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The prognostic significance of biomarker variability in predicting
associated disease risk is well-established. However, prevailing
methods that assess the relationship between biomarker variability
and time to event often overlook within-subject correlation in lon-
gitudinal measurement errors, resulting in biased parameter esti-
mates and erroneous statistical inference. Additionally, thesemeth-
ods typically assumes that biomarker trajectory can be represented
as a linear combination of spline basis functions with normally dis-
tributed random effects. This not only leads to significant compu-
tational demands due to the necessity of high-dimensional inte-
gration over the random effects but also limits the applicability be-
cause of the normality restriction imposed on the random effects.
This paper addresses these limitations by incorporating correlated
longitudinal measurement errors and proposing a novel semipara-
metric multiplicative random effects model. This model does not
assume normality for the random effects and eliminates the need
for integration with respect to them. The biomarker variability is
incorporated as a covariate within a Cox model for time-to-event
data, thus facilitating a joint modeling strategy. We demonstrate
the asymptotic properties of the proposed estimators and validate
their performance through simulation studies. The methodology
is applied to assess the impact of systolic blood pressure variabil-
ity on cardiovascular mortality using data from the Atherosclerosis
Risk in Communities study.

K E YWORD S

ARIC study, correlated errors, joint modeling, semiparametric
model, variability

1



2

1 | INTRODUCTION

This paper is motivated by the Atherosclerosis Risk in Communities (ARIC) study, which aims to assess the relationship
between the levels of and/or changes in biomarkers and the risk of developing cardiovascular disease events. Cardio-
vascular death (CVD) is one of the main events in the ARIC study. Certain biomarkers, such as systolic blood pressure
(SBP), are known to play a critical role in evaluating CVD risk, and elevated SBP levels are typically associated with
higher CVD risk.1 In medical science, however, the long-held assumption that the average level of blood pressure
alone fully explains all blood pressure-related risks of vascular events has been called into question. Increasing evi-
dence indicates that visit-to-visit variability in blood pressure, particularly SBP, also plays a significant role. Rothwell,
Rothwell et al and Rothwell et al published their results on The Lancet and highlighted the limitations of predicting
death risk solely based on factors like blood pressure.1,2,3 Their findings suggest that patients with normal average
blood pressure levels but high visit-to-visit variability may face a higher risk of stroke or death compared to those with
higher but relatively stable blood pressure levels. This inspires us to investigate whether the visit-to-visit variability
of SBP contributes to the CVD of patients in the ARIC study.

To assess the impact of visit-to-visit variability on time-to-event outcomes (e.g., time to cardiovascular death in
the ARIC study), three primary methods based on survival analysis have been employed. The first method calculated
sample standard deviation, coefficient of variation, or successive variation based on the longitudinal repeated mea-
surements and then incorporated them as covariates in the survival model.4,5 The secondmethod used the first-order
derivative of the biomarker trajectory at the current time point as a measure of variability.6 The third method treated
the residual variance of the biomarker trajectory or its logarithm as a frailty factor in a survival model to account for
the association between the biomarker variability and event risk, which can be significantly affected by the regres-
sion dilution bias.7,8 Each of these three methods has its limitations. The variability measures in the first approach
may yield unreliable estimates, particularly when the small number of repeated measurements is small.9 The second
method may generate negative values for variability, which contradicts the inherently positive nature of variability
measures. While the absolute value of the derivative of the biomarker trajectory may serve as a potential measure of
variability, it is unsuitable for characterizing cumulative variability over a time period. The term “cumulative variabil-
ity” refers to the aggregation of past variability values. It is typically of greater scientific interest since it encompasses
both historical information and current information that may influence current event risk but “variability" only con-
tains current information. We discuss this point in Section S14 of the supporting information. The third method, as
pointed out by Barrett et al, does not distinguish between true variability in a subject’s repeated measurements and
measurement errors.8

Wang et al, motivated by the concept of roughness measures in smoothing splines, recently introduced a new
measure that characterizes the biomarker variability.10 However, their study was limited to the current biomarker
level and its variability, which may not sufficiently capture the association structure between these covariates and
current risk. As noted by Rizopoulos et al and Mauff et al, the association between past values of time-dependent
covariates and event risk may change based on the time gap between the current moment and when those covariates
weremeasured.11,12 To address this limitation,Wang et al proposed a newmodelwith cumulative biomarker trajectory
and cumulative variability measure as covariates. This model is inspired by the idea of weighted cumulative exposure
that assigns greater weights to values of time-dependent covariates measured closer to the current time point.13,14

In the rest of this paper, we call methods proposed by Wang and colleagues as Wang’s methods.10,13

Although the existing methods typically assume that longitudinal measurement errors within the same subject
are mutually independent,15 our analysis for the ARIC study in Section 5 shows that these measurement errors can
be correlated to each other. Furthermore, our simulations, as detailed in Section 4.2 of this paper and Section S1 of
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the supporting information, suggest that ignoring the correlation in measurement errors may lead classical estimation
methods like Conditional Score, Corrected Score and Wang’s methods to produce biased parameter estimates, with
significantly reduced coverage probabilities for those parameters describing the effects of biomarker trajectory and
its variability on event risk.16,17.

Since the true biomarker trajectories are usually unknown in real applications, existing methods typically assumes
that they can be approximated as a linear combination of spline basis functions with random coefficients, which
are typically referred to random effects.15,10,13 Expectation-Maximization (EM) algorithm and Bayesian algorithm
are commonly used for parameter estimation10,8. However, these algorithms typically assume normally distributed
random effects, an assumption that may not always hold in real-world applications. Additionally, the computational
cost associated with these algorithms can become prohibitively expensive due to the potentially high-dimensional
integration over the random effects.18

In ARIC study, it is observed that younger hypertensive patients can effectively control their SBP level with anti-
hypertensive medication. However, as patients age, factors such as vascular stiffening contribute to a rise in SBP
despite continued adherence to medication.19 This trend is evident in Figure 1, which plots the estimated population
SBP trajectory (normalized by 50) from study enrollment through a 15-year follow-up period (normalized by 3650
days). The trajectory remains stable and linear for the first 7 years, becoming increasingly nonlinear and rising from
years 7 to 15. This trend is also present in other datasets, such as Acquired Immunodeficiency Syndrome (AIDS) data
depicted in Figure 3 of Yao and Primary Biliary Cirrhosis (PBC) data shown in Figure 3 of Ding and Wang20,21. This
trend motivates us to develop a newmodel which captures population trajectory approximately linear over initial time
period but nonlinear as time progresses.

[Figure 1 here.]

In this paper, we propose new joint models to investigate the effects of cumulative biomarker trajectory and cu-
mulative variability on current event risk. Our models incorporate correlation in measurement errors, ensuring that
the parameters describing these effects can be unbiasedly estimated. We introduce a new semiparametric multiplica-
tive random effects (SMRE) model for captures population trajectory approximately linear over initial time period but
nonlinear as time progresses. The proposed SMRE model allows for the construction of an asymptotically unbiased
estimating equation, which does not impose distributional assumption on the random effects and does not involve in-
tegration with respect to them. Therefore, solving this equation for parameter estimation is computationally efficient.
We rigorously establish the consistency and asymptotic normality of the proposed parameter estimators.

This paper is organized as follows. Section 2 delineates the model formulation for the proposed joint models.
Section 3 provides estimating procedures and theoretical properties of the proposed parameter estimators. Simulation
studies are conducted in Section 4 to evaluate performance of the proposed methodology, which is applied to analyze
the ARIC data in Section 5. This paper is concluded with a discussion in Section 6.

