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Abstract

We present the first public release of CayleyPy, an open-source Python library for
working with Cayley and Schreier graphs. Compared to classical systems such as
GAP and Sage, CayleyPy scales to much larger graphs and achieves speedups of
several orders of magnitude.

Using CayleyPy we obtained about 200 new conjectures on diameters and growth
of Cayley and Schreier graphs. For symmetric groups S,, we observe quasi-
polynomial diameter formulas depending on n mod s, and conjecture this is a
general phenomenon. This leads to efficient diameter computation despite NP-
hardness in general. We refine Babai-type bounds for .S,,, proposing %nQ + 4n as
an upper bound in the standard case, and identify explicit generator families likely
maximizing diameters, confirmed for n < 15. We also conjecture a closed formula
for the diameter of the directed Cayley graph generated by the left cyclic shift and
(1,2), answering a 1968 question of V.M. Glushkov.

For nilpotent groups we conjecture linear dependence of diameters on p in
UT,,(Z/pZ), improving results of Ellenberg, and observe Gaussian-type growth
distributions akin to Diaconis’ results for .S,,.

Several conjectures are LLM-friendly, reducible to sorting problems verifiable via
Python code. To foster benchmarking, we release 10+ Kaggle datasets for path-
finding on Cayley graphs. CayleyPy supports arbitrary permutation and matrix
groups with 100+ predefined generators, including puzzle groups. Its growth
computation routines outperform GAP/Sage by up to 1000x in both speed and
capacity.
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1 Introduction

Cayley graphs are fundamental in group theory Gromov|(1993))/Tao| (2015)), and have various appli-
cations: bioinformatics |Hannenhalli & Pevzner| (1995]|1999); Bulteau & Weller| (2019); processor
interconnection networks |Akers & Krishnamurthy| (1989); |(Cooperman et al.| (1991); Heydemann
(1997); coding theory and cryptography Hoory et al.| (2000); |[Zémor| (1994); [Petit & Quisquater
(2011); quantum computing [Ruiz et al.| (2024); [Sarkar & Adhikari| (2024)); |Dinur et al.| (2023);
Acevedo et al.|(20006)); |Gromadal (2022), etc.

There are many open conjectures in the subject and making progress in their understanding is a
fundamental challenge in the field. Two of these that are quite well-known, easy to formulate, wide
open and most relevant to us are:

* Babai-like conjecture: for any choices of generators the diameter of S, is O(n?) (see, e.g.,
Helfgott & Seress| (2014)), [Helfgott| (2019), Helfgott et al.[(2015));

+ Diaconis conjecture Diaconis (2013): the mixing time for random walks is O(n?>logn)
(again for any choices of generators).

An important characteristic of a Cayley graph G is its growth — the vector of sizes of spheres (or
layers) containing all elements at the same distance (length of the shortest path) from some fixed
element gy € G. It is easy to see that for Cayley graphs (in strict sense) growth does not depend
on the choice of gy. The growth of a graph G contains a lot of information on it: for example, the
diameter is just the length of the growth vector minus one. It is suggestive to view growth as an
unnormalized probability distribution over N, as in P. Diaconis’ works. Then the diameter is just
the maximum of a random variable. And it is important to understand its other characteristics: its
mean, mode, moments, etc. Ideally, the goal is to understand from what family of distributions it
comes, and, hopefully, to observe some universality phenomena, such as the distribution approaching
something known for large values of n. For example, the Gaussian normal distribution trivially arises
in the case of abelian groups, while in the case of .S,, with generators close to commutative — like
Coxeter’s neighbor transpositions (4,4 + 1) — the appearance of the Gaussian normal approximation
has been demonstrated by P. Diaconis.

So, having some elements in, say, the permutation group .S,, (or in some other group), one constructs
the Cayley graph, and there is a set of natural questions and lines of investigation:

* What group is obtained?
e What is its diameter?

¢ Growth statistical characteristics: mean, mode, moments, what distribution does it follow
(or at least asymptotically as n — 00)?

