Xiaohui: A Text-to-SQL Application Designed for Non-technical Users

Anonymous ACL submission

Abstract

Text-to-SQL, a critical task in natural language
processing, aims to translate natural language
questions into structured SQL queries for rela-
tional databases. Despite significant advance-
ments, existing approaches often struggle with
complex queries and domain adaptation due to
the inherent ambiguity and variability of nat-
ural language. In this paper, a user-centered
text-to-SQL system that reduces the usage bar-
rier for non-technical users by abstracting the
intermediate language of keyword instructions
is designed. The key point is to allow users
to independently determine whether the pre-
dicted query and execution results are accept-
able, rather than relying on the complex SQL
statements of traditional methods. Specifi-
cally, our implementation, Xiaohui, first de-
signs keyword-to-Trino SQL mapping rules
based on the real needs of partner enterprises,
such as growth trends, comparisons, and per-
centage situations commonly found in busi-
ness analysis. Secondly, it utilizes a LLM-
based method fine-tuned with over 9,000 text-
to-keyword samples and 1,276 question-query
types-keyword examples for reference. On a
test dataset designed based on the actual needs
of enterprises, using Qwen as the basic model,
the proposed system achieves evaluation perfor-
mance comparable to or even surpassing main-
stream prompt-based methods like DAIL-SQL
and DIN-SQL.

1 Introduction

Text-to-SQL (Zelle and Mooney, 1996), also known as Natural
Language to SQL (NL2SQL), empowers users to effortlessly
retrieve data from relational databases by simply using natural
language queries, eliminating the need to master intricate SQL
query techniques. In recent years, spanning enterprise-level
business analytics to individual health monitoring systems, the
growing reliance of non-technical users on intuitive data query
solutions has created both unprecedented demands and com-
plex challenges for text-to-SQL technology (Floratou et al.,
2024).

Over the early years, research in the text-to-SQL field pri-
marily relied on rule-based methods (Mahmud et al., 2015; Xu

et al., 2017; Yu et al., 2018b) and neural machine translation
techniques (Zhong et al., 2017; Yu et al., 2018a; Ma et al.,
2020), with sequence-to-sequence methodologies also playing
an important role (Sutskever et al., 2014; Devlin et al., 2019).
The recent emergence of large language models (LLMs) has
revolutionized the field, marking a paradigm shift in natural
language processing (NLP). Capitalizing on their sophisti-
cated language comprehension, reasoning capabilities, and
generative potential, LLMs have demonstrated remarkable
success across diverse NLP applications, with text-to-SQL
conversion being a particularly promising area of implementa-
tion. In recent years, various approaches collectively referred
to as LLM-based methods have continuously made break-
throughs in the well-known large-scale cross-domain text-to-
SQL benchmarks Spider (Yu et al., 2018c) and Bird (Li et al.,
2023). These methods can be broadly categorized into two
technical paths. The first approach involves utilizing closed-
source LLMs to generate high-quality SQL predictions by
employing advanced prompt engineering techniques. The sec-
ond approach entails implementing supervised fine-tuning on
open-source LLMs, thereby empowering localized models to
assimilate specialized domain knowledge. Furthermore, multi-
agent approaches (Wang et al., 2025) that integrate multiple
LLMs have been explored for further improvements. However,
advanced models such as GPT-4 present significant challenges
in cost efficiency, data privacy, and execution time, as refin-
ing output quality (Li et al., 2024) often requires multiple
LLM calls, significantly increasing processing time. Finally,
both technical approaches inevitably face the challenge of
user verification. Current research methods cannot entirely
avoid erroneous predictions, and issues such as ambiguous
queries, varying user expectations for results, and hallucina-
tions (Qu et al., 2024) from LLMs remain challenges. When
an executable yet semantically flawed SQL query is produced,
non-technical users may lack the expertise to identify such
errors. Overlooking these mistakes can lead to misguided de-
cisions based on incorrect data, ultimately causing significant
business consequences.

Furthermore, looking back at the development of text-to-
SQL technology, high-quality datasets have also played a sig-
nificant role in boosting its progress. For example, large-scale,
cross-domain datasets such as Spider and its subsequent ver-
sions, Spider-Syn (Gan et al., 2021a), Spider-DK (Gan et al.,
2021b), Spider-Realistic (Deng et al., 2021), require text-to-
SQL systems to generalize on previously unseen databases
(Zhong et al., 2020). Meanwhile, datasets such as Bird and Spi-
der2V (Cao et al., 2024a) target more sophisticated database
structures and complex query scenarios, significantly enhanc-
ing their relevance to real-world industrial implementations.
Nevertheless, these datasets still fall short of fully encom-
passing the diverse and multifaceted requirements of practical



applications. Firstly, it is widely acknowledged that enterprise
databases are often characterized by highly complex schemata,
frequently containing hundreds of tables and thousands of
fields (Floratou et al., 2024; Cao et al., 2024a; Lian et al.,
2024). In actual enterprise environments, access to database
information is strictly controlled, with users in different de-
partments granted varying levels of access. This segmenta-
tion creates significant challenges for text-to-SQL systems,
which must account for access permissions and operate on pre-
filtered sub-schemata. Secondly, employees in commercial
companies typically need to analyze numerical metrics such
as sales growth, logistics performance, or market share pro-
portions. However, existing datasets such as Spider and Bird
lack training examples that reflect such real-world commercial
analytics queries. This absence of domain-specific examples
significantly impacts LLM-based methods that rely on in-
context learning (ICL), limiting their ability to generalize to
practical use cases. Thirdly, standard SQL, commonly used in
academic research, is not suitable for commercial applications.
Enterprises employ a variety of database management systems,
each with distinct SQL dialects (MySQL, PostgreSQL, Trino,
and others). Seamless translation between these dialects is
often infeasible, which directly reduces the volume of training
data available for enterprise-grade text-to-SQL systems.

In response to the aforementioned issues and challenges,
we introduce a keyword representation as an intermediate lan-
guage for the text-to-SQL task, which can succinctly capture
the user’s query intent and easily be checked by users with-
out SQL expertise. Through continuous communication with
commercial companies to understand specific needs and ex-
tensive testing, we have developed a stable and controllable
keyword-to-SQL mapping rule. This approach can handle
the majority of general query tasks while also allowing for
the customization of query shortcuts based on enterprise re-
quirements. Meanwhile, in this study, we assume that users
can access pre-processed sub-tables, which are customized
according to their permissions. Enterprises commonly use
wide tables to consolidate data from multiple tables, provid-
ing access to sub-tables based on user-specific permissions.
Schema-linking (Pourreza and Rafiei, 2023; Cao et al., 2024b)
and business intelligence tools can now be used to obtain rele-
vant sub-schema for specific queries. Moreover, to tackle the
lack of training data for commercial analytics, we construct a
dataset of more than 1,200 question-to-keyword pairs derived
from real-world databases. These pairs serve as exemplars
for LLMs, providing domain-specific references that facilitate
effective contextual learning. Finally, recognizing the impor-
tance of SQL dialects in enterprise-grade applications, we
select Trino SQL as our target language. High-performance
database management systems such as Trino are critical for
meeting the demands of commercial use cases. By aligning
our approach with practical enterprise requirements, we aim
to bridge the gap between academic research and real-world
applications. Our main contributions are as follows:

* User-oriented Text-to-SQL system based on keyword
representation: We develop a user-friendly text-to-
SQL system centered on keyword representation, which
has been refined through extensive real-world feedback
and iterative improvements. Our intermediate language
enables users to independently correct the system’s pre-
dictions.

Extensive dataset annotation for training: Utilizing
datasets such as Spider, CSpider (Min et al., 2019), and
Bird, we manually annotate over 16,000 question-to-

keyword pairs for the English dataset and clean 9,028
data pairs for the Chinese corpus. Additionally, we
generate a set of 1,276 newly annotated examples with
detailed query types classifications. These resources
enable the fine-tuning or training of models capable of
generating keyword-based statements, facilitating their
use in diverse applications.

