDIX

In the appendix, we provide a more comprehensive exploration of details not covered in the main text.
We present the reproducibility of the proposed method, supplemental experiments, the pseudo-code
of the proposed method, etc. We discuss the following subjects in detail:

• Reproducibility of the proposed method

• Supplementary experiments

• Overview of the training and test process

• Experimental details

• Visualizations

B REPRODUCIBILITY OF THE PROPOSED METHOD

In this section, we explain the reproducibility of our paper, including the accessibility code and
datasets. We also present a comprehensive description of the dataset contents and elaborate on the
data processing methods employed.
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B.1 THE CODE OF OUR METHOD

We have submitted our code files in the supplementary materials, which include the necessary files
for data processing, model construction, and training. The experimental results presented in the paper
can be reproduced by running this code. The code will be made public once the paper is accepted,
which allows the researcher to reproduce the results of this paper and conduct further development.

B.2 THE ACCESSIBILITY AND DETAILS OF THE DATASETS

Since our dataset is built upon existing datasets, it will be made publicly available in sync with the
publication of our paper for use by other researchers.

B.2.1 DETAILS OF THE DATASETS

(1) Text-image multimodal datasets

• Flower-102 (Nilsback & Zisserman, 2008): The flower dataset consists of 8,189 images of
flowers from 102 different species. Each species has between 40 to 258 images. It is widely
used for tasks such as image classification and fine-grained visual recognition.

• UPMC FOOD-101 (Wang et al., 2015): The Food dataset is a large-scale dataset for multi-
modal learning tasks, especially designed for food recognition. It contains approximately
100,000 image-text pairs across 101 food categories. Each category represents images of a
specific type of food along with detailed textual descriptions.

• Caltech-UCSD Birds (CUB-200) (Wah et al., 2011): The CUB-200 dataset is a popular
dataset for fine-grained image classification. It contains 11,788 images of 200 bird species,
each annotated with species labels, bounding boxes, and part locations.

(2) Audio-visual multimodal dataset

• CREMA-D (Cao et al., 2014) is an emotional multimodal dataset consisting of 7,442 original
clips from 91 actors (48 male, 43 female) aged 20 to 74, representing various races and
ethnicities. The actors expressed six emotions (Anger, Disgust, Fear, Happy, Neutral, and
Sad) through a selection of 12 sentences.

(3) RGB-depth image multimodal dataset

• SUN RGB-D (Song et al., 2015) is a large-scale multimodal dataset designed for scene
understanding and object detection in indoor environments. It contains over 10,000 RGB-D
images, which include both RGB (color) data and depth information. For scene classification,
we used the 19 classes with more than 80 images.

The construction of MMOSR datasets The Flower-102 dataset shares similarities with the CUB-
200 dataset as the images primarily consist of the main objects and exhibit minimal background. The
associated text provides descriptions of the representations of flowers or birds, without explicitly
mentioning the specific object class names. A representative sample from the flower dataset and
the CUB-200 dataset, including both the image and the corresponding text, is depicted in Figure 8a
and Figure 8b, respectively. The text descriptions in the Food dataset are compiled from recipe
descriptions, removing category names is not a specific focus. For example, in Figure 8c, the
corresponding label “creme brulee” and “frozen yogurt” are in included in the text description.

For the Flower-102 and CUB-200 datasets, dictionaries are provided by Reed et al. (2016) that
encompass all the words found in their respective text descriptions. Each word in the dictionary is
assigned a unique number for text encoding purposes. In the case of the Food dataset, a pre-existing
dictionary is not provided. Hence, we constructed our own dictionary by incorporating all the words
present in the text descriptions. To ensure the effectiveness of the dictionary, we removed words
that occur fewer than five times. We employed the bag-of-words modeling approach to convert the
textual data into numerical codes. As depicted in Figure 8, there is a variation in the text length across
different datasets. In the case of the Flower-102 and CUB-200 datasets, the text length is limited to
150 words. For the Food dataset, the text length is restricted to 10 words.

2



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

(a) A sample from the Flower-102 dataset.

(b) A sample from the CUB-200 dataset.

(c) Samples from the Food-101 dataset.

Figure 8: Samples from text-image dataset.

After processing the data for both image and text modalities, we divided the known and unknown
classes according to the open set recognition setup and used the known classes to train the model.