* Algorithm: is there an effective/polynomial algorithm which decomposes a given element
into a product of generators (optimally/sub-optimally)?

* Antipodes (“super-flips”): is there an explicit description of the longest elements?
* What can be said about the graph’s spectrum?
* What is the mixing time?

2 Main contribution

The aim of the present paper is to make progress on of fundamental problems described above (i.e.
understanding various properties of Cayley graphs) with the help of the new tool which we are
developing: Al-based Python open-source library, CayleyPy, which allows to make computational ex-
periments orders of magnitude more effectively than standard computer algebra systems GAP/SAGE.
We show that the pipelines which were introduced previously for some specific S,, sub-groups are
scaling quite well for Cayley graph tasks Furthermore, due to the permutation-like structure of most
problems they can be formulated as sorting problems, which are easy to formulate for LLM, and
their solutions can be given as an algorithm or Python code, are easy to verify, so they can be used to
test LLM’s abilities to solve research problems. Meanwhile, our code for direct growth computation
outperforms similar functions on the standard computer algebra system GAP/SAGE up to 1000 times
both in speed and in maximum sizes of the graphs that it can handle.



* We generate around 200 conjectures on various properties of Cayley graphs, that is achieved
by extensive computational experiments with around 50 Cayley graphs. The conjectures are
summarized in tables[T]??.

* In particular we propose the following:

— We conjecture that diameters of many S,,-Cayley graphs are quasi-polynomials
(quadratic/linear) in n (i.e. several polynomials depending on n modulo some s)
allowing to find them rather efficiently, which is surprising since it is NP-hard in
general.

— The improvement of the L.Babai-like conjecture for .S,, - diameters are bounded by
n?/2 + 4n, by 3n2 /4 + O(n) (directed cases), n?/4 + O(n) for some Schreier graphs,
comparing to prior O(n?) conjectural bounds. Moreover we present explicit families
of generators for S,, which conjecturally provide largest (or near) diameters. They are
related to involutions and follow rather simple pattern ("square-with-whiskers"). They
were found by an extensive (partly exhaustive) search for n <= 15 of the generators
with maximum diameter.

— For nilpotent groups we conjecture improvement of J.S. Ellenberg’s results on diameter
of upper-triangular matrices over Z/p presenting phenomena of linear dependence of
diameter on p. Moreover growth for nilpotent groups conjectured to follow Gaussian
distributions (a central limit phenomena - similar to results of P.Diaconis for .S,,).

— We present a conjectural answer on the open question: diameter of the directed Cayley
graph generated by left cyclic shift and transposition (1, 2) is equal to (3n2 +8n+9)/4
for odd n, else (3n? — 8n + 12)/4.

» To benchmark various methods of path-finding on Cayley graphs and LLMs we create 11
benchmark datasets in the form of Kaggle challenges, making benchmarking easy and public
to community.

2.1 CayleyPy features

CayleyPy is an Al-based open-source Python library which can work with googol size graphs, with
the current main focus on mathematical tasks for Cayley graphs of finite groups. The key current
goals are: using the Al approach (Chervov et al.| (2025alb)) to solve path-finding tasks on Cayley
graphs, or in other words to decompose a given group element into a product of generators (solution
of Rubik’s cube is an illustrative example).

More generally one is interested in understanding various properties of Cayley graphs: their diameters,
growth, spectrum, random walks mixing time, etc. CayleyPy provides a framework to handle all
these tasks in a simple manner accessible to non-experts in programming, but utilizing the power
of efficient code, algorithms and GPU accelerators. For graphs of not too large size (up to trillions)
one can compute the diameter and growth effectively, for smaller sizes one can also compute the
spectrum and generate visualizations, and so on.

CayleyPy can work with arbitrary permutation and matrix groups, which the user defines as an
input. Moreover, it also supports a large collection (more than a hundred) of predefined generators of
permutation groups (including various puzzles) and matrix groups.

