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Abstract

We introduce the “Incremental Implicitly-Refined Classi-

fication (IIRC)” setup, an extension to the class incremental

learning setup where the incoming batches of classes have

two granularity levels. i.e., each sample could have a high-

level (coarse) label like “bear” and a low-level (fine) label

like “polar bear”. Only one label is provided at a time, and

the model has to figure out the other label if it has already

learned it. This setup is more aligned with real-life scenar-

ios, where a learner usually interacts with the same family

of entities multiple times, discovers more granularity about

them, while still trying not to forget previous knowledge.

Moreover, this setup enables evaluating models for some

important lifelong learning challenges that cannot be eas-

ily addressed under the existing setups. These challenges

can be motivated by the example ”if a model was trained

on the class bear in one task and on polar bear in another

task, will it forget the concept of bear, will it rightfully in-

fer that a polar bear is still a bear? and will it wrongfully

associate the label of polar bear to other breeds of bear?”.

We develop a standardized benchmark that enables evalu-

ating models on the IIRC setup. We evaluate several state-

of-the-art lifelong learning algorithms and highlight their

strengths and limitations. For example, distillation-based

methods perform relatively well but are prone to incorrectly

predicting too many labels per image. We hope that the

proposed setup, along with the benchmark, would provide a

meaningful problem setting to the practitioners.

1. Introduction
Deep learning algorithms have led to transformational

breakthroughs in computer vision [12, 17], natural lan-
guage processing [19, 50], speech processing [3, 5], rein-
forcement learning [36, 44], robotics [16, 1], recommender

1Work done while Mohamed Abdelsalam was at Mila and University
of Montreal

Figure 1. Humans incrementally accumulate knowledge over time.
They encounter new entities and discover new information about
existing entities. In this process, they associate new labels with
entities and refine or update their existing labels, while ensuring
the accumulated knowledge is coherent.

systems [11, 18], etc. On several tasks, deep learning
models have either matched or surpassed human perfor-
mance. However, such super-human performance is lim-
ited to some narrow and well-defined setups. Moreover,
humans can continually learn and accumulate knowledge
over their lifetime, while the current learning algorithms
are known to suffer from several challenges when training
over a sequence of tasks [33, 15, 8, 45]. These challenges
are broadly studied under the domain of Lifelong Learn-
ing [47], also called Incremental Learning [42], Continual
Learning [48], and Never Ending Learning [35]. In the
general lifelong learning setup, the model experiences new
knowledge, in terms of new tasks, from the same or differ-
ent domains. The model is expected to learn and solve new
tasks while retaining useful knowledge from previous tasks.

There are two popular paradigms in lifelong learn-
ing [49]: i) task incremental learning, where the model has
access to a task delimiter (say a task id), which distinguish
between tasks. Models for this setup are generally multi-
headed, where there exists a separate classification layer



Figure 2. IIRC setup showing how the model expands its knowledge and associates and re-associates labels over time. The top right
label shows the label model sees during training, and the bottom label (annotated as “Target”) is the one that model should predict during
evaluation. The right bottom panel for each task shows the set classes that model is evaluated on and the dashed line shows different tasks.

for each task. ii) class incremental learning, where the
model does not have access to a task delimiter, so it needs
to discriminate between all classes from all tasks at infer-
ence time. Therefore, models developed for this paradigm
are generally single-headed. The class incremental setup is
more closely aligned with the real-life scenarios and is more
challenging than the task incremental scenario.

Several useful benchmarks have been proposed for eval-
uating models in the lifelong learning setting [4, 25]. While
useful for measuring high-level aggregate quantities, these
benchmarks take a narrow and limited view on the broad
problem of lifelong learning. One common assumption that
many class incremental setups make is “information about
a given sample (say label) can not change across tasks”. For
example, an image of a bear is always labeled as “bear”, no
matter how much knowledge the model has acquired.