¢ SOTA-level execution accuracy through cost-
effective methods: Through comprehensive experi-
ments on commercial analytics-related test datasets and
real-world databases, we achieve execution accuracy
comparable to state-of-the-art methods while employ-
ing more cost-efficient approaches.

2 Related Work

Figure 1 provides a brief overview of the development tra-
jectory of text-to-SQL technology. Rule-based approaches
have a long history in the field of database query parsing,
with early work dating back to 1996. However, early hand-
designed templates were limited in their ability to handle in-
creasingly complex SQL queries. At the same time, enterprise
users often have highly specific and domain-targeted query
requirements. While basic query needs can typically be met,
achieving a higher degree of customization often makes the
system more suitable for specific roles or specialized tasks
within an organization. In our approach, we address these
challenges by categorizing query types into 17 distinct cate-
gories, offering fine-grained adaptability to diverse user needs.
This categorization ensures extensive coverage of SQL struc-
tures, enabling the system to accommodate a wide range of
query scenarios, including advanced and highly specific use
cases. By balancing foundational query capabilities with high
customizability, our approach is particularly well-suited for
enterprise applications where user roles and tasks demand
tailored solutions.

In the early stages of text-to-SQL research, neural text-
to-SQL models were widely adopted. These models, such
as RAT-SQL (Wang et al., 2020), SyntaxSQLNet (Yu et al.,
2018b), and IRNet (Guo et al., 2019), were based on an
encoder-decoder architecture (Sutskever et al., 2014) and fo-
cused on tasks such as encoding database schema information
and user queries. The attention mechanisms (Vaswani et al.,
2017) mapped user intent to schema elements, facilitating
the alignment between queries and database schema. Early
schema-linking methods in these neural models primarily iden-
tified items explicitly mentioned in the user’s query. However,
constructing a complete SQL statement often requires incor-
porating tables and fields that are not directly referenced in
the query (Gan et al., 2021c). SQL statements are not a direct,
word-for-word translation of natural language queries. During
the era of neural text-to-SQL models, researchers introduced
intermediate representations (IRs) to ease the generation of
SQL statements (Guo et al., 2019; Wang et al., 2020; Yu et al.,
2018b; Gan et al., 2021c). These IRs simplified subclauses
such as JOIN ON, FROM, and GROUP BY, making them
easier for models to generate while still preserving the overall
SQL structure.

In modern approaches, schema-linking remains a crucial
step, particularly in LLM-based methods. The objective is for
LLMs to infer all the necessary fields and tables required to
answer a query, even when they are not explicitly mentioned.
Schema-linking can reduce input noise by filtering irrelevant
schema elements (Talaei et al., 2024), significantly shortening
the tokenized input length and enabling LLMs to focus on
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Figure 1: A brief description of the development trajectory of text-to-SQL technology, the introduction of Spider,
and the rise of LLMs as a game changer, which have propelled text-to-SQL technology a significant step closer to

enterprise-level applications.

information directly relevant to the query. However, recent
research (Cao et al., 2024b) has shown that schema-linking can
introduce errors if critical information is mistakenly excluded
during the process. To address this challenge, we assume that
reasoning occurs within pre-processed sub-tables, which limits
the input schema length provided to the LLMs. However,
LLMs still face difficulties in selecting precise field names
from these sub-tables and extracting specific contextual values
such as strings, dates, or other attributes from user queries or
supplementary descriptions. In this context, schema-linking
facilitates alignment between query elements and database
components, thereby enhancing the LLMSs’ ability to generate
accurate SQL statements.

In the era of LLM-based methods, further progress has
been made toward generating IRs. For example, Eyal et al.
(2023) and Wolfson et al. (2020) reformulated IRs into textual
descriptions. These methods break down the execution steps
of SQL queries into natural language descriptions, providing
a detailed, step-by-step explanation of the SQL execution pro-
cess. However, these representations primarily focus on SQL
execution details and do not take into account the usability or
accessibility needs of non-technical users. To address these
limitations, our keyword representation abstracts the query in-
tent from the original question and represents it using concise
and intuitive keyword combinations. This representation is
specifically designed to involve only simple and user-friendly
components, such as field selection, numerical filtering, and
time filtering, which makes it easier for ordinary users to ac-
cess query-to-SQL processes and still provides the necessary
level of abstraction for LLM inference. DIN-SQL, a repre-
sentative of classical prompt-based methods, addresses the
text-to-SQL task by breaking it into sub-tasks and designing
specific prompting strategies for each sub-task. Although ef-
fective in some cases, this approach faces several challenges,
including excessively long prompts, slow execution speeds,
and high API call costs.

Furthermore, the linearized execution process inherent in
these methods may lead to the accumulation of errors, which
can ultimately mislead the generation of the final SQL state-
ment. To mitigate these challenges, LLM-based methods
often include a self-correction module. This module lever-
ages the knowledge embedded in advanced LLM pre-training
and contextual information from the text-to-SQL task to cor-
rect erroneous SQL predictions. Methods such as CodeS (Li
et al., 2024) and RSL-SQL (Cao et al., 2024b) further enhance
this approach by executing the generated SQL statements and
providing the execution results as feedback to the LLMs, en-
abling iterative refinement of predictions. However, even with
an extended workflow, current methods cannot completely

eliminate prediction errors. Errors often arise when LLMs
encounter unseen user queries. Although humans can easily re-
solve such issues through analogy, LLMs may fail to recognize
the similarity between the new query and previously learned
examples. Additionally, some queries may have multiple valid
solutions, making it difficult for LLMs to identify the optimal
response. For human users, however, making small adjust-
ments to an incorrect prediction is often sufficient to produce
a usable SQL statement. Our proposed keyword representa-
tion addresses these challenges by emphasizing usability and
simplicity. Extensive user experiments have demonstrated
the approach’s user-friendly nature, showing that users can
quickly master the syntax rules of the keyword language with
just a few template examples. This enables non-expert users
to efficiently interpret and correct prediction errors, making
the text-to-SQL process more accessible and intuitive.

3 Datasets

This study constructs three core datasets to facilitate LLMs
in learning keyword representation. The data collection and
annotation processes are conducted by a team of six data sci-
ence graduate students under the supervision of five database
experts.

3.1 Model Fine-tuning Dataset

Keyword Representation is the core of our research methodol-
ogy. To enable LLM:s to learn the syntactic rules of keyword
representation, we fine-tune the model using a large number
of question-keyword pairs. The text-to-SQL English datasets
from Spider and Bird serve as the initial corpus. Under the
guidance of our database experts and in accordance with the
translation rules for keyword syntax, we translate a signifi-
cant number of question-keyword pairs, employing keyword
query statements to perform search tasks. For the Cspider
dataset (Min et al., 2019), we translate table names and field
names and annotate them with corresponding keyword state-
ments in the Chinese context. Upon completion of the an-
notation, we ensure the quality of the annotations through
cross-checking, where different annotators’ translations are
verified for consistency and accuracy.

In addition, we are focused on addressing the query needs
that are commonly encountered in business analytics, particu-
larly those related to growth trend analysis, percentage calcula-
tions, and comparative analysis. However, current benchmark
datasets widely used in the field do not specifically cover such
types of queries. Using Spider and Bird as the foundational
keyword training corpora, we expand the dataset by generating
new types of question-keyword pairs with LLMs and artificial
seed data. This process results in 9,023 Chinese samples and



16,630 English samples, which are used to fine-tune models
such as GPT and Qwen to learn the syntactic rules of keyword
representation.

3.2 Dataset For In-Context Learning

In-Context Learning (ICL) is the core method for all LLM-
based text-to-SQL tasks, and high-quality exemplars are cru-
cial for enabling LLMs to perform ICL (Gao et al., 2023).
The first requirement is comprehensive query coverage, which
should include both common query questions and domain-
specific ones, such as those related to warehouse logistics,
insurance data, and other specialized fields. The second re-
quirement is the need for a systematic method to describe the
dataset. We have identified 17 query types to describe the
action instructions required for each keyword statement. By
labeling the query types, we can create a more detailed exam-
ple database, which also allows for more accurate example
selection. Based on real-world databases and user queries, we
manually annotate and clean 1,276 natural language questions,
along with their corresponding keywords and query type la-
bels. The number of example samples included under each
query type is shown in Figure 2, of which a single question
may involve multiple query types (please refer to Appendix E
for the query type prediction task).
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Figure 2: Exemplars for In-Context Learning.