The main outcome of that stage of the project is that we were able to generate hundreds of new
mathematical conjectures on Cayley/Schreier graphs via extensive computational experiments with
CayleyPy. Thus, we demonstrate that effective computational tools can advance discoveries in pure
mathematics.

2.2 Diameter quasi-polynomiality conjecture

Having discussed the main features of our library CayleyPy, let us now turn to our main mathematical
results. We start with the following definition. A function f: N — N is aquasi-polynomial if there
exist polynomials py, . . ., ps—1 such that

fn)=p;(n) wheni=n (mod s).

The polynomials p; are called the constituents of f.


https://en.wikipedia.org/wiki/Quasi-polynomial

The following conjecture generalizes the results of extensive computations we performed (see the
next section):

(Extremely optimistic). For any generators of .S, (or A,,) which can be constructed by an algorithm
with say polynomial complexity in n (e.g. a Python function which takes as input n and outputs
generators in time polynomial in ) the diameter of the Cayley graph will be given by some quadratic
or linear quasi-polynomial in n (at least for n large enough). Even more optimistically, the leading
terms of all constituents coincide.

Experimentally we see an even more general phenomenon: not only the distance to the longest
element (i.e. the diameter) is quasi-polynomial, but also the distance to many other elements. Thus, it
is tempting to propose the following:

(Extremely optimistic). For any generators of S,, (or A,,) and additionally elements g,, € .S,, (or
A,,) which can be constructed by an algorithm with say polynomial complexity in n (e.g. a Python
function which takes as input n and outputs generators jointly with elements g,, in time polynomial
in n) the distance from identity to g,, (i.e. "'word metric" of g,,) will be given by some quadratic or
linear quasi-polynomial in 7, at least for n large enough. Even more optimistically, the leading terms
of all constituents coincide.

The two conjectures do not seem to imply each other in general, however in practice we often see

that the longest elements ("antipodes", "superflips") can be often described quite effectively. In such
cases the second conjecture implies the first one.

Generalizations to other groups are also plausible, e.g. to Coxeter’s groups and the generalized
symmetric group (examples will be given below). Even for matrix groups one may hope to have a
similar quadratic/linear quasi-polynomial dependence on n (i.e. on the "rank"). And similarly for
Schreier coset graphs, for example Sy, /(S| ¢] X Sp—|nse|) (i.€. "Grassmanians over the field with
one element"), and other similar cosets like flags over F}. However, in that case we typically choose
some node and compute the most distant node to it (not exactly the diameter), and in contrast to a
Cayley graph that distance ("God’s number" in puzzle’s terminology) can depend on the choice of
the node. We expect quasi-polynomiality for all choices of the starting node. Another direction of
generalization is weighted Cayley graphs, in particular circular Cayley graphs, i.e. permutations
factorized by cyclic shifts (see e.g. |Adin et al.|(2025))), which represent weighted Cayley graphs with
weights of cyclic shifts set to zero.

All known to us examples of the explicitly computed diameters are indeed quasi-polynomial, although
they may be written in a slightly different way in the literature, e.g. in terms of rounding functions
floor or ceil which are just particular simple cases of quasi-polynomials. In our analysis we observe
more complicated examples with the modulo s equal to e.g. 4, 6, or 8.

Examples (known). For Coxeter generators ( (4,74 1),1 < i < n) of S,, the diameter is n(n — 1)/2
— just polynomial (and similarly for all Coxeter’s groups). As a small modification one can add the

transposition (1, n) to the Coxeter generators — this gives the diameter {%QJ van Zuylen et al.| (2016),

which is n? /4 for even n, and (n? — 1) /4 for odd n, i.e. quasi-polynomial with modulo 2. (A similar

(but very recent|Adin et al.| (2025))) circular version gives {%J ). For all transpositions (7, j) the

diameter is n — 1, while for transpositions of the form (1, ¢) (star graph) it is {3(%_1)} which is
3(n —1)/2 for odd n, and (3n — 2)/2 for even — a linear quasi-polynomial.