2 | MODEL FORMULATION

For each subject i , suppose longitudinal outcomes yi1, . . . , yi ni are observed at time points t i1, . . . , t i ni . Suppose the
event of interest is observed atTi , with δi = 1 implying failure while δi = 0 indicating censoring. ThenTi is determined
as the minimum of the time to eventT ∗

i
and the right censoring time Ci , specificallyTi = min{T ∗

i
,Ci }. We assume that

all of observation times t i j and the event times Ti fall within the study period [0,ϕ ], and the censoring times Ci are
noninformative and observation times t i j are independent of the longitudinal process, time to event and censoring.
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2.1 | Related literature

In medical research,15,18,22 the biomarkers are often measured longitudinally. In particular, yi j , the biomarker for the
i -th subject at time t i j , is typically assumed to follow the model:

yi j = mi (t i j ) + ϵi j , mi (t ) = xT
i β + fi (t ), i = 1, . . . , n, j = 1, . . . , ni , (1)

where mi ( ·) representing the true biomarker trajectory, regression parameter β captures the relationship between
the baseline covariate xi and the true trajectory mi ( ·) , fi ( ·) is a smooth function that describes the shape of the
subject-specific biomarker trajectory, ϵi j represents the measurement error at time t i j , n denotes sample size and ni

denotes number of longitudinal measurements for the i -th subject.

Wang et al, motivated by the idea of roughness term in smoothing spline, proposed a roughness measure πi (t ) =[∫ t

0
{m′′

i
(s ) }2ds

]1/2
to describe the cumulative variability over time period [0, t ] for subject i , based on the biomarker

trajectory mi ( ·) .10 To assign greater weights to values of m′′
i
(s ) measured closer to current time t , Wang et al pro-

posed a weighted roughness measure

πi (t ,σ ) =
[∫ t

0
ωσ (t − s ) {m′′

i (s ) }
2ds

]1/2
to describe the cumulative variability over time period [0, t ].13 Here, ωσ (t − s ) = φ{ (t − s )/σ }/[σ {Φ (t/σ ) − Φ (0) } ]
represents a Gaussian weight function with a weight parameter σ , which controls the shape of the weight function,
where φ ( ·) and Φ ( ·) represents density and cumulative distribution function for standard normal distribution, respec-
tively. This weight function is designed to assign greater weight to the past values of {m′′

i
(s ) }2 as the value of s

approaches the current time t . Specifically, according to Mauff et al, the value of πi (t ,σ ) is mainly determined by
values of {m′′

i
(s ) }2 for s ∈ [t − 2σ, t ], provided that t > 2σ . And the value of πi (t ,σ ) is mainly determined by values

of {m′′
i
(s ) }2 for s ∈ [0, t ], provided that t ≤ 2σ . The word “cumulative" essentially means that πi (t ,σ ) cumulates the

past values of {m′′
i
(s ) }2 for s ∈ [0, t ]. Similarly, Wang et al considered the weighted biomarker trajectory

ηi (t ,σ ) =
∫ t

0
ωσ (t − s )mi (s )ds

to describe the cumulative biomarker trajectory for the i -th subject over time period [0, t ].13 Detailed interpretation
of the cumulative biomarker trajectory and the cumulative variability can be found in Section S13 of the supporting
information. Then, they incorporated ηi (t ,σ ) and πi (t ,σ ) into Cox model:

λi (t ) = λ0 (t ) exp
{
zTi γ + α1ηi (t ,σ1 ) + α2πi (t ,σ2 )

}
, i = 1, . . . , n (2)

where λ0 (t ) is baseline hazard function, λi (t ) = limd t↓0 P {T ∗
i

∈ (t , t + d t ] |T ∗
i

≥ t , {mi (s ) : s ∈ [0, t ] },xi ,zi }/d t is
hazard function for the i -th subject with time to eventT ∗

i
, σ1 and σ2 are two positive weight parameters, zi represents

baseline covariates, which may or may not be the same as xi , and regression parameter γ describes the relationship
between the baseline covariates zi and the hazard function λi (t ) . In model (2), statistical inference for parameters α1
and α2 is of particular interest since α1 and α2 respectively describes the effects of the cumulative biomarker trajectory
and cumulative variability on the time to event.
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2.2 | Modeling of correlated measurement errors

For modeling of correlation in the measurement errors within the same subject, we assume in the longitudinal sub-
model (1) that

ϵi = (ϵi1, ..., ϵi ni )
T ∼ N (0ni , Σi (ζ1 ) ) (3)

where N (0ni , Σi (ζ1 ) ) denotes a multivariate normal distribution with zero mean and covariance Σi (ζ1 ) , implying Σi

is determined by parameter ζ1. For example, if Σi is assumed to have the compound symmetric (CS) structure Σi =

σ2
ϵ (ρJi + (1− ρ )Ini ) , where Jni is ni × ni matrix with all elements equal to 1, Ini is ni × ni identity matrix, and variance

correlation parameters σ2
ϵ and ρ satisfy σ2

ϵ > 0 and ρ ∈ (−1, 1) , then ζ1 = (ρ,σ2
ϵ ) . Note, neglecting the correlation

in measurement errors within the same subject is equivalent to assuming Σi = σ2
ϵ Ini . That is, assuming that Σi is of

independence structure. As discussed in Section 1, to avoid biased parameter estimates in the survival submodel, it is
essential to consider a parametric model for Σi , accounting for within-subject correlation in measurement errors. In
Section 4.2, we will show the impact of neglecting correlation in measurement errors.

2.3 | Semiparametric multiplicative random effects model

To capture population biomarker trajectory is approximately linear over initial time period and becomes nonlinear as
time progresses, we propose a SMRE model for fi (t ) ,

fi (t ) = bi0 + bi1t + bi2µ (t ), (4)

where bi = (bi0, bi1, bi2 )T is a vector of random effects and we do not impose distribution assumption on bi , µ (t )
is a smooth function over [0,ϕ ] which describes the shape of fi (t ) when t is large. This is justified by the following
assumption on µ (t ) :

lim
t→0+

|µ (t ) |
t

= 0, (5)

Suppose ϕ = (φ0,φ1 )T = (E (bi0 ), E (bi1 ) )T, we assume E (bi2 ) = 1 for identifiability of µ (t ) , then the shape of the
population trajectory E {fi (t ) } = φ0+φ1t +µ (t ) is primarily influenced byφ0+φ1t when t is small and is determined by
both the shapes ofφ0+φ1t and µ (t ) when t is large, provided thatφ0 orφ1 is not equal to zero. Therefore, SMREmodel
(4) can capture the population longitudinal trajectory which is approximately linear when t is small and is nonlinear
when t is large. Note, when µ (t ) = 0, the proposed SMRE model (4) reduces to the classical linear mixed model.23

There is another way to interpret the SMRE model (4) with assumption (5). In practical applications, we often
lack the knowledge for fi (t ) and need to approximate or estimate it. This is typically done using regression spline
techniques. Let (1, t , t 2, ..., t d , (t − u1 )d+ , ..., (t − u l )d+ )T be a vector of regression spline basis functions, with order
d + 1 and l interior knots {u j } lj=1, where a+ = max{a, 0} for any scalar a . According to the property of the regression
spline techniques, we assume there exists a random effect vector ai = (ai0, ..., ai (d+l ) )T, such that fi (t ) can be well
approximated as fi (t ) ≈ ai0+ai1t +gi (t ) , where gi (t ) =

∑d
k=2 ai k t

k +∑l
k=1 ai (d+k ) (t −uk )

d
+ . Clearly, limt→0+ |gi (t ) |/t =

0. When t is close to zero, ai0 + ai1t dominates gi (t ) provided that ai0 or ai1 is not equal to zero, but when t is large,
the shape of fi (t ) is determined by both ai0 + ai1t and gi (t ) . As argued in Ding and Wang, after conducting the
functional principal component analysis (FPCA) for gi (t ) , if the first eigenfunction of gi (t ) explains a large percentage
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of the variation of gi (t ) , gi (t ) can be roughly approximated by gi (t ) ≈ µ (t ) + ci1ϕi1 (t ) , where µ (t ) is the mean
function of gi (t ) , ϕi1 (t ) is the first eigenfunction and ci1 is the first eigenvalue.21 If further the first eigenfunction
ϕi1 (t ) has a similar shape as the mean function µ (t ) multiplied by a scale factor C , that is, we can find a constant
C such that ϕi1 (t ) ≈ Cµ (t ) , then gi (t ) ≈ (1 + ci1C )µ (t ) . This leads to fi (t ) ≈ ai0 + ai1t + (1 + ci1C )µ (t ) . Let
bi0 = ai0, bi1 = ai1, and bi2 = (1 + ci1C ) , then we have fi (t ) ≈ bi0 + bi1t + bi2µ (t ) , which inspires us to consider
the SMRE model (4) with assumption (5). Additionally, if bi0 = bi1 = 0, then the proposed SMRE model simplifies to
the nonparametric multiplicative random effects (NMRE) model proposed by Ding and Wang.21 In their model, they
assume that fi (t ) = bi2µ (t ) to characterize the longitudinal trajectories from different subjects as being proportional
or approximately parallel, to each other. Therefore, the proposed SMRE model can be viewed as a generalization of
the NMRE model.

