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Abstract

Text-to-SQL, a critical task in natural language001
processing, aims to translate natural language002
questions into structured SQL queries for rela-003
tional databases. Despite significant advance-004
ments, existing approaches often struggle with005
complex queries and domain adaptation due to006
the inherent ambiguity and variability of nat-007
ural language. In this paper, a user-centered008
text-to-SQL system that reduces the usage bar-009
rier for non-technical users by abstracting the010
intermediate language of keyword instructions011
is designed. The key point is to allow users012
to independently determine whether the pre-013
dicted query and execution results are accept-014
able, rather than relying on the complex SQL015
statements of traditional methods. Specifi-016
cally, our implementation, Xiaohui, first de-017
signs keyword-to-Trino SQL mapping rules018
based on the real needs of partner enterprises,019
such as growth trends, comparisons, and per-020
centage situations commonly found in busi-021
ness analysis. Secondly, it utilizes a LLM-022
based method fine-tuned with over 9,000 text-023
to-keyword samples and 1,276 question-query024
types-keyword examples for reference. On a025
test dataset designed based on the actual needs026
of enterprises, using Qwen as the basic model,027
the proposed system achieves evaluation perfor-028
mance comparable to or even surpassing main-029
stream prompt-based methods like DAIL-SQL030
and DIN-SQL.031

1 Introduction032

Text-to-SQL (Zelle and Mooney, 1996), also known as Natural033
Language to SQL (NL2SQL), empowers users to effortlessly034
retrieve data from relational databases by simply using natural035
language queries, eliminating the need to master intricate SQL036
query techniques. In recent years, spanning enterprise-level037
business analytics to individual health monitoring systems, the038
growing reliance of non-technical users on intuitive data query039
solutions has created both unprecedented demands and com-040
plex challenges for text-to-SQL technology (Floratou et al.,041
2024).042

Over the early years, research in the text-to-SQL field pri-043
marily relied on rule-based methods (Mahmud et al., 2015; Xu044

et al., 2017; Yu et al., 2018b) and neural machine translation 045
techniques (Zhong et al., 2017; Yu et al., 2018a; Ma et al., 046
2020), with sequence-to-sequence methodologies also playing 047
an important role (Sutskever et al., 2014; Devlin et al., 2019). 048
The recent emergence of large language models (LLMs) has 049
revolutionized the field, marking a paradigm shift in natural 050
language processing (NLP). Capitalizing on their sophisti- 051
cated language comprehension, reasoning capabilities, and 052
generative potential, LLMs have demonstrated remarkable 053
success across diverse NLP applications, with text-to-SQL 054
conversion being a particularly promising area of implementa- 055
tion. In recent years, various approaches collectively referred 056
to as LLM-based methods have continuously made break- 057
throughs in the well-known large-scale cross-domain text-to- 058
SQL benchmarks Spider (Yu et al., 2018c) and Bird (Li et al., 059
2023). These methods can be broadly categorized into two 060
technical paths. The first approach involves utilizing closed- 061
source LLMs to generate high-quality SQL predictions by 062
employing advanced prompt engineering techniques. The sec- 063
ond approach entails implementing supervised fine-tuning on 064
open-source LLMs, thereby empowering localized models to 065
assimilate specialized domain knowledge. Furthermore, multi- 066
agent approaches (Wang et al., 2025) that integrate multiple 067
LLMs have been explored for further improvements. However, 068
advanced models such as GPT-4 present significant challenges 069
in cost efficiency, data privacy, and execution time, as refin- 070
ing output quality (Li et al., 2024) often requires multiple 071
LLM calls, significantly increasing processing time. Finally, 072
both technical approaches inevitably face the challenge of 073
user verification. Current research methods cannot entirely 074
avoid erroneous predictions, and issues such as ambiguous 075
queries, varying user expectations for results, and hallucina- 076
tions (Qu et al., 2024) from LLMs remain challenges. When 077
an executable yet semantically flawed SQL query is produced, 078
non-technical users may lack the expertise to identify such 079
errors. Overlooking these mistakes can lead to misguided de- 080
cisions based on incorrect data, ultimately causing significant 081
business consequences. 082

Furthermore, looking back at the development of text-to- 083
SQL technology, high-quality datasets have also played a sig- 084
nificant role in boosting its progress. For example, large-scale, 085
cross-domain datasets such as Spider and its subsequent ver- 086
sions, Spider-Syn (Gan et al., 2021a), Spider-DK (Gan et al., 087
2021b), Spider-Realistic (Deng et al., 2021), require text-to- 088
SQL systems to generalize on previously unseen databases 089
(Zhong et al., 2020). Meanwhile, datasets such as Bird and Spi- 090
der2V (Cao et al., 2024a) target more sophisticated database 091
structures and complex query scenarios, significantly enhanc- 092
ing their relevance to real-world industrial implementations. 093
Nevertheless, these datasets still fall short of fully encom- 094
passing the diverse and multifaceted requirements of practical 095
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applications. Firstly, it is widely acknowledged that enterprise096
databases are often characterized by highly complex schemata,097
frequently containing hundreds of tables and thousands of098
fields (Floratou et al., 2024; Cao et al., 2024a; Lian et al.,099
2024). In actual enterprise environments, access to database100
information is strictly controlled, with users in different de-101
partments granted varying levels of access. This segmenta-102
tion creates significant challenges for text-to-SQL systems,103
which must account for access permissions and operate on pre-104
filtered sub-schemata. Secondly, employees in commercial105
companies typically need to analyze numerical metrics such106
as sales growth, logistics performance, or market share pro-107
portions. However, existing datasets such as Spider and Bird108
lack training examples that reflect such real-world commercial109
analytics queries. This absence of domain-specific examples110
significantly impacts LLM-based methods that rely on in-111
context learning (ICL), limiting their ability to generalize to112
practical use cases. Thirdly, standard SQL, commonly used in113
academic research, is not suitable for commercial applications.114
Enterprises employ a variety of database management systems,115
each with distinct SQL dialects (MySQL, PostgreSQL, Trino,116
and others). Seamless translation between these dialects is117
often infeasible, which directly reduces the volume of training118
data available for enterprise-grade text-to-SQL systems.119

In response to the aforementioned issues and challenges,120
we introduce a keyword representation as an intermediate lan-121
guage for the text-to-SQL task, which can succinctly capture122
the user’s query intent and easily be checked by users with-123
out SQL expertise. Through continuous communication with124
commercial companies to understand specific needs and ex-125
tensive testing, we have developed a stable and controllable126
keyword-to-SQL mapping rule. This approach can handle127
the majority of general query tasks while also allowing for128
the customization of query shortcuts based on enterprise re-129
quirements. Meanwhile, in this study, we assume that users130
can access pre-processed sub-tables, which are customized131
according to their permissions. Enterprises commonly use132
wide tables to consolidate data from multiple tables, provid-133
ing access to sub-tables based on user-specific permissions.134
Schema-linking (Pourreza and Rafiei, 2023; Cao et al., 2024b)135
and business intelligence tools can now be used to obtain rele-136
vant sub-schema for specific queries. Moreover, to tackle the137
lack of training data for commercial analytics, we construct a138
dataset of more than 1,200 question-to-keyword pairs derived139
from real-world databases. These pairs serve as exemplars140
for LLMs, providing domain-specific references that facilitate141
effective contextual learning. Finally, recognizing the impor-142
tance of SQL dialects in enterprise-grade applications, we143
select Trino SQL as our target language. High-performance144
database management systems such as Trino are critical for145
meeting the demands of commercial use cases. By aligning146
our approach with practical enterprise requirements, we aim147
to bridge the gap between academic research and real-world148
applications. Our main contributions are as follows:149

• User-oriented Text-to-SQL system based on keyword150
representation: We develop a user-friendly text-to-151
SQL system centered on keyword representation, which152
has been refined through extensive real-world feedback153
and iterative improvements. Our intermediate language154
enables users to independently correct the system’s pre-155
dictions.156

• Extensive dataset annotation for training: Utilizing157
datasets such as Spider, CSpider (Min et al., 2019), and158
Bird, we manually annotate over 16,000 question-to-159

keyword pairs for the English dataset and clean 9,028 160
data pairs for the Chinese corpus. Additionally, we 161
generate a set of 1,276 newly annotated examples with 162
detailed query types classifications. These resources 163
enable the fine-tuning or training of models capable of 164
generating keyword-based statements, facilitating their 165
use in diverse applications. 166

• SOTA-level execution accuracy through cost- 167
effective methods: Through comprehensive experi- 168
ments on commercial analytics-related test datasets and 169
real-world databases, we achieve execution accuracy 170
comparable to state-of-the-art methods while employ- 171
ing more cost-efficient approaches. 172

