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ABSTRACT

Inference of gene structure and location based on genome sequences, also known
as de novo gene annotation, is a critical first step in biological research. However,
rules of encoding gene structure in the DNA sequence are complex and poorly
understood, often necessitating the use of costly transcriptomic data to achieve
accurate gene annotation. Here, we present GENATATOR — Genome Annota-
tor Using the GENA DNA Language Model — an advanced machine learning
tool for inferring gene annotations directly from DNA sequences. Unlike pre-
vious approaches that rely on explicitly defined gene segmentation rules derived
from protein-coding sequences, GENATATOR learns how to infer gene structure
directly from the data. This enables GENATATOR to perform correct segmenta-
tion for previously untraceable class of non-coding transcripts and identify subset
of protein-coding genes missed by other models, achieving top performance in
the gene segmentation benchmarks. Finally, with in-depth analysis of GENATA-
TOR’s model embeddings and predictions, we reveal how DNA language models
utilize memory to learn the biological rules underlying gene encoding.

1 INTRODUCTION

The rapid evolution of DNA sequencing technologies, such as third-generation sequencing and Hi-
C, has led to an exponential growth in the availability of genome assemblies across the tree of life.
This genomic data is invaluable for fundamental research, biotechnology, and biomedicine. Yet,
raw DNA sequences alone are insufficient for most applications, requiring genome annotation —
identification of specific functional elements in the genome. Among various genomic annotations,
genes annotation is the most important, since it identifies genes and reveals their structural elements,
which is critical for almost all downstream applications.

Genes are segments of DNA that serve as templates in the RNA synthesis (transcription) process.
They can be categorized into two types: protein-coding and non-coding genes. Protein-coding genes
lead to the production of RNA that is subsequently used as a template protein synthesizing (transla-
tion). Conversely, non-coding genes produce RNA that is functional in its own and does not encode
proteins. Among non-coding genes, long non-coding RNA (lncRNA) genes are particularly preva-
lent in eukaryotic genomes and play critical roles in a variety of regulatory processes (Ferrer &
Dimitrova, 2024).

∗These authors contributed equally to this work.
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Both protein-coding and non-coding genes are composed of exons and introns; however, mature
RNA consists solely of exons, as introns are excised from the RNA molecule shortly after its syn-
thesis (Shine et al., 2024). The exonic segments of protein-coding genes can be further divided into
the protein-coding region, known as the ”coding sequence” (CDS), which is translated by ribosomes,
and the untranslated regions (UTRs) that flank the CDS. The UTR at the transcription start site is
referred to as the 5’-UTR, while the one near the transcription end is designated as the 3’-UTR.
Consequently, the gene segmentation problem involves classifying each nucleotide within a gene as
belonging to one of the categories: exon, intron, CDS, 5’-UTR, or 3’-UTR, making it a multi-label
classification task of DNA sequences.

Existing gene annotation tools are designed to detect statistical patterns typical for protein-coding
genes, such as the presence of a reading frame—sequences of 3-nucleotide blocks that encode pep-
tides (Gabriel et al., 2024). Therefore, these methods are not applicable to lncRNA and other non-
coding genes identification. Furthermore, this limits the ability of the tools to detect protein-coding
genes that have undergone mutations resulting in disrupted protein reading frames. Although these
genes may no longer encode functional proteins, identifying them is essential for understanding
genomic and evolutionary processes (Cheetham et al., 2020).

In this study, we demonstrate that DNA language models are effective at addressing the gene seg-
mentation problem. By optimizing training dataset, model architecture, training regimes, and hy-
perparameters, we have developed GENATATOR, a novel tool based on DNA language models for
ab initio genome annotation. GENATATOR surpasses previous solutions, inferring the structures
of both protein-coding and non-coding genes. Our analysis reveals how GENATATOR learns DNA
grammar and use recurrent memory in processing of long genomic sequences.

2 RELATED WORK

Historically, ab initio gene annotation has been approached with variations of Hidden Markov Mod-
els (HMMs) (Stanke et al., 2004). Recent developments have demonstrated that deep neural net-
works (DNNs) can effectively learn genomic patterns directly from DNA sequences. Stiehler et al.
illustrated that the convolutional neural network Helixer could classify genomic sequences into four
categories: Intergenic, UTR, CDS, and Intron (Stiehler et al., 2020). Building on this, Gabriel et
al. introduced trainable Hidden Markov Model (HMM) layers on top of convolutional neural net-
work layers, leading to the development of Tiberius, the current state-of-the-art method for ab initio
protein-coding gene annotation (Gabriel et al., 2024).

Despite their promise, these methods face certain limitations: 1) explicitly setting model parameters
to fit protein-coding grammar limits identification of UTRs, non-coding, and mutated genes; 2)
The convolutional neural networks employed in Tiberius handle relatively small input lengths (up
to 10Kb) and have only 8M parameters. Given that the median length of human genes is about 30
Kb—and the longest can exceed 1 Mb—these constraints suggest significant potential for developing
more robust architectures capable of processing extensive genomic data with greater accuracy.