Examples (conjectural). Consider the LRX generators: L — left cyclic shift, R — right cyclic shift,
X = (1,2). The diameter is conjectured to be n(n — 1)/2 (OEIS-A186783), strong support for
this is presented in our previous work |Chervov et al.|(2025b). The LX case with only two of these
generators (L and X) has been first considered by V.M.Glushkov Glushkov|(1968) and studied by
his school (survey: |Glukhov & Zubov| (1999) pages 18-21). Our conjecture is that the diameter is
(3n? — 8n + 9)/4 for n odd, and (3n? — 8n + 12)/4 for n even, discussed below in detail.

Consider consecutive 4-cycles: (i,7 + 1,7 + 2,7+ 3),i <1 < n — 3, and their action on the coset
Sn/(S|nj2) X Sn—|ns2)) Which is just the action on binary vectors with 0 and 1 having |n/2] zeros.
Choose the vector with first [n/2] zeros as the starting vector and compute the most distant element
with respect to that initial vector (it is not exactly the diameter in general, but its analog depending
on choice of initial node, and can be called "God’s number" like in puzzles). We expect that for


https://en.wikipedia.org/wiki/Word_metric
https://en.wikipedia.org/wiki/Generalized_symmetric_group
https://en.wikipedia.org/wiki/Generalized_symmetric_group
https://oeis.org/A186783

n > 12 the God’s number is given by quasi-polynomials modulo 6: n?/12 + 1,n = 0 mod 6,
(n?+4n —5)/12,n =1 mod 6, etc.

3 Conclusion

In this paper, we present the CayleyPy library and propose approximately 200 conjectures on Cayley
graphs using it. We provide a comprehensive comparison with the GAP method in terms of the
computational time required for the growth of different groups. We also emphasize that the conjectures
we obtained, together with our Kaggle challenges, may constitute an effective benchmark for both
reinforcement learning and large language model algorithms.
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A Experimental results

We conducted extensive computations computing growth for large number of Cayley and certain
Schreier coset graphs for up to n < 15 and n < 42 respectively. Obtained results and conjectures are
summarized in the tables discussed below, which also include results known in the literature.

We analyzed not only diameters but other growth characteristics as a probability distribution - mean,
mode, variance, skewness, kurtosis, tried to fit the distribution by some known like Gaussian or
Gumbel, antipodes (longest elements, or super-flips), spectrum of the Cayley graph. In some cases
we observe that growth by itself might have close analytical formula - given by Stirling numbers
or related to Fibonacci numbers or e.g. coincide with some known sequence e.g. (OEIS-A367270
("Growth/F-1a" column of the table). For diameters in most (but not all) cases we able to fit by
quasi-polynomials, for some cases, apparently, available data is not enough. But for mean diameters
and other characteristics of growth there are not quasi-polynomials in general, for example literature
contains results n — log(n) for mean diameters, Nevertheless we expect that our numerical fits for
the data provides approximations to the leading terms of these characteristics. They are obtained as
fit on for small values of n and can be considered as conjectures for large values.

Notations used in the table:

. @ - conjecture obtained by CayleyPy project, @ - proved by CayleyPy

.+ information is known/conjectured - can be found in the main text (too big to fit into table)
. * - conjecture from the literature

. 7 - no information, neither in literature, nor our experiments suggest clear pattern

. notations like 1|2 indicates 1 for even n and 2 for odd (or vice versa)

. notations +1I - some quasi-polynomial typically of zero degree

~N N L B W N =

. "Group" information on generated group, if just + information is known, but not fits into
the table

8. "Growth/PDF" - what continuous distribution fits growth for large n (Gaussian, or Gumbel,
etc)

9. "Growth/F-la" - explicit formulas for the growth

10. "Antipode" - information on longest elements - i.e. if there explicit description, if the number
is known (and simple to fit into table) we indicate it, or simple write +

11. "Algorithm" - indicates is there known algorithm to decompose element into product of
these generators, the upper-script O indicates that optimal algorithm is known, notations like
N P/2 means that optimal decomposition was proved to be NP-hard, but there polynomial
approximations by factor of 2.