While this assumption appears to be “obviously correct”
in the context of the supervised learning paradigm (where
each sample generally has a fixed label), the assumption is
not always satisfied in real-life scenarios. We often inter-
act with the same entities multiple times and discover new
information about them. Instead of invalidating the previ-
ous knowledge or outright rejecting the new information,
we refine our previous knowledge using the new informa-
tion. Figure 1 illustrates an example where a child may rec-
ognize all bears as “bear” (and hence label them as “bear”).
However, while growing up, they may hear different kinds
of bear being called by different names, and so they update
their knowledge as: “Some bears are brown bears, some
bears are polar bears, and other bears are just bears. Brown
bears and polar bears are both still bears but they are dis-
tinct”. This does not mean that their previous knowledge
was wrong (or that previous label “bear” was “incorrect”),
but they have discovered new information about an entity
and have coherently updated their knowledge. This is the
general scheme of learning in humans.

A concrete instantiation of this learning problem is that
two similar or even identical input samples have two dif-
ferent labels across two different tasks. We would want the
model to learn the new label, associate it with the old label
without forgetting the old label. Evaluating lifelong learn-
ing models for these capabilities is generally outside the
scope of existing benchmarks. We propose the Incremen-

tal Implicitly-Refined Classification (IIRC) setup to fill this
gap. We adapt the publicly available CIFAR100 and Ima-
geNet datasets to create a benchmark for the IIRC setup and
evaluate several well-known algorithms on this benchmark.
Our goal is not to develop a new state-of-the-art model but
to surface the challenges posed by the IIRC setup.

The main contributions of our work are as follows:

1. We propose the Incremental Implicitly-Refined Clas-

sification (IIRC) setup, where the model starts training
with some coarse, high-level classes and observes new,
fine-grained classes as it trains over new tasks. During
the lifetime of the model, it may encounter a new sam-
ple or an old sample with a fine-grained label.

2. We provide a standardized benchmark to evaluate a
lifelong model in the IIRC setup. We adapt the com-
monly used ImageNet and CIFAR datasets, and pro-
vide a benchmark setup compatible with several major
deep learning frameworks (PyTorch and Tensorflow)1.

3. We evaluate well-known lifelong learning algorithms
on the benchmark and highlight their strengths and
limitations, while ensuring that the models are com-
pared in a fair and standardized setup.

1https://chandar-lab.github.io/IIRC/

https://chandar-lab.github.io/IIRC/


2. Incremental Implicitly-Refined Classifica-
tion (IIRC)

While class incremental learning is a challenging and
close-to-real-life formulation of the lifelong learning setup,
most existing benchmarks do not explore the full breadth
of the complexity. They tend to over-focus on catastrophic
forgetting (which is indeed an essential aspect) at the ex-
pense of several other unique challenges to the class in-
cremental learning. In this work, we highlight those chal-
lenges and propose the Incremental Implicitly-Refined Clas-

sification (IIRC) setting, an extension of the class incremen-
tal learning setting, that enables us to study these under-
explored challenges, along with the other well-known chal-
lenges like catastrophic forgetting. We provide an instanti-
ation of the setup, in the form of a benchmark, and evaluate
several well-known lifelong learning algorithms on it.

2.1. Under-explored challenges in class incremental
learning setting

In class incremental learning, the model encounters new
classes as it trains over new tasks. The nature of the class
distributions and the relationship between classes (across
tasks) can lead to several interesting challenges for the
learning model: If the model is trained on a high-level label
(say “bear”) in the initial task and then trained on a low-

level label, which is a refined category of the previous label
(say “polar bear”), what kind of associations will the model
learn and what associations will it forget? Will the model
generalize and label the images of polar bear as both “bear”
and “polar bear”? Will the model catastrophically forget
the concept of “bear”? Will the model infer the spurious
correlation: “all bears are polar bears”? What happens if
the model sees different labels (at different levels of gran-
ularity) for the same sample (across different tasks)? Does
the model remember the latest label or the oldest label or
does it remember all the labels? These challenges can not
be trivially overcome by removing restrictions on memory
or replay buffer capacity (as we show in Section 6).