To assess the applicability of the SMRE model (4) with assumption (5) to the practical data, one should assess
whether gi (t ) ≈ bi2µ (t ) holds. That is, one should verify: (i) whether the first eigenfunction ϕi1 (t ) explains a large
percentage of the variation of gi (t ) ; (ii) whether the first eigenfunctionϕi1 (t ) has a similar shape as themean function
µ (t ) multiplied by a scale factor C . To do these, note that longitudinal model yi j = xT

i
β + ai0 + ai1t i j + gi (t ) + ϵi j can

be fitted by standard statistical method designed for fitting the linear mixed model. After fitting this model, one can
obtain estimator β̃ of β and estimator ãi of ai . Then, one can treat yi j − xT

i
β̃ − ãi0 − ãi1t i j as constructed response

variables with mean gi (t i j ) and conduct the FPCA to ascertain whether ϕi1 (t ) explains a large percentage of the
variation of gi (t ) and whether ϕi1 (t ) has a similar shape as the mean function µ (t ) multiplied by a scale factor C .
In Section S2 of the supporting information, we conduct simulation to evaluate the cost of misspecifying the SMRE
model (4) with assumption (5) on fi (t ) .

Under the survival submodel (2) and the SMREmodel (4), we have πi (t ,σ2 ) = |bi2 |
[∫ t

0
ωσ2 (t − s ) {µ′′ (s ) }2ds

]1/2
,

which indicates that the weighted roughness measure permits a form only depending on bi2 and µ′′ ( ·) . The use of
the squared root in π2 (t ,σ2 ) is due to the fact that Å[exp{πi (t ,σ2 )2} ] may not exist (i.e., Å{exp(b2

i2 ) } does not exist
even when bi2 is normally distributed). Therefore, if we remove the square root in model (2), the expectation of the
hazard function λi (t ) in the survival submodel (2) may not exist.

Given the random effects and covariates, the longitudinal process and event time are assumed to be mutually
independent. Let Yi = (yi1, ..., yi ni )

T and define the covariance of the random effects bi as Db (ζ2 ) , implying that
Db is parameterized by ζ2. The observed data {Yi ,xi ,Ti , δi ,zi }ni=1 are assumed to be independent and identically
distributed. We aim to estimate (θT, µ ( ·) )T = (βT,ϕT, ζT1 , ζ

T
2 ,γ

T, α1, α2, µ ( ·) )T in the proposed joint models (1), (2),
(3) and (4).

2.4 | Reparameterization of parameters

In real application, one could simplify themodel by settingDb = σ2
b
I3 (that is, ζ2 = σ2

b
> 0), whereDb is the covariance

matrix of random effects vector bi . The covariance matrix Σi of measurement errors ϵi is often parameterized by two
parameters: ρ and σ2

ϵ (that is, ζ1 = (ρ,σ2
ϵ )), where ρ is correlation parameter and σ2

ϵ is variance parameter. An example
for Σi with a compound symmetry structure can be found in Section 2.2. Sometimes the estimates ρ̂, σ̂2

ϵ and σ̂2
b
may

be not well defined. That is, sometimes it is possible that some of ρ̂ < (−1, 1) , σ̂2
ϵ < 0 and σ̂2

b
< 0 may happen. In

such a case, we suggest reparameterize ρ, σ2
ϵ and σ2

b
as ϱ = log{ (1 + ρ )/(1 − ρ ) }, ςϵ = log(σ2

ϵ ) and ςb = log(σ2
b
) ,

respectively. After estimating ϱ , ςϵ and ςb , ρ̂, σ̂2
ϵ and σ̂2

b
can be obtained by corresponding transformation and their

standard errors can be obtained by the delta method. Such reparameterization is used in our simulation studies and
real data analysis.
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3 | ESTIMATING PROCEDURES

There are two main challenges in developing the estimation method for the proposed joint models (1), (2), (3), and (4).
First, the random effects bi are not subject to a specific distributional assumption, making the joint likelihood function
of the longitudinal dataYi and the time-to-event data (Ti , δi ) mathematically inexpressible, i = 1, . . . , n . Consequently,
traditional maximum likelihood estimates or Bayesian maximum posterior estimates become unattainable. Second,
there is a challenge of simultaneously estimating the nonparametric component µ ( ·) and its second derivative µ′′ ( ·)
as specified in the proposed joint models. To address these issues, we initially construct a working likelihood function
to substitute for the joint likelihood function, followed by the derivation of an asymptotically unbiased estimating
equation for the parameter θ, based on this working likelihood function alongside appropriately estimator µ̂ ( ·) and
µ̂′′ ( ·) respectively for µ ( ·) and µ′′ ( ·) .

3.1 | Working likelihood functions

We begin with constructing working likelihood function for the longitudinal submodels (1), (3) and (4). For subject
i , let Xi = (xi , ...,xi )T be an ni × pβ dimensional baseline covariate matrix, Gi be an ni × 2 dimensional matrix
with j -th row (1, t i j ) , µi = (µ (t i1 ), ..., µ (t i ni ) )

T and Ei = (Gi ,µi ) , where pβ is the dimension of β. Quasi likelihood
method, which does not impose distribution assumption on the random effect bi , is adopted.24 Specifically, we use
the following working log-likelihood function:

LL (θ1 ) = (2n )−1
n∑
i=1

{
− log( |Φi | ) − rTi Φ

−1
i ri

}
, (6)

where ri = Yi − Xiβ − Giϕ − µi is a vector of residuals, Φi = EiDbE
T
i
+ Σi is a covariance matrix of Yi and

θ1 = (βT,ϕT, ζT1 , ζ
T
2 )

T is a vector of parameters involved in LL (θ1 ) . Although (6) represents a normal-type log-
likelihood function, it can be established that the expectation of ∂LL (θ1 )/∂θ1, evaluated at the true values of θ1 and
µ ( ·) , is zero, regardless of distribution of bi . Consequently, if µ ( ·) is evaluated at its true value, ∂LL (θ1 )/∂θ1 = 0 is an
unbiased estimating equation for θ1 and the working log-likelihood function (6) does not necessitate a distributional
assumption on the random effects bi . See McCullagh for more details of the quasi likelihood method.24

We now pay attention to constructing working likelihood function for the survival submodel (2). Define Ni (t ) =
I (Ti ≤ t , δi = 1) and N c

i
(t ) = I (Ti ≤ t , δi = 0) as counting processes corresponding to the observed survival

outcomesTi . Define Fi (t ) as a right continuous filtration generated by {Ni (s ),N c
i
(s ), 0 ≤ s ≤ t }, xi , zi and bi . Then,

by direct calculation, the survival submodel (2) can also be written as Å{dNi (t ) | Fi (t−) } = λ0 (t )Q i (t ) , where Fi (t−)
is the left limitation of Fi (t ) ,

Q i (t ) = exp
{
zTi γ + α1x

T
i β +HT

i (t )bi
}
I (Ti ≥ t ), (7)