12. "Metric" - is there explicit expression for the word metric for given generators, for example
for Coxeter generators it is a number of inversions


https://oeis.org/A367270

13. "Spectrum" - information on spectrum, "Int" integer spectrum, "Wig" - approaches Wigner
semi-circle law for large n, "Uni" - almost uniform

Table 1: Summary of properties of Cayley graphs
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A.1 Distribution of diameter over conjugacy classes pairs - involutions strikes

Figure [I] represents diameters dependence on the conjugacy classes of generators obtained by
exhaustive search: one generator from one class, another from another. Presented figure is for S7.
The values in each cell represent all values of the diameters found for corresponding pair of classes
and the heatmap coloring is done with respect to the maximal found diameter for corresponding pair
of classes. Color is white if S, is not generated by any pair of elements from the above classes. Due
to symmetry we are showing only relevant part of data, not duplicating g1, g2 with g2, g1.

One can see that large diameters appears when one of the classes is involution, and another has
rather short cycles in decomposition. Which is simple to expect, because the longer cycles are
present - means individual generators would have higher degree and allow to create more words like:
X X...XX. More words of fixed length k one has - the less diameter can be, since words exhausts
finite space of group elements earlier. So naively it is easy to expect that generators related to as
small degree as possible are good candidates. Exhaustive search confirms it for many cases. So:

The generating set with largest diameter for S, contains an involution (at least for infinite number of
n). Both for directed and undirected cases.

We performed similar exhaustive search up to n < 9 and randomized search up to 12 — for the pairs
of generators and for both undirected and directed cases, results are consistent with the conjecture.
Similar heatmap plots for other n can be found in full version the manuscript; or up to n < 7 in the
notebook..


https://www.kaggle.com/code/fedmug/diameter-visualizations

Diameters of Cayley graphs S; with inverses

28
(2,1,1,1,1,1) 18 18 18
(2,2,1,1,1) - 15-17 16,18 26
(2,2,2,1) 2 28 16,18
(3,1,1,1, 1) 14,16 13.15 11,15.16 24
§ (3,2,1,1)4 11014 10-14 10-13 10-13 10-13 11-14.16 12,15 12-15 10-15 11-13
o 22
§ (3,2, 2) 11-14  [10-11,13.17 11-13,15 12-14
@
(9]
— (4,1, 1,1) { 10-13.16 11-12 11-13 11-14 11-14,16 | 12-15,17 14
@ - 18
S (4,2, 1) 10-14,16-18/ 10-16 10-15
(4, 3) { 101315 10-15 10-13 10-14 10-12,15 | 16
(5,1, 1) 10-14 10-14
(5,2)4 1015 10-13,16 | 10-13,15 -14
(6,1) 4 1015 10-15
T T T T T T T T T T -12
7.) (6,1) (5,2) (5,1,1) (43) (421)(41,1,1)(3,3.1) (3,2,2)(3,2,1,1)
class 2 cycle lengths
Diameters of Cayley graphs S; without inverses
34
(2,1,1,1,1,1) 21 21
(2,2,1,1,1) 20-22 20-22,24 32
30
(3,1,1,1,1) 17-18,20-21) 17-19 17-20
§ (3,2,1,1)4 1419 15-20 15-17 15-18 15-18 15-19 16-17 16-19 | 15-18,20 | 16-17.19 28
o
§ (3,2,2) 15-17.19 15-16,18-19.21 16-17.19
@
E (3,3, 1) 16-22 16-19,24 18-20 26
(9]
— (4,1, 1,1) { 15-18,23 16-17 15-18 16-17 16-18 | 16-19,21 20 o4
w1
é (4,2, 1) 15-20,23-24( 15-20 15-19
(4, 3) 4 15-19,21 | 15-18,20 | 15-19,21 15-18  [15-18,20,23 -22
(5,1, 1) 15-18,20 15-18 .
(5,2)4 1519 15-19 15-19,21
(6, 1) 4 15-19.21 15-21 -18

7) (6.1 (5.2 (511 (43 (421411131 (32213211
class 2 cycle lengths

Figure 1: Diameters of all possible Cayley graphs for S7 generated by two permutations with/without
their inverses.