2.2. Terminology
We describe the terminology used in the paper with the

help of an example. As shown in Figure 2, at the start, the
model trains on data corresponding to classes “bear”, “bus”
and “dog”. Training the model on data corresponding to
these three classes is the first task. After some time, a new
set of classes (“polar bear”, “lamp” and “whippet”) is en-
countered, forming the second task. Since “whippet” is a
type of “dog”, it is referred to as a subclass, while “dog”
is referred to as a superclass. The “dog-whippet” pair is
referred to as the superclass-subclass pair. Some classes do
not have a superclass (example “lamp”), we refer to these
classes as subclasses as well. When training the model on

an example of a “whippet”, we may provide only “whippet”
as the supervised learning label. This setup is referred to as
the incomplete information setup, where if a task sample
has two labels, only the label that belongs to the current task
is provided. Alternatively, we may provide both “whippet”
and “dog” as the supervised learning labels. This setup is
referred as the complete information setup, where if a task
sample has two labels, labels that belong to the current or
previous tasks are provided. The majority of our experi-
ments are performed in the incomplete information setup as
it is closer to the real life setup, requiring the model to recall
the previous knowledge when it encounters some new infor-
mation about a known entity. We want to emphasize that the
use of the word task in our setup refers to the arrival of a
new batch of classes for the model to train on in a single-
head setting, and so it is different from it’s use to indicate a
distinct classification head in task incremental learning.

As the model is usually trained in an incomplete infor-

mation setup, it needs access to a validation set to monitor
the progress in training that is also an incomplete informa-

tion set, otherwise there would be some sort of labels leak-
age. On the other hand, after training on a specific task, the
model has to be evaluated on a complete information set,
hence a complete information validation set is needed to be
used during the process of model development and tweak-
ing, so as to not overfit on the test set. We provide both in
the benchmark. We call the first one the in-task validation
set, while the latter one the post-task validation set.

2.3. Setup

We describe the high-level design of the IIRC setup (for
a visual illustration, see Figure 2). We have access to a se-
ries of N tasks denoted as T1, · · · , TN . Each task comprises
of three collections of datasets, for training, validation and
testing. Each sample can have one or two labels associated
with it. In the case of two labels, one label is a subclass and
the other label is a superclass. For any superclass-subclass
pair, the superclass is always introduced in an earlier task,
with the intuition that a high-level label should be relatively
easier to learn. Moreover, the number of samples for a su-
perclass is always more than the number of samples for a
subclass (it increases with the number of subclasses, up to
a limit). During training, we always follow the incomplete
information setup. During the first task, only a subset of su-
perclasses (and no sublcasses) are used to train the model.
The first task has more classes (and samples), as compared
to the other tasks and it can be seen as a kind of pretraining
task. The subsequent tasks have a mix of superclasses and
subclasses. During the training phase, the model is evalu-
ated on the in-task validation set (with incomplete informa-
tion), and during the evaluation phase, the model is eval-
uated on the post-task validation set and the test set (both
with complete information).



3. Related Work
Lifelong Learning is a broad, multi-disciplinary, and ex-

pansive research domain with several synonyms: Incremen-
tal Learning [42], Continual Learning [48], and Never End-
ing Learning [35]. One dimension for organizing the ex-
isting literature is whether the model has access to explicit
task delimiters or not, where the former case is referred to
as task incremental learning, and the latter case, which is
closely related to our setup IIRC, is referred to as class in-
cremental learning.