Hi (t ) =
(
α1, α1

∫ t

0
ωσ1 (t − s )sds, α1

∫ t

0
ωσ1 (t − s )µ (s )ds + α2sign(bi2 )

[∫ t

0
ωσ2 (t − s ) {µ′′ (s ) }2ds

]1/2)T
, (8)

and sign(bi2 ) is the sign of bi2. That is, sign(bi2 ) = 1 if bi2 > 0, sign(bi2 ) = −1 if bi2 < 0 and sign(bi2 ) = 0 if bi2 = 0.
We here consider an extension of the Corrected Score approach.17 Recall that subject i has ni longitudinal ob-

servations. If ni > 3, we can estimate bi based on all the longitudinal observations of subject i and calculate its
weighted least square estimator b̂i = (ET

i
Σ−1
i Ei )−1ET

i
Σ−1
i (Yi − Xiβ) . Using standard results from the linear re-
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gression, conditional on bi , the weighted least square estimator b̂i is normally distributed with mean bi and variance
V −1
i

= (ET
i
Σ−1
i Ei )−1 as ϵi follows from N (0ni , Σi (ζ1 ) ) . Note, Q i (t ) in (7) is a term used to construct the partial

likelihood function for Cox regression models.25 Since bi is unknown, Q i (t ) is not available. We propose to use

Q̃ i (t ) = exp
{
zTi γ + α1x

T
i β +HT

i (t )b̂i −
1

2
HT

i (t )V
−1
i Hi (t )

}
I (Ti ≥ t , ni > 3),

instead, where Q̃ i (t ) is inspired by the following log-normal distribution property. For any Gaussian random variable
X with mean µX and variance σ2

X , we have that Å{exp(X ) } = exp(µX +σ2
X /2) . Therefore, exp(X −σ2

X /2) can be used
as an unbiased estimate for exp(µX ) . We then see that given Fi (t−) , Å

{
Q̃ i (t ) | Fi (t−)

}
= Q i (t )I (ni > 3) . Therefore,

a natural approach is to construct the working likelihood function by replacing Q i (t ) in the partial likelihood function
with Q̃ i (t ) . Under our model setting, this idea requires sign(bi2 ) , which is involved inHi (t ) given by (8), to be known.
When noise level is low or moderate, that is, when the variances of measurement errors ϵi j ’s are of small or moderate
scale, estimating sign(bi2 ) by sign(b̂i2 ) is a good choice. This is because b̂i follows a multivariate normal distribution
N (bi ,V −1

i
) given bi . As the variances of ϵi j decrease, b̂i becomes closer to bi with high probability, making sign(b̂i2 )

a reasonable estimator of sign(bi2 ) . Here we focus on situation where the noise level is low or moderate and assume
that sign(bi2 ) is known from now on. A simulation in Section S12.2 of the supporting information evaluates the
performance of estimating sign(bi2 ) by sign(b̂i2 ) . With the aforementioned arguments, we now consider the working
log-likelihood function for the survival submodel (2), which is defined as

LS (θ2 ) = n−1
n∑
i=1

∫ ϕ

0

[
zTi γ + α1x

T
i β +HT

i (t )b̂i −
1

2
HT

i (t )V
−1
i Hi (t ) − log{ S̃ (0) (t ) }

]
d Ñi (t ), (9)

where Ñi (t ) = I (ni > 3)Ni (t ) , S̃ (0) (t ) = n−1
∑n

i=1 Q̃ i (t ) , θ2 = (βT, ζT1 ,γ
T, α1, α2 )T is a vector of parameters involved

in LS (θ2 ) . Following similar argument in Wang, it can be established that the expectation of ∂LS (θ2 )/∂θ2, evaluated
at the true values of θ2 and µ ( ·) , is zero, regardless of distribution of bi .17 Consequently, if µ ( ·) is evaluated at its
true value, ∂LS (θ2 )/∂θ2 = 0 is an unbiased estimating equation for θ2 and the working log-likelihood function (9)
does not necessitate a distributional assumption on the random effects bi . See Wang for more details17.

The working log-likelihood function LJ (θ) for the proposed joint models is then naturally constructed as the
summation of LL (θ1 ) and LS (θ2 ) respectively defined in (6) and (9). That is,

LJ (θ) = LL (θ1 ) + LS (θ2 ) . (10)

3.2 | Asymptotically unbiased estimating equations

Wecan obtain the estimating equations for the unknownparameterθ based on the derivative ofworking log-likelihood
functions LJ (θ) . First, we need to introduce the notations. Define S̃

(1)
β

(t ) , S̃ (1)
ζ1

(t ) , S̃ (1)
γ (t ) , S̃ (1)

α1
(t ) , S̃ (1)

α2
(t ) as the

first-order partial derivatives of S̃ (0) (t ) with respect to β, ζ1, γ, α1 and α2, respectively. LetHi α1 (t ) andHi α2 (t ) be
the first-order partial derivatives ofHi (t ) with respect to α1 and α2, respectively. Define ∂ log( |Φi | )/∂ζ1, ∂Φ−1

i /∂ζ1,
∂ b̂i /∂ζ1 and ∂V −1

i
/∂ζ1 as first-order partial derivatives of log( |Φi | ) ,Φ−1

i , b̂i andV −1
i

with respect to ζ1, respectively.
Explicit formulas for these derivatives can be found in Section S3 of the supporting information. The estimating equa-
tion for θ is given by

U (θ) =
{
UT

β (θ),UT
ϕ (θ),UT

ζ1
(θ),UT

ζ2
(θ),UT

γ (θ),UT
α1

(θ),UT
α2

(θ)
}T

= 0,
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where

Uβ (θ) = n−1
n∑
i=1

XT
i Φ

−1
i ri + n−1

n∑
i=1

∫ ϕ

0

α1xi − XT
i Σ

−1
i EiV

−1
i Hi (t ) −

S̃
(1)
β

(t )

S̃ (0) (t )

 d Ñi (t ),

Uϕ (θ) = n−1
n∑
i=1

GT
i Φ

−1
i ri ,

Uζ1 (θ) = (2n )−1
n∑
i=1

{
− ∂ log( |Φi | )

∂ζ1
− rTi

∂Φ−1
i

∂ζ1
ri

}

+ n−1
n∑
i=1

∫ ϕ

0


{
∂ b̂i
∂ζ1

− 1

2

∂V −1
i

∂ζ1
Hi (t )

}T

Hi (t ) −
S̃

(1)
ζ1

(t )

S̃ (0) (t )

 d Ñi (t ),

Uζ2 (θ) = (2n )−1
n∑
i=1

{
− ∂ log( |Φi | )

∂ζ2
− rTi

∂Φ−1
i

∂ζ2
ri

}
,

Uγ (θ) = n−1
n∑
i=1

∫ ϕ

0

{
zi −

S̃
(1)
γ (t )

S̃ (0) (t )

}
d Ñi (t ),

Uα1 (θ) = n−1
n∑
i=1

∫ ϕ

0

[
xT
i β +HT

i α1
(t )

{
b̂i − V −1

i Hi (t )
}
−

S̃
(1)
α1

(t )
S̃ (0) (t )

]
d Ñi (t ),

Uα2 (θ) = n−1
n∑
i=1

∫ ϕ

0

[
HT

i α2
(t )

{
b̂i − V −1

i Hi (t )
}
−

S̃
(1)
α2

(t )
S̃ (0) (t )

]
d Ñi (t )

Given that µ ( ·) is evaluated at its true value and the parametric form of Σi is correctly specified (e.g., both the
true and assumed forms are compound symmetry), the above estimating equations can be shown to be unbiased
for θ. However, if the parametric form of Σi is incorrectly specified (e.g., true form is compound symmetry but we
assume that Σi follows an independence structure), the estimating equations Uα1 (θ) = 0 and Uα2 (θ) = 0 for α1
and α2 in the survival submodel are biased, as shown in Proposition S3 in Section S6 of the supporting information.
Since assuming Σi follows the independence structure is equivalent to assuming that measurement errors within
the i -subject are mutually independent, Proposition S3 essentially highlights the cost of neglecting the correlation in
longitudinal measurement errors. In fact, the proof of Proposition S3 reveals that such neglect can lead to more biased
estimating equations for α1 and α2, particularly when the signal strengths of measurement errors and correlation are
moderate to high. Otherwise, the biases may be small. Simulation studies in Section 4.2 and real data analysis in
Section 5 evaluate the cost of neglecting the correlation in longitudinal measurements. More detailed discussion can
be found in Section S15 of the supporting information.