B.3 MORE DETAILS OF THE PROPOSED METHOD

To ensure that each expert receives adequate training and to adhere to the load balancing proposed
by Shazeer et al. (2016), we set the loss Lg . The expert importance gI mentioned in the main text is
obtained by calculating the sum of the weight values wa allocated to the expert within a batch, and
the expert load gL represents the degree of the tendency of the gating network to assign tasks to this
expert. With zc denotes the feature outputted by cross attention and the Gaussian noise ϵ ∼ N (0, I),
we determine the relative ranking of the scores for different experts as

s = Wgzc + ϵ · Softplus (Wnoisezc) (5)

For the e-th expert, the probability P (zc, e) that it is selected in top-K experts is calculated as equa-
tion 6, where sKe represents the K-th largest value in the s, excluding the e-th expert. Φ is the
cumulative distribution function (CDF) of the standard normal distribution and B denotes the batch
size. The load geL =

∑B
b=1 P (zbc, e) and the importance geI =

∑B
b=1 w

e,b
a .

P (zc, b) = Φ

(
(Wg)bzc − sKb

Softplus((Wnoisezc)b)

)
(6)

C SUPPLEMENTARY EXPERIMENTS

C.1 DEEPER ANALYSIS OF THE FUSION DEGRADATION AND REPRESENTATION INSUFFICIENCY

To further illustrate the issue of fusion degradation in existing methods, we conducted experiments
on two datasets with five or ten known classes and plotted the difference between the optimal
classification performance of single modalities and the fused results in Figure 9. The calculation of
△ACCc is as follows:

△ACCc = max
(
ACCImage-OSR

c ,ACCText-OSR
c

)
− ACCFusion-OSR

c , c ∈ {1, ..., CK}. (7)
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Figure 9: The ACC difference of each known class between Image-OSR, Text-OSR, and Fusion-OSR.
The ‘-5’ and ‘-10’ denote using 5 or 10 classes from the corresponding dataset as known classes.

Table 5: Comparison of out-of-distribution detection results on different methods. The best results
are marked in bold.

Method InD: Food-101 / OOD: Flower-102 InD: Food-101 / OOD: CUB-200
TNR DTACC AUROC OSCR TNR DTACC AUROC OSCR

Single-modal OSR methods
ARPL (TPAMI’22) 15.58 70.45 75.85 52.11 19.16 73.81 78.30 51.44
CSSR (TPAMI’23) 19.39 71.07 77.42 53.06 21.77 75.34 81.62 51.83
ASH (ICLR’23) 24.12 72.79 80.49 49.53 27.28 76.76 83.92 50.82

Multimodal fusion methods
TMC (TPAMI’23) 61.22 90.70 94.02 83.97 68.12 93.18 95.23 85.74
GQA (EMNLP’23) 61.38 91.06 94.35 84.48 67.74 93.27 95.31 86.02
MLA (CVPR’24) 63.97 91.45 94.68 85.39 69.44 93.50 95.96 86.75

MRN 65.38 92.14 95.42 86.34 70.01 93.99 96.27 86.32
Gain (∆) (1.41↑) (0.69↑) (0.74↑) (0.95↑) (0.57↑) (0.49↑) (0.31↑) (0.43↓)

‘Image-OSR’ and ‘Text-OSR’ refer to the results of applying OpenAUC (Wang et al., 2022) on only
the image modality or the text modality, respectively. ‘Fusion’ means using addition as a multimodal
fusion method without applying OSR methods. ‘Fusion-OSR’ means combining the multimodal
fusion and OSR methods.

Results show that in MMOSR, the fusion of different modalities is beneficial for a small number
of known classes but not practical for most known classes. We attribute this phenomenon to the
degradation of fused representations relative to single-modality representations, leading to decreased
classification performance when using the fused representations.

C.2 RESULTS ON OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection identifies samples from distributions different from the training
set. We used the entire Food-101 dataset as the in-distribution (InD) dataset and the Flower-102
or CUB-200 serving as the OOD dataset. CUB-200 (Wah et al., 2011) is a fine-grained image-text
multimodal dataset focused on 200 bird species. Following (Chen et al., 2022; Huang et al., 2023),
we additionally used TNR and DTACC as evaluation metrics. TNR measures the proportion of true
negatives among all negatives, evaluated when the True Positive Rate (TPR) is fixed at 95% with
threshold τ . DTACC measures the highest classification accuracy across thresholds.

MRN effectively discriminates OOD samples from various distributions. Results in Table 5
indicate that MRN has notable improvements over both single-modality OSR and multimodal methods.
Although there is a slight decrease in OSCR for the CUB-200 dataset, MRN overall achieves strong
detection accuracy and excels in recognizing out-of-distribution samples across various datasets.
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Table 6: The performance of the MRN against different openness on the Food-101 and Flower-102
datasets. The number of known classes is fixed at 10 while the number of unknown classes is varying.