Figure 2: Three generators of S5 represented graphically. Pattern - "square with whiskers". Three
involutions - edges orientations are not necessary.

A.2 Graphical visual representation for any generators - pattern ''square with whiskers'

Here we describe a very simple graphical visual representation of elements (e.g. generators) of
permutation groups, and present a pattern "square with whiskers" which corresponds to most of the
largest diameters found for n < 15.

Step 1. Single permutation. Each permutation defines a directed graph on n nodes in a natural
and obvious way — if p(i) = j let us connect ¢ — j. (That can be said in the other words - take a
permutation matrix and consider it as adjacency matrix of a directed graph). Clearly if permutation
is involution - then orientation of edges is unnecessary - if ¢ — j, then 5 — ¢ (in matrix language -
permutation matrix is symmetric).

Step 2. Many permutations - use colors. Consider several permutations and just use the same
construction but use different colors to represent edges coming from different permutations.

Thus for any sequence of permutations (generators) we constructed a directed multi-colored graph on
n nodes.

The code for the visualization can be found e.g. in the notebook.

The figure 2] presents an example of such visualization and also presents an example of the pattern
which we call "square with whiskers" - there is one 4-cycle (square) and two branches going out of
its corners.

Let us call the generators to follow "square with whiskers" pattern if underlying undirected graph
(forgetting colors and multi-edges) is of that type - one 4-cycle (square) and two branches.

The generators with maximal (or nearly) diameter for S,,/A,, follow "square with whiskers" pattern
(at least for infinite number of n). We expect that to be true for the both for undirected and directed
case of Cayley graphs.

B Largest diameters found (and known) for n <= 15

We conducted extensive search for generators producing large diameters for small n, remarkable
patterns showed up - that will be discussed in the next section, here we just present the diameters and
the corresponding generators, and organization of the experiments. But already here it is worth to
highlight that all found generators are related to involutions.

To the best of our knowledge these are the largest diameters known so far. We consider both standard
undirected and directed cases (meaning that generators are not necessarily inverse closed). For the
latter case the same diameters up to n < 7 were found in|Egri-Nagy & Gebhardt| (2016) (table 4), but
our result extends to much larger n.

The diameters provided below are largest possible or at least within say 5% from them. It is
impossible to make exhaustive search even for such values of n, so we cannot exclude the chance


 https://www.kaggle.com/code/olegpushs/draw-edges 

that large diameters exists, though it seems unlikely to us that they will be significantly larger than
presented here. Anyway we hope our results may stimulate that research.

Maximal diameter for Cayley graph of the group S,, (undirected graph)
n | Maximal diameter | Example of a set of generators
3 3 0,2,1],[2,1,0]
4 6 2,1,0,3],[3,0,2,1],[1, 3,2, 0]
5 10 4,0,1,2,3],[1,2,3,4,0],]0,1, 3,2, 4]
6 15 4,5,3,2,0,1],2,5,0,3,1,4],2,4,0, 3,5, 1]
(16) (H: ’17 ) 757 ]7[0) 7174737 ]7[17073? ) 74]]>

7 28 [1a )y &y Yy a6]7[27 IR 517074]7[747 ’ 7672a1]
(30) ([0,1,3,2,4,6,5],[0,4,6,5,1,3,2], 6, 1,3,2,5,4,0])

8 33 [3,7,5,6,0,2,4,1],[4,7,5,0,6,2,3,1],[1,0,3,2,5,4,6, 7]
(39) ([0,1,2,3,5,4,7,6],[0,1,3,2,6,7,4,5],(7,3,6,1,4,5,2,0])