DNA language models (DNA-LMs) have emerged as potent tools in genomics (Fishman et al., 2025;
Dalla-Torre et al., 2024; Marchal, 2024; Zhou et al., 2023). DNA-LMs commonly use transformer
architectures—akin to those used in natural language processing—to extract insights from vast ge-
nomic datasets during pretraining. These pretrained DNA-LMs match or surpass previous method-
ologies in a variety of genomic tasks, such as identifying exon-intron boundaries (splice sites), gene
starts (promoters), gene ends (polyA signals), and other crucial functional elements (Fishman et al.,
2025; Dalla-Torre et al., 2024; Marchal, 2024; Zhou et al., 2023). Notably, SegmentNT, a refined
variant of the Nucleotide Transformer, has demonstrated encouraging results in gene annotation
tasks (de Almeida et al., 2024).

Among the available models, we focus on the recently developed GENA-LMs, since they are able
to process exceptionally long DNA sequences (Fishman et al., 2025). GENA-LMs’ capacity for
handling sequence lengths is on par with the scale of human genes (Fishman et al., 2025), making
GENA-LMs particularly suited for in-depth gene annotation tasks.

GENA-LMs comprise a family of DNA language models that vary in complexity, with parameter
counts ranging from ∼110M for the base to ∼336M for the large model. All GENA-LMs utilize a
BERT-based transformer architecture, accommodating input lengths from 512 to 4096 BPE tokens,
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Figure 1: Incremental updates of dataset, architecture, and training pipeline result in high-quality
gene annotation model, GENATATOR. A. Key modifications during GENATATOR development.
B. The scheme of the final GENATATOR architecture.

which translates to approximately 4kb to 32Kb of DNA nucleotides. For processing longer inputs,
GENA-LMs can be augmented with the Recurrent Memory Transformer (RMT) (Bulatov et al.,
2022). RMT handles extended inputs by sequentially processing them in chunks or segments, utiliz-
ing dedicated memory tokens to facilitate the transfer and retention of information across segments.
Benchmarking studies of RMT (Bulatov et al., 2024; Kuratov et al., 2024a) have shown its efficacy
in managing exceptionally long sequences up to 10M tokens. When integrated with GENA-LMs,
RMT improves performance in various biological applications (Kuratov et al., 2024b). Therefore,
we decided that GENA-LM is an optimal starting point for gene annotator development.

3 GENATATOR GENE ANNOTATION MODEL

3.1 DEVELOPING OPTIMAL SOLUTION FOR GENE SEGMENTATION TASK

We started with the fine-tuning base version of GENA-LM (110M parameters; input length 512 to-
kens, ∼ 4 Kb) (Fig. 1A). This initial model was fine-tuned for segmentation of human genes. For
this task, we defined five classes: 5’-UTR, exon, intron, 3’-UTR, and CDS. The BPE tokens in our
model contain multiple nucleotides (8-9 in average), which can span across different classes, thus
necessitating the assignment of multiple labels per token. Additionally, a single gene can be pro-
cessed differently within a cell, leading to the production of multiple alternative RNA molecules, or
transcripts. Therefore, one genomic sequence can be assigned with different class labels in samples
derived from alternative transcripts.

To evaluate the model, we measure precision, recall, and f1-score at the interval (exon or CDS)
level (Fig. 2A and Appendix C). In this analysis, a continuous set of tokens positive for exon or
CDS label is designated as exon or CDS interval, respectively. A predicted interval is considered a
true positive only if there is complete reciprocal overlap between the target and predicted intervals.
Additionally, we employ gene-level metrics, considering a prediction to be a true positive when the
sequence of predicted exons exactly matches any transcript of the target gene. In addition, we use
AUC as per-token metrics (Appendix C).

The baseline gena-base-512 model showed poor performance at the exon and gene levels
(Fig. 2A). Specifically, the model successfully identified only a small subset of protein-coding exons,
failed to report any lncRNA exons, and was unable to completely reconstruct any genes.

The base version of GENA-LM, with input size of 512 BPE tokens, provides limited context. How-
ever, this can be significantly expanded with RMT. We trained the model with RMT to handle
sequences up to 4096 BPE tokens in length, equivalent to 8 segments or about 32 Kb of DNA
nucleotides. The model was specifically trained to process each sample from the gene start and
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Figure 2: (A) Context length, dataset structure, and model size are essential for gene segmentation
task. Models comparison are for token-level classification, all labels coerced to the token-resolution
before computing metrics. (B) Improved architecture allows gene segmentation at nucleotide reso-
lution, significantly enhancing gene annotation performance. The bar chart compares models with
all metrics provided at nucleotide resolution. For rmt-gena-large-42k-u, predictions made at
token-resolution were converted to nucleotide resolution as a baseline of token-level predictions. For
rmt-gena-large-unet-42k-u-multi species-aug-h we manually removed predicted
exons with non-canonical splice sites.

proceed no further than 4096 BPE tokens. This approach, which incorporates a broader genomic
context, markedly improved all model metrics (Fig. 2A, rmt-gena-base-4k), indicating that
global context is beneficial for better performance.