3.3 Test Dataset

The existing Spider and Bird datasets do not fully meet the
actual business requirements. To evaluate model performance,
we design a test dataset that extends beyond the training data,
presented as triples: natural language question-query types-
keyword. A total of 200 question pairs are selected as the
test set. The query type labels also facilitate fine-grained
correction and analysis during error analysis of the prediction
results.

The number of test question samples under each query type
is shown in Figure 3. To better align with real-world business
analysis scenarios, the test set places greater emphasis on time-
related query types (such as time filtering, date comparison,
growth rate and continuous instructions). Approximately half
of the questions focus on numerical calculations (such as
averages, summation, counting, and other related operations).
The design of these questions is intended to comprehensively
assess the model’s ability to analyze real-world business data.
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Figure 3: Test set for text-to-keyword task.

4 Methodology

We propose the text-to-keyword task, in which keyword rep-
resentation serves as an intermediate language and acts as a
central reference point for user interaction with the text-to-
SQL system, the schematic diagram of the structure is shown
in Figure 4. This enables non-technical users to independently
assess whether the keyword query expression accurately re-
flects the intended query in the current iteration. In the text-
to-keyword task, the given dataset consists of pairs of ¢; and
k,

F ={(gi, ki, Ds)}, (D)

F:{(Qi,k‘i,Dz‘,Qti)}, 2

where g; refers to the natural language question and k; refers
to the corresponding keyword statement on the database D;.
Besides, g;, refers to the query types for which we manually
annotate the question and its corresponding keyword statement.
Similar to the text-to-SQL task, this type of generative task,
utilizing the context learning paradigm (Dong et al., 2024),
can be formulated as:

max P (k™| o(q,D,5")), A3)

where S” C F represents the most relevant sample examples
selected from the compiled example database 7. And o' (-, -, -)
denotes the process of interpretation carried out by the LLM
M based on the input data. The objective of in-context learn-
ing for text-to-keyword task is to maximize the probability
that the LLM generates the correct target keyword statement
k™ given the user query ¢ and the associated database informa-
tion D. This task involves two key stages: firstly, analyzing
the user’s query intent, which aligns with the semantic analy-
sis step in text-to-SQL tasks. Secondly, describing the user’s
query intent using a keyword-based language, which leverages
the LLM’s generative capabilities. To achieve this, keyword
grammar rules R must be embedded into the LLM acting as
the translator. Both prompt engineering and supervised fine-
tuning are feasible approaches to teach the LLM unseen rules
during pre-training and enable it to generate translations based
on these rules. We then evaluate the model’s predictions by
adopting the evaluation method based on intent-based metrics
(Floratou et al., 2024), a relaxed evaluation standard which
takes into account three factors: the original query intent, the
generated keyword statement, and the execution results. The
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from the previous round.

final keyword utterance reflects the LLM’s understanding of
the user’s query intent, and model performance is assessed
based on this execution accuracy.

Our approach consists of four modules. We illustrate
Figure 4 (a) through the fine-tuning method in keyword syntax
rules embedding. For each new user query to be addressed,
we need to invoke the LLM to initialize auxiliary information
(Figure 4 (b)), schema-linking information and the predicted
query types, from which we can retrieve examples information.
This is then input into the keyword generator LLM to obtain
the initial predicted keyword (Figure 4 (c)). Finally, we test
closed-source LLMs to correct keyword predictions (Figure 4

(d)).

4.1 Keyword Syntax Rules Embedding

After pre-training, LLMs demonstrate rich prior knowledge
and possess strong natural language understanding and rea-
soning capabilities. Due to the SQL-related content in their
pre-training data, LLMs can typically generate approximate
SQL translations for text-to-SQL tasks without the need for
explicit rule specifications. However, they have never encoun-
tered a text-to-keyword translation task based on specific rules.
To obtain keyword expressions in the desired format, we must
consider embedding keyword syntax rules into the model.

1) Prompt-based methods If all rules are input through
prompts, the challenge lies in how to explain the rules to
the LLMs as concisely as possible. In addition to explana-
tory instruction statements, we have categorized the query
types into 17 categories, with the total number of allowed
keyword instructions across all types exceeding 100. If we
design examples for every possible scenario and include many
of these in the prompt, the input text for a single question
becomes excessively lengthy, thus reducing the proportion

of core information—namely, the current question and its
database information within the text. Gao et al. (2023) and
Chang and Fosler-Lussier (2023) have shown that overlong
prompts may actually reduce performance. This is because
irrelevant information in the input can distract or confuse the
LLMs. We also verify this in our subsequent experiments.
Overlong prompts increase the costs in terms of API calls and
time required to answer each question.

2) Fine-tuning methods The LLM-based fine-tuning methods
also show good results in the text-to-keyword task. Open-
source LLMs, such as Qwen 2.5, Llama 3.1, and Chat-GLM4,
can be fine-tuned with the question-schema-keyword triplet
data to adapt to the keyword syntax rules. During the fine-
tuning phase, LLMs can acquire rich corpus knowledge, in-
cluding a comprehensive range of keyword phrases, query
types, and so on, to help the model learn the proper usage of
keyword components. High-quality question-keyword pairs
are essential for supervised fine-tuning, as LLMs typically
perform poorly when tasked with answering unseen questions
from the fine-tuning corpus.

4.2 Information Augmentation

Existing research decomposes the text-to-SQL task into a se-
ries of interconnected sub-tasks, such as schema-linking, ques-
tion classification, and other components. These sub-tasks
help infer additional information, which ultimately aids in gen-
erating the final output SQL statement (Pourreza and Rafiei,
2023; Dong et al., 2023). Exemplar selection is crucial for ICL
in LLMs. In a prompt-based approach, leveraging exemplars
to embed task rules into LLMs may be the most effective strat-
egy. Numerous text-to-SQL studies (Gao et al., 2023; Pourreza
and Rafiei, 2023; Dong et al., 2023) demonstrate excellent
performance with few-shot learning (Brown et al., 2020). To



address this, we define 17 distinct query types. Expressing
the query intent of a single problem ¢ may require multiple
keyword sub-statements of different query types. Each query
type maps to an SQL sub-statement or a highly integrated SQL
statement template (e.g., growth rate, proportion calculation).
We use the embedding model (Reimers and Gurevych, 2019)
to convert the sample data (¢;, ks, g¢;) into embedding vectors,
which are stored in a vector database as reliable question-query
types-keyword examples. Similarity measures are then used
to retrieve the most relevant example for the current query gq.
Previous work (Zhang et al., 2023; Gao et al., 2023) either
computes the semantic similarity of the questions, the simi-
larity of the target SQL queries, or considers both factors to
rank and filter the samples. Whether it is question-to-SQL
pairs or question-to-keyword pairs, in practical applications,
we observe that the word order and choice of phrasing in the
query can influence the results of semantic similarity-based
retrieval. Specifically, the same query intent may be expressed
in various textual formulations, which can lead to situations
where the stored example cannot be found for the same query
intent.