2 Related Work 173

Figure 1 provides a brief overview of the development tra- 174
jectory of text-to-SQL technology. Rule-based approaches 175
have a long history in the field of database query parsing, 176
with early work dating back to 1996. However, early hand- 177
designed templates were limited in their ability to handle in- 178
creasingly complex SQL queries. At the same time, enterprise 179
users often have highly specific and domain-targeted query 180
requirements. While basic query needs can typically be met, 181
achieving a higher degree of customization often makes the 182
system more suitable for specific roles or specialized tasks 183
within an organization. In our approach, we address these 184
challenges by categorizing query types into 17 distinct cate- 185
gories, offering fine-grained adaptability to diverse user needs. 186
This categorization ensures extensive coverage of SQL struc- 187
tures, enabling the system to accommodate a wide range of 188
query scenarios, including advanced and highly specific use 189
cases. By balancing foundational query capabilities with high 190
customizability, our approach is particularly well-suited for 191
enterprise applications where user roles and tasks demand 192
tailored solutions. 193

In the early stages of text-to-SQL research, neural text- 194
to-SQL models were widely adopted. These models, such 195
as RAT-SQL (Wang et al., 2020), SyntaxSQLNet (Yu et al., 196
2018b), and IRNet (Guo et al., 2019), were based on an 197
encoder-decoder architecture (Sutskever et al., 2014) and fo- 198
cused on tasks such as encoding database schema information 199
and user queries. The attention mechanisms (Vaswani et al., 200
2017) mapped user intent to schema elements, facilitating 201
the alignment between queries and database schema. Early 202
schema-linking methods in these neural models primarily iden- 203
tified items explicitly mentioned in the user’s query. However, 204
constructing a complete SQL statement often requires incor- 205
porating tables and fields that are not directly referenced in 206
the query (Gan et al., 2021c). SQL statements are not a direct, 207
word-for-word translation of natural language queries. During 208
the era of neural text-to-SQL models, researchers introduced 209
intermediate representations (IRs) to ease the generation of 210
SQL statements (Guo et al., 2019; Wang et al., 2020; Yu et al., 211
2018b; Gan et al., 2021c). These IRs simplified subclauses 212
such as JOIN ON, FROM, and GROUP BY, making them 213
easier for models to generate while still preserving the overall 214
SQL structure. 215

In modern approaches, schema-linking remains a crucial 216
step, particularly in LLM-based methods. The objective is for 217
LLMs to infer all the necessary fields and tables required to 218
answer a query, even when they are not explicitly mentioned. 219
Schema-linking can reduce input noise by filtering irrelevant 220
schema elements (Talaei et al., 2024), significantly shortening 221
the tokenized input length and enabling LLMs to focus on 222
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Figure 1: A brief description of the development trajectory of text-to-SQL technology, the introduction of Spider,
and the rise of LLMs as a game changer, which have propelled text-to-SQL technology a significant step closer to
enterprise-level applications.

information directly relevant to the query. However, recent223
research (Cao et al., 2024b) has shown that schema-linking can224
introduce errors if critical information is mistakenly excluded225
during the process. To address this challenge, we assume that226
reasoning occurs within pre-processed sub-tables, which limits227
the input schema length provided to the LLMs. However,228
LLMs still face difficulties in selecting precise field names229
from these sub-tables and extracting specific contextual values230
such as strings, dates, or other attributes from user queries or231
supplementary descriptions. In this context, schema-linking232
facilitates alignment between query elements and database233
components, thereby enhancing the LLMs’ ability to generate234
accurate SQL statements.235

In the era of LLM-based methods, further progress has236
been made toward generating IRs. For example, Eyal et al.237
(2023) and Wolfson et al. (2020) reformulated IRs into textual238
descriptions. These methods break down the execution steps239
of SQL queries into natural language descriptions, providing240
a detailed, step-by-step explanation of the SQL execution pro-241
cess. However, these representations primarily focus on SQL242
execution details and do not take into account the usability or243
accessibility needs of non-technical users. To address these244
limitations, our keyword representation abstracts the query in-245
tent from the original question and represents it using concise246
and intuitive keyword combinations. This representation is247
specifically designed to involve only simple and user-friendly248
components, such as field selection, numerical filtering, and249
time filtering, which makes it easier for ordinary users to ac-250
cess query-to-SQL processes and still provides the necessary251
level of abstraction for LLM inference. DIN-SQL, a repre-252
sentative of classical prompt-based methods, addresses the253
text-to-SQL task by breaking it into sub-tasks and designing254
specific prompting strategies for each sub-task. Although ef-255
fective in some cases, this approach faces several challenges,256
including excessively long prompts, slow execution speeds,257
and high API call costs.258

Furthermore, the linearized execution process inherent in259
these methods may lead to the accumulation of errors, which260
can ultimately mislead the generation of the final SQL state-261
ment. To mitigate these challenges, LLM-based methods262
often include a self-correction module. This module lever-263
ages the knowledge embedded in advanced LLM pre-training264
and contextual information from the text-to-SQL task to cor-265
rect erroneous SQL predictions. Methods such as CodeS (Li266
et al., 2024) and RSL-SQL (Cao et al., 2024b) further enhance267
this approach by executing the generated SQL statements and268
providing the execution results as feedback to the LLMs, en-269
abling iterative refinement of predictions. However, even with270
an extended workflow, current methods cannot completely271

eliminate prediction errors. Errors often arise when LLMs 272
encounter unseen user queries. Although humans can easily re- 273
solve such issues through analogy, LLMs may fail to recognize 274
the similarity between the new query and previously learned 275
examples. Additionally, some queries may have multiple valid 276
solutions, making it difficult for LLMs to identify the optimal 277
response. For human users, however, making small adjust- 278
ments to an incorrect prediction is often sufficient to produce 279
a usable SQL statement. Our proposed keyword representa- 280
tion addresses these challenges by emphasizing usability and 281
simplicity. Extensive user experiments have demonstrated 282
the approach’s user-friendly nature, showing that users can 283
quickly master the syntax rules of the keyword language with 284
just a few template examples. This enables non-expert users 285
to efficiently interpret and correct prediction errors, making 286
the text-to-SQL process more accessible and intuitive. 287

3 Datasets 288

This study constructs three core datasets to facilitate LLMs 289
in learning keyword representation. The data collection and 290
annotation processes are conducted by a team of six data sci- 291
ence graduate students under the supervision of five database 292
experts. 293

3.1 Model Fine-tuning Dataset 294

Keyword Representation is the core of our research methodol- 295
ogy. To enable LLMs to learn the syntactic rules of keyword 296
representation, we fine-tune the model using a large number 297
of question-keyword pairs. The text-to-SQL English datasets 298
from Spider and Bird serve as the initial corpus. Under the 299
guidance of our database experts and in accordance with the 300
translation rules for keyword syntax, we translate a signifi- 301
cant number of question-keyword pairs, employing keyword 302
query statements to perform search tasks. For the Cspider 303
dataset (Min et al., 2019), we translate table names and field 304
names and annotate them with corresponding keyword state- 305
ments in the Chinese context. Upon completion of the an- 306
notation, we ensure the quality of the annotations through 307
cross-checking, where different annotators’ translations are 308
verified for consistency and accuracy. 309

In addition, we are focused on addressing the query needs 310
that are commonly encountered in business analytics, particu- 311
larly those related to growth trend analysis, percentage calcula- 312
tions, and comparative analysis. However, current benchmark 313
datasets widely used in the field do not specifically cover such 314
types of queries. Using Spider and Bird as the foundational 315
keyword training corpora, we expand the dataset by generating 316
new types of question-keyword pairs with LLMs and artificial 317
seed data. This process results in 9,023 Chinese samples and 318
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16,630 English samples, which are used to fine-tune models319
such as GPT and Qwen to learn the syntactic rules of keyword320
representation.321

3.2 Dataset For In-Context Learning322

In-Context Learning (ICL) is the core method for all LLM-323
based text-to-SQL tasks, and high-quality exemplars are cru-324
cial for enabling LLMs to perform ICL (Gao et al., 2023).325
The first requirement is comprehensive query coverage, which326
should include both common query questions and domain-327
specific ones, such as those related to warehouse logistics,328
insurance data, and other specialized fields. The second re-329
quirement is the need for a systematic method to describe the330
dataset. We have identified 17 query types to describe the331
action instructions required for each keyword statement. By332
labeling the query types, we can create a more detailed exam-333
ple database, which also allows for more accurate example334
selection. Based on real-world databases and user queries, we335
manually annotate and clean 1,276 natural language questions,336
along with their corresponding keywords and query type la-337
bels. The number of example samples included under each338
query type is shown in Figure 2, of which a single question339
may involve multiple query types (please refer to Appendix E340
for the query type prediction task).
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Figure 2: Exemplars for In-Context Learning.