We now discuss how to estimate µ ( ·) and µ′′ ( ·) . The regression spline is adopted due to its simple mathematical
expressions and good theoretical property. Let

F (t ) = (t 2, ..., t d , (t − u1 )d+ , ..., (t − u l )d+ )T,

F ′′ (t ) = (2, ..., d (d − 1)t d−2, d (d − 1) (t − u1 )d−2+ , ..., d (d − 1) (t − u l )d−2+ )T,
(11)

where {u j } lj=1 are spline knots, d + 1 is order of the spline, a+ = max{a, 0} for any scalar a . Then, according to the
assumption (5), µ ( ·) and µ′′ ( ·) can be estimated byF T ( ·)ξ andF T,′′ ( ·)ξ, where ξ is spline parameter to be estimated.
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To estimate µ ( ·) and µ′′ ( ·) , we need to estimate ξ. Let Fi = (F (t i1 ), ...,F (t i ni ) )
T. Let

Uξ (θ1, ξ) = n−1
n∑
i=1

F T
i Φ−1

i (Yi − Xiβ − Giϕ − Fi ξ) = 0.

Define LL (θ1, ξ) as a function obtained by replacing µ ( ·) in LL (θ1 ) by F T ( ·)ξ. Let UL,θ1 (θ1, ξ) be the derivative of
LL (θ1, ξ) with respect to θ1. Suppose θ10 and µ0 ( ·) are the true values of θ1 and µ ( ·) , respectively. Then, Proposition
S4 in Section S7 of the supporting information show the following results. After jointly solving UL,θ1 (θ1, ξ) = 0 and
Uξ (θ1, ξ) = 0, there exist solutions θ̄1 and ξ̂ such that θ̄1 converges to θ10, µ̂ ( ·) and µ̂′′ ( ·) uniformly converge to µ0 ( ·)
and µ′′0 ( ·) over [0,ϕ ] in probability, respectively, as the sample size n and the number of knots l diverge to infinity
at appropriate rates, where µ̂ ( ·) = F T ( ·)ξ̂ and µ̂′′ ( ·) = F T,′′ ( ·)ξ̂. These results show that θ̄1 is already a consistent
estimator of θ1, and therefore, it can be set as the initial value of θ1 in our algorithm. Additionally,

U (θ, ξ̂) = 0, (12)

is an asymptotically unbiased estimating equation for θ, where U (θ, ξ̂) is obtained by replacing µ ( ·) and µ′′ ( ·) in
U (θ) by µ̂ ( ·) and µ̂′′ ( ·) , respectively.

Theorem S1 and Theorem S2, which are respectively presented in Section S8 and S9 of the supporting infor-
mation, show that the solution to (12), defined as θ̂, converges in probability to its true value θ0 and

√
n (θ̂ − θ0 )

is asymptotically normally distributed. The asymptotic covariance of θ̂ can be estimated by n−1Σ̂J , whose explicit
mathematical expression is given in Section S10 of the supporting information.

The estimation equation (12) is derived from the SMREmodel (4) under assumption (5). The SMREmodel enables
the estimation equation (12) to avoid imposing any distributional assumptions on the random effects bi , making our
proposed method more applicable to practical problems. Additionally, it does not require the integration of random
effects, which enhances the computational efficiency of our method.

3.3 | Profile search algorithm

We now discuss how to choose weight parameters σ1 and σ2 involved in ηi (t ,σ1 ) and πi (t ,σ2 ) , respectively. In
related literature, Wang et al proposed a modified Newton-Raphson algorithm, while Mauff et al suggested using a
Bayesian-based algorithm.13,12 However, both algorithms are computationally intensive, which highlights the urgency
of developing more computationally efficient method. Define LJ {θ̂ (s1, s2 ) } as the joint working likelihood function
with θ̂ evaluated at σ1 = s1, σ2 = s2. We propose a profile search algorithm to choose σ1 and σ2, which is straightfor-
ward and intuitive. Initially, one may start with an initial guess with σ2 = σ

(0)
2 , one then search σ1 over a given grid

A1 such that the working likelihood function LJ {θ̂ (σ1,σ (0)
2 ) } is maximized. Denote the search result by σ

(1)
1 , one

then search σ2 over a given grid A2 such that LJ {θ̂ (σ (1)
1 ,σ2 ) } is maximized. Iterate between these two steps until

convergence, the resulting search results σ̂1 and σ̂2 are expected to be not far away from σ10 and σ20, the true values
of σ1 and σ2, respectively.

The above profile search algorithm is straightforward to implement, requiring not toomuch complexity in its setup,
and is computationally efficient. In our experience, one or two iterations may be enough for convergence. However,
the performance of the proposed profile search algorithm heavily relies on the specific choices of search grids, A1 and
A2. Inappropriate grids may do not include σ10 and σ20. In real application, A1 and A2 can be chosen based on prior
knowledge from practitioners of related fields. And the number of grid points depends on user’s prior knowledge of
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the weight parameters and the desired precision of the estimator of weight parameters. Hesterman et al suggested
that one may choose sufficient number of grid points such that the maximum distance between grid points is less
than the desired precision for parameter estimator26. In our context, we aim to estimate weight parameters σ1 and
σ2. Figure 3 in Wang et al indicates that when true values of weight parameters are small (e.g., less than 5), we
should choose small precision for weight parameters, otherwise we may choose large precision for parameters13. We
recommend that the users can roughly assess the true values of σ10 and σ20 based on their prior knowledge and then
choose small/large precision for σ̂1 (σ̂2) when σ10 (σ20) is small/large, and the users can choose sufficient number of
grid points such that the maximum distance between grid points is less than the desired precision for σ̂1 (σ̂2). In our
experience, 5 to 10 points in each dimension is sufficient for convergence in real applications.

3.4 | Model selection

In real application, one can select the most appropriate parametric structure for measurement error covariance Σi (ζ1 )
among some commonly used candidate structures. For example, under the independence structure, Σi (ζ1 ) = σ2

ϵ Ini

and ζ1 is simply σ2
ϵ ; under the CS structure, Σi (ζ1 ) = σ2

ϵ (ρJni + (1 − ρ )Ini ) and ζ1 = (ρ,σ2
ϵ )T; under the first-order

autoregressive (AR(1)) structure, Σi (ζ1 ) = σ2
ϵ (ρ |j −k | )1≤j ,k ≤ni and ζ1 = (ρ,σ2

ϵ )T. Spline basis functions and the location
of interior knots can be set based on equi-quantile or equi-distant criteria. The structure S of Σi , the degree d of spline
basis functions and the number l of interior knots can be selected by minimizing criteria like AIC or BIC constructed
based on the longitudinal submodel. These two criterion are defined as

AIC(S, d , l ) = 1

n

[
−2LL {θ̄1 (S, d , l ), ξ̂ (S, d , l ) } + 2pθ̄1

]
, (13)

BIC(S, d , l ) = 1

n

[
−2LL {θ̄1 (S, d , l ), ξ̂ (S, d , l ) } + (log n )pθ̄1

]
, (14)

where pθ̄1 is the dimension of θ̄1, LL {θ̄1 (S, d , l ), ξ̂ (S, d , l ) } represents the working likelihood function for the longi-
tudinal submodel evaluated at (θ̄1, ξ̂) with the structure of Σi , the degree of spline basis functions and the number
of interior knots fixed at S, d and l , respectively. Minimization of (13) or (14) with respect to S, d and l sometimes re-
quires extensive computation. Alternatively, onemay start with initial guesses for d and l , choose S byminimizing (13)
or (14) , choose d and l in turn based on (13) or (14). In our experience, BIC (14) usually selects more parsimonious
model. Sometimes Σi does not possess specific parametric structure, that is, Σi is unstructured. How to estimate
unstructured Σi is of future research interest and we will briefly discuss this point in the discussion section.