Despite these improvements, a substantial fraction of exons was still not accurately identified. Com-
paring model predictions with ground truth, we noted that transcripts of a single gene often share
similar structures but can differ in the start and end positions of reading, as well as the inclusion
or exclusion of alternative exons within the gene body. We found that nearly 47% of our training
dataset consisted of samples that had identical sequences of BPE tokens as input to the model, but
different target labels. To address this issue, we filtered the dataset to represent each gene with
the only transcript having the longest cumulative exon length. The training was carried out using
the same setup as in the previous models and show that using on unique transcripts significantly
improved the accuracy of the model (Fig. 2A, rmt-gena-base-4k-u).

We started our experiments with the base 110M model, and replacing it with 336M GENA-LM large
(rmt-gena-large-4k-u) led to further improvements across all metrics. Although the best-
performing version of the smaller model, rmt-gena-base-4k-u, was only able to accurately
segment 4 genes, the larger model, rmt-gena-large-4k-u, correctly segmented 44 genes: 27
protein coding and 17 encoding lncRNAs, representing about 5% of all genes in the validation
dataset.

We next decided to further scale the length of inputs processed by the model, extending the training
fragments up to 250Kb (80 RMT segments). Guided by the curriculum learning approach (Bulatov
et al., 2024), we progressively increased the input lengths in our training, starting with 8 segments
(4 Kb), moving to 32 segments (128 Kb), and finally reaching 80 segments (250 Kb), while also
incorporating shortened inputs at each training step. As shown in Fig. 2A, each increment in con-
text length considerably enhanced the model’s performance (models rmt-gena-large-4k-u,
rmt-gena-large-16k-u, rmt-gena-large-42k-u), particularly improving the predic-
tions of long transcripts. This aligns with the established understanding of long-range dependencies
in splicing machinery (Statello et al., 2021). Furthermore, the increase in transcript chunk lengths
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used for training also enlarges the training dataset, further contributing to improved model perfor-
mance.

In DNA sequence, shifting the boundary of an exon by just one nucleotide can lead to a reading
frame shift, altering the entire downstream protein sequence. Given that multiple tokens may contain
boundaries of different DNA functional elements, it is critically important for the model to perform
gene segmentation at a nucleotide resolution. For example, while the rmt-gena-large-42k-u
model can correctly segment 106 genes at token-resolution, the accuracy significantly drops when
these predictions are converted to nucleotide resolution—with only 23 of them remaining correctly
segmented (Fig. 2B).

Inspired by the SegmentNT architecture, which integrates a DNA language model with a U-NET
head (de Almeida et al., 2024), we adapted our model to nucleotide-level resolution by upsam-
pling the embeddings produced for each token. We merge the upsampled embeddings with learn-
able embeddings of individual DNA nucleotides, followed by processing through a nucleotide-
level classification head. We evaluated two distinct architectures for the nucleotide-level classifica-
tion head: a transformer-based head (rmt-gena-large-2x-42k-u) and a U-NET-based head
(rmt-gena-large-unet-42k-u). For these models, and all subsequent iterations, we report
performance metrics at nucleotide resolution. Additionally, we include the BUSCO score (Manni
et al., 2021), which is common in genomics and reflects the recall rate for a subset of evolutionary-
conserved protein-coding genes.

Benchmarking results show that rmt-gena-large-2x-42k-umodel can’t identify exon-intron
boundaries when they fall within a single token (Fig. 2B). In contrast, the model incorporating a
U-NET architecture (rmt-gena-large-unet-42k-u) demonstrates substantially better per-
formance in these cases (Fig. 2B). The addition of the U-NET head not only enhances the resolution
of the model but also allows detecting exons that were missed by token-resolution model. At nu-
cleotide resolution, this model identifies 130 genes, showing a significant improvement over the 106
genes identified at token-resolution (Fig. 2B).

Comparison of train and validation metrics (mean AUC across all classes: 0.98 for train, 0.65 for
validation suggests that the quantity of training data is a bottleneck. To address this, we decided to
expand our training dataset to include genomes from an additional 38 mammalian species, incor-
porating all chromosomes from these organisms. The validation dataset remained unchanged. By
training this enhanced model with RMT augmentation, we achieved significant improvements across
all metrics (Fig. 2B, rmt-gena-large-unet-42k-u-multi species). This approach en-
abled the model to identify 221 genes (23% of the validation dataset).

We next applied several augmentations to increase model performance. First, we used “recycling”
mechanism, motivated by models such as AlphaFold and AlphaFold2 that merge intermediate em-
beddings with original inputs in repeated cycles of inference (Jumper et al., 2021; Yang et al., 2023;
Koehler et al., 2024). Since U-NET produces outputs with the same dimensionality as its inputs, we
were able to feed the U-NET output embeddings back into it up to three times, merging them each
time with the embeddings from our RMT module. Second, we apply augmentation based on gene di-
rectionality. We note that genes are distributed randomly across two DNA strands, therefore approx-
imately half of the genes are presented in the reverse orientation, from the transcription stop signal
to the transcription start signal, during training phase. Using the model’s capacity to analyze genes
in both directions, we process original and reverse-complement of input sequences and average
obtained predictions. These augmentations have demonstrated notable improvements in model per-
formance, as detailed in Fig. 2B (rmt-gena-large-unet-42k-u-multi species-aug).