341

3.3 Test Dataset342

The existing Spider and Bird datasets do not fully meet the343
actual business requirements. To evaluate model performance,344
we design a test dataset that extends beyond the training data,345
presented as triples: natural language question-query types-346
keyword. A total of 200 question pairs are selected as the347
test set. The query type labels also facilitate fine-grained348
correction and analysis during error analysis of the prediction349
results.350

The number of test question samples under each query type351
is shown in Figure 3. To better align with real-world business352
analysis scenarios, the test set places greater emphasis on time-353
related query types (such as time filtering, date comparison,354
growth rate and continuous instructions). Approximately half355
of the questions focus on numerical calculations (such as356
averages, summation, counting, and other related operations).357
The design of these questions is intended to comprehensively358
assess the model’s ability to analyze real-world business data.359
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Figure 3: Test set for text-to-keyword task.

4 Methodology 360

We propose the text-to-keyword task, in which keyword rep- 361
resentation serves as an intermediate language and acts as a 362
central reference point for user interaction with the text-to- 363
SQL system, the schematic diagram of the structure is shown 364
in Figure 4. This enables non-technical users to independently 365
assess whether the keyword query expression accurately re- 366
flects the intended query in the current iteration. In the text- 367
to-keyword task, the given dataset consists of pairs of qi and 368
ki, 369

F = {(qi, ki,Di)} , (1) 370

Γ = {(qi, ki,Di, qti)} , (2) 371

where qi refers to the natural language question and ki refers 372
to the corresponding keyword statement on the database Di. 373
Besides, qti refers to the query types for which we manually 374
annotate the question and its corresponding keyword statement. 375
Similar to the text-to-SQL task, this type of generative task, 376
utilizing the context learning paradigm (Dong et al., 2024), 377
can be formulated as: 378

max
S′,σ

PM
(
k∗ | σ(q,D, S′)

)
, (3) 379

where S′ ⊂ F represents the most relevant sample examples 380
selected from the compiled example database F . And σ(·, ·, ·) 381
denotes the process of interpretation carried out by the LLM 382
M based on the input data. The objective of in-context learn- 383
ing for text-to-keyword task is to maximize the probability 384
that the LLM generates the correct target keyword statement 385
k∗ given the user query q and the associated database informa- 386
tion D. This task involves two key stages: firstly, analyzing 387
the user’s query intent, which aligns with the semantic analy- 388
sis step in text-to-SQL tasks. Secondly, describing the user’s 389
query intent using a keyword-based language, which leverages 390
the LLM’s generative capabilities. To achieve this, keyword 391
grammar rules Rk must be embedded into the LLM acting as 392
the translator. Both prompt engineering and supervised fine- 393
tuning are feasible approaches to teach the LLM unseen rules 394
during pre-training and enable it to generate translations based 395
on these rules. We then evaluate the model’s predictions by 396
adopting the evaluation method based on intent-based metrics 397
(Floratou et al., 2024), a relaxed evaluation standard which 398
takes into account three factors: the original query intent, the 399
generated keyword statement, and the execution results. The 400
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Figure 4: The illustration of our method is mainly divided into four modules. (a) Fine-tuning Only refers to
fine-tuning LLMs using triplet corpus data. (b) Information Augmentation refers to deriving richer information
starting from the current question. (c) Prompt Design refers to the organization of information in prompts for the
text-to-keyword task. (d) Self-correction refers to using a closed-source LLM to correct the keyword predictions
from the previous round.

final keyword utterance reflects the LLM’s understanding of401
the user’s query intent, and model performance is assessed402
based on this execution accuracy.403

Our approach consists of four modules. We illustrate404
Figure 4 (a) through the fine-tuning method in keyword syntax405
rules embedding. For each new user query to be addressed,406
we need to invoke the LLM to initialize auxiliary information407
(Figure 4 (b)), schema-linking information and the predicted408
query types, from which we can retrieve examples information.409
This is then input into the keyword generator LLM to obtain410
the initial predicted keyword (Figure 4 (c)). Finally, we test411
closed-source LLMs to correct keyword predictions (Figure 4412
(d)).413

4.1 Keyword Syntax Rules Embedding414

After pre-training, LLMs demonstrate rich prior knowledge415
and possess strong natural language understanding and rea-416
soning capabilities. Due to the SQL-related content in their417
pre-training data, LLMs can typically generate approximate418
SQL translations for text-to-SQL tasks without the need for419
explicit rule specifications. However, they have never encoun-420
tered a text-to-keyword translation task based on specific rules.421
To obtain keyword expressions in the desired format, we must422
consider embedding keyword syntax rules into the model.423
1) Prompt-based methods If all rules are input through424
prompts, the challenge lies in how to explain the rules to425
the LLMs as concisely as possible. In addition to explana-426
tory instruction statements, we have categorized the query427
types into 17 categories, with the total number of allowed428
keyword instructions across all types exceeding 100. If we429
design examples for every possible scenario and include many430
of these in the prompt, the input text for a single question431
becomes excessively lengthy, thus reducing the proportion432

of core information—namely, the current question and its 433
database information within the text. Gao et al. (2023) and 434
Chang and Fosler-Lussier (2023) have shown that overlong 435
prompts may actually reduce performance. This is because 436
irrelevant information in the input can distract or confuse the 437
LLMs. We also verify this in our subsequent experiments. 438
Overlong prompts increase the costs in terms of API calls and 439
time required to answer each question. 440
2) Fine-tuning methods The LLM-based fine-tuning methods 441
also show good results in the text-to-keyword task. Open- 442
source LLMs, such as Qwen 2.5, Llama 3.1, and Chat-GLM4, 443
can be fine-tuned with the question-schema-keyword triplet 444
data to adapt to the keyword syntax rules. During the fine- 445
tuning phase, LLMs can acquire rich corpus knowledge, in- 446
cluding a comprehensive range of keyword phrases, query 447
types, and so on, to help the model learn the proper usage of 448
keyword components. High-quality question-keyword pairs 449
are essential for supervised fine-tuning, as LLMs typically 450
perform poorly when tasked with answering unseen questions 451
from the fine-tuning corpus. 452

4.2 Information Augmentation 453

Existing research decomposes the text-to-SQL task into a se- 454
ries of interconnected sub-tasks, such as schema-linking, ques- 455
tion classification, and other components. These sub-tasks 456
help infer additional information, which ultimately aids in gen- 457
erating the final output SQL statement (Pourreza and Rafiei, 458
2023; Dong et al., 2023). Exemplar selection is crucial for ICL 459
in LLMs. In a prompt-based approach, leveraging exemplars 460
to embed task rules into LLMs may be the most effective strat- 461
egy. Numerous text-to-SQL studies (Gao et al., 2023; Pourreza 462
and Rafiei, 2023; Dong et al., 2023) demonstrate excellent 463
performance with few-shot learning (Brown et al., 2020). To 464
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address this, we define 17 distinct query types. Expressing465
the query intent of a single problem q may require multiple466
keyword sub-statements of different query types. Each query467
type maps to an SQL sub-statement or a highly integrated SQL468
statement template (e.g., growth rate, proportion calculation).469
We use the embedding model (Reimers and Gurevych, 2019)470
to convert the sample data (qi, ki, qti ) into embedding vectors,471
which are stored in a vector database as reliable question-query472
types-keyword examples. Similarity measures are then used473
to retrieve the most relevant example for the current query q.474
Previous work (Zhang et al., 2023; Gao et al., 2023) either475
computes the semantic similarity of the questions, the simi-476
larity of the target SQL queries, or considers both factors to477
rank and filter the samples. Whether it is question-to-SQL478
pairs or question-to-keyword pairs, in practical applications,479
we observe that the word order and choice of phrasing in the480
query can influence the results of semantic similarity-based481
retrieval. Specifically, the same query intent may be expressed482
in various textual formulations, which can lead to situations483
where the stored example cannot be found for the same query484
intent.485

It is also observed that queries from different domains486
typically exhibit low semantic similarity, primarily due to the487
significant differences in tokens such as field names, values,488
and time. However, their target statements are often quite simi-489
lar in terms of implementation. This implies that cross-domain490
query intents may have a similar target statement structure,491
but retrieving them based solely on the query may not be ef-492
fective. If we instead begin by retrieving examples based on493
the target statement, we would need to predict an intermediate494
target statement and perform a secondary prediction using495
the LLM once the example is retrieved. Datasets like Spider496
and Bird provide a vast collection of training samples that497
can be used as an example database. However, selecting the498
most relevant example from over 10,000 samples each time499
consumes significant computational resources and results in500
slow response times. Keyword statements intuitively describe501
the set of operations corresponding to the query intent. This502
structural similarity should also be considered when selecting503
examples. However, calculating semantic similarity based504
on the question or SQL query itself does not yield good re-505
sults. We instead label the query intent using predefined query506
types, and by comparing the similarity of query types, we can507
identify structurally similar keyword statements, where the508
sub-statements of the keywords can be equivalently viewed509
as sub-queries of the SQL statement. By utilizing query type510
labels qt, we can retrieve samples that are cross-domain but511
structurally similar when performing text similarity-based re-512
trieval.513