3.5 | Algorithm

For clear exposition, we now present a simplified version algorithm of the proposed estimating procedure to obtain
θ̂, algorithm with more details can be found in Section S11 of the supporting information. In the following Algorithm,
Newton-Raphson algorithm can used to solve the estimating equations involved in Step 2 and Step 4.
Step 1. Select appropriate S, d and l based on AIC (13) or BIC (14).
Step 2. Solve equation (UT

L,θ1
(θ1, ξ),UT

ξ
(θ1, ξ) )T = 0 to obtain θ̄1 and ξ̂. Then µ̂ ( ·) = F T ( ·)ξ̂ and µ̂′′ ( ·) = F T,′′ ( ·)ξ̂.

Step 3. Search appropriate σ̂1 and σ̂2 by the proposed profile search algorithm proposed in Section 3.3.
Step 4. Based on θ̄1, construct θ̄ as the initial value of θ (the initial value θ1 can be set as θ̄1, and the initial values of
γ, α1 and α2 can be simply set as zeros). Solve equation U (θ, ξ̂) = 0 to obtain θ̂.
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4 | SIMULATION STUDIES

In this section, we conduct extensive simulation studies to evaluate several key performances of the proposedmethod:
(i) the finite sample properties of the proposed parameter estimator θ̂; (ii) the performance of the profile search
algorithm; (iii) the impact of neglecting the correlation inmeasurement errorswithin the same subject on the parameter
estimates for the survival submodel (2); and (iv) computational time of the proposed algorithm.

4.1 | Finite sample properties of parameter estimators

We consider two choices for µ (t ) in SMRE model (4): (i) µ† (t ) = t 2 (sin(t ) +1) ; (ii) µ‡ (t ) = 0.25t 3 − t 2. Note, these two
functions satisfy the assumption (5). These two functions result in two specific population longitudinal trajectories:
(i) m† (t ) = φ0 + φ1t + µ† (t ) ; (ii) m‡ (t ) = φ0 + φ1t + µ‡ (t ) . The random effects bi = (bi0, bi1, bi2 )T are generated from
the multivariate normal distribution or multivariate uniform distribution with E (bi ) = (0.2, 0.7, 1)T and Db = 0.12I3.
This means that φ0 = 0.2, φ1 = 0.7 and ζ2 = σ2

b
= 0.12. Then the population trajectory m† (t ) initially increases,

decreases and then increases again. Another population trajectory m‡ (t ) resembles the longitudinal trajectory which
is flat at first and then increases. Shapes of the two population trajectories m† (t ) and m‡ (t ) are plotted in Figure
2. Three choices for the weight parameters σ1 and σ2 are considered: (i) σ1 = σ2 = 2; (ii) σ1 = σ2 = 4; (iii) σ1 =

σ2 = 6. The covariates xi and zi are generated from the uniform distribution on interval (−0.5, 0.5) and the Bernoulli
distribution with mean 0.5, respectively. The covariance matrix Σi of the measurement errors are set to have the
compound symmetric structure with ζ1 = (ρ,σ2

ϵ )T = (0.5, 0.1)T. We set sample size n = 500. For each subject, the first
longitudinal observation is taken at t = 0 and the subsequent longitudinal observations are taken every 0.5 unit until
the event time. The generated longitudinal data is unbalanced. We set the search grids A1 = {σ10 − 0.3,σ10,σ10 +0.3}
and A2 = {σ20 −0.3,σ20,σ20+0.3}, where σ10 and σ20 are the true values of σ1 and σ2, respectively. Different baseline
hazard functions are set for different settings for the weight parameters and the random effects, which together with
detailed censoring generatingmechanisms are deferred to the Section S12.1 of the supporting information. Censoring
rate is around 0.3. The location and the number of interior knots are determined by the equi-distant criteria and BIC
criteria (14).

[Figure 2 here.]

Model parameters are estimated in three ways: (i) the proposed parameter estimators with the true weight pa-
rameters σ10 and σ20 are known (KSP), where KSP means the known weight parameters; (ii) the proposed parameter
estimators with the weight parameters searched by the proposed profile search algorithm (PS); (iii) the parameter
estimators (WM) with the survival model misspecified as that in Wang et al,

λi (t ) = λ0 (t ) exp
(
zTi γ + α1mi (t ) + α2

[∫ t

0
{m′′

i (s ) }
2ds

]1/2)
(15)

where WM means Wang’s method.10 All the simulation results are based on 500 Monte Carlo replications. We
calculated the following summary statistics: the average of parameter estimates (Estimates), theMonte Carlo standard
deviation (SD), the average of estimated standard errors (SE), the 95% empirical coverage probability (CP), the average
of relativemean square errors (RMSE), the average of relativemeanweighted integral errors (RMWIE), and the average
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of relative mean weighted roughness integral errors (RMWRIE) over 500 replicates, where

RMSE = n−1
n∑
i=1

n−1i

ni∑
j=1

|µ (t i j ) − µ̂ (t i j ) |2µ (t i j )−2,

RMWIE = n−1
n∑
i=1

����∫ Ti

0
ωσ1 (Ti − s ) {µ (s ) − µ̂ (s ) }ds

����2 ����∫ Ti

0
ωσ1 (Ti − s )µ (s )ds

����−2 ,
RMWRIE = n−1

n∑
i=1

����∫ Ti

0
ωσ2 (Ti − s ) [ {µ′′ (s ) }2 − {µ̂′′ (s ) }2 ]ds

����2 ����∫ Ti

0
ωσ2 (Ti − s ) {µ′′ (s ) }2ds

����−2
To save space, only simulation results for µ† (t ) with σ1 = σ2 = 4 are presented here and the rest are shown in the S12
of the supporting information.

[Tables 1 here.]

Table 1 presents simulation results with the random effects generated from the multivariate normal distribution
and the multivariate uniform distribution. With the known weight parameters, the proposed parameter estimators
visually achieves consistency. Most parameter estimators have coverage probability close to 0.95 as well as similar SE
and SD, indicating asymptotic normality. However, parameter estimator ζ̂2 = σ̂2

b
shows slightly low coverage prob-

ability when the random effects are normally distributed, implying a small downward bias, which is not unexpected.
Since the score equation for ζ2 is derived by taking derivative of the function LL (θ1 ) with respect to ζ2 and LL (θ1 )
may be viewed as an approximation to marginal likelihood of the longitudinal observations, ζ̂2 can be viewed as an
approximation to the maximum likelihood estimators (MLE). In finite sample situations, the MLE of variance compo-
nent parameters tends to exhibit downward bias due to the lack of consideration for the loss in degrees of freedom
resulting from the estimation of mean parameters β andϕ.27 Since our work aims to explore the effects of cumulative
biomarker trajectory and cumulative variability on the event risk. Therefore, the parameters of primary interest are
those that describe these effects. That is, α1 and α2. The parameter ζ2 quantifies the variance of the random effects
showing the level of subject heterogeneity but it does not provide information about how the cumulative trajectory
and cumulative variability affect event risk. Therefore, ζ2 is of minor interest and the bias in ζ2 is acceptable. To ob-
tain unbiased ζ̂2, the restricted maximum likelihood techniques, which can correct the bias in the variance component
estimators, are suggested.27 The proposed profile search algorithm produces parameter estimates for the survival sub-
model (2) with similar performance to those estimated with the known weight parameters. Specifically, the estimates,
the standard errors and the standard deviations of survival parameter estimators obtained by the profile search al-
gorithm are similar to those obtained with the known σ1 and σ2. We also observe that if our model is misspecified
as Wang’ model (15), the parameter estimates are visually biased, which highlights the necessity for introducing the
weight function ωσ ( ·) in the survival submodel (2). The averages of RMSE, RMWIE, RMWRIE are 0.0004, 0.0003 and
0.0014 for the normal random effects and 0.0003, 0.0004 and 0.0012 for the uniform random effects, indicating that
the proposed estimators µ̂ (t ) ,

∫ t

0
ωσ1 (t − s ) µ̂ (s )ds and

∫ t

0
ωσ2 (t − s ) {µ̂′′ (s ) }2ds have good performance.