In summary, applying GENA-LM large model, augmented with recurrent memory to the optimized
multispecies dataset, using training with specific schedule and hyperparameters, and incorporating
test-time augmentation, we have developed GENATATOR - a robust model capable of high-precision
gene annotation tasks. GENATATOR identify protein coding exons with f1 = 0.82, lncRNA exons
with f1 = 0.36, and correctly segments 36% of genes in the validation dataset.

3.2 ANALYSIS OF GENATATOR MODEL ERRORS TO IMPROVE GENE ANNOTATION

We next focus on understanding the primary causes underlying erroneous predictions of GENATA-
TOR, starting from false-positive (FP) predictions within the exon class, specifically the incorrect
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insertion of exon sequences into intronic regions (Fig. 5A and Fig. 5B in Appendix E). A prevalent
error was the mislabeling of complete introns shorter than 500 bp as exons. This indicates that the
model learned exon length distribution (exons are typically small, around 200-300 bp in length) and
does not recognize short intervals as introns. Beyond that, we observed no significant correlation
between FP probability and intron length or proximity to exon-intron boundaries. Additionally, pre-
cision slightly declines with distance from the gene start, reflecting the underrepresentation of longer
genes in the training dataset (Fig. 5C and Fig. 5D in Appendix E).

Next, we analyzed precision and recall stratifying exon-intron boundaries by their flanking din-
ucleotides. Consistent with prior observations, there is a pronounced overrepresentation of AG
dinucleotides at left (exon → intron) boundaries and GC dinucleotides at right (intron → exon)
boundaries (Fig. 5E and Fig. 5F in Appendix E). Both precision and recall show a correlation with
the frequency of the boundary dinucleotides, pointing to the importance of having sufficient training
samples to learn the grammar of intron boundaries. Although the frequency of predicted bound-
aries at each dinucleotide generally reflects the true distribution, we identified samples where din-
ucleotides flanking predicted boundaries never occur at boundary positions in the actual data. By
explicitly excluding exons flanked by these ”illegal” dinucleotides, model performance improved,
enabling correct segmentation of 385 genes, which represents about 40% of the dataset. We use this
improved model in the following benchmarking experiments.

4 BENCHMARKING GENATATOR AGAINST OTHER GENE-ANNOTATION
TOOLS

We evaluated the performance of the GENATATOR model in comparison with state-of-the-art mod-
els that include HMMs (AUGUSTUS, Stanke et al. (2004)), hybrid DNN+HMM models (Tiberius,
Gabriel et al. (2024)), and DNA-LMs (SegmentNT, de Almeida et al. (2024)).

Initially, we assessed the models’ ability to recognize exons and CDS (Table 1). In the exon identi-
fication challenge, GENATATOR demonstrated superior performance, achieving an f1-score of 0.81
(0.89 for protein-coding genes and 0.57 for lncRNA). In contrast, the Tiberius model, while excelling
in CDS prediction, showed limitations in identifying non-coding regions within exons. This speci-
ficity likely contributes to its lower overall performance in the exon-level benchmark. For CDS pre-
diction, although GENATATOR outperformed AUGUSTUS and SegmentNT with higher recall, it
was less effective than Tiberius, with f1-scores of 0.78 (GENATATOR) and 0.86 (Tiberius). This gap
in performance is because GENATATOR often fails to precisely locate start and stop codons—the
initial and terminal trinucleotides of the CDS, although correctly identify overall exon-intron struc-
ture of the gene.

In addition, we evaluated the performance of each model at detecting entire genes. Here, a gene
is considered detected if at least one transcript of the gene is correctly predicted, with all its exons
accurately identified. According to our benchmarks, GENATATOR successfully identified 55% of
protein-coding genes and 19% of lncRNA genes in the validation dataset, surpassing SegmentNT in
both categories.

Unlike GENATATOR, tools like Tiberius, which focus on CDS, can not detect non-coding parts of
exons (UTRs). To address this, we introduced a specialized challenge for protein-coding genes: a
gene is considered detected only if at least one transcript of the gene has all CDS segments cor-
rectly predicted. Under this criterion, which focus on CDS identification rather than exon recog-
nition, GENATATOR’s gene-level metrics show a significant decrease, mirroring its lower perfor-
mance in the CDS category. Tiberius, which identified 375 genes and holds the highest CDS-based
score. However, this performance is below GENATATOR’s exon-based gene segmentation, allow-
ing to identify 385 genes. Highest performance of GENATATOR stems from its capacity to identify
lncRNA, which are completely missed by Tiberius, and improved detection of protein-coding genes
compared to SegmentNT. These results highlight GENATATOR as the most comprehensive gene
segmentation model available, although it exhibits some limitations in its ability to accurately pre-
dict CDS segments.

The common metric for assessing the completeness of genome annotation is BUSCO (Manni et al.,
2021). To compute BUSCO, the predicted exon-intron structure of a gene is used to generate an
amino acid sequence, which is then compared to a set of proteins that are specific to a particular tax-
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onomy group. The results of BUSCO are presented as a number of proteins that were identified from
a selected dataset. These proteins are divided into two categories: Complete and Fragmented, where
fragmented proteins have some segments missing. For the mammalian BUSCO dataset, GENATA-
TOR fully identifies 77% of the genes. In this set, GENATATOR outperforms all models except for
Tiberius, which identifies 86% of the genes (Table 2). Similar results were obtained for the primates
BUSCO dataset.