4.3 Prediction Correction514

1) LLM self-correction Existing works leverage more ad-515
vanced LLMs (such as GPT-4, Claude3.5) to correct predicted516
SQL statements. In DIN-SQL, the improvement in zero-shot517
correction is limited, and the correction based on query result518
feedback does not offer effective control over task response519
time. In this study, we only utilize the strong reasoning capabil-520
ities of online models, in conjunction with relevant examples521
and keyword rules, to refine the predicted keyword statements.522
In our ablation experiments, we examine the ability of mod-523
els such as GPT-4o, DeepSeek, and Qwen2.5-32B to correct524
keyword statements.525
2) User verification The correction of LLM-generated state-526
ments is a critical aspect of the interaction between non-expert527
users and the text-to-SQL system, as it directly affects the528

system’s practicality. Ordinary users need to view the data 529
tables, including the current database schema, field names, 530
and previews of the table contents. 531

LLMs inevitably introduce errors when predicting SQL or 532
keywords, such as using incorrect field names, as illustrated 533
in Case 1 of Table 1, or missing some advanced instructions, 534
as illustrated in Case 2 of Table 1. The remaining keyword 535
prediction error types are detailed in Appendix A. Users only 536
need to verify whether the predicted keyword corresponds to 537
the initial query. Using the keyword statement as an anchor 538
point, users can independently perform corrections, thereby 539
completing the full pipeline of the text-to-SQL task. 540

5 Experiments and Results 541

5.1 Experiment Settings 542

1) Dataset The evaluation dataset we designed includes two 543
labels: golden query types and golden keywords, where the 544
golden query type indicates the action instructions required to 545
solve the query problem. We conduct extensive experiments 546
on a set of 200 test samples to assess the practicality of the 547
text-to-keyword task. 548
2) Evaluation metric The execution accuracy (EX) is used 549
as the evaluation metric for different models. Floratou et al. 550
(2024) introduced an evaluation metric with lenient accep- 551
tance thresholds, referred to as Intent-based Match, which is 552
based on execution match. The predicted query may contain 553
additional query items, or the original question may be am- 554
biguous. In cases where the execution results are valid, such 555
predictions are still considered acceptable. We also apply the 556
Intent-based Match evaluation metric based on the execution 557
results. 558
3) Models To ensure data privacy, many enterprises are re- 559
luctant to upload database schema information to the inter- 560
net. Deploying a text-to-SQL system locally using open- 561
source models is a viable solution. We evaluate the effec- 562
tiveness of keyword statement generation on multiple open- 563
source models, including the Qwen2.5 series (Yang et al., 564
2024; Hui et al., 2024) (Qwen2.5-7B-Instruct, Qwen2.5-14B- 565
Instruct, Qwen2.5-Coder-14B-Instruct), llama3.1-8B (Dubey 566
et al., 2024), and glm-4-9B-chat-hf (GLM et al., 2024). We 567
fine-tune open-source LLMs using the 9,023 training sam- 568
ples mentioned earlier. Meanwhile, various closed-source 569
LLMs demonstrate more advanced fundamental capabilities. 570
By leveraging ICL to infer keyword syntax rules, we also 571
compare the performance of GPT-4o (Hurst et al., 2024), GPT- 572
4o-mini, GPT-3.5-turbo, and DeepSeek (Liu et al., 2024) in 573
the text-to-keyword task. 574
4) Comparison methods We compare our approach with 575
two SOTA ICL methods on the test dataset, namely DAIL- 576
SQL (Gao et al., 2023) and DIN-SQL (Pourreza and Rafiei, 577
2023). These methods use the costly GPT-4 (Achiam et al., 578
2023) model to generate SQL queries, and we directly evaluate 579
the acceptability of their execution results. 580

5.2 Main Results 581

Table 2 presents the acceptability of execution results for our 582
methods compared with two competitive methods on our cus- 583
tom enterprise requirement dataset. Overall, using Qwen2.5- 584
Coder-14B-Instruct and the method proposed in this paper, 585
we achieve better performance on the test dataset compared 586
to the existing SOTA benchmark methods, while our method 587
requires lower API costs. 588

To explain this, firstly, additional exemplars can help the 589
model effectively predict more complex query SQL statements. 590
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Case 1 Car insurance Error type
Question 查询连续两年赔偿额超过10000的保单的年份

Tell me the years in which there were consecutive two years where the
total compensation amount exceeded 10000

Gold 连续两年 总赔偿金额大于10000
2 consecutive years Total_Compensation_Amount > 10000

Pred 赔偿额 > 10000连续2年 字段对齐

2 consecutive years compensation > 10000 Field Alignment
Case 2 Car insurance Error type
Question 按年统计保单量的增长量

Caculate the growth in the number of policy number by year.
Gold 保单号的数量的年增长量

yearly growth amount of count Policy_Number
Pred 每年 保单号的数量 指令缺失

yearly count Policy_Number Instruction Missing

Table 1: The examples of predicted intermediate keywords that the user needs to correct.

Method LLMs Self-Correction EX
DIN-SQL GPT-4 GPT-4 80/200
DIN-SQL+NE GPT-4 GPT-4 113/200
DAIL-SQL+NE (Spider) GPT-4 GPT-4 85/200
DAIL-SQL+NE (Bird) GPT-4 GPT-4 135/200
Xiaohui_1 GPT-3.5 fine-tuning – 83/200
Xiaohui_2 GPT-3.5 fine-tuning – 98/200
Xiaohui_3 GPT-3.5 fine-tuning – 110/200
Xiaohui_4 GPT-4o-mini-2024-07-18 fine-tuning – 151/200
Xiaohui_a Qwen2.5-Coder-14B-Instruct – 133/200
Xiaohui_b Qwen2.5-Coder-14B-Instruct DeepSeek 160/200

Table 2: Execution Accuracy results of Xiaohui, DIN-SQL and DAIL-SQL. NE denotes the introduction of new
query-type examples (please refer to Appendix D for details).

The accuracy of DIN-SQL+NE is 16.5% higher than that of591
DIN-SQL (here NE denotes the introduction of new query-592
type examples). Therefore, it is important to select examples593
that are most relevant to the current question, which could594
involve the same SQL solving logic or problems from similar595
domains. Defining the distance between the question and596
the example is the key to example selection. Secondly, the597
quality of fine-tuning corpora directly impacts the model’s598
performance. As seen from Xiaohui_3 and Xiaohui_4, even599
though the base model used in Xiaohui_3 (GPT-3.5) is superior600
to the base model in Xiaohui_4 (GPT-4o-mini), the model601
fine-tuned with cleaned high-quality data (Xiaohui_4) shows602
significant performance improvement, with a 20.5% increase603
in accuracy on the test set. Thirdly, the introduction of the604
self-correction mechanism significantly improved the model’s605
execution accuracy. As shown in Xiaohui_a and Xiaohui_b,606
although both use the same base model (Qwen2.5-Coder-14B-607
Instruct) for fine-tuning, the performance of Xiaohui_b, which608
incorporates the self-correction mechanism (with DeepSeek),609
sees a significant improvement. The execution accuracy of610
Xiaohui_b is 80%, a 13.5% increase compared to Xiaohui_a,611
highlighting the crucial role of the self-correction mechanism612
in improving the accuracy of model results.613

The error analysis results of different methods are shown614
in Figure 5. The results in Figure 5 (a) indicate that the fre-615
quency of errors in query types such as filtering (ranking616

filtering, time filtering, attribute column filtering), calculation 617
(growth rate, growth amount, request for proportion, numerical 618
calculation), and comparison (specific attribute comparison, 619
time/date comparison) is high across all models. Relatively 620
speaking, among the four models, DAIL-SQL performs better, 621
with fewer errors in filtering and calculation query types com- 622
pared to DIN-SQL. Furthermore, the DAIL-SQL+NE (Bird) 623
model has fewer errors in filtering and calculation query types 624
compared to DAIL-SQL+NE (Spider), largely because the 625
query types in the Bird dataset are more diverse than those 626
in the Spider dataset. Figure 5 (b) shows that compared to 627
Xiaohui_a, the model with the self-correction module (Xiao- 628
hui_b) significantly reduces the error rates in field alignment 629
and attribute column filtering query types. By combining both 630
charts, we observe that the models obtained using the method 631
in this paper perform differently from those obtained using 632
existing prompt engineering methods in terms of several query 633
error types. The models from our method perform signifi- 634
cantly better in calculation, comparison, and time filtering 635
query types compared to DIN-SQL and DAIL-SQL, while per- 636
forming slightly worse in ranking filtering and field alignment 637
query types. 638

5.3 Ablation Study 639

We conduct further ablation studies on prompt engineering 640
to evaluate the effectiveness of prompt information, includ- 641
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Figure 5: Error analysis of different methods on Text-to-Keyword task Dataset.

ing the selection of the text-to-keyword task base model, and642
the assessment of the self-correction module (refer to Ap-643
pendix B.2). Additionally, we provide experimental analysis644
of keyword rules, schema-linking information, and exemplar645
selection in the Appendix C.646

We evaluate current open-source LLMs by assessing their647
keyword prediction ability under a unified prompt template648
after fine-tuning on our text-to-keyword corpora. In contrast,649
online large models excel in language understanding and rea-650
soning, indicating superior In-Context Learning capabilities.651
The additional error analysis can be found in Appendix B.1.652

Method LLMs EX
Xiaohui_a Qwen2.5-Coder-14B-Instruct 133/200

Qwen2.5-7B-Instruct 0/200
Qwen2.5-14B-Instruct 109/200
GLM-4-9b-chat-hf 67/200
Llama3.1-8B 89/200
DeepSeek 118/200
GPT-4o 133/200
GPT-4o-mini 124/200

Table 3: Execution accuracy results of open-source
LLMs and closed-source LLMs.