Datasets CU Openness TNR AUROC DTACC AUIN AUOUT OSCR

Food-101

10 18.35% 57.08 93.10 88.25 92.37 92.36 89.72
15 24.41% 56.91 92.95 87.93 91.08 94.83 90.37
20 29.29% 57.06 93.21 87.68 90.43 95.22 90.67
30 36.75% 57.66 93.20 88.52 87.24 96.81 90.55
40 42.26% 57.16 93.10 88.12 83.48 97.45 90.37
60 50.00% 55.96 92.88 88.14 76.36 98.22 89.89
80 55.28% 54.67 92.50 87.62 76.18 98.10 89.85

Flower-102

10 18.35% 32.84 86.55 81.00 94.60 66.10 83.90
15 24.41% 31.95 84.93 79.83 90.76 68.44 81.54
20 29.29% 31.07 85.02 79.61 85.94 75.44 80.97
30 36.75% 32.25 84.43 78.65 82.71 80.24 81.02
40 42.26% 30.74 82.88 77.64 79.66 86.47 79.71
60 50.00% 28.64 81.84 75.78 73.43 93.22 77.33
80 55.28% 25.97 82.45 78.61 69.06 95.62 76.12

Table 7: Analysis of the effectiveness of the adaptive fusion component. The first row indicates using
only a linear layer as the classification head, without the adaptive fusion module. E=15, K=4 is our
original setting in main content.

E K
# of known classes / # of unknown classes

10 / 91 20 / 81 50 / 51 80 / 21

AUROC ACC OSCR AUROC ACC OSCR AUROC ACC OSCR AUROC ACC OSCR

/ / 91.23 92.22 88.17 93.77 88.94 86.88 91.34 86.91 85.02 90.54 84.83 80.84
1 1 91.44 92.38 88.51 94.02 89.37 87.10 91.73 87.68 85.35 91.06 85.31 81.15

15 1 90.83 92.16 87.91 93.44 88.93 86.62 90.87 86.26 83.58 89.28 84.86 80.59
15 4 92.16 92.80 89.16 94.80 90.18 88.05 92.89 88.12 86.23 91.83 85.73 83.30

C.3 EXPERIMENTS ON PERFORMANCE AGAINST OPENNESS

Openness (Scheirer et al., 2012) is defined by equation 8, where CK , CU denote the number of known
and unknown classes during test. Higher openness indicates a greater likelihood of encountering
unknown classes, while more known classes increase classification difficulty.

Openness = 1−
√

(2 ∗ CK)/(2 ∗ CK + CU ). (8)

We conducted out experiments on the Food-102 and Flower-102 dataset with a fixed number of 10
known classes while varying the number of unknown classes CU from 10 to 80 to investigate different
degrees of openness. The openness and metrics are depicted in Table 6. It can be observed that the
model demonstrates strong recognition performance across various levels of openness, indicating the
robustness of the proposed method.

C.4 ABLATION STUDY ON THE ADAPTIVE FUSION MODULE.

The adaptive fusion module enhances the performance of the model, helping it better handle
complex classification tasks. We conducted an ablation study of the adaptive fusion module and
added a setting using only one expert. We experimented with this module as a basic linear layer (E=0,
K=0), using one multilayer perceptron expert (E=1, K=1), and setting 15 experts but selecting only
one expert (E=15, K=1).

Results in Table 7 indicate that adaptive fusion module consistently enhances the model’s performance.
Using only a linear layer or a single expert reduced the model’s robustness, leading to performance
degradation in more challenging tasks. The most significant improvements are seen in the AUROC
scores, which indicate better overall discrimination capabilities, especially for OSR tasks.
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Algorithm 1 The pseudo-code of the MRN training process

Input: Training set DK = {(x1
i ,x

2
i , yi)}ni=1, total number of experts E, selected number K

Output: Trained model parameters θ
1: Initialize model parameters θ randomly
2: repeat
3: Input a batch of samples x1,x2 into encoders and obtain representations z1 = E1(x1),

z2 = E2(x2)

4: Obtain mutually enhanced representations zc1 = C1(z1, z2, z2), zc2 = C2(z2, z1, z1)
5: Concatenate enhanced text representations and image representations zc = zc1 ⊕ zc2
6: Input zc into expert network N and obtain the predictions fa = (N (zc))

7: Input zc into gating network G and obtain the adaptive weights of experts wa as equation 2
8: Obtain the adaptively fused prediction f = Softmax(wafa)

9: Compute classification loss Lcls and load balancing loss Lg

10: Calculate the loss L = Lcls + λLg

11: Backpropagation the loss δ ← ∇L and update the parameters θ ← θ + ηδ

12: until Convergence

D OVERVIEW OF THE TRAINING AND TEST PROCESS.