Table 1: Exon- and CDS-level f1-score (see Appendix B for more information on metrics) and
gene-level (metrics calculated for protein-coding genes and lncRNA genes on holdout gene set from
human chromosome 20) segmentation benchmarks.

exon- and CDS-level gene-level

mRNA lncRNA allRNA mRNA lncRNA allRNA

exon CDS exon exon exon CDS exon exon

GENATATOR 0.8877 0.7753 0.5407 0.8114 55% 1% 19% 39%
SegmentNT 0.4231 0.1620 0.0074 0.1627 18% 0% 0% 10%
AUGUSTUS 0.6345 0.7211 – – 2% 19% – –
Tiberius 0.7179 0.8593 – – 0% 69% – –

Finally, we compared the sets of genes reported by all models (Fig. 3A and Fig. 3B). We found that
each model has specific set of genes that can not be correctly segmented by any other model. Within
protein-coding genes, GENATATOR and Tiberius display the largest subsets of such genes (47 and
93, respectively). For a complete gene set that includes both protein-coding and lncRNA, 131 genes
were correctly segmented by GENATATOR only, while Tiberius processed 93 genes unavailable by
other models, AUGUSTUS and SegmentNT - 3 genes.

Overall, these benchmarks show that GENATATOR provides correct segmentation for the largest
subset of genes, outperforming all other models.

Table 2: BUSCO completeness computed on hold-out gene set (human chromosome 20). C —
complete, F — fragmented.

MAMMALIA PRIMATES

EXON CDS EXON CDS

C F C F C F C F

GENATATOR 212 35 209 39 300 48 307 49
SEGMENTNT 167 47 55 53 239 62 81 76
AUGUSTUS 194 27 192 30 278 46 279 54
TIBERIUS 236 7 236 7 356 6 356 6

REFERENCE 275 3 275 3 409 4 409 4

5 LEARNING TRANSCRIPTION RULES AND RETAINING GENE PROPERTIES
USING RECURRENT MEMORY

In our further analysis we study how GENATATOR learns the genomic grammar underlying gene
segmentation.

We first examined the model’s capacity to detect gene directionality. Input sequence may represent
genes oriented from transcription start to end or vice versa. Gene orientation is reflected by the
arrangement of UTRs: the 5’-UTR is proximal to the transcription start site, whereas the 3’-UTR is
located at the transcription termination site.

To validate the model’s ability to determine strand orientation, we developed a strand-definition
score calculated as follows: (FirstU5 − FirstU3) − (LastU5 − LastU3), where FirstU5 is
the cumulative probability of 5’-UTR classpredictionn in the first 50 bp, LastU3 - sampe for 3’-
UTR class in the last 50 bp, and etc. Sequences yielding positive scores were considered to be
in the forward orientation, whereas negative scores indicated a reverse orientation. This metric
allows correctly determining gene orientation with 95% accuracy, confirming the model’s capacity
to differentiate gene orientation based on the input sequence.
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Next, we evaluated whether GENATATOR has learned biological rules related to translation gram-
mar. Nonsense-mediated decay (NMD) is a crucial cellular mechanism that targets transcripts con-
taining non-functional protein-coding sequence (Supek et al., 2021). NMD machinery identifies
these transcripts by the presence of premature translation termination signal, i.e. STOP-codon lo-
cated more than 50 nucleotides upstream from the last exon-exon junction. Consequently, the CDS
of protein-coding genes is typically terminated within the last two exons. Our analysis revealed
that approximately 88.4% (483 out of 546) of all predicted gene segmentations comply with the
NMD rules, suggesting that GENATATOR has effectively internalized the NMD grammar (Fig. 4A
in Appendix D). This demonstrates the model’s capability to incorporate complex biological rules
governing gene expression and regulation.

In contrast to the terminal CDS, initial CDS positions are not constrained by NMD rules and can oc-
cur in any exon. The predicted distribution of initial CDS (Fig. 4B in Appendix D) closely matches
biological patterns observed in ground truth transcripts, indicating that the model successfully cap-
tures biological dependencies between exons and CDS.

GENATATOR’s ability to learn biological signals crucially depends on its capacity to utilize in-
formation from proximal gene segments analyzing distal chunks of the sequences. This includes
retaining knowledge about the direction and type (coding or lncRNA) of the transcript for accurate
processing. In the GENATATOR model, we use RMT augmentation, where memory tokens serve as
placeholders to retain important information between sequence chunks. To investigate whether the
memory tokens receive and store information about gene direction and type, we trained a gradient
boosting classifier predicting these gene features based on memory tokens embeddings extracted
either from the first or last chunks of gene sequences. The results provided in the Table 3 show
that memory tokens acquire information about gene direction and type immediately from the first
segment and retain it until the last gene segment.

BA

Figure 3: GENATATOR provides the most complete set of genes. Overlap of genes identified us-
ing different models. Data is shown for protein-coding and lncRNA genes together (A), and for
protein-coding genes only (B). The number of protein-coding genes is 301, 100, 111 and 375 for
GENATATOR, SegmentNT, AUGUSTUS and Tiberius, respectively,. When accounting for lncRNA
genes, GENATATOR’s total gene count increases to 385. For other models, the count of genes re-
mains constant.