Notably, the results in Table 3 show that the output of653
Qwen2.5-7B-Instruct fails to adhere closely to the format654
specified in the prompt and differs significantly from the out-655
put of other models. Our method, Xiaohui_a, achieves the656
same accuracy as GPT-4o through a more cost-effective ap-657

proach. More importantly, its predicted keywords are better 658
suited for user verification. 659

6 Conclusion 660

In this research, we achieve interaction between non-technical 661
users and the text-to-SQL system through keyword represen- 662
tation as an intermediate language. The results of our meth- 663
ods surpass the current SOTA methods by 12.5% on the test 664
dataset. We gain comparable execution accuracy with less cost, 665
while also allowing non-expert users to independently perform 666
sentence correction. The Xiaohui_4 version, which is based on 667
corpus cleaning, achieves a high execution accuracy of 75.5% 668
and still has room for further improvement. Keyword-based 669
sentences, as anchor points for human-machine interaction, 670
provide a practical path for the implementation of text-to-SQL 671
technology. 672

7 Limitations 673

Our research method currently has the potential for further op- 674
timization and improvement. For example, LLMs still struggle 675
with understanding query types like ranking filtering, and we 676
may need to address such issues by modifying keyword map- 677
ping rules, or by establishing more detailed rule explanations 678
and more suitable example selections. Additionally, open- 679
source LLMs currently face more difficulties when handling 680
Chinese tasks, particularly in field alignment requirements. 681
Many LLMs are unable to distinguish between Chinese syn- 682
onyms (e.g., “订购数量” and “订单数量”, which can be 683
translated as "order quantity" or "order amount). The time 684
cost for running the entire process is not recorded. In example 685
selection, further optimization can be made on the available 686
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examples in each query type library, such as deduplication,687
supplementing the number of examples for each query type, or688
establishing cluster centers. Additionally, we do not conduct689
a quantitative analysis to assess the quality of our examples.690
When retrieving based on semantic similarity, no specific opti-691
mization is applied for Chinese texts. Regarding the datasets,692
we only conduct experiments on the text to keyword system693
in the Chinese environment. The experiments in the English694
environment are our upcoming work.695

8 Ethical Considerations696

Our datasets will be progressively made available, and the697
training data, example library, and test set used for fine-tuning698
have undergone rigorous review to ensure they do not con-699
tain politically sensitive or biased content. For data privacy700
reasons, our database information has been anonymized. The701
open-source and closed-source models employed in our study702
are publicly accessible online. The llama-factory is an open703
framework that we use for fine-tuning and inference, config-704
ured based on the inherent characteristics of open-sourced705
LLMs.706
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A Label Definitions for Error Analysis1011

The predicted results are denoted as ’pred’, while the golden1012
keywords provide the reference for each sub-statement, and1013
the selected column name denotes as ’XXX’. If the same1014
sub-statement appears in ’pred’ but with errors in details, it1015
is defined as a query type error. As shown in Table 4, using1016
incorrect column values (different from those actually stored1017
in the database) results in no matches, causing an error in the1018
attribute column filtering subquery, thus marked as an attribute1019
column filtering error.1020
query types definition1021

• 增长率 (Growth Rate) : This typically refers to situa-1022
tions where the user explicitly requests the calculation of1023
growth changes,which may include year-on-year growth1024
rate, quarter-on-quarter growth rate, base-year growth1025
rate, or both year-on-year and quarter-on-quarter growth1026
rates. The user may also refer to specific time periods1027
such as year, month, day, week, or quarter, like monthly1028
growth rate, annual growth rate, quarterly growth rate,1029
or weekly growth rate. Specific examples include: ’year-1030
on-year growth rate of XXX’; ’month-on-month growth1031
rate of XXX count’; ’monthly growth rate of unique1032
count of XXX’.1033

• 增长量 (Growth Amount) : This usually refers to situa-1034
tions where the user explicitly requests the calculation1035
of growth changes, which may include calculating year-1036
on-year growth, quarter-on-quarter growth, base-year1037
growth, or both year-on-year and quarter-on-quarter1038
growth. It may be used together with ’Time Grouping’1039
for calculations such as monthly growth, annual growth,1040
quarterly growth, weekly growth, or daily growth. Spe-1041
cific examples include: ’year-on-year growth amount1042
of XXX’; ’month-on-month growth amount of XXX1043
count’; ’monthly growth amount of unique count of1044
XXX’.1045

• 属性列筛选 (Attribute Column Filtering) : The fields1046
involved in the user’s query are of string type, and the1047
values mentioned in the columns require string matching1048
operations for the query intent.1049

• 数值列筛选 (Numerical Column Filtering) : The user’s1050
query involves numerical fields and specific values, re-1051
quiring comparison or filtering operations based on the1052
numerical values for the query intent.1053

• 时间筛选 (Time Filtering) : The user’s query involves1054
timestamp fields, and filtering or matching operations1055
are performed on time periods such as days, weeks,1056
months, quarters, or years.1057

• 排名筛选 (Ranking Filter) : The query intent requires1058
directly ranking the values in a numerical column, and1059
includes three types of usage intentions: 1. Perform1060
grouping and summing operations (included in numer-1061
ical calculation directives) on the numerical column1062
before ranking and filtering, such as ’top 1 sum XXX’;1063
2. Rank the quantity after a ’count’ operation, such1064
as ’top 1 count XXX’; 3. Directly rank the numerical1065
column without needing summing operations, such as1066
’top n XXX’.1067

• 属性列分组 (Attribute Column Grouping) : The1068
user’s question involves non-numerical columns or time1069

columns. This directive is not used independently. Typi- 1070
cally, the content of these attribute columns consists of 1071
categorical variables that need to be grouped and listed 1072
before performing other directive actions. 1073

• 数值列分组 (Numerical Column Grouping) : The 1074
user’s question involves numerical fields. When the 1075
intent to perform grouping statistics on a numerical 1076
column is recognized, it triggers a numerical column 1077
grouping operation directive. 1078

• 时间分组 (Time Grouping) : Grouping operations 1079
based on dates for time-related fields involving times- 1080
tamps. This is usually used in combination with other 1081
operations. 1082

• 子查询 (Subquery) : Nested operations may be required. 1083
A subquery is a set of specific filtering conditions. A 1084
subquery may involve exclusion subqueries (EXCEPT), 1085
numerical calculation and filtering—referred to as an 1086
’aggregated subquery’ (for example: a numerical col- 1087
umn greater than the average of that numerical col- 1088
umn)—and selection conditions (subquery affiliation, 1089
selecting categories that meet the subcriteria), among 1090
other filtering conditions. The subquery must be exe- 1091
cuted before proceeding with subsequent directive ac- 1092
tions. 1093

• 排序 (Sorting) : The user requests sorting of numerical 1094
columns from high to low, or from large to small, or vice 1095
versa. This requires executing commands for ascending 1096
or descending order. Competitive ranking and dense 1097
ranking can be considered as types of sorting methods, 1098
though they differ from regular sorting. These two rank- 1099
ings are not filtering actions, so they are classified as 1100
sorting operations. 1101

• 求占比 (Request for Proportion) : The user explicitly 1102
requests an operation to calculate the proportion. This 1103
is generally after a grouping instruction or for a specific 1104
group that has been filtered, to calculate the proportion 1105
or percentage of each group. It might follow instructions 1106
like time filtering and time grouping, or attribute col- 1107
umn grouping, and requires executing the ’request for 1108
proportion’ operation. Specific example: ’proportion of 1109
XXX’; combined with counting operations, ’proportion 1110
of count XXX’. 1111

• 具体属性对比 (Specific Attribute Comparison) : The 1112
user has declared the intention to make a comparison 1113
(vs) in the question, generally comparing two or more 1114
’attribute column filter’ conditions, often used in con- 1115
junction with other directive actions. Specific examples: 1116
Attribute column filter1 vs Attribute column filter2; and 1117
comparison with the entire set ’Attribute column filter1 1118
vs all’. 1119

• 时间日期对比 (Date Comparison) : The user has ex- 1120
pressed an intent to make a comparison (vs) and has 1121
provided two or more specific times. This action is 1122
typically used in conjunction with the ’Time Filtering’ 1123
command. Specific usage: 1. Comparison between two 1124
time periods: ’Time filter1 vs Time filter2’; 2. Compari- 1125
son with the entire time range: ’Time filter1 vs all’. 1126

• 计数 (Counting) : Calculating the number of samples 1127
under the selected field, which may be: ’count XXX’, 1128
’unique count XXX’. Special considerations: 1. Does 1129

12



Case 1 Error Type
Question 肥胖水平为二级超重的条件下，男性和女性的数量分别是多少？

What is the count of males and females for individuals who’s obesity
level contains Class 2 Overweight?