It is also observed that queries from different domains
typically exhibit low semantic similarity, primarily due to the
significant differences in tokens such as field names, values,
and time. However, their target statements are often quite simi-
lar in terms of implementation. This implies that cross-domain
query intents may have a similar target statement structure,
but retrieving them based solely on the query may not be ef-
fective. If we instead begin by retrieving examples based on
the target statement, we would need to predict an intermediate
target statement and perform a secondary prediction using
the LLM once the example is retrieved. Datasets like Spider
and Bird provide a vast collection of training samples that
can be used as an example database. However, selecting the
most relevant example from over 10,000 samples each time
consumes significant computational resources and results in
slow response times. Keyword statements intuitively describe
the set of operations corresponding to the query intent. This
structural similarity should also be considered when selecting
examples. However, calculating semantic similarity based
on the question or SQL query itself does not yield good re-
sults. We instead label the query intent using predefined query
types, and by comparing the similarity of query types, we can
identify structurally similar keyword statements, where the
sub-statements of the keywords can be equivalently viewed
as sub-queries of the SQL statement. By utilizing query type
labels g;, we can retrieve samples that are cross-domain but
structurally similar when performing text similarity-based re-
trieval.

4.3 Prediction Correction

1) LLM self-correction Existing works leverage more ad-
vanced LLMs (such as GPT-4, Claude3.5) to correct predicted
SQL statements. In DIN-SQL, the improvement in zero-shot
correction is limited, and the correction based on query result
feedback does not offer effective control over task response
time. In this study, we only utilize the strong reasoning capabil-
ities of online models, in conjunction with relevant examples
and keyword rules, to refine the predicted keyword statements.
In our ablation experiments, we examine the ability of mod-
els such as GPT-40, DeepSeek, and Qwen2.5-32B to correct
keyword statements.

2) User verification The correction of LLM-generated state-
ments is a critical aspect of the interaction between non-expert
users and the text-to-SQL system, as it directly affects the

system’s practicality. Ordinary users need to view the data
tables, including the current database schema, field names,
and previews of the table contents.

LLMs inevitably introduce errors when predicting SQL or
keywords, such as using incorrect field names, as illustrated
in Case 1 of Table 1, or missing some advanced instructions,
as illustrated in Case 2 of Table 1. The remaining keyword
prediction error types are detailed in Appendix A. Users only
need to verify whether the predicted keyword corresponds to
the initial query. Using the keyword statement as an anchor
point, users can independently perform corrections, thereby
completing the full pipeline of the text-to-SQL task.

5 Experiments and Results

5.1 Experiment Settings

1) Dataset The evaluation dataset we designed includes two
labels: golden query types and golden keywords, where the
golden query type indicates the action instructions required to
solve the query problem. We conduct extensive experiments
on a set of 200 test samples to assess the practicality of the
text-to-keyword task.

2) Evaluation metric The execution accuracy (EX) is used
as the evaluation metric for different models. Floratou et al.
(2024) introduced an evaluation metric with lenient accep-
tance thresholds, referred to as Intent-based Match, which is
based on execution match. The predicted query may contain
additional query items, or the original question may be am-
biguous. In cases where the execution results are valid, such
predictions are still considered acceptable. We also apply the
Intent-based Match evaluation metric based on the execution
results.

3) Models To ensure data privacy, many enterprises are re-
luctant to upload database schema information to the inter-
net. Deploying a text-to-SQL system locally using open-
source models is a viable solution. We evaluate the effec-
tiveness of keyword statement generation on multiple open-
source models, including the Qwen2.5 series (Yang et al.,
2024; Hui et al., 2024) (Qwen2.5-7B-Instruct, Qwen2.5-14B-
Instruct, Qwen2.5-Coder-14B-Instruct), llama3.1-8B (Dubey
et al., 2024), and glm-4-9B-chat-hf (GLM et al., 2024). We
fine-tune open-source LLMs using the 9,023 training sam-
ples mentioned earlier. Meanwhile, various closed-source
LLMs demonstrate more advanced fundamental capabilities.
By leveraging ICL to infer keyword syntax rules, we also
compare the performance of GPT-4o (Hurst et al., 2024), GPT-
40-mini, GPT-3.5-turbo, and DeepSeek (Liu et al., 2024) in
the text-to-keyword task.

4) Comparison methods We compare our approach with
two SOTA ICL methods on the test dataset, namely DAIL-
SQL (Gao et al., 2023) and DIN-SQL (Pourreza and Rafiei,
2023). These methods use the costly GPT-4 (Achiam et al.,
2023) model to generate SQL queries, and we directly evaluate
the acceptability of their execution results.

5.2 Main Results

Table 2 presents the acceptability of execution results for our
methods compared with two competitive methods on our cus-
tom enterprise requirement dataset. Overall, using Qwen2.5-
Coder-14B-Instruct and the method proposed in this paper,
we achieve better performance on the test dataset compared
to the existing SOTA benchmark methods, while our method
requires lower API costs.

To explain this, firstly, additional exemplars can help the
model effectively predict more complex query SQL statements.



Case 1 Car insurance Error type
AL R I (A8 T 10000 R B AR 2403
Tell me the years in which there were consecutive two years where the
total compensation amount exceeded 10000
CGold  EEWE  HIEZ4&EATFi00
2 consecutive years Total Compensation_Amount > 10000
CPred B> 10000 EER2E U FERF
2 consecutive years compensation > 10000 Field Alignment
Case 2 Car insurance Error type
BEGITREENIEKE
Caculate the growth in the number of policy number by year.
Gold RESRE R F KE
yearly growth amount of count Policy_Number
Pred BE RESHHE TRQBRK

yearly count Policy_Number

Instruction Missing

Table 1: The examples of predicted intermediate keywords that the user needs to correct.

Method LLMs Self-Correction EX

DIN-SQL GPT-4 GPT-4 80/200
DIN-SQL+NE GPT-4 GPT-4 113/200
DAIL-SQL+NE (Spider) GPT-4 GPT-4 85/200
DAIL-SQL+NE (Bird) GPT-4 GPT-4 135/200
Xiaohui_1 GPT-3.5 fine-tuning - 83/200
Xiaohui_2 GPT-3.5 fine-tuning - 98/200
Xiaohui_3 GPT-3.5 fine-tuning - 110/200
Xiaohui_4 GPT-40-mini-2024-07-18 fine-tuning — 151/200
Xiaohui_a Qwen2.5-Coder-14B-Instruct - 133/200
Xiaohui_b Qwen?2.5-Coder-14B-Instruct DeepSeek 160/200

Table 2: Execution Accuracy results of Xiaohui, DIN-SQL and DAIL-SQL. NE denotes the introduction of new
query-type examples (please refer to Appendix D for details).

The accuracy of DIN-SQL+NE is 16.5% higher than that of
DIN-SQL (here NE denotes the introduction of new query-
type examples). Therefore, it is important to select examples
that are most relevant to the current question, which could
involve the same SQL solving logic or problems from similar
domains. Defining the distance between the question and
the example is the key to example selection. Secondly, the
quality of fine-tuning corpora directly impacts the model’s
performance. As seen from Xiaohui_3 and Xiaohui_4, even
though the base model used in Xiaohui_3 (GPT-3.5) is superior
to the base model in Xiaohui_4 (GPT-40-mini), the model
fine-tuned with cleaned high-quality data (Xiaohui_4) shows
significant performance improvement, with a 20.5% increase
in accuracy on the test set. Thirdly, the introduction of the
self-correction mechanism significantly improved the model’s
execution accuracy. As shown in Xiaohui_a and Xiaohui_b,
although both use the same base model (Qwen2.5-Coder-14B-
Instruct) for fine-tuning, the performance of Xiaohui_b, which
incorporates the self-correction mechanism (with DeepSeek),
sees a significant improvement. The execution accuracy of
Xiaohui_b is 80%, a 13.5% increase compared to Xiaohui_a,
highlighting the crucial role of the self-correction mechanism
in improving the accuracy of model results.