Correctly arranging gene elements in their specific order is essential for resolving gene structure.
For instance, the sequence of exons and introns should not be interrupted by untranslated regions in
the middle, and the coding sequence should be continuous and flanked by non-coding UTRs. Tools
like Tiberius use HMM with explicitly defined transition probabilities above the DNN predictions
to ensure this order. In contrast, models utilizing RMT can preserve the correct arrangement of gene
elements by remembering the class of the previous segment’s end. This memory is then utilized
to constrain the potential states at the start of the next segment, ensuring that predictions follow
valid structure. To find whether memory tokens store information about the class of the last token
in a segment, we again employ classifier on memory token embeddings, predicting if the last token
of a segment belongs to exon or intron class. Our results (Table 3) confirm that memory retains
information about the state of the last tokens in the segment, supporting the function of RMT in
structuring gene elements.
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Table 3: F1-score of gradient boosting classifier on memory token embeddings.

GENE ORIENTATION GENE TYPE LAST STATE

MEMORY ID FIRST LAST FIRST LAST ALL

MEAN 0.9273 0.9387 0.8630 0.9064 0.7847
STD 0.0214 0.0032 0.0156 0.0198 0.0132

6 CONCLUSIONS

In this work, we developed GENATATOR, a state-of-the-art tool for gene annotation. We demon-
strated that GENATATOR identifies a large set of genes missed by other models and uniquely enables
the simultaneous annotation of both lncRNA and protein-coding genes. Our analysis highlights key
factors contributing to GENATATOR’s efficiency: utilizing long-range contextual information; in-
creasing model size; bridging the gap between token- and nucleotide-level resolution; incorporating
multispecies data during model training.

We note that DNA segmentation is essential for numerous biological applications beyond gene anno-
tation. The identification of promoters, enhancers, polycomb-repressed regions, transcription factor
binding sites (Mitra et al., 2024), other regulatory sequences, and chromatin states (Ernst & Kel-
lis, 2017), topologically-associated domains and compartments (Belokopytova & Fishman, 2021),
lamina-associated domains (Briand & Collas, 2020), and replication domains (Zhao et al., 2017) —
among other genomic challenges — can all be formulated as segmentation tasks. We believe that
the architectures developed in this work can be successfully applied to address these challenges in
the future, opening new perspectives in genomic applications of DNA language models.
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APPENDIX A. DATASET PREPARATION, MODEL TRAINING AND
ARCHITECTURE DETAILS

The dataset was constructed using the human genome assembly GCF 009914755.1. Chromosomes
8, 20 and 21 were designated as the validation set, but only chromosome 20 was used to compute
final metrics for computational efficiency. We did not use a separate test set. The dataset contains
all mRNA and lncRNA genes, and all sequences were exclusively from the forward strand. Only
transcripts with a length of up to 250 Kb were included.

Below we provide details of modifications in dataset, training regime or architecture for specific
models:

1. For models with name containing “-u” (unique transcript models), we filtered the dataset
selecting one representative transcript per gene, choosing the longest transcript available.

2. For the multispecies dataset, we processed data for 39 species (38 plus human) using the
same strategy as for human samples. The list of species is provided in Table 4. It’s impor-
tant to note that only the human genome is fully assembled, therefore samples from other
species containing ’N’ characters (indicating unknown sequences) were excluded.

3. In the case of the gena-base-512 model, if the input length exceeded the model’s re-
ceptive field, we randomly selected a subsequence of the transcript. For other models, in-
puts were split into chunks equal to the model’s receptive field; next, either the first chunk
was fed into the model (for models without RMT augmentation), or a specific number of
chunks were processed consecutively, starting from the first (for RMT models). During
validation, we processed samples in 512-token segments without overlaps, starting from
the first segment and up to the sample length.

4. In initial trials with base-size models, each sample was augmented with 2 Kb of intergenic
sequence; however, this was found to be inefficient. In subsequent experiments with large-
size models, we used samples that precisely matched gene boundaries.