In terms of learning methods, there are three main ap-
proaches [23]: i) replay based, ii) regularization based, and
iii) parameter isolation methods. Parameter isolation meth-
ods tend to be computationally expensive and require ac-
cess to a task identifier, making them a good fit for the
task incremental setup. Prominent works that follow this
approach include Piggyback [29], PackNet [30], HAT [43],
TFM [32], DAN [40], PathNet [14]. The replay and regu-
larization based approaches can be used with both task and
class incremental setups, however, replay based approaches
usually perform better in the class incremental setup [31].
Among the regularization based approaches, LwF [24] uses
finetuning with distillation. LwM [13] improves LwF by
adding an attention loss. MAS [2], EWC [21], SI [52] and
RWalk [8] estimate the importance of network parameters,
and penalize changes to important ones. As for the re-
play based approaches, iCaRL [38] is considered an impor-
tant baseline in the field. iCaRL selects exemplars for the
replay buffer using herding strategy, and alleviates catas-
trophic forgetting by using distillation loss during training,
and using a nearest-mean-of-exemplars classifier during in-
ference. EEIL [7] modifies iCaRL by learning the feature
extractor and the classifier jointly in an end to end manner.
LUCIR [20] applies the distillation loss on the normalized
latent space rather than the output space, proposes to re-
place the standard softmax layer with a cosine normaliza-
tion layer, and uses a margin ranking loss to ensure a large
margin between the old and new classes. Other works in-
clude LGM [37], IL2M [6], BIC [51], and ER [39]. GEM
is another replay-based method, which solves a constrained
optimization problem. It uses the replay buffer to constrain
the gradients on the current task so that the loss on the pre-
vious tasks does not increase. A-GEM [9] improves over
GEM by relaxing some of the constraints, and hence in-
creasing the efficiency, while retaining the performance. Fi-
nally, [10] shows that vanilla experience replay, where the
model simply trains on the replay buffer along with the new
task data, is by itself a very strong baseline. In this work,
we include variants of iCaRL, LUCIR, A-Gem, and vanilla
experience replay as baselines.

We propose a benchmark for evaluating a model’s per-
formance in the IIRC setup, as having a realistic, standard-
ized, and large-scale benchmark helps provide a fair and

reproducible comparison for the different approaches. Ex-
isting efforts for benchmarking the existing lifelong learn-
ing setups include CORe50 benchmark [25], and [4] that
proposes a benchmark for continual few-shot learning.

Our work is also related to knowledge (or concept) drift,
where the statistical properties of the data changes over time
and old knowledge can become “irrelevant” [28, 27]. Un-
like those works, we focus on learning new associations and
updating existing associations as new tasks are learnt. As
the model acquires new knowledge, the old knowledge does
not become ‘irrelevant”. Recently, BREEDS [41] proposed
a benchmark to evaluate model’s generalization capabilities
in the context of subpopulation shift. Specifically, they de-
fine a hierarchy and train the model on samples correspond-
ing to some subpopulations (e.g. “poodles” and “terriers”
are subpopulations of “dogs”). The model is then evaluated
on samples from an unseen subpopulation. e.g. it should la-
bel “dalmatians” as “dogs”. While at a quick glance, IIRC
might appear similar to BREEDS, there are several differ-
ences. IIRC focuses on the lifelong learning paradigm while
BREEDS focuses on generalization. Moreover, the training
and evaluation setups are also different. If we were to ex-
tend the dogs example to IIRC, the model may first train
on some examples of “poodles“ and “terriers” (labeled as
“dogs”). In the next task, it may train on some exampled of
“poodles” (labeled as “poodles”). When the model is eval-
uated on both tasks, it should predict both labels (“poodles”
and “dogs”) for the images of poodles.

4. Benchmark
4.1. Dataset

We use two popular computer vision datasets in our
benchmark - ImageNet [12] and CIFAR100 [22]. For both
the datasets, we create a two-level hierarchy of class labels,
where each label starts as a leaf-node and similar labels are
assigned a common parent. The leaf-nodes are the sub-

classes and the parent-nodes are the super-classes. Some of
the subclasses do not have a corresponding superclass, so
as to enrich the setup and make it more realistic. While the
datasets come with a pre-defined hierarchy (e.g. ImageNet
follow the WordNet hierarchy), we develop a new hierarchy
as the existing hierarchy focuses more on the semantics of
the labels and less on the visual similarity (e.g, in WordNet,
“sliding door” and “fence” are both grouped under “barri-
ers”). We refer to these adapted datasets as IIRC-ImageNet
and IIRC-CIFAR.