4.2 | Impact of overlooking correlation in longitudinal measurement errors

In this section, we use the same simulation settings as those in Section 4.1, except the true correlation parameter,
ρ, is set as 0.8. We apply the proposed method to estimate model parameters, varying ρ from 0 to 0.9 in increments
of 0.1. When ρ is not equal to 0.8, the correlation structure is misspecified. As discussed in Section 3.2, neglecting
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correlation or misspecifying ρ as 0may lead to biased estimators α̂1 and α̂2. Since ρ = 0 is a typical assumption adopted
by existing methods, comparing the simulation results when ρ = 0.8 to those when ρ = 0 can help us to find the cost
of misspecifying ρ as 0. For space consideration, we focus on simulation results for two parameters α1 and α2 with
random effects being normally distributed, σ1 = σ2 = 4 and µ (t ) = t 2 (sin(t ) + 1) . Simulation results for other cases
are arranged in Section S12.4 of the supporting information.

[Figure 3 here.]

Figure 3 demonstrates relevant deviations in confidence bands and coverage probabilities of α1 and α2, which are
constructed based on parameter estimators α̂1 and α̂2 with their standard errors, as ρ varies from 0 to 0.9. Assuming
ρ to be zero results in visually biased and inconsistent estimators α̂1, and α̂2 (e.g., coverage probabilities when ρ = 0

are clearly smaller than confidence level 0.95). However, when correlation structure is correctly specified and ρ is 0.8,
these parameter estimators are consistent and asymptotically normally distributed, with coverage probabilities close
to 0.95. As ρ approaches its true value 0.8, the performances of parameter estimators are more similar to those when
ρ is equal to its true value. These findings highlight the importance of taking the correlation in the measurement errors
into account, which is also where our method surpasses Wang’s methods, which ignore the correlation.

We also observe that the standard errors of parameter estimators for survival submodel are robust with respect
to misspecified correlation structures. To show this, we add a new case where the proposed method is implemented
with a working correlation matrix as CS, while the true correlation matrix follows a AR(1) structure with the correlation
parameter ρ = 0.8. For comparison, results for the case where the proposed method is implemented with both of the
working the true correlation matrces follow a CS structure with ρ = 0.8 are also reported. Additionally, in order to
support our discussion, average values of AIC and BIC across 500 replicates for selecting appropriate correlation
parameter for measurement errors are added. These results are shown in Table 2.

[Table 2 here.]

From Table 2, we can see that the standard errors of α̂1 and α̂2 demonstrate robustness against misspecified corre-
lation structures. When the true correlation matrix follows AR(1) structure and the working correlation matrix follows
CS structure, the SD and the SE exhibit similarities to the SE and SD where both the working and true correlation
matrices follow CS structure. When both the true and working correlation matrices follow the CS structure, the aver-
age values of the AIC and the BIC reach their minimums when ρ = 0.8, corresponding to its true value. In fact, across
500 replicates, the proportion of correctly selecting the correlation parameter using the AIC and BIC is approximately
91%, demonstrating their effectiveness in selecting the appropriate correlation structure. When the true correlation
matrix follows a AR(1) structure with ρ = 0.8, while the CS structure is employed as the working correlation, AIC and
BIC tend to select CS structure with ρ = 0.7 or ρ = 0.8 as appropriate model, as they are close to the true correlation
structure. In fact, average values of AIC and BIC when ρ = 0.7 are similar to those when ρ = 0.8. The proportion of
selecting the CS structure with ρ = 0.7 is approximately 50% and the proportion of selecting the CS structure with
ρ = 0.8 is approximately 48%. Note that the true value of correlation parameter ρ is 0.8, and each of AR(1) correla-
tion matrix with ρ = 0 and CS correlation matrix with ρ = 0 is exactly the identity matrix. In Table 2, we observed
that the reduction in coverage probability of the parameter estimators α̂1 and α̂2 for the survival submodel, when the
correlation parameter ρ is misspecified as 0 and the true correlation matrix follows a AR(1) structure, is smaller than
the reduction when the true correlation matrix follows a CS structure. This is due to the fact that AR(1) correlation
matrix with ρ = 0.8 is closer to identity matrix then CS correlation matrix with ρ = 0.8, and therefore misspecifying
correlation parameter ρ as 0 leads to less biased parameter estimators α̂1 and α̂2 when the true correlation matrix
follows AR(1) structure.
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4.3 | Computational time

We conduct a comparative analysis of the computational time between our proposed algorithm and the EM algorithm
that incorporates a fully exponential Laplace approximation, as utilized byWang et al10,13 The simulation settings are
identical to those detailed in Section 4.1. However, we have specifically focused on the scenario where the random
effects are normally distributed, as this is a prerequisite forWang’s EMalgorithm. The sample size for these simulations
was n = 500 with an approximate censoring rate of 0.3. All algorithms were executed on a workstation equipped
with an Intel Xeon Gold 6230R CPU at 2.10GHz with 26 cores and 256 GB of RAM. On average, the computational
time required for each replication of our algorithm was 3.63 minutes, whereas implementing the EM algorithm with
the fully exponential Laplace approximation without bootstrapping requires 96.06 minutes. These simulation results
underscores the computational efficiency of our proposed method. Given thatWang’s methods employ the bootstrap
approach to estimate the standard errors of parameter estimators, Wang’s methods can become computationally
demanding when a large number of bootstrap resamples is utilized. This computational intensity is primarily due to
the iterative nature of the bootstrap process, which requires repeated sampling and model estimation.

5 | REAL DATA ANALYSIS

In this section, we apply the proposed method to the ARIC study, which was described in the Section 1. It is widely
recognized that the value of SBP (in mmHg) serves as a crucial indicator for CVD and the elevated SBP levels are often
associated with an increased risk of cardiovascular mortality.1 In the ARIC study, there are some subjects who take
the anti-hypertensive medication and therefore have moderate levels of SBP. However, these subjects still experience
CVD, indicating that there may be other factors contributing to their mortality. One potential factor is the variability
of SBP, which we will investigate in this analysis. Given the extensive literature on the intricate mechanistic effects
of diabetes on the cardiovascular mortality,28 we narrow our focus to a specific subpopulation within the ARIC study.
Specifically, we consider white male participants residing in Washington County and Suburban Minneapolis, who
concurrently use the anti-hypertensive medication while being diagnosed with the diabetes. We utilize the available
follow-up data, consisting of SBP measurements, time to CVD and corresponding censoring information up until
2016. The final sample comprises 200 subjects, among whom 85 experienced CVD events. The number of the SBP
longtiduinal measurements varies from 4 to 6. The covariates considered in our analysis include the cumulative SBP
trajectory, the cumulative SBP variability, as well as two baseline covariates: age (measured in years) and smoking
status (represented by a binary indicator: 1 for current smokers at baseline examination and 0 otherwise). To facilitate
analysis and interpretation, we rescale the variables. Specifically, age is divided by 10, SBP measurements are divided
by 50, and all the event times, censoring times and longitudinal observation times are divided by 3650. To verify that
whether the SMRE model (4) with assumption (5) is reasonable for the ARIC data, we conduct the FPCA for gi (t ) , the
shapes of the mean function and first eigenfunction of gi (t ) are plotted in Figure 4 , in which it is easy to see that the
first eigenfunction has a similar shape as the mean function multiplied by scale factor 5 such that ϕi1 (t ) ≈ 5µ (t ) . In
addition, the first eigenfunction explains 90.142% of the variation of the gi (t ) . Therefore, the SMRE model (4) with
assumption (5) are reasonable for the ARIC data.