Gold 肥胖水平包含"二级超重"按性别统计性别的数量
count Gender Obesity_Level contains ‘Class 2 Overweight’by Gender

Pred 肥胖水平包含"2级超重"按性别统计性别的数量 属性列筛选

count Gender Obesity_Level contains ‘class 2 overweight’by Gender Attribute Column Filtering

Table 4: The error example of "Attribute Column Filtering" type.

the current question require grouping before counting?1130
2. Does the current question require using distinct count-1131
ing (unique count XXX)?1132

• 数值计算 (Numerical Calculation) : The user’s ques-1133
tion involves numerical fields, and the query intent in-1134
volves numerical calculation directives such as finding1135
the maximum, minimum, average, sum, total, standard1136
deviation and variance. When grouping statistics are1137
involved (whether it’s by time, attribute column, or nu-1138
merical column), it may trigger a summing (aggrega-1139
tion) numerical calculation operation. The specific issue1140
should be analyzed on a case-by-case basis.1141

• 连续指令 (Continuous Directive) : The user’s question1142
involves timestamp fields, specifically for filtering over1143
a continuous period such as X consecutive days, X con-1144
secutive weeks, X consecutive months, X consecutive1145
quarters, X consecutive years. This requires the use of1146
the continuous directive.1147

non–query types definition1148

• 字段对齐 (Field alignment) : The field names used in1149
the pred do not correspond to those found in the schema1150
based on the question, and fields that do not exist in the1151
schema used.1152

• 执行错误 (Execution error) : The pred is an irrelevant1153
translation of the original question, or the LLM did not1154
perform keyword translation and simply restated the1155
content of the question. Alternatively, the pred does not1156
follow the syntax of the keywords and is not recognized1157
by the system during execution.1158

• 指令冗余 (Instruction redundancy) : The pred includes1159
extra filtering targets that are not present in the golden1160
statement, which causes the execution result to devi-1161
ate from the original query intent, and is marked as1162
instruction redundancy.1163

• 指令缺失 (Instruction missing) : The pred lacks neces-1164
sary filtering instructions that are present in the golden1165
statement.1166

B Supplementary Ablation Experiments1167

We investigate the error analysis of selecting the optimal local1168
LLMs and examine the role of self-correction in enhancing1169
prediction accuracy.1170

B.1 Error analysis of Selecting the Optimal Local LLMs1171

As shown by Figure 6, the error types in the keyword pre-1172
dictions of these LLMs, "Ranking Filtering" is difficult for1173
both local and online models. For example, when a retail1174

company needs to find the top three regions by sales amount, 1175
it must first calculate the total sales amount for each region 1176
and then apply ranking filtering. It is not simply about fil- 1177
tering the top three sales amounts (without aggregation) and 1178
then outputting the corresponding regions. Except for a few 1179
errors in the "top n XXX", most ranking filtering requires 1180
combining other instructions, such as "top n sum XXX" or 1181
"top n count XXX". Except for Xiaohui_a, the performance 1182
of the other local LLMs is inferior to that of the online models. 1183
Even for the same Qwen2.5-14b model, different versions 1184
have varying abilities to learn keyword syntax. Qwen2.5-14b- 1185
Instruct performs worse than Qwen2.5-Coder-14b-Instruct on 1186
the text-to-keyword task. 1187

B.2 Self-correction 1188

Self-correction is a crucial component of prompt-based re- 1189
search, such as DAIL-SQL (Gao et al., 2023) and DIN- 1190
SQL (Pourreza and Rafiei, 2023), significantly enhancing 1191
execution accuracy. We also investigate the ability of LLMs 1192
to iteratively refine keyword predictions. By adjusting the 1193
prompts, we enable the LLMs to incorporate rules, examples, 1194
and prior keyword predictions for improved accuracy. The 1195
intermediate keyword prediction is provided by Xiaohui_a. 1196

Method LLMs Predicted
Information EX

Xiaohui_b DeepSeek Xiaohui_a keyword 160/200
GPT-4o Xiaohui_a keyword 150/200
GPT-4o Golden keyword 166/200

GPT-4o
Golden keyword +
schema-linking 143/200

Table 5: The ability of open-source LLMs to correct
keyword predictions.

DeepSeek outperforms GPT-4o in refining local keyword 1197
predictions, with an accuracy improvement of 13% compared 1198
to Xiaohui_a, possibly because its Chinese-language corpus 1199
is of higher quality, leading to better performance in Chinese 1200
keyword translation tasks. Additionally, we examine the abil- 1201
ity of online large models to verify golden-standard keywords. 1202
Correcting the golden keywords generates more erroneous 1203
statements, with an accuracy of 166/200, which marks the 1204
performance upper limit of our current correction method. 1205
The additional introduction of schema-linking information, 1206
however, makes GPT-4o’s correction results worse. Cao et al. 1207
(2024b) have pointed out that the downside of schema-linking 1208
is the introduction of more noise, leading to the generation 1209
of more redundant predicted keywords. From the Figure 7, 1210
this is indeed the case. When GPT-4o corrects the golden 1211
keyword without using schema-linking information, it does 1212
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Figure 6: Error analysis for selecting the optimal local LLMs, and comparing to closed-source LLMs

not even make field alignment errors, and there are few types1213
of instruction redundancy, instruction missing, or execution1214
errors.1215

C Supplementary Experiments Conducted for1216

Information Augmentation1217

Furthermore, we study the benefits of the information augmen-1218
tation module presented in Figure 4 for the text-to-keyword1219
task, and conduct ablation experiments on Rules, schema-1220
linking information, and Exemplars selection.1221

C.1 Rules1222

First, we study the impact of rule explanations on the open-1223
source model Qwen2.5-Coder-14b-instruct and compare it1224
with the DeepSeek model that only uses context learning. We1225
set up experiments with only text definitions (only-definition),1226
currently allowed instructions (allowance), and fixed examples1227
for the current query type (query type definition-example-CoT1228
tuple). The results are shown in Table 6. Xiaohui_a is our1229
fine-tuned Qwen2.5 model. As can be seen, with deeper rule1230
explanations, the performance of the LLM improved further.1231
The local 14B model is fine-tuned with keyword corpora, but1232
there is still a gap compared to the online large models in1233
terms of context learning capabilities.1234

C.2 Schema-linking Information1235

Second, we study the impact of schema-linking information1236
on the text-to-keyword task. In this study, we select rule in-1237
formation by removing the fixed examples from each query1238
type and only retaining the basic definitions and allowed in-1239
structions. The prediction of query types and schema-linking1240
information adds steps to the entire text-to-keyword system,1241

which increases costs, particularly in terms of time. We under- 1242
stand that enterprises also have limitations on the runtime of 1243
prediction systems. The number of interactions with the LLM 1244
is positively correlated with the system’s final performance, 1245
but it must be balanced against runtime and other costs. 1246

Regarding the direction of information acquisition in Ta- 1247
ble 7, ’forward’ indicates that the schema-linking information 1248
is inferred from exemplars, the current question and schema 1249
and rules to determine the required field names for the cur- 1250
rent question. Since the keyword phrases in the exemplars 1251
have already selected the necessary fields for their respective 1252
questions, we expect these exemplars to assist in inferring 1253
the current schema-linking information. In contrast, ’reverse’ 1254
means that this information is derived by backtracking from 1255
the golden keyword annotations. The online model DeepSeek 1256
further supplements the inference chain (Chain of Thought, 1257
CoT) for schema linking. 1258

According to Table 7, the DeepSeek model, lacking guid- 1259
ance on specific query types, fails to generate keyword phrases 1260
when reasoning with forward information, with most outputs 1261
being SQL statements. Similarly, DeepSeek performs poorly 1262
when using reverse information inference. In contrast, when 1263
using a fine-tuned Qwen2.5 model for prediction, providing 1264
only the selected columns yielded inferior results compared 1265
to the other three configurations. However, when using a 1266
combination of CoT text and the selected columns as schema- 1267
linking information in the forward setting, the performance 1268
was comparable to that obtained with reverse information. 1269
This result aligns with the accuracy of our ultimately selected 1270
(Rules-exemplars) prompt template. Nonetheless, the current 1271
method tends to produce more errors in field alignment, which 1272
makes corrections more challenging. In comparison, our final 1273
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Figure 7: Error analysis of the self-correction results performed by closed-source LLMs.