Training phase. We summarize the training process of MRN in Algorithm 1. The model is trained
until convergence. Mutually enhanced representations are extracted in line 4, and adaptively fused
representations in line 8. Subsequently, we calculate the classification loss Lcls and load balancing
loss Lg then use the total loss L to train the model until convergence.

Test phase. During test, the initial step comprises computing predictions and scoring outcomes for all
samples. The threshold τ is established by identifying the score value that ensures 95% accuracy in
binary classifying known samples. Samples scoring below τ are rejected, while those scoring equal
to or above τ are considered known, and output the predictions of the model as the final classification
results.

E EXPERIMENTAL DETAILS

E.1 REVIEWS OF COMPARED BASELINES

In this section, we briefly introduce the baseline methods used for comparison.

(1) Open set recognition methods

• ARPL (Chen et al., 2022): The adversarial reciprocal point learning (ARPL) framework
aims to reduce the overlap between known and unknown data by modeling the extra space
associated with unknown classes and employing reciprocal points. Through adversarial
mechanisms, ARPL enhances the model’s ability to differentiate unknown classes.

• OpenAUC (Wang et al., 2022): OpenAUC evaluates samples using a concise pairwise
approach and checks if the open-set sample ranks higher than the close-set one. This method
aligns with Open-Set Recognition goals and mitigates threshold sensitivity for improved
open set performance.

• CSSR (Huang et al., 2023): The Class-Specific Semantic Reconstruction (CSSR) leverages
class-specific auto-encoders to reconstruct semantic features for each class, reducing open
space risk and improving recognition accuracy on both known and unknown classes.

• ASH (Djurisic et al., 2023): The Activation Shaping (ASH) method prunes a large portion of
activations (e.g., 90%) during inference and makes minor adjustments to the remaining acti-
vations. This approach requires no additional training or network modification, improving
OOD detection performance while preserving in-distribution accuracy.

(2) Multimodal fusion methods

6
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• TMC (Han et al., 2023): The Trusted Multi-View Classification (TMC) integrates evidence
from multiple views using Dirichlet distributions and Dempster-Shafer theory to provide
uncertainty-aware and reliable predictions. TMC enhances classification robustness by
dynamically combining evidence.

• GQA (Ainslie et al., 2023): As Multi-Query Attention (MQA) notably speeds up decoder
inference but may compromise quality, Grouped Query Attention (GQA) was proposed as a
streamlined alternative. By using an intermediate number of key-value heads, GQA achieves
a similar training speed to MQA while maintaining quality close to multi-head attention.

• MLA (Zhang et al., 2024): MLA addresses the challenge of modality imbalance in mul-
timodal learning by alternating the optimization of unimodal encoders while maintaining
cross-modal interaction through a shared head.

(3) Large-scale pre-trained models

• CLIP (Radford et al., 2021): CLIP employs contrastive learning to jointly train a vision and
language model on large-scale image-text pairs. By aligning visual representations with
textual descriptions, CLIP enables zero-shot transfer to diverse downstream tasks, such as
image classification and object recognition, without task-specific fine-tuning.

• CoOp (Zhou et al., 2021): CoOp introduces a prompt-learning framework designed to
enhance vision-language models like CLIP. By optimizing task-specific prompts rather than
using static templates, CoOp improves performance in few-shot learning scenarios, enabling
more effective adaptation to various downstream tasks.

• MaPLe (Khattak et al., 2023): MaPLe advances prompt learning by simultaneously opti-
mizing text and visual prompts across modalities. This method enhances the alignment of
multimodal representations, leading to superior performance in tasks that require integrated
understanding of both vision and language, such as visual question answering and image
captioning.

E.2 DETAILS OF METRICS

• Area under the receiver operating characteristic curve (AUROC): The AUROC is a widely
used metric for evaluating the performance of binary classification models. It measures the
area under the receiver operating characteristic (ROC) curve, which plots the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings.

• Average accuracy (ACC): ACC is the mean of the accuracies for each individual class. It
accounts for the performance of the classifier on each class separately and then averages
these performances.

• Open set classification rate (OSCR): OSCR measures the rate of correctly rejecting unknown
samples while correctly classifying the known classes. With τ denotes the threshold
for rejecting unknown samples and the test set of known samples is denoted as DK

T =
{(x1

i ,x
2
i , yi)}

mk
i=1, yi ∈ {1, ..., CK}, OSCR is calculated as

OSCR =

∑M
i=1 1

(
ŷi = yi ∧ S(x1

i ,x
2
i ) ≥ τ

)
mk

.