5. All large-size models were trained using flash attention support to improve computational
efficiency.

6. To train models at nucleotide-resolution, we utilized embeddings generated from the token-
resolution model just before the classification layer, excluding memory tokens, CLS, and
SEP tokens. Each token’s embedding was replicated (upsampled) according to the number
of nucleotides it represents. We formed so-called nucleotide embeddings, each correspond-
ing to one of the four nucleotides and matching the dimensionality of the model-derived
embeddings.
For the transformer head setup, these nucleotide embeddings were then element-wise
summed with the upsampled token embeddings and fed into a transformer head. As the
transformer head, we employed the GENA-LM bert-large-t2t language model checkpoint,
which processes segments of 512 embeddings from start to end of the transcript without
overlaps. Additionally, this model includes a classification layer on top, outputting prob-
abilities for each class at every nucleotide position. Thus, the resultant model consists
of two transformers: the first initialized from the GENA-LM language model checkpoint
and fine-tuned on the task of token-level gene segmentation using DNA sequence with
RMT; the second is also initialized from a GENA-LM checkpoint but is finetuned on the
task of predicting nucleotide-level gene segmentation based on summed outputs from the
first model and DNA nucleotide sequence embeddings, without RMT. When fine-tuning a
nucleotide-level head, we freeze the token-level part of the model.
For models employing a U-NET head, we adopted a similar training strategy as with the
transformer heads but with few differences. Instead of summing, we concatenated the
embeddings from the token-level model with the nucleotide embeddings. Additionally,
we trained the U-NET head together with the token-level model. The smaller size of
the U-NET head allows computationally efficient training, enabling simultaneous opti-
mization of both components. The input size for the U-NET in the original implemen-
tation (rmt-gena-large-unet-42k-u-multi species) model was set equal to
the longest input (250 Kb). However, to make training more efficient, the input size was
adjusted to 8192 bp for all subsequent models.
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7. For the model rmt-gena-large-unet-42k-u-multi species-aug that recycle inputs supple-
menting each cycle with embeddings from the U-NET output obtained in previous cycle
(so-called approach using iterations), we use following training scheme. We start with a
checkpoint of the model trained without iterations. Resulting U-NET outputs are added to
the embeddings that were used as U-NET inputs, and the result is used as input for second
iteration of U-NET. We train this 2-iteration model using a short context of 32 Kb. Next,
we extend context to 64 Kb with 2 iterations, and finally train on 64 Kb with 3 iterations.
Increasing the number of iterations further does not improve results.
Base models fine-tuning was always conducted starting from pre-trained GENA-LM. When
training large models, we start from the best model checkpoint obtained on the previous
gene annotation training iteration. We train all models without freezing any layers, except
for transformer-based nucleotide-level model (see above).

8. Each model was trained on 8 NVIDIA A100 GPUs for 2–3 days.
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Table 4: List of genomic assemblies used to create the multispecies training dataset. List of genomic
assemblies used to create the multispecies training dataset. Assembly names correspond to the
annotation and genome names. The annotation files have been received by the NCBI Eukaryotic
Genome Annotation Pipeline.

Assembly Species
GCF 000952055.2 Aotus nancymaae
GCF 002263795.3 Bos taurus
GCF 000767855.1 Camelus bactrianus
GCF 000002285.3 Canis lupus familiaris
GCF 000151735.1 Cavia porcellus
GCF 001604975.1 Cebus imitator
GCF 000283155.1 Ceratotherium simum simum
GCF 000276665.1 Chinchilla lanigera
GCF 000260355.1 Condylura cristata
GCF 002940915.1 Desmodus rotundus
GCF 000151885.1 Dipodomys ordii
GCF 002288905.1 Enhydra lutris kenyon
GCF 000308155.1 Eptesicus fuscus
GCF 000002305.2 Equus caballus
GCF 018350175.1 Felis catus
GCF 000247695.1 Heterocephalus glaber
GCF 009914755.1 Homo sapiens
GCF 000236235.1 Ictidomys tridecemlineatus
GCF 000280705.1 Jaculus jaculus
GCF 000001905.1 Loxodonta africana
GCF 001458135.1 Marmota marmota
GCF 000165445.2 Microcebus murinus
GCF 000317375.1 Microtus ochrogaster

GCF 000001635.26 Mus musculus
GCF 900095145.1 Mus pahari
GCF 002201575.1 Neomonachus schauinslandi
GCF 000292845.1 Ochotona princeps
GCF 000260255.1 Octodon degus
GCF 000321225.1 Odobenus rosmarus divergens
GCF 009806435.1 Oryctolagus cuniculus
GCF 000181295.1 Otolemur garnettii
GCF 016772045.2 Ovis aries
GCF 000956105.1 Propithecus coquereli
GCF 003327715.1 Puma concolor
GCF 036323735.1 Rattus norvegicus
GCF 000235385.1 Saimiri boliviensis boliviensis
GCF 000181275.1 Sorex araneus
GCF 000003025.6 Sus scrofa
GCF 000243295.1 Trichechus manatus latirostris

APPENDIX B. MODELS SCORING AND BENCHMARKING

PROCESSING PREDICTIONS

For models with token-level resolution, thresholds of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9
were defined to filter predictions. Predictions that passed each threshold were used to calculate
metrics. The threshold with the best results was then selected.

For models with nucleotide resolution and SegmentNT, each nucleotide was assigned the class with
the highest value from the comparison group. The comparison group is specific to each class: for
the exon class, it includes exon and intron; for the CDS class, it includes CDS, intron, 5’UTR, and
3’UTR.
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BENCHMARKING

Predictions were obtained by feeding the model with nucleotide sequences of transcripts (for
interval-level and BUSCO) or genes (for gene-level). SegmentNT is not designed to process very
long sequences, so for this model, the gene sequence was split into non-overlapping 50 kb segments.

It is important to note that some models are not capable of predicting lncRNA (Tiberius and AU-
GUSTUS), therefore only sequences of protein-coding genes or mRNA were provided to them.
SegmentNT can predict only the exon class, so metrics for the CDS class were obtained by subtract-
ing predictions of 5’UTR and 3’UTR from exon predictions. Finally, GENATATOR is capable of
predicting both exons and CDS, so for this model, metrics were calculated across all classes for all
genes and transcripts.