Rules content LLMs EX
only-definition Xiaohui_a 95/200

definition+allowance Xiaohui_a 103/200
definition+allowance+fixed example Xiaohui_a 107/200
definition+allowance+fixed example DeepSeek 118/200

Table 6: Ablation study on the selection of rules content.

Schema-linking information LLMs Information acquisition EX
CoT+selected columns DeepSeek forward 0/200
CoT+selected columns Xiaohui_a forword 133/200

selected columns Xiaohui_a forword 117/200
CoT+selected columns DeepSeek reverse 1/200
CoT+selected columns Xiaohui_a reverse 131/200

selected columns Xiaohui_a reverse 131/200

Table 7: Ablation study on the selection of schema-linking information.

method, even when predictions are incorrect, is easier for users1274
to correct and is closer to meeting an acceptable threshold.1275
Moreover, the exemplars also serve to guide the output format1276
of LLMs.1277

C.3 Exemplars Selection1278

Third, we examine the impact of exemplar selection on the1279
text-to-keyword task. Our investigation is divided into two1280
main parts. The first part involves retrieving exemplars from1281

the complete set based on similarity, which is further split into 1282
two aspects: one based on the question and the other on the 1283
query type. The second part entails building a vector database 1284
of exemplars for each query type and conducting retrieval by 1285
query type to study the effect of the number of exemplars on 1286
the performance of LLMs. Here, the number of exemplars 1287
(denoted as N ) is constrained to be N ≤ m, m = 3, 6, 9. 1288

We compare the performance of Xiaohui_a and DeepSeek, 1289
representing local and online LLMs, respectively. As shown 1290
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in Table 8, exemplars retrieved from the entire set (with all1291
cases set to 9 exemplars) are less effective than those ob-1292
tained through query type classification, and even less effec-1293
tive than exemplars retrieved from a query type-specific vector1294
database. The DeepSeek model achieves its highest accuracy1295
with N ≤ 6, whereas Xiaohui_a performs better when N ≤ 9.1296
This disparity is related to the quality of exemplar selection,1297
an aspect that is insufficiently evaluated in our study. Ad-1298
ditionally, we find that after converting Chinese tokens into1299
embedding vectors, retrieval based on text semantic similar-1300
ity does not always select the most relevant exemplars. As1301
illustrated in Table 9, Chinese embedding models still require1302
continuous improvement.1303

C.4 Full Information Prediction1304

Finally, we evaluate the model’s ability to predict using1305
all available information—including rules (definition + al-1306
lowance), exemplars (9-shot examples utilizing categorized1307
databases by query type), and schema-linking information1308
(reasoning chain-of-thought and selected columns), as shown1309
in Table 10, and conduct an error analysis, as shown in Figure1310
8.1311

The results in Figure 8 show that ranking-based filtering1312
and field alignment are error types where all three methods1313
perform poorly. Our method produces fewer execution errors,1314
whereas both DeepSeek and GPT-4o tend to predict keywords1315
in the format of table_name.column_name, which leads to1316
execution errors on keywords. The schema-linking informa-1317
tion is originally intended to provide the LLMs with more1318
detailed analytical insights, but its output do not conform to1319
the format specified in the examples. It is likely that GPT-4o’s1320
superior contextual understanding enabled it to achieve the1321
best prediction results with longer, richer prompts.1322

However, in our practical application, the combination of1323
Rules and exemplars already yields an accuracy of 133/200,1324
and the predicted keywords are easy for users to correct with1325
only minimal modifications. In our approach, the schema-1326
linking task represents additional time and overhead, but it1327
does not lead to a significant improvement in the overall per-1328
formance of the system.1329

D Explanation of Additional New Exemplars1330

(NE)1331

The research results based on DAIL-SQL indicate that GPT-1332
4 level LLMs demonstrate exceptional learning capabilities1333
when learning Question-SQL examples. However, since the1334
examples in Din-SQL are written based on the Spider dataset,1335
they fail to cover certain question types present in this study’s1336
dataset, such as comparison-type questions, growth rate calcu-1337
lations, continuous time analysis, and proportion calculations.1338
To address this limitation, we design and add examples specif-1339
ically targeting these question types, ensuring they follow the1340
standardized format of Din-SQL. Additionally, we provide1341
DAIL-SQL with new optional examples to further enhance1342
the diversity and applicability of the dataset. We refer to these1343
newly added examples as additional new examples, denoted1344
as NE.1345

D.1 New Examples1346

Q: "Compare the average sales amounts for the years 20171347
and 2018."1348
Schema_links: [product_usage_data.sales_amount, prod-1349
uct_usage_data.date]1350
SQL:SELECT AVG(CASE WHEN strftime(’%Y’, date) =1351

’2017’ THEN sales_amount END) AS average_sales_2017, 1352
AVG(CASE WHEN strftime(’%Y’, date) = ’2018’ THEN 1353
sales_amount END) AS average_sales_2018 FROM 1354
product_usage_data. 1355

1356
Q: "Find the top 3 products by sales amount in ’huabei’ and 1357
’huadong’ regions" 1358
Schema_links: [SalesData.region, SalesData.sales_amount, 1359
SalesData.product_name, huabei, huadong] 1360
SQL: with AggregatedSales as (select region, product_name, 1361
sum(sales_amount) as total_sales from SalesData where re- 1362
gion in (’huabei’, ’huadong’) group by region, product_name), 1363
RankedSales as (select a.region, a.product_name, a.total_sales, 1364
count(b.total_sales) as rank from AggregatedSales a left join 1365
AggregatedSales b on a.region = b.region and a.total_sales 1366
< b.total_sales group by a.region, a.product_name) select 1367
region, product_name, total_sales as sales_amount from 1368
RankedSales where rank < 3 order by region, total_sales desc. 1369

1370
Q: "Calculate the annual sales growth" 1371
Schema_links: [SalesData.sales_quantity, SalesData.date] 1372
SQL: with yearly_sales as (select cast(strftime(’%Y’, date) as 1373
integer) as year, sum(sales_quantity) as total_sales_quantity 1374
from SalesData group by year) select t1.year as year, 1375
t1.total_sales_quantity - t2.total_sales_quantity as 1376
sales_growth from yearly_sales t1 left join yearly_sales t2 on 1377
t1.year = t2.year + 1 order by t1.year. 1378

1379
Q: "Find product categories with consecutive 2 years of sales 1380
amount exceeding 600000" 1381
Schema_links: [SalesData.product_category, Sales- 1382
Data.sales_amount, SalesData.date] 1383
SQL: select product_category from (select product_category, 1384
sum(sales_amount) as total_sales_amount, strftime(’%Y’, 1385
date) as year from SalesData group by product_category, year 1386
having total_sales_amount > 600000) as subquery group by 1387
product_category having count(year) >= 3. 1388

1389
Q: "Calculate the sales quantity proportion for each product 1390
category" 1391
Schema_links: [SalesData.product_category, Sales- 1392
Data.sales_quantity] 1393
SQL: select product_category, sales_quantity * 1.0 / 1394
total_sales_quantity as sales_proportion from (select prod- 1395
uct_category, sum(sales_quantity) as sales_quantity, (select 1396
sum(sales_quantity) from SalesData) as total_sales_quantity 1397
from SalesData group by product_category) as subquery order 1398
by product_category. 1399

D.2 Classification Prompts 1400

Q: "Compare the average sales in 2017 and 2018" 1401
schema_links: [ProductTrialData.SalesAmount, ProductTri- 1402
alData.Date] 1403
A: Let’s think step by step. The SQL query for the question 1404
"Compare the average sales in 2017 and 2018" needs these 1405
tables = [ProductTrialData], so we don’t need JOIN. 1406
Plus, it doesn’t require nested queries with (INTERSECT, 1407
UNION, EXCEPT, IN, NOT IN), and we need the answer 1408
to the questions = [""]. So, we don’t need JOIN and don’t 1409
need nested queries, then the SQL query can be classified as 1410
"EASY". 1411
Label: "EASY" 1412

1413
Q: "Find the top 3 products by sales amount in the ’huabei’ 1414
and ’huadong’ regions" 1415
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Exemplars selection LLM Retrieved from EX
questions DeepSeek complete collection of questions 126/200
questions Xiaohui_a complete collection of questions 119/200

query types DeepSeek complete collection of query types 130/200
query types Xiaohui_a complete collection of query types 121/200

3-shot DeepSeek categorized databases of query types 126/200
3-shot Xiaohui_a categorized databases of query types 119/200
6-shot DeepSeek categorized databases of query types 134/200
6-shot Xiaohui_a categorized databases of query types 131/200
9-shot DeepSeek categorized databases of query types 133/200
9-shot Xiaohui_a categorized databases of query types 133/200

Table 8: Ablation study on the selection of schema-linking information.