In IIRC-CIFAR, each superclass has similar number of
subclasses (four to eight). However, the sub-class distri-
bution for IIRC-ImageNet is very skewed (Figure A.7) and
number of sublcasses varies from 3 to 118. We explicitly
decided not to fix this imbalance to ensure that visually sim-
ilar classes are grouped together. Moreover, in the real life,



not all classes are observed at the same frequency, making
our setup more realistic. More statistics and the full class
hierarchies for both IIRC-ImageNet and IIRC-CIFAR are
provided in Appendix-C and G.

As mentioned in Section 2, we use two validation sets -
one with incomplete information (for model selection and
monitoring per-task performance) and one with complete
information (for the model evaluation after each task). Each
validation dataset comprises 10% of the training data for CI-
FAR, and 4% of the training data for ImageNet, and is fixed
through all the runs. Some aggregate information about the
splits is provided in Table 1 in Appendix.

Since we are creating the class hierarchy, superclasses
do not have any samples assigned to them. For the train-
ing set and the in-task validation set, we assign 40% of
samples from each subclass to its superclass, while retain-
ing 80% of the samples for the subclass. This means that
subclass-superclass pairs share about 20% of the samples
or, for 20% of the cases, the model observes the same
sample with different labels (across different tasks). Since
some superclasses have an extremely large number of sub-
classes, we limit the total number of samples in a super-
class. A superclass with more than eight subclasses, uses

8
number of subclasses ⇥ 40% of samples from its subclasses. We
provide the pseudo code for the dataloader in Appendix F.

Now that we have a dataset with superclasses and sub-
classes, and with samples for both kind of classes, the tasks
are created as follows: The first task is always the largest
task with 63 superclasses for IIRC-ImageNet and 10 super-
classes for IIRC-CIFAR. In the supsequent tasks, each new
task introduces 30 classes for IIRC-ImageNet and 5 classes
for IIRC-CIFAR. Recall that each task introduces a mix of
superclasses and subclasses. IIRC-ImageNet has a total of
35 tasks, while IIRC-CIFAR has a total of 21 tasks. Since
the order of classes can have a bearing on the models’ eval-
uation, we create 5 preset class orders (called task config-
urations) for IIRC-ImageNet and 10 task configurations for
IIRC-CIFAR, and report the average (and standard devia-
tion) of the performance on these configurations.

Finally, we acknowledge that while IIRC-ImageNet pro-
vides interesting challenges in terms of data diversity, train-
ing on the dataset could be difficult and time consuming.
Hence, we provide a shorter, lighter version which has just
ten tasks (with five tasks configurations). We shall call the
original version IIRC-ImageNet-full, and the lighter version
IIRC-ImageNet-lite, while referring to both collectively as
IIRC-ImageNet. Although we do not recommend the use
of this lighter version for benchmarking the model perfor-
mance, we hope that it will make it easier for others to per-
form quick, debugging experiments. We report all the met-
rics on IIRC-ImageNet-lite as well.

4.2. Metrics
Most lifelong learning benchmarks operate in the single-

label classification setup, making accuracy the appropriate
metric. In our setup, the model should be able to predict
multiple labels for each sample, even if those labels are
seen across different tasks. We considered using the Exact-

Match Ratio (MR) metric [46], a multi-label extension of
the accuracy metric. MR is defined as 1

n

Pn
i=1 I(Yi ==

Ŷi) where I is the indicator function, Ŷi are the set of
(model) predictions for the ith sample, Yi are the ground
truth labels, and n is the total number of samples. One lim-
itation is that it does not differentiate between partially in-
correct predictions and completely incorrect predictions.

Another popular metric (for multi-label classification) is
the Jaccard similarity(JS), also called “intersection over
union”[46]. JS is defined as 1

n

Pn
i=1

|Yi\Ŷi|
|Yi[Ŷi|

. To further
penalize the imprecise models, we weight the Jaccard simi-
larity by the per sample precision (i.e., the ratio of true pos-
itives over the sum of true positives and false positives). We
refer to this metric as the precision-weighted Jaccard simi-

larity (pw-JS).
We measure the performance of a model on task k af-

ter training on task j using the precision-weighted Jaccard
similarity, denoted Rjk, as follow:

Rjk =
1

nk

nkX

i=1

|Yki \ Ŷki|
|Yki [ Ŷki|

⇥ |Yki \ Ŷki|
|Ŷki|

, (1)

where (j � k), Ŷki is the set of (model) predictions for the
ith sample in the kth task, Yki are the ground truth labels,
and nk is number of samples in the task. Rjk can be used
as a proxy for the model’s performance on the kth task as it
trains on more tasks (i.e. as the j increases).