The error analysis results of different methods are shown
in Figure 5. The results in Figure 5 (a) indicate that the fre-
quency of errors in query types such as filtering (ranking

filtering, time filtering, attribute column filtering), calculation
(growth rate, growth amount, request for proportion, numerical
calculation), and comparison (specific attribute comparison,
time/date comparison) is high across all models. Relatively
speaking, among the four models, DAIL-SQL performs better,
with fewer errors in filtering and calculation query types com-
pared to DIN-SQL. Furthermore, the DAIL-SQL+NE (Bird)
model has fewer errors in filtering and calculation query types
compared to DAIL-SQL+NE (Spider), largely because the
query types in the Bird dataset are more diverse than those
in the Spider dataset. Figure 5 (b) shows that compared to
Xiaohui_a, the model with the self-correction module (Xiao-
hui_b) significantly reduces the error rates in field alignment
and attribute column filtering query types. By combining both
charts, we observe that the models obtained using the method
in this paper perform differently from those obtained using
existing prompt engineering methods in terms of several query
error types. The models from our method perform signifi-
cantly better in calculation, comparison, and time filtering
query types compared to DIN-SQL and DAIL-SQL, while per-
forming slightly worse in ranking filtering and field alignment

query types.
5.3 Ablation Study

We conduct further ablation studies on prompt engineering
to evaluate the effectiveness of prompt information, includ-
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Figure 5: Error analysis of different methods on Text-to-Keyword task Dataset.

ing the selection of the text-to-keyword task base model, and
the assessment of the self-correction module (refer to Ap-
pendix B.2). Additionally, we provide experimental analysis
of keyword rules, schema-linking information, and exemplar
selection in the Appendix C.

We evaluate current open-source LLMs by assessing their
keyword prediction ability under a unified prompt template
after fine-tuning on our text-to-keyword corpora. In contrast,
online large models excel in language understanding and rea-
soning, indicating superior In-Context Learning capabilities.
The additional error analysis can be found in Appendix B.1.

Method LLMs EX

Xiaohui_a Qwen2.5-Coder-14B-Instruct 133/200
Qwen2.5-7B-Instruct 0/200
Qwen2.5-14B-Instruct 109/200
GLM-4-9b-chat-hf 67/200
Llama3.1-8B 89/200
DeepSeek 118/200
GPT-40 133/200
GPT-40-mini 124/200

Table 3: Execution accuracy results of open-source
LLMs and closed-source LLMs.

Notably, the results in Table 3 show that the output of
Qwen2.5-7B-Instruct fails to adhere closely to the format
specified in the prompt and differs significantly from the out-
put of other models. Our method, Xiaohui_a, achieves the
same accuracy as GPT-4o0 through a more cost-effective ap-

proach. More importantly, its predicted keywords are better
suited for user verification.

6 Conclusion

In this research, we achieve interaction between non-technical
users and the text-to-SQL system through keyword represen-
tation as an intermediate language. The results of our meth-
ods surpass the current SOTA methods by 12.5% on the test
dataset. We gain comparable execution accuracy with less cost,
while also allowing non-expert users to independently perform
sentence correction. The Xiaohui_4 version, which is based on
corpus cleaning, achieves a high execution accuracy of 75.5%
and still has room for further improvement. Keyword-based
sentences, as anchor points for human-machine interaction,
provide a practical path for the implementation of text-to-SQL
technology.

7 Limitations

Our research method currently has the potential for further op-
timization and improvement. For example, LLMs still struggle
with understanding query types like ranking filtering, and we
may need to address such issues by modifying keyword map-
ping rules, or by establishing more detailed rule explanations
and more suitable example selections. Additionally, open-
source LLMs currently face more difficulties when handling
Chinese tasks, particularly in field alignment requirements.
Many LLMs are unable to distinguish between Chinese syn-
onyms (e.g., “TTMI%L & and “IT £ &E"”, which can be
translated as "order quantity" or "order amount). The time
cost for running the entire process is not recorded. In example
selection, further optimization can be made on the available



examples in each query type library, such as deduplication,
supplementing the number of examples for each query type, or
establishing cluster centers. Additionally, we do not conduct
a quantitative analysis to assess the quality of our examples.
When retrieving based on semantic similarity, no specific opti-
mization is applied for Chinese texts. Regarding the datasets,
we only conduct experiments on the text to keyword system
in the Chinese environment. The experiments in the English
environment are our upcoming work.

8 Ethical Considerations

Our datasets will be progressively made available, and the
training data, example library, and test set used for fine-tuning
have undergone rigorous review to ensure they do not con-
tain politically sensitive or biased content. For data privacy
reasons, our database information has been anonymized. The
open-source and closed-source models employed in our study
are publicly accessible online. The llama-factory is an open
framework that we use for fine-tuning and inference, config-
ured based on the inherent characteristics of open-sourced
LLMs.
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A Label Definitions for Error Analysis

The predicted results are denoted as ’pred’, while the golden
keywords provide the reference for each sub-statement, and
the selected column name denotes as *XXX’. If the same
sub-statement appears in pred’ but with errors in details, it
is defined as a query type error. As shown in Table 4, using
incorrect column values (different from those actually stored
in the database) results in no matches, causing an error in the
attribute column filtering subquery, thus marked as an attribute
column filtering error.

query types definition

» #8K K (Growth Rate) : This typically refers to situa-
tions where the user explicitly requests the calculation of
growth changes,which may include year-on-year growth
rate, quarter-on-quarter growth rate, base-year growth
rate, or both year-on-year and quarter-on-quarter growth
rates. The user may also refer to specific time periods
such as year, month, day, week, or quarter, like monthly
growth rate, annual growth rate, quarterly growth rate,
or weekly growth rate. Specific examples include: ’year-
on-year growth rate of XXX’; *'month-on-month growth
rate of XXX count’; 'monthly growth rate of unique
count of XXX’.

K& (Growth Amount) : This usually refers to situa-
tions where the user explicitly requests the calculation
of growth changes, which may include calculating year-
on-year growth, quarter-on-quarter growth, base-year
growth, or both year-on-year and quarter-on-quarter
growth. It may be used together with *Time Grouping’
for calculations such as monthly growth, annual growth,
quarterly growth, weekly growth, or daily growth. Spe-
cific examples include: ’year-on-year growth amount
of XXX’; "'month-on-month growth amount of XXX
count’; *monthly growth amount of unique count of
XXX,

JEYEF % (Attribute Column Filtering) : The fields
involved in the user’s query are of string type, and the
values mentioned in the columns require string matching
operations for the query intent.

FUES %% (Numerical Column Filtering) : The user’s
query involves numerical fields and specific values, re-
quiring comparison or filtering operations based on the
numerical values for the query intent.

A5f[B]U73% (Time Filtering) : The user’s query involves
timestamp fields, and filtering or matching operations
are performed on time periods such as days, weeks,
months, quarters, or years.

HEZ 1% (Ranking Filter) : The query intent requires
directly ranking the values in a numerical column, and
includes three types of usage intentions: 1. Perform
grouping and summing operations (included in numer-
ical calculation directives) on the numerical column
before ranking and filtering, such as ’top 1 sum XXX’;
2. Rank the quantity after a ’count’ operation, such
as “top 1 count XXX’; 3. Directly rank the numerical
column without needing summing operations, such as
top n XXX

J& 14 51 4 25 (Attribute Column Grouping) : The
user’s question involves non-numerical columns or time
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columns. This directive is not used independently. Typi-
cally, the content of these attribute columns consists of
categorical variables that need to be grouped and listed
before performing other directive actions.

B 5 5> 41 (Numerical Column Grouping) : The
user’s question involves numerical fields. When the
intent to perform grouping statistics on a numerical
column is recognized, it triggers a numerical column
grouping operation directive.

i 8] 4328 (Time Grouping) : Grouping operations
based on dates for time-related fields involving times-
tamps. This is usually used in combination with other
operations.

FE 1 (Subquery) : Nested operations may be required.
A subquery is a set of specific filtering conditions. A
subquery may involve exclusion subqueries (EXCEPT),
numerical calculation and filtering—referred to as an
“aggregated subquery’ (for example: a numerical col-
umn greater than the average of that numerical col-
umn)—and selection conditions (subquery affiliation,
selecting categories that meet the subcriteria), among
other filtering conditions. The subquery must be exe-
cuted before proceeding with subsequent directive ac-
tions.