9 (52) ([8,5,2,7,4,1,6,3,0],1,2,0,5,3,4,8,6,7],[2,0,1,4,5,3,7,8,6])

10 (77) (0,1,2,3,5,4,7,6,9,8],]1,0, 3,2,5,4,8,9,6, 7],
[0,6,4,8,2,5,1,7,3,9])

11 (85) ([1,0,3,2,5,4,7,6,9,8,10],[0, 3,4,1,2,6,5,8,7,10,9],
[0,4,3,2,1,5,6,7,8,9,10])

12 (95) ([1,0,3,2,5,4,7,6,9,8,11,10],[0, 2,1, 5,6, 3,4,8,7,10,9, 11],
[0,1,2,6,5,4,3,7,8,9,10,11])

13 (111) ([1,0,2,5,4,3,7,6,9,8,11,10,12], [0, 2, 3,4, 1,6,5,8,7,10,9,12, 11],
[0,4,1,2,3,6,5,8,7,10,9,12, 11])

14 (132) (I1,0,3,2,5,4,7,6,9,8,11,10,13,12],
0,2,1,4,3,6,5,8,7,10,9,12,11,13],
0,1,2,3,5,4,6,7,8,9,10,11,12,13])

15 (148) [1,0,3,2,5,4,7,6,9,8,11,10,13,12, 14] ,
0,2,1,4,3,6,5,8,7,10,9,12,11, 14, 13] ,
0,1,2,3,4,8,7,6,5,9,10,11,12,13, 14])

Maximal diameter for Cayley graph of the group .S,, (oriented graph)
n | Maximal diameter Example of a set of generators
3 3 (01), (02)
4 7 (01), (123)
5 14 (01)(23), (0314)
6 18 (01)(23)(45), (012)(34)
7 34 (01)(23)(45), (052)(146)
8 44 (01)(23)(45), (1736)(25)
9 61 (01)(23)(45), (3647)(12)(58)
10 83 (01)(23)(45)(67)(89), (185)(237)(469)
11 93 (01)(23)(45)(67)(89), (1528)(47)(6, 10)
12 106 (01)(23)(45)(67)(89), (1,11,9,10)(04)(28)(36)
13 147 (01)(23)(45)(67)(89), (1,11,2,12)(34)(56)(78)(9, 10)

For the directed case (i.e. not inverse closed generators) the search has been organized as follows - for
small n = 3,4 we considered several possible numbers of generators - from 2 to 5, it was observed
that largest diameter is observed for 2 generators - which is not surprising, since less generators - less
words can one generate and large diameter can potentially be. We continue search with 2 generators
for n up to 13. The search has been - exhaustive up to n < 9, and randomized search after. We did
not search all possible pairs, but relied on a simple fact that conjugacy of all generators produces
an isomorphic graph, so we say first generator can be taken as a unique representative of conjugacy
class, with the loop over conjugacy classes - that of course significantly reduce the search space. For
the randomized search we sampled the second generator from each conjugacy class uniformly. To
reduce search further for n > 12 we mostly considered conjugacy classes for the first generator to be
involutions, and used guesses from previously observed patterns.
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C Benchmarks for growth computations

CayleyPy utilizes GPU out of the box, for example, even on old GPU P100 it can compute growth
for S1; with Coxeter generators in 0.6 seconds, while GAP takes 2352 seconds, so CayleyPy is more
than 1000 times faster in that example. Performance depends on group size and number of generators.
The tables below demonstrate that for large groups starting from Sg CayleyPy is typically 10-100
times faster than GAP, even when using CPU. Moreover, it can support larger groups. Below are the
results obtained and easily reproducible on the Kaggle cloud where we can perform computations
up to Sy3. For S14, S15 we use more powerful machines. The group S14 requires around 40 — 100
GB RAM and 4 — 20 hours of computations. The group S;5 requires 500 — 1000 GB RAM, and
computations take several days. (For S15 we mainly worked with a small number of generators like
3, while a larger number of generators (e.g. 15) may take months.)