Keyword Question Golden query types
(Using Chinese for retrieval in fact) Distance

2023年每年的最后3个月个人支付金额 23年最后3个月订单的个人付款额是多少? 时间筛选时间分组 0.007959146
between 2023/10/1 and 2023/12/31
yearly personal_payment_amount

Tell me the years in which there were consecutive two years
where the total compensation amount exceeded 10000 Time Filtering, Time Grouping

时间花费的总和 分析不同时间段的花费变化趋势 数值计算时间分组 0.007959146

time sum spending Analyze the trend of expenditure changes
over different time periods. Numerical Calculation, Time Grouping

每年商品访客成本的总和 每年的商品访客成本大概是多少？ 数值计算时间分组 0.007959146
yearly sum cost_per_product_visitor What is the approximate product visitor cost per year? Numerical Calculation, Time Grouping
评价版本的去重数量的周增长率 2023年按周统计 2023年，评价版本的去重数量周增长率是多少？ 增长率时间筛选时间分组 0.085216679
2023 by week weekly growth rate of
unique count evaluation_version

In 2023, what is the weekly growth rate of the deduplication
count for the evaluation version?

Growth Rate, Time Filtering,
Time Grouping

评价版本的去重数量的月增长率 2023年按月统计 2022年评价版本的去重数量的月增长率 增长率时间筛选时间分组 0.085216679
2023 by month monthly growth rate of
unique count evaluation_version

In 2023, what is the monthly growth rate of the deduplication
count for the evaluation version?

Growth Rate, Time Filtering,
Time Grouping

Table 9: Example similarity ranking of the user questions, based on query type text retrieval.

LLMs EX
DeepSeek 136/200
GPT-4o 142/200

Xiaohui_a 137/200

Table 10: Prediction results using all available informa-
tion.

schema_links: [ProductTrialData.Region, ProductTrial-1416
Data.SalesAmount, ProductTrialData.ProductName, huabei,1417
huadong]1418
A: Let’s think step by step. The SQL query for the question1419
"Find the top 3 products by sales amount in the ’huabei’ and1420
’huadong’ regions" needs these tables = [ProductTrialData],1421
so we don’t need JOIN.1422
Plus, it requires nested queries with (INTERSECT,1423
UNION, EXCEPT, IN, NOT IN) and window functions1424
(ROW_NUMBER), and we need the answer to the questions1425
= ["Find the top 3 products by sales in each region"]. So, we1426
don’t need JOIN and need nested queries, then the SQL query1427
can be classified as "NESTED".1428
Label: "NESTED"1429

1430

Q: "Calculate the annual sales growth"1431
schema_links: [ProductTrialData.SalesQuantity, ProductTri-1432
alData.Date]1433
A: Let’s think step by step. The SQL query for the question1434
"Calculate the annual sales growth" needs these tables =1435
[ProductTrialData], so we don’t need multiple tables, but we1436
need a self JOIN.1437

Plus, it requires nested queries with (INTERSECT, UNION, 1438
EXCEPT, IN, NOT IN), and we need the answer to the 1439
questions = ["Calculate total sales for each year and then find 1440
the growth between consecutive years"]. So, we need JOIN 1441
and need nested queries, then the SQL query can be classified 1442
as "NESTED". 1443
Label: "NESTED" 1444

1445

Q: "Find the product categories that exceeded 600,000 in 1446
sales for 2 consecutive years" 1447
schema_links: [ProductTrialData.Category, ProductTrial- 1448
Data.SalesAmount, ProductTrialData.Date] 1449
A: Let’s think step by step. The SQL query for the question 1450
"Find the product categories that exceeded 600,000 in sales for 1451
2 consecutive years" needs these tables = [ProductTrialData], 1452
so we don’t need JOIN. 1453
Plus, it requires nested queries with (INTERSECT, UNION, 1454
EXCEPT, IN, NOT IN), and we need the answer to the 1455
questions = ["Find categories with sales exceeding 600,000 1456
for at least two consecutive years"]. So, we don’t need JOIN 1457
and need nested queries, then the SQL query can be classified 1458
as "NESTED". 1459
Label: "NESTED" 1460

1461

Q: "Calculate the sales proportion for each category" 1462
schema_links: [ProductTrialData.Category, ProductTrial- 1463
Data.SalesQuantity] 1464
A: Let’s think step by step. The SQL query for the question 1465
"Calculate the sales proportion for each category" needs these 1466
tables = [ProductTrialData], so we don’t need JOIN. 1467
Plus, it requires nested queries with (INTERSECT, UNION, 1468
EXCEPT, IN, NOT IN), and we need the answer to the ques- 1469
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Figure 8: Error analysis of using all available information.

tions = ["Calculate the total sales amount for all categories"].1470
So, we do not need JOIN and need nested queries, then the1471
SQL query can be classified as "NESTED".1472
Label: "NESTED"1473

E Query Types Prediction1474

Query types prediction marks the starting point of our text-to-1475
keyword task. It requires the LLMs to analyze which action1476
instructions are needed to resolve the current problem, serving1477
as a form of problem decomposition.1478

However, achieving high accuracy in query type predic-1479
tion is not our current priority, as the primary bottleneck in1480
our workflow remains the subsequent keyword generation1481
step. LLMs, especially smaller, locally deployed models,1482
do not learn or interpret examples as intuitively as expected.1483
Ideally, they should be able to grasp the usage of various sub-1484
statements from the examples (for instance, understanding1485
the contexts for instructions like repeated count and unique1486
count), but such nuances are difficult to capture solely through1487
question-to-keyword pairs. While examples can indeed help1488
LLMs learn the rules, their effective use still demands con-1489
siderable engineering effort, making the optimal utilization1490
of examples a matter of prompt engineering. Consequently,1491
in this study, we do not consider query types prediction to be1492
particularly critical.1493

On the other hand, by classifying queries according to1494
their types and building dedicated example databases, a single1495
question can belong to multiple repositories. For instance,1496
as shown in Table 9, if a question’s golden query type labels1497

are A, B, and C, we can retrieve the corresponding example 1498
from the A, B, and C databases, storing it as a question–query 1499
types–keyword triple. Moreover, we can obtain the schema 1500
for the example, which makes it easier for local LLMs to learn 1501
from schema-enriched examples. Even if the predicted query 1502
types for this question are A, F, and G, we can still retrieve it 1503
from the A database. 1504

We use the definition of query types along with fixed 1505
examples corresponding to each type to illustrate the query 1506
types prediction task. Each query type has up to four question- 1507
query types examples. For token length considerations, a 1508
small number of examples are supplemented with a schema. 1509
The current question and schema are then input to predict 1510
the query type for the given question. We test the query type 1511
prediction task using GPT-4o and GPT-4o-mini. Let 1512

n1 =

200∑
i=1

I (|Gi ∩ Pi| ≠ ∅)

n2 =

200∑
i=1

I (|Pi \Gi| = ∅)

n3 =

200∑
i=1

I (|Gi \ Pi| ≠ ∅)

n4 =

200∑
i=1

I (|Pi \Gi| = ∅) · I (|Gi \ Pi| = ∅)

=

200∑
i=1

I (|Pi = Gi|)

(4) 1513
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where Gi represents the set of ground truth query types for the1514
ith sample, and Pi represents the set of predicted query types1515
for the ith sample. And n1 represents the number of cases1516
where at least one query type in the predicted query types1517
matches the golden (ground truth) query types. n2 indicates1518
that the predicted query types do not exceed the scope of the1519
golden set, meaning no extra query types are present. n31520
reflects cases where the predicted query types miss one or1521
more query types that appear in the golden set. n4 signifies1522
perfect predictions, there are neither missing nor extra query1523
types, meaning the prediction is entirely correct. We make1524
predictions for the query types of 200 samples in the test set.1525
Specific results are shown in Table 11.1526

LLMs n1 n2 n3 n4

GPT-4o 191 115 86 80
GPT-4o-mini 187 75 117 47

Table 11: Test results for query type prediction.

Table 11 depicts that GPT-4o correctly predicts 191 out1527
of the 200 samples, with 115 predictions showing no redun-1528
dant instructions, 86 without omissions, and 80 that perfectly1529
matched the golden labels. The effectiveness of LLMs predic-1530
tions for query type classification depends on various factors,1531
including the definition of query types, the number of exam-1532
ples, and whether the input schema is provided. Conducting1533
extensive experiments is essential to fully understand and op-1534
timize these influences. Using a locally deployed open-source1535
LLM for this specific prediction task is also a great implemen-1536
tation approach.1537

It is evident that, for the next step in examples selection,1538
improvements are needed in areas such as the text embedding1539
model, similarity calculation methods, and the organization1540
of the example library. However, what we ultimately need1541
is keyword prediction that is easy for users to correct. Fine-1542
tuning has allowed the LLMs to initially learn keyword syntax1543
rules, and examples are used to guide and correct predictions1544
in later stages. Unlike traditional step-by-step SQL generation,1545
which can accumulate errors linearly, we start with a step that1546
does not require extremely high accuracy, achieving better1547
keyword prediction results.1548
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