HEF (Sorting) : The user requests sorting of numerical
columns from high to low, or from large to small, or vice
versa. This requires executing commands for ascending
or descending order. Competitive ranking and dense
ranking can be considered as types of sorting methods,
though they differ from regular sorting. These two rank-
ings are not filtering actions, so they are classified as
sorting operations.

3K &5 I (Request for Proportion) : The user explicitly
requests an operation to calculate the proportion. This
is generally after a grouping instruction or for a specific
group that has been filtered, to calculate the proportion
or percentage of each group. It might follow instructions
like time filtering and time grouping, or attribute col-
umn grouping, and requires executing the 'request for
proportion’ operation. Specific example: ’proportion of
XXX’; combined with counting operations, “proportion
of count XXX".

ELREHXT L (Specific Attribute Comparison) : The
user has declared the intention to make a comparison
(vs) in the question, generally comparing two or more
“attribute column filter’ conditions, often used in con-
junction with other directive actions. Specific examples:
Attribute column filter]l vs Attribute column filter2; and
comparison with the entire set ’Attribute column filterl
vs all’.

i5f B8] H #5345} B (Date Comparison) : The user has ex-
pressed an intent to make a comparison (vs) and has
provided two or more specific times. This action is
typically used in conjunction with the *Time Filtering’
command. Specific usage: 1. Comparison between two
time periods: "Time filter] vs Time filter2’; 2. Compari-
son with the entire time range: *Time filter] vs all’.

1144 (Counting) : Calculating the number of samples
under the selected field, which may be: ’count XXX’,
unique count XXX’. Special considerations: 1. Does



Case 1 Error Type
REREAKF A B BRI T, BUMLIERRED 5= L D?
What is the count of males and females for individuals who’s obesity
,,,,,, level contains Class 2 Overweight? _ .
Gold il e O N G s ER 7 3 w3

count Gender Obesity_Level contains ‘Class 2 Overweight’by Gender

REREACT 8 20 L #E R ST AR R

count Gender Obesity_Level contains ‘class 2 overweight’by Gender

JE T %
Attribute Column Filtering

Table 4: The error example of "Attribute Column Filtering" type.

the current question require grouping before counting?
2. Does the current question require using distinct count-
ing (unique count XXX)?

» HUE1T5 (Numerical Calculation) : The user’s ques-
tion involves numerical fields, and the query intent in-
volves numerical calculation directives such as finding
the maximum, minimum, average, sum, total, standard
deviation and variance. When grouping statistics are
involved (whether it’s by time, attribute column, or nu-
merical column), it may trigger a summing (aggrega-
tion) numerical calculation operation. The specific issue
should be analyzed on a case-by-case basis.

FELSEFE4 (Continuous Directive) : The user’s question
involves timestamp fields, specifically for filtering over
a continuous period such as X consecutive days, X con-
secutive weeks, X consecutive months, X consecutive
quarters, X consecutive years. This requires the use of
the continuous directive.

non—query types definition

o FEINFT (Field alignment) : The field names used in
the pred do not correspond to those found in the schema
based on the question, and fields that do not exist in the
schema used.

HUTES 1R (Execution error) : The pred is an irrelevant
translation of the original question, or the LLM did not
perform keyword translation and simply restated the
content of the question. Alternatively, the pred does not
follow the syntax of the keywords and is not recognized
by the system during execution.

» 84714 (Instruction redundancy) : The pred includes
extra filtering targets that are not present in the golden
statement, which causes the execution result to devi-
ate from the original query intent, and is marked as
instruction redundancy.

84 (Instruction missing) : The pred lacks neces-
sary filtering instructions that are present in the golden
statement.

B Supplementary Ablation Experiments

We investigate the error analysis of selecting the optimal local
LLMs and examine the role of self-correction in enhancing
prediction accuracy.

B.1 Error analysis of Selecting the Optimal Local LLMs

As shown by Figure 6, the error types in the keyword pre-
dictions of these LLMs, "Ranking Filtering" is difficult for
both local and online models. For example, when a retail
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company needs to find the top three regions by sales amount,
it must first calculate the total sales amount for each region
and then apply ranking filtering. It is not simply about fil-
tering the top three sales amounts (without aggregation) and
then outputting the corresponding regions. Except for a few
errors in the "top n XXX", most ranking filtering requires
combining other instructions, such as "top n sum XXX" or
"top n count XXX". Except for Xiaohui_a, the performance
of the other local LLMs is inferior to that of the online models.
Even for the same Qwen2.5-14b model, different versions
have varying abilities to learn keyword syntax. Qwen2.5-14b-
Instruct performs worse than Qwen2.5-Coder-14b-Instruct on
the text-to-keyword task.

B.2 Self-correction

Self-correction is a crucial component of prompt-based re-
search, such as DAIL-SQL (Gao et al., 2023) and DIN-
SQL (Pourreza and Rafiei, 2023), significantly enhancing
execution accuracy. We also investigate the ability of LLMs
to iteratively refine keyword predictions. By adjusting the
prompts, we enable the LLMs to incorporate rules, examples,
and prior keyword predictions for improved accuracy. The
intermediate keyword prediction is provided by Xiaohui_a.

Method  LLMs ovedicted EX

Xiaohui_b DeepSeek Xiaohui_a keyword 160/200
GPT-40 Xiaohui_a keyword 150/200
GPT-40 Golden keyword 166/200
GPT-4o Golden keyword + 143/200

schema-linking

Table 5: The ability of open-source LLMs to correct
keyword predictions.

DeepSeek outperforms GPT-40 in refining local keyword
predictions, with an accuracy improvement of 13% compared
to Xiaohui_a, possibly because its Chinese-language corpus
is of higher quality, leading to better performance in Chinese
keyword translation tasks. Additionally, we examine the abil-
ity of online large models to verify golden-standard keywords.
Correcting the golden keywords generates more erroneous
statements, with an accuracy of 166/200, which marks the
performance upper limit of our current correction method.
The additional introduction of schema-linking information,
however, makes GPT-40’s correction results worse. Cao et al.
(2024b) have pointed out that the downside of schema-linking
is the introduction of more noise, leading to the generation
of more redundant predicted keywords. From the Figure 7,
this is indeed the case. When GPT-40 corrects the golden
keyword without using schema-linking information, it does
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Figure 6: Error analysis for selecting the optimal local LLMs, and comparing to closed-source LLMs

not even make field alignment errors, and there are few types
of instruction redundancy, instruction missing, or execution
errors.

C Supplementary Experiments Conducted for
Information Augmentation

Furthermore, we study the benefits of the information augmen-
tation module presented in Figure 4 for the text-to-keyword
task, and conduct ablation experiments on Rules, schema-
linking information, and Exemplars selection.

C.1 Rules

First, we study the impact of rule explanations on the open-
source model Qwen2.5-Coder-14b-instruct and compare it
with the DeepSeek model that only uses context learning. We
set up experiments with only text definitions (only-definition),
currently allowed instructions (allowance), and fixed examples
for the current query type (query type definition-example-CoT
tuple). The results are shown in Table 6. Xiaohui_a is our
fine-tuned Qwen2.5 model. As can be seen, with deeper rule
explanations, the performance of the LLM improved further.
The local 14B model is fine-tuned with keyword corpora, but
there is still a gap compared to the online large models in
terms of context learning capabilities.

C.2 Schema-linking Information

Second, we study the impact of schema-linking information
on the text-to-keyword task. In this study, we select rule in-
formation by removing the fixed examples from each query
type and only retaining the basic definitions and allowed in-
structions. The prediction of query types and schema-linking
information adds steps to the entire text-to-keyword system,
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which increases costs, particularly in terms of time. We under-
stand that enterprises also have limitations on the runtime of
prediction systems. The number of interactions with the LLM
is positively correlated with the system’s final performance,
but it must be balanced against runtime and other costs.