INTERVAL-LEVEL METRICS

To evaluate the accuracy of exon prediction for each model, sequences of a single transcript per gene
were provided (the transcripts with the maximum total exon length were selected).

GENE-LEVEL

Each model generated predictions based on the gene sequences. Exon-level or CDS-level analysis
was then performed, comparing predictions to each known transcript of each gene. If there is a
transcript with complete and reciprocal overlap between predicted and exons and known exons, the
gene was considered to be identified. CDS analysis was performed similarly.

BUSCO

Based on the predictions of each model, the nucleotide sequences of the genes were obtained for
analysis. After performing the translation operation, the corresponding proteins were obtained
and the longest of them was selected. The strand for translation was determined either directly
if model outputs it explicitly (Tiberius and AUGUSTUS), or based on the predicted classes 5’UTR
and 3’UTR, using the formula: (FirstU5 − FirstU3) − (LastU5 − LastU3), where FirstU5
is the cumulative probability of 5’-UTR class preidction in the first 50 bases, LastU3 is the cu-
mulative probability of 3’-UTR class prediction in the last 50 bases, and etc. (for SegmentNT and
GENERATOR). Subsequently, the set of obtained proteins was analyzed using BUSCO.

NMD

Predictions for the longest transcripts of each protein-coding gene on human chromosome 20 were
used as data for analysis.
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APPENDIX C. ADDITIONAL MODEL METRICS

Table 5: Comparison of GENA-based gene segmentation models for token-level classification task.
All labels were coerced to the token-resolution before computing metrics.

gena-base-512 rmt-gena-base-
4k

rmt-gena-base-
4k-u

rmt-gena-large-
4k-u

rmt-gena-large-
16k-u

rmt-gena-large-
42k-u

PR AUC 0.2983 0.6019 0.5940 0.6277 0.6421 0.6481

Exon-level mRNA
precision 0.0024 0.1274 0.2491 0.2930 0.4367 0.5700

recall 0.0089 0.4988 0.5997 0.5458 0.6869 0.7617
f1 0.0036 0.2030 0.3520 0.3813 0.5351 0.6521

Exon-level lncRNA
precision 0.0000 0.0147 0.0472 0.0823 0.1390 0.1519

recall 0.0000 0.0822 0.1703 0.2393 0.2998 0.3241
f1 0.0000 0.0249 0.0740 0.1234 0.1900 0.2069

Gene-level exon mRNA 0.0000 0.0018 0.0055 0.0495 0.0824 0.1502
Gene-level exon lncRNA 0.0000 0.0023 0.0023 0.0392 0.0484 0.0553

Table 6: Comparison of GENA-based gene segmentation models at nucleotide-resolution. All met-
rics provided at nucleotide resolution. For rmt-gena-large-42k-u predictions obtained at
token-resolution were coerced to nucleotide resolution providing baseline of the token-level predic-
tion.

rmt-gena-large-
42k-u

rmt-gena-large-
2x-42k-u

rmt-gena-large-
unet-42k-u

rmt-gena-large-
unet-42k-u-

multi_species

rmt-gena-large-
unet-42k-u-

multi_species-
aug

rmt-gena-large-
unet-42k-u-

multi_species-
aug-h

Reference

PR AUC - 0.6457 0.6470 0.6793 0.6894 0.6894

Exon-level mRNA

precision - 0.0097 0.4785 0.6614 0.7616 0.8943
recall - 0.0227 0.7748 0.8480 0.8813 0.8813

f1 - 0.0135 0.5917 0.7431 0.8171 0.8877

Exon-level lncRNA

precision - 0.0083 0.1259 0.1981 0.2795 0.5662
recall - 0.0316 0.3767 0.4043 0.5174 0.5174

f1 - 0.0131 0.1887 0.2659 0.3629 0.5407
Gene-level exon mRNA - 0.0256 0.1905 0.3187 0.5238 0.5513
Gene-level exon lncRNA - 0.0207 0.0599 0.1083 0.1682 0.1935

BUSCO mammalia CDS
Complete 39 39 110 159 209 209 275

Fragmented 42 46 61 54 39 39 3

BUSCO primates CDS
Complete 74 58 163 236 307 307 409

Fragmented 41 46 61 67 49 49 4

APPENDIX D. HOW GENATATOR UNDERSTANDS TRANSCRIPTION
GRAMMAR

A B

Figure 4: GENATATOR learns translation grammar. Location of last (A) and first (B) CDS nu-
cleotide depending on exon index. Red line shows the distribution obtained by randomly selecting
exon index.
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APPENDIX E. ANALYSIS OF GENATATOR MODEL ERRORS TO IMPROVE
GENE ANNOTATION
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Figure 5: GENATATOR error analysis provides insights into potential tweaks for improving gene
annotation. A-D: Performance metrics as a function of intron length (A), distance from exon-intron
boundary (B), and distance from gene sequence start (C-D). B aggregates intron sequences located
at specific distance from exon-intron boundary. In A and B the distribution is cropped at the 90th
percentile, in C and D at 250Kb. E and F: Precision and recall at predicted intron-exon boundaries,
stratified by flanking dinucleotide, separately for left (E) and right (F) intron boundary, with the
distribution of targets shown in red and orange.
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