We evaluate the overall performance of the model after
training till the task j, as the average precision-weighted

Jaccard similarity over all the classes that the model has
encountered so far. Note that during this evaluation, the
model has to predict all the correct labels for a given sample,
even if the labels were seen across different tasks (i.e. the
evaluation is performed in the complete information setup).
We denote this metric as Rj and computed it as follow:

Rj =
1

n

nX

i=1

|Yi \ Ŷi|
|Yi [ Ŷi|

⇥ |Yi \ Ŷi|
|Ŷi|

, (2)

where n is the total number of evaluation samples for all the
tasks seen so far.

5. Baselines
We evaluate several well-known lifelong learning base-

lines. We also consider two training setups where the model



Figure 3. Average performance using the precision-weighted Jaccard Similarity. (left) IIRC-ImageNet-lite and (right) IIRC-ImageNet-full.
Experiments are averaged over five different task configurations with the mean reported. (see Figure A.8 for the standard deviation)

has access to all the labels for a given sample (complete in-
formation setup): i) joint where the model is jointly trained
on all the classes/tasks at once and ii) incremental joint

where as the model trains across tasks, it has access to all
the data from the previous tasks in a complete informa-

tion setup. In the Finetune baseline, the model continues
training on new batches of classes without using any replay
buffer. Vanilla Experience Replay (ER) method finetunes
the model on new classes, while keeping some older sam-
ples in the replay buffer and rehearsing on them. Experi-
ence Replay with infinite buffer (ER-infinite) is similar
to incremental joint, but in incomplete information setup as
in ER. This means that if a new label is introduced that ap-
plies to an old sample, the target for that sample will be
updated with that new label in the incremental joint base-
line but not in the ER-infinte baseline . We also have A-
GEM [9] that is a constrained optimization method in the
replay-based methods category. It provides an efficient ver-
sion of GEM [26] by minimizing the average memory loss
over the previous tasks at every training step. Another base-
line is iCaRL [38] that proposed using the exemplar re-

Figure 4. Average performance on IIRC-CIFAR. Experiments are
averaged over ten different task configurations with the mean re-
ported. (see Figure A.8 for the standard deviation)

hearsal along with a distillation loss. LUCIR [20] is a
replay-based class incremental method that alleviates the
catastrophic forgetting and the negative effect of the imbal-
ance between the older and newer classes. BiC [51] adds
a bias correction step after each task to counteract the bias
towards newer classes. More details about the baselines can
be found in Appendix-B.

5.1. Model Adaptations
The earlier-stated baselines were proposed for the single

label class incremental setup, while IIRC setup requires the
model to be able to make multi-label predictions. There-
fore, some changes have to be applied to the different mod-
els to make them applicable in the IIRC setup. To this end,
we use the binary cross-entropy loss (BCE) as the classifi-
cation loss. This loss is averaged by the number of observed
classes so that it doesn’t increase as the number of classes
increases during training. During prediction, a sigmoid acti-
vation is used and classes with values above 0.5 are consid-
ered the predicted labels. Using the nearest-mean-classifier
strategy for classifying samples in iCaRL is not feasible for
our setting, as the model should be able to predict a variable
number of labels. To overcome this issue, we use the output
of the classification layer, which was used during training,
and call this variant as iCaRL-CNN. We further consider a
variant of iCaRL-CNN, called iCaRL-norm, which uses co-
sine normalization in the last layer. [20] suggests that using
this normalization improves the performance in the context
of incremental learning. Hence the classification score is
calculated as:

pi(x) = �(⌘h✓̄i , f̄(x)i) , (3)

where � is the sigmoid function, ✓̄i are the normalized
weights of the last layer that correspond to label i, and f̄(x)
is the output of the last hidden layer for sample x. ⌘ is a
learnable scalar that controls the peakiness of the sigmoid.
It is important to have ⌘ since h✓̄i , f̄(x)i is restricted to