Regarding the direction of information acquisition in Ta-
ble 7, "forward’ indicates that the schema-linking information
is inferred from exemplars, the current question and schema
and rules to determine the required field names for the cur-
rent question. Since the keyword phrases in the exemplars
have already selected the necessary fields for their respective
questions, we expect these exemplars to assist in inferring
the current schema-linking information. In contrast, ‘reverse’
means that this information is derived by backtracking from
the golden keyword annotations. The online model DeepSeek
further supplements the inference chain (Chain of Thought,
CoT) for schema linking.

According to Table 7, the DeepSeek model, lacking guid-
ance on specific query types, fails to generate keyword phrases
when reasoning with forward information, with most outputs
being SQL statements. Similarly, DeepSeek performs poorly
when using reverse information inference. In contrast, when
using a fine-tuned Qwen2.5 model for prediction, providing
only the selected columns yielded inferior results compared
to the other three configurations. However, when using a
combination of CoT text and the selected columns as schema-
linking information in the forward setting, the performance
was comparable to that obtained with reverse information.
This result aligns with the accuracy of our ultimately selected
(Rules-exemplars) prompt template. Nonetheless, the current
method tends to produce more errors in field alignment, which
makes corrections more challenging. In comparison, our final
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Figure 7: Error analysis of the self-correction results performed by closed-source LLMs.

Rules content LLMs EX
only-definition Xiaohui_a 95/200
definition+allowance Xiaohui_a 103/200
definition+allowance+fixed example Xiaohui_a 107/200
definition+allowance+fixed example DeepSeek 118/200
Table 6: Ablation study on the selection of rules content.

Schema-linking information LLMs Information acquisition EX
CoT+selected columns DeepSeek forward 0/200
CoT+selected columns Xiaohui_a forword 133/200

selected columns Xiaohui_a forword 117/200
CoT+selected columns DeepSeek reverse 1/200
CoT+selected columns Xiaohui_a reverse 131/200

selected columns Xiaohui_a reverse 131/200

Table 7: Ablation study on the selection of schema-linking information.

method, even when predictions are incorrect, is easier for users

to correct and is closer to meeting an acceptable threshold.

Moreover, the exemplars also serve to guide the output format
of LLMs.

C.3 Exemplars Selection

Third, we examine the impact of exemplar selection on the
text-to-keyword task. Our investigation is divided into two
main parts. The first part involves retrieving exemplars from
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the complete set based on similarity, which is further split into
two aspects: one based on the question and the other on the
query type. The second part entails building a vector database
of exemplars for each query type and conducting retrieval by
query type to study the effect of the number of exemplars on
the performance of LLMs. Here, the number of exemplars
(denoted as N) is constrained tobe N < m, m = 3,6, 9.

We compare the performance of Xiaohui_a and DeepSeek,
representing local and online LLMs, respectively. As shown



in Table 8, exemplars retrieved from the entire set (with all
cases set to 9 exemplars) are less effective than those ob-
tained through query type classification, and even less effec-
tive than exemplars retrieved from a query type-specific vector
database. The DeepSeek model achieves its highest accuracy
with N < 6, whereas Xiaohui_a performs better when N < 9.
This disparity is related to the quality of exemplar selection,
an aspect that is insufficiently evaluated in our study. Ad-
ditionally, we find that after converting Chinese tokens into
embedding vectors, retrieval based on text semantic similar-
ity does not always select the most relevant exemplars. As
illustrated in Table 9, Chinese embedding models still require
continuous improvement.

C.4 Full Information Prediction

Finally, we evaluate the model’s ability to predict using
all available information—including rules (definition + al-
lowance), exemplars (9-shot examples utilizing categorized
databases by query type), and schema-linking information
(reasoning chain-of-thought and selected columns), as shown
in Table 10, and conduct an error analysis, as shown in Figure
8.

The results in Figure 8 show that ranking-based filtering
and field alignment are error types where all three methods
perform poorly. Our method produces fewer execution errors,
whereas both DeepSeek and GPT-4o tend to predict keywords
in the format of table_name.column_name, which leads to
execution errors on keywords. The schema-linking informa-
tion is originally intended to provide the LLMs with more
detailed analytical insights, but its output do not conform to
the format specified in the examples. It is likely that GPT-40’s
superior contextual understanding enabled it to achieve the
best prediction results with longer, richer prompts.

However, in our practical application, the combination of
Rules and exemplars already yields an accuracy of 133/200,
and the predicted keywords are easy for users to correct with
only minimal modifications. In our approach, the schema-
linking task represents additional time and overhead, but it
does not lead to a significant improvement in the overall per-
formance of the system.

D Explanation of Additional New Exemplars
(NE)

The research results based on DAIL-SQL indicate that GPT-
4 level LLMs demonstrate exceptional learning capabilities
when learning Question-SQL examples. However, since the
examples in Din-SQL are written based on the Spider dataset,
they fail to cover certain question types present in this study’s
dataset, such as comparison-type questions, growth rate calcu-
lations, continuous time analysis, and proportion calculations.
To address this limitation, we design and add examples specif-
ically targeting these question types, ensuring they follow the
standardized format of Din-SQL. Additionally, we provide
DAIL-SQL with new optional examples to further enhance
the diversity and applicability of the dataset. We refer to these
newly added examples as additional new examples, denoted
as NE.

D.1 New Examples

Q: "Compare the average sales amounts for the years 2017
and 2018."

Schema_links: [product_usage_data.sales_amount, prod-
uct_usage_data.date]

SQL:SELECT AVG(CASE WHEN strftime(’%Y’, date) =
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’2017° THEN sales_amount END) AS average_sales_2017,
AVG(CASE WHEN strftime(’%Y’, date) = *2018" THEN
sales_amount END) AS average_sales_2018 FROM
product_usage_data.

Q: "Find the top 3 products by sales amount in "huabei’ and
“huadong’ regions"

Schema_links: [SalesData.region, SalesData.sales_amount,
SalesData.product_name, huabei, huadong]

SQL: with AggregatedSales as (select region, product_name,
sum(sales_amount) as total_sales from SalesData where re-
gion in (Chuabei’, huadong’) group by region, product_name),
RankedSales as (select a.region, a.product_name, a.total_sales,
count(b.total_sales) as rank from AggregatedSales a left join
AggregatedSales b on a.region = b.region and a.total_sales
< b.total_sales group by a.region, a.product_name) select
region, product_name, total_sales as sales_amount from
RankedSales where rank < 3 order by region, total_sales desc.

Q: "Calculate the annual sales growth"

Schema_links: [SalesData.sales_quantity, SalesData.date]
SQL: with yearly_sales as (select cast(strftime(" %Y, date) as
integer) as year, sum(sales_quantity) as total_sales_quantity
from SalesData group by year) select tl.year as year,
tl.total_sales_quantity -  t2.total_sales_quantity  as
sales_growth from yearly_sales t1 left join yearly_sales t2 on
tl.year = t2.year + 1 order by tl.year.

Q: "Find product categories with consecutive 2 years of sales
amount exceeding 600000"

Schema_links: [SalesData.product_category,
Data.sales_amount, SalesData.date]

SQL: select product_category from (select product_category,
sum(sales_amount) as total_sales_amount, strftime(’%Y’,
date) as year from SalesData group by product_category, year
having total_sales_amount > 600000) as subquery group by
product_category having count(year) >= 3.

Sales-

Q: "Calculate the sales quantity proportion for each product
category"
Schema_links:
Data.sales_quantity]
SQL: select product category, sales_quantity * 1.0 /
total_sales_quantity as sales_proportion from (select prod-
uct_category, sum(sales_quantity) as sales_quantity, (select
sum(sales_quantity) from SalesData) as total_sales_quantity
from SalesData group by product_category) as subquery order
by product_category.

[SalesData.product_category,  Sales-

D.2 Classification Prompts

Q: "Compare the average sales in 2017 and 2018"
schema_links: [ProductTrialData.SalesAmount, ProductTri-
alData.Date]

A: Let’s think step by step. The SQL query for the question
"Compare the average sales in 2017 and 2018" needs these
tables = [ProductTrialData], so we don’t need JOIN.