As the OSCR curve represents the Correct Classification Rate (CCR) at different False
Positive Rate (FPR). Following the common setting of Chen et al. (2022), we reported the
area under CCR against the FPR curve as OSCR values in our experiments.

• Detection acceptance rate (DTACC): DTACC is a metric designed for evaluating open set
recognition models. It measures the average probability that a correctly identified sample is
assigned a higher score than any open-set sample.

• Area under the precision-recall curve (AUPR): In scenarios where the dataset is imbalanced
(i.e., the number of positive samples is much smaller than the number of negative samples),
traditional metrics like accuracy can be misleading. AUPR provides a more nuanced measure
that focuses on the performance concerning the positive class. AUIN measures the AUPR
where the known samples are considered as the positive class while the AUOUT measures
the AUPR with unknown samples being treated as the positive class.
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(a) Food-5: RPL-A (b) Food-5: RPL-C (c) Food-10: RPL-A (d) Food-10: RPL-C

Figure 10: RPL uses add (-A) or concatenate (-C) to get the t-SNE plots of multiple datasets. The
red dots represent unknown samples. The ‘-5’ and ‘-10’ denote using 5 or 10 classes from the
corresponding dataset as known classes.

(a) Food-5: GCPL-A (b) Food-5: GCPL-C (c) Food-10: GCPL-A (d) Food-10: GCPL-C

Figure 11: GCPL uses add (-A) or concatenate (-C) to get the t-SNE plots of Food-5 and Food-10.
The red dots represent unknown samples. The ‘-5’ and ‘-10’ denote using 5 or 10 classes from the
corresponding dataset as known classes.

• True Negative Rate (TNR): TNR measures the rate at which the model correctly identifies
negatives at a 95% confidence level. A higher TNR indicates better performance of the model
in negative prediction, meaning the model makes fewer mistakes in predicting negatives as
positives at a 95% confidence level.

F VISUALIZATIONS

F.1 VISUALIZATION OF BASELINES

In this section, we present the t-SNE feature scatter plots of additional uni-modal open-set recog-
nition methods combined with multimodal fusion methods to validate the existing issues of over-
compression on known classes that we have identified further. We utilized two other OSR methods:
RPL (Chen et al., 2020) and GCPL (Yang et al., 2022). RPL enhances open set recognition by using
discriminative reciprocal points to distinguish between known and unknown classes, and GRPL is a
method that integrates convolutional neural networks with prototype learning to create class-specific
prototypes, addressing the OSR tasks by leveraging feature space distances.

From Figure 10 and Figure 11, we can observe that both of them exhibit the issue of over-compression
in scenarios with different number of known classes (-5 / -10) when using the multimodal representa-
tions, leading to confusion between unknown samples and similar known classes. This validates that
the challenge of fusion degradation proposed in this paper is prevalent among OSR methods.

F.2 VISUALIZATION OF MRN

MRN can effectively and comprehensively focus on the main subjects in the images for classifi-
cation. In Figure 12, we obtain Grad-CAM of multiple models on the Food dataset, and it can be
observed that the image attention of MRN is significantly more comprehensive compared to other
methods. This ensures a comprehensive focus on the classification subject. This also validates that
our method has to some extent addressed the problem of inadequate representational capability in
existing open set recognition methods.
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(a) Image (b) ARPL-A (c) OpenAUC-A (d) ARPL-C (e) OpenAUC-C (f) MRN

Figure 12: Comparison of Grad-CAMs obtained with different methods on the Food-101 dataset. ‘-A’
and ‘-C’ denote using add or concatenate to fuse the multimodal representations.

9


	Introduction
	Related work
	Multimodal fusion
	Open set recognition

	MMOSR
	Problem definition
	Necessity of developing MMOSR methods

	Method
	Framework
	Multimodal representation reactivation network
	Mutually enhanced fusion of representations
	Adaptive fusion of representations

	Rejecting unknown samples

	Experiment
	Setup
	Results on open set recognition
	Further analysis
	Ablation study
	Sensitivity of hyperparameters
	Visualization and discussion


	Conclusion
	Appendix
	Reproducibility of the proposed method
	The code of our method
	The accessibility and details of the datasets
	Details of the datasets

	More details of the proposed method

	Supplementary experiments
	Deeper analysis of the fusion degradation and representation insufficiency
	Results on out-of-distribution detection
	Experiments on performance against openness
	Ablation study on the adaptive fusion module.

	Overview of the training and test process.
	Experimental details
	Reviews of compared baselines
	Details of metrics

	Visualizations
	Visualization of baselines
	Visualization of MRN