Figure 5. Per task performance over the test samples of a specific task j, after training on that task (Rjj using Equation 1). (left) IIRC-
ImageNet-full and (right) IIRC-CIFAR. see Figure A.9 for the standard deviation)

[�1, 1]. We can either fix the ⌘ or consider it as a learn-
able parameter. We observed that learning ⌘ works better in
practice.

6. Experiments
We design our experimental setup to surface challenges

that lifelong learning algorithms face when operating in the
IIRC setup. Our goal is neither to develop a new state-of-
the-art model nor to rank existing models. We aim to high-
light the strengths and weakness of the dominant lifelong
learning algorithms, with the hope that this analysis will
spur new research directions in the field. We use the ResNet
architecture [17], with ResNet-50 for IIRC-ImageNet and
reduced ResNet-32 for IIRC-CIFAR. Additional implemen-
tation details and hyperparameters can be found in Sec-
tion A in the Appendix. Data used to plot the figures is
provided in Appendix H for easier future comparisons.

6.1. Results and Discussion
We start by analyzing how well does the model perform

over all the observed classes as it encounters new classes.
Specifically, as the model finishes training on the j

th task,
we report the average performance Rj , as measured by the
pw-JS metric using Equation 2, over the evaluation set of all
the tasks the model has seen so far (Figures 3 and 4). Recall
that when computing Rj , the model has to predict all the
correct labels for a given sample, even if the labels were
seen across different tasks. This makes Rj a challenging
metric as the model can not achieve a good performance
just by memorizing the older labels, but it has to learn the
relationship between labels.

In Figures 3 and 4, we observe that the iCaRL-CNN and
iCaRL-norm models perform relatively better than the other
methods, with iCaRL-norm having the edge in the case of
IIRC-ImageNet. However, this trend does not describe the
full picture, as the iCaRL family of models is usually pre-
dicting more labels (some of which are incorrect). This be-

haviour can be observed for the IIRC-CIFAR setup in Fig-
ure 6(c) where they tend to predict too many labels incor-
rectly, which penalize their performance with respect to the
PW-JS metric as opposed to the JS metric (see Figure A.15
in the Appendix). We also note that A-GEM model per-
forms poorly in the case of IIRC-CIFAR, even when com-
pared to vanilla ER, and hence we didn’t run A-GEM on
IIRC-ImageNet.

One thing to notice in Figure 4, is the discrepancy be-
tween the performance of the ER-infinite baseline and the
incremental joint baseline. Recall from section 5 that al-
though both baselines don’t discard previous tasks sam-
ples, incremental joint is using the complete information

setup, and hence it updates the older samples with the newly
learned labels if applicable, while ER-infinite is using the
incomplete information setup. This result tells us that deal-
ing with the memory constraint is not sufficient by itself for
a model to be able to perform well in the IIRC setup.

In lifelong learning setups, the model should retain the
previous knowledge as it learns new tasks. Our setup is even
more challenging because the model should not only retain
previous knowledge, but it should incorporate the new la-
bels as well in this previous knowledge. In Figure A.16 and
A.17, we track how well the model performs on a specific
task, as it is trained on subsequent tasks. Unlike the stan-
dard class incremental setup, the model should be able to
re-associate labels across different tasks to keep perform-
ing well on a previous task. The key takeaway is that,
while the baselines are generally expected to reasonably al-
leviate catastrophic forgetting, their performance degrades
rapidly as the model trains on more tasks. ER’s poor per-
formance may be accounted for by two hypothesis: i) The
model is trained on a higher fraction of samples per class for
classes that belong to the current task, than those of previ-
ous tasks, causing bias towards newer classes. ii) The model
sometimes gets conflicting supervising signal, as the model
might observe samples that belong to the same subclass (ex.