Plus, it doesn’t require nested queries with (INTERSECT,
UNION, EXCEPT, IN, NOT IN), and we need the answer
to the questions = [""]. So, we don’t need JOIN and don’t
need nested queries, then the SQL query can be classified as
"EASY".

Label: "EASY"

Q: "Find the top 3 products by sales amount in the "huabei’
and "huadong’ regions"



Exemplars selection LLM Retrieved from EX
questions DeepSeek complete collection of questions 126/200
questions Xiaohui_a complete collection of questions 119/200

query types DeepSeek complete collection of query types 130/200
query types Xiaohui_a complete collection of query types 121/200
3-shot DeepSeek categorized databases of query types 126/200
3-shot Xiaohui_a categorized databases of query types 119/200
6-shot DeepSeek categorized databases of query types 134/200
6-shot Xiaohui_a categorized databases of query types 131/200
9-shot DeepSeek categorized databases of query types 133/200
9-shot Xiaohui_a categorized databases of query types 133/200

Table 8: Ablation study on the selection of schema-linking information.

Golden query types
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2023 by month monthly growth rate of
unique count evaluation_version

In 2023, what is the monthly growth rate of the deduplication
count for the evaluation version?

Growth Rate, Time Filtering,
Time Grouping

Table 9: Example similarity ranking of the user questions, based on query type text retrieval.

LLMs EX
DeepSeek 136/200

GPT-40 142/200
Xiaohui_a 137/200

Table 10: Prediction results using all available informa-
tion.

schema_links: [ProductTrialData.Region, ProductTrial-
Data.SalesAmount, ProductTrialData.ProductName, huabeli,
huadong]

A: Let’s think step by step. The SQL query for the question
"Find the top 3 products by sales amount in the "huabei’ and
"huadong’ regions" needs these tables = [ProductTrialData],
so we don’t need JOIN.

Plus, it requires nested queries with (INTERSECT,
UNION, EXCEPT, IN, NOT IN) and window functions
(ROW_NUMBER), and we need the answer to the questions
= ["Find the top 3 products by sales in each region"]. So, we
don’t need JOIN and need nested queries, then the SQL query
can be classified as "NESTED".

Label: "NESTED"

Q: "Calculate the annual sales growth"

schema_links: [ProductTrialData.SalesQuantity, ProductTri-
alData.Date]

A: Let’s think step by step. The SQL query for the question
"Calculate the annual sales growth" needs these tables =
[ProductTrialData], so we don’t need multiple tables, but we
need a self JOIN.
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Plus, it requires nested queries with INTERSECT, UNION,
EXCEPT, IN, NOT IN), and we need the answer to the
questions = ["Calculate total sales for each year and then find
the growth between consecutive years"]. So, we need JOIN
and need nested queries, then the SQL query can be classified
as "NESTED".

Label: "NESTED"

Q: "Find the product categories that exceeded 600,000 in
sales for 2 consecutive years"

schema_links: [ProductTrialData.Category, ProductTrial-
Data.SalesAmount, ProductTrialData.Date]

A: Let’s think step by step. The SQL query for the question
"Find the product categories that exceeded 600,000 in sales for
2 consecutive years" needs these tables = [ProductTrialData],
so we don’t need JOIN.

Plus, it requires nested queries with (INTERSECT, UNION,
EXCEPT, IN, NOT IN), and we need the answer to the
questions = ["Find categories with sales exceeding 600,000
for at least two consecutive years"]. So, we don’t need JOIN
and need nested queries, then the SQL query can be classified
as "NESTED".

Label: "NESTED"

Q: "Calculate the sales proportion for each category"
schema_links: [ProductTrialData.Category, ProductTrial-
Data.SalesQuantity]

A: Let’s think step by step. The SQL query for the question
"Calculate the sales proportion for each category" needs these
tables = [ProductTrialData], so we don’t need JOIN.

Plus, it requires nested queries with INTERSECT, UNION,
EXCEPT, IN, NOT IN), and we need the answer to the ques-



Ranking Filter
Field Alignment 21
Instruction Missing
Instruction Redundancy
Attribute Column Filtering
Time Filtering “
Growth Rate
Subquery
Counting n
Growth Amount
Numerical Calculation
Sorting
Numerical Column Grouping
Attribute Column Grouping
Specific Attribute Comparison
Date Comparison
Time Grouping
Continuous Directive
Numerical Column Filtering

Request for Proportion

20

30

I DeepSeek
GPT-40
I Xiaohui_a

40 60 70

Count

50

Figure 8: Error analysis of using all available information.

tions = ["Calculate the total sales amount for all categories"].
So, we do not need JOIN and need nested queries, then the
SQL query can be classified as "NESTED".

Label: "NESTED"

E Query Types Prediction

Query types prediction marks the starting point of our text-to-
keyword task. It requires the LLMs to analyze which action
instructions are needed to resolve the current problem, serving
as a form of problem decomposition.

However, achieving high accuracy in query type predic-
tion is not our current priority, as the primary bottleneck in
our workflow remains the subsequent keyword generation
step. LLMs, especially smaller, locally deployed models,
do not learn or interpret examples as intuitively as expected.
Ideally, they should be able to grasp the usage of various sub-
statements from the examples (for instance, understanding
the contexts for instructions like repeated count and unique
count), but such nuances are difficult to capture solely through
question-to-keyword pairs. While examples can indeed help
LLMs learn the rules, their effective use still demands con-
siderable engineering effort, making the optimal utilization
of examples a matter of prompt engineering. Consequently,
in this study, we do not consider query types prediction to be
particularly critical.

On the other hand, by classifying queries according to
their types and building dedicated example databases, a single
question can belong to multiple repositories. For instance,
as shown in Table 9, if a question’s golden query type labels
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are A, B, and C, we can retrieve the corresponding example
from the A, B, and C databases, storing it as a question—query
types—keyword triple. Moreover, we can obtain the schema
for the example, which makes it easier for local LLMs to learn
from schema-enriched examples. Even if the predicted query
types for this question are A, F, and G, we can still retrieve it
from the A database.

We use the definition of query types along with fixed
examples corresponding to each type to illustrate the query
types prediction task. Each query type has up to four question-
query types examples. For token length considerations, a
small number of examples are supplemented with a schema.
The current question and schema are then input to predict
the query type for the given question. We test the query type
prediction task using GPT-40 and GPT-40-mini. Let
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where G; represents the set of ground truth query types for the
ith sample, and P; represents the set of predicted query types
for the ith sample. And n; represents the number of cases
where at least one query type in the predicted query types
matches the golden (ground truth) query types. no indicates
that the predicted query types do not exceed the scope of the
golden set, meaning no extra query types are present. ns
reflects cases where the predicted query types miss one or
more query types that appear in the golden set. n4 signifies
perfect predictions, there are neither missing nor extra query
types, meaning the prediction is entirely correct. We make
predictions for the query types of 200 samples in the test set.
Specific results are shown in Table 11.

LLMs ni n2 ns n4
GPT-40 191 115 86 80
GPT-40-mini 187 75 117 47

Table 11: Test results for query type prediction.

Table 11 depicts that GPT-40 correctly predicts 191 out
of the 200 samples, with 115 predictions showing no redun-
dant instructions, 86 without omissions, and 80 that perfectly
matched the golden labels. The effectiveness of LLMs predic-
tions for query type classification depends on various factors,
including the definition of query types, the number of exam-
ples, and whether the input schema is provided. Conducting
extensive experiments is essential to fully understand and op-
timize these influences. Using a locally deployed open-source
LLM for this specific prediction task is also a great implemen-
tation approach.

It is evident that, for the next step in examples selection,
improvements are needed in areas such as the text embedding
model, similarity calculation methods, and the organization
of the example library. However, what we ultimately need
is keyword prediction that is easy for users to correct. Fine-
tuning has allowed the LLM:s to initially learn keyword syntax
rules, and examples are used to guide and correct predictions
in later stages. Unlike traditional step-by-step SQL generation,
which can accumulate errors linearly, we start with a step that
does not require extremely high accuracy, achieving better
keyword prediction results.
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