Tomas Rokicki and Lucas Garron’s program |"Twsearch"| (example on Kaggle)) apparently is faster
than our growth computations for CPU. However our code supports GPU out of the box, and
apparently can achieve better timing using modern GPU. Also our framework seems to be more
user-friendly, supports directed Cayley graphs and achieves computations for large groups like S5,
which, apparently, is not yet achieved by Twsearch.

CayleyPy supports several algorithms for growth computation all based on BFS (breadth first search),
but different in internal data representation. The bfs bitmask|uses bit-wise encoding with 3 bits per
any state, and it is more memory efficient. It allows one to work with S35 requiring only 3 — 8 GB
RAM. We use it for computations for Sy3, S14, S15. See also the notebooks: jalgorithm) benchmarks|

In the tables below, the label "(bm)" identifies uses of the "bfs-bitmask" algorithm.

Table 2: Growth computations. Time in seconds for CayleyPy and GAP using CPU on Kaggle cloud,
32 GB RAM. Different types of generators.

LRX Coxeter Transpositions Pancake Reversals
n | GAP | CayleyPy | GAP | CayleyPy | GAP | CayleyPy | GAP CayleyPy GAP | CayleyPy
6 1.97 0.02 0.01 0.038 0.03 0.02 0.01 0.02 0.04 0.02
7 2.04 0.03 0.12 0.052 0.34 0.03 0.08 0.02 0.41 0.05
8 2.66 0.05 1.32 0.079 3.92 0.09 0.80 0.04 4.24 0.1
9 8.75 0.16 13.99 0.293 52.98 1.03 8.90 0.26 54.45 1.089
10 | 75.72 1.24 172.38 3.54 737.42 14.14 112.37 3.77 762.54 14.8
11 | 884 22.5 2352 41 10891 296 1559 72 11138 354
12 | 12024 658 34470 706 - 3331(bm) | 35387 4923 - 26657
13 - 2670(bm) - 7308(bm) - > 12h - 17694(bm) - >12h

Table 3: CayleyPy growth computations on different hardware. Time in seconds: CPU (32G), GPU

(16G), and advanced CPU (330G), on Kaggle cloud. Coxeter generators.

Coxeter CayleyPy
n CPU GPUT4 | GPUPI100 | CPU (at TPU v3-8)
4 0.013 0.013 0.014 0.010
5 0.029 0.026 0.026 0.022
6 0.038 0.043 0.043 0.037
7 0.052 0.068 0.067 0.067
8 0.079 0.151 0.138 0.087
9 0.293 0.110 0.110 0.140
10 3.539 0.199 0.154 0.641
11 | 41/41(bm) 1.085 0.601 10.8/12(bm)
12 | 705/512(bm) | 214(bm) 207(bm) 187/151(bm)
13 7308(bm) 3004(bm) | 2867(bm) 2613/2180(bm)

11



https://github.com/cubing/twsearch
https://en.wikipedia.org/wiki/Breadth-first_search
https://cayleypy.github.io/cayleypy-docs/generated/cayleypy.algo.bfs_bitmask.html#cayleypy.algo.bfs_bitmask
https://www.kaggle.com/code/fedimser/memory-efficient-bfs-on-caley-graphs-3bits-per-vx
https://www.kaggle.com/code/alexandervc/cayleypy-timing4-bfs-bitmask-memory-effecient

D Details

D.1 LLM statement
LLMs were used for:

* generating potential solutions to benchmark current state-of-art systems against human
results;

¢ code assistance in human submissions.

D.2 Reproducibility statement

The present article was written using Overleaf.
The code was executed using Kaggle, Colab or GCP (TPU Research Cloud, v4_32 instances)
environments, using the following packages:

* pandas

* matplotlib

* numpy

* cayleypy

e torch (torch_xla for TPU)

* numba

* scipy

The code is available in an anonymous GitHub|repository.
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https://overleaf.com
https://anonymous.4open.science/r/cayleyrl-iclr-2026-42C8/README.md
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