(a) ground truth (b) ER (c) iCaRL-norm (d) LUCIR

Figure 6. Confusion matrix after training on task 10 of IIRC-CIFAR. The y-axis is the correct label (or one of the correct labels). The
x-axis is the model predicted labels. Labels are arranged by their order of introduction. Only 25 labels are shown for better visibility. See
Appendix D.7 for the full resolution figures with labels.

“polar bear”), once with the superclass label from the buffer
(“bear”), and another with the subclass label from the cur-
rent task data (“polar bear’), and it doesn’t connect these
two pieces of information together. In the case of LUCIR,
we hypothesize that the model’s performance deteriorates
because the model fails to learn new class labels. We con-
firm this hypothesis in Figure 5 and Figure A.22, where we
observe that while the model is able to retain the labels en-
countered in the previous tasks, it is not able to learn the la-
bels it encounters during the new tasks. We can see as well
in Figure 5 the performance of each model on the current
task j, after training on that task (Rjj using Equation 1).
The general trend is that the less a model is regularized, the
higher it can perform on the current task, which is intuitive.

Some other important questions are whether the model
correctly associates the newly learned subclass labels to
their previously learned superclass, and whether it incor-
rectly associates the newly learned subclass label with other
previously learned subclasses (that have the same super-
class). We dig deeper into the confusion matrix (Figure 6)
for the predictions of the different models after training on
ten tasks of IIRC-CIFAR. Note that in Figure 6, the lower
triangular matrix shows the percentage the model predicts
older labels for the newly introduced classes, while the up-
per triangular matrix represents the percentage the model
predict newer labels to older classes, with the ground truth
being Figure 6(a). The ER method predictions always lie
within the newly learned labels (last five classes), as shown
in Figure 6(b)) The iCaRL-norm model, as shown in Fig-
ure 6(c), performs relatively well in terms of associating
(previosuly learned) superclasses to (newly learned) sub-
classes. For example, whales are always correctly labeled
as aquatic mammals, and pickup trucks are correctly labeled
as vehicles 94% of the time. However, these models learn
some spurious associations as well. For instance, “televi-
sion” is often mislabeled as “food containers”. Similarly,
the model in general correctly associates newer subclasses
with older superclasses, but many times it incorrectly as-

sociates the subclasses (eg associating “ aquatic mammals”
with “whales” 48% of the time and “vehicles” with “pickup
trucks” 44% of the time, while by looking at figure 6(a),
we see that they only represent 20% and 12.5% of their su-
perclasses respectively) The LUCIR model provides accu-
rate superclass labels to the subclasses. This is shown in
Figure 6(d) where LUCIR follows the trends of the ground
truth more closely than iCaRL-norm in the lower trianglu-
lar part of the confusion matrix. However, it fails to learn
new associations. We provide more instances of such plots
in the Appendix D.6, which shows that the observed trends
are quite general. The full resolution figures for Figure 6
are provided in Appendix D.7. We also provide some more
finegrained plots for the performance on each of the class
types in the Appendix D.2 and D.3.

Finally, we provide some ablations for the effect of the
buffer size using ER in Appendix E. We can see that using
ER even with a buffer size of 100 samples per class gives
very poor performance in the case of IIRC-ImageNet, and
hence a smarter strategy is needed for this setup.

7. Conclusion

We introduced the “Incremental Implicitly-Refined Clas-
sification (IIRC)” setup, a novel extension for the class in-
cremental learning setup where incoming batches of classes
have labels at different granularity. Our setup enables study-
ing different challenges in the lifelong learning setup that
are difficult to study in the existing setups. Moreover, we
proposed a standardized benchmark for evaluating the dif-
ferent models on the IIRC setup. We analyze the perfor-
mance of several well-known lifelong learning models to
give a frame of reference for future works and to bring out
the strengths and limitations of different approaches. We
hope this work will provide a useful benchmark for the com-
munity to focus on some important but under-studied prob-
lems in lifelong learning.
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