[Figure 4 here]

We then consider the following longitudinal submodel:

SBPi j = mi (t i j ) + ϵi j , mi (t ) = Agei β1 + Smokei β2 + fi (t ), fi (t ) = bi0 + bi1t + bi2µ (t ),
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and the following survival submodel:

λi (t ) = λ0 (t ) exp {Agei γ1 + Smokei γ2 + α1ηi (t ,σ1 ) + α2πi (t ,σ2 ) } .

Here SBPi j denotes the longitudinal measurement of SBP at time point t i j for the j -th measurement on the i -th sub-
ject, Agei represents the age of subject i and Smokei indicates whether subject i is a smoker or not. The regression
parameters β1 and β2 correspond to the covariates Agei and Smokei , respectively, in the longitudinal submodel. Sim-
ilarly, the regression parameters γ1 and γ2 correspond to the covariates Agei and Smokei , respectively, in the survival
submodel. The regression parameters α1 and α2 describes the relationship between cumulative SBP trajectory and
the hazard function, and the relationship between the cumulative SBP variability and hazard function, respectively.

To select appropriate structure for the covariance of measurement errors, we consider CS, AR(1), and indepen-
dence structures as candidates. We assumeDb = σ2

b
I3, which means ζ2 is simply σ2

b
. After model selection based on

the AIC and BIC in (13) and (14), we select a compound symmetric structure for Σi , that is, Σi = σ2
ϵ (ρJni + (1− ρ )Ini )

and ζ1 = (ρ,σ2
ϵ )T. The degree of spline basis functions, d , and the number of interior knots, l , are selected as 3 and 1,

respectively. The AIC and BIC results for model selection are given Table 3. The location of the single knot is arranged
based on the equi-distant criteria. By the profile search algorithm, the weight parameters σ1 and σ2 in survival sub-
model (2) are searched as 0.1 and 0.3, respectively. Parameters to be estimated are β1, β2,φ0,φ1, ρ,σ

2
ϵ ,σ

2
b
, γ1, γ2, α1, α2.

[Tables 3-4 here.]

The estimated effects of age, smoke, cumulative SBP trajectory and cumulative SBP variability are summarized in
Table 4. We consider a parameter to be statistically significant if the p-value of its estimator is less than the significance
level of 0.05. For comparison, we also report the estimation results when ρ is assumed to be 0, which is commonly
assumed by existing methods. The results presented in Table 4 provide evidence for a positive and significant associ-
ation between the cumulative SBP variability and the time to CVD (with a p-value for α̂2 less than 0.05). Specifically,
an increase of 1 unit in cumulative SBP will result in the hazard function becoming 1.025 times its previous value, and
therefore the increases the risk of CVD. These findings strongly support the notion that the cumulative SBP variability
is related to the occurrence of the event. Additionally, we observed a significant and positive within-subject correla-
tion in measurement errors, with ρ̂ = 0.485. When assuming a zero correlation (i.e., ρ = 0), the estimated α̂1 and α̂2 are
different from those under ρ̂ = 0.485, this is because the within-subject correlation in the measurement errors is ig-
nored, leading to biases in α̂1 and α̂2, as predicted in Proposition S3 of the supporting information. Note, the absolute
difference relative to the value of α̂2 when accounting for correlation (i.e. relative difference) is (0.032 - 0.025)/0.025
= 0.28. This indicates that neglecting correlation leads to a 28% upward shift in α̂2, compared to the estimator ob-
tained when accounting for correlation. We consider a 28% relative difference to be substantial, suggesting that the
association parameter estimator α̂2 is affected by change in the correlation structure. When ignoring correlation in
longitudinal measurement errors, the parameter estimates σ̂2

ϵ and σ̂2
b
, the estimated standard errors for β̂1, β̂2, φ̂0, φ̂1,

σ̂2
ϵ and σ̂2

b
are very different from those estimated by the model taking the within-subject correlation in measurement

errors into account. This is due to the fact that neglecting the correlation may lead to efficiency loss,29 which may
obtain inefficient parameter estimators when the covariance matrix Φi is misspecified (i.e., when assuming ρ = 0).
Specifically, the random effect variance estimator σ̂2

b
is even not statistically significant when assuming ρ = 0, indicat-

ing that the random effect vector bi , which captures the heterogeneity of SBP trajectories in different subjects, is a
constant vector. This is obviously a misleading conclusion and suggests that ignoring the within-subject correlation in
the measurement errors may lead to misleading inference. Additionally, we have observed that the estimated regres-
sion parameter γ̂1 corresponding to the covariate of age is statistically significant. This indicates that older subjects
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are more likely to experience CVD. Although previous research, such as Mok et al, has shown a positive association
between baseline SBP and the risk of myocardial infarction, we find that the cumulative SBP trajectory in our analysis
is not statistically associated with the CVD risk. This discrepancy may be attributed to the fact that we focus on a
subpopulation who take the anti-hypertensive medication and have the diabetes while Mok et al considered another
subpopulation who developed myocardial infarction.30 Ma and Pan, who studied another subpopulation of patients
living inWashington County and SuburbanMinneapolis, also found that SBP values were also not significantly related
to risk of CVD.31

[Figures 5-6 here.]

Figure 5 plots the observed SBP trajectories, the fitted SBP trajectories, the fitted cumulative SBP trajectories and
the fitted cumulative SBP variability for randomly selected 5 subjects in the ARIC study. It illustrates that the fitted
SBP trajectories obtained using our methods closely match the observed SBP trajectories. Upon visual inspection, we
observe that the subject with trajectory depicted in red display the highest SBP variability. This is evident in the fitted
cumulative SBP variability, as shown in the bottom right sub-figure of Figure 6. This observation suggests that the
weighted roughness measure πi (t ,σ2 ) appropriately captures the variability of the biomarker.

As depicted in Figure 6, the estimated population SBP (EPSBP) trajectory ranges from 2.5 to 2.625, corresponding
to a range of 125 to 131.25 (since SBP is divided by 50 in our analysis) for the value of SBP. This range of SBP changes
aligns with what is commonly observed in hypertensive patients who are undergoing anti-hypertensive medication.32

This finding suggests that our method effectively captures the pattern of the ARIC data. Additionally, the estimated
population cumulative SBP (EPCSBP) trajectory exhibits a generally flat trend followed by an uptrend at larger time
points. Furthermore, the estimated population cumulative SBP variability initially decreases and then increases. This
pattern is consistent with the shape of the EPSBP. Overall, our method demonstrates good performance in analyzing
the ARIC data.

Under the proposed SMRE model (4) with assumption (5), our proposed method neither imposes distribution
assumption on random effects nor involves their integration, which makes our proposed method very applicable
for real problems and computationally efficient. Since the integrals involved in the cumulative trajectory and the
cumulative variability do not permit analytical expression, the computational burden mainly comes from calculating
these integrals via numerical approximation. The computation time for implementing the proposed algorithm for the
ARIC data is 5.364 min using a workstation with Intel Xeon Gold 6230R 2.10GHz 26 cores CPU and 256G RAM.

6 | DISCUSSION

In this paper, we propose a novel approach to estimate the association between the event time and the cumulative
biomarker variability. Our method takes the correlation in the longitudinal measurement errors within the same sub-
ject into account, resulting in unbiased parameter estimators in survival submodel (2). The SMREmodel (4) is proposed
to capture the population trajectory which is approximately linear when time is small while nonlinear when time is
large. It assumes that the biomarker trajectory can be represented as sum of a linear term and a nonlinear term. And
the linear term dominates the nonlinear term when time is small. This SMRE model enables the construction of an
estimating equation that does not impose any distributional assumption on the random effects and does not require
their integration. As a result, the proposed method is both more flexible and computationally efficient compared to
existing approaches. As the sample size and the number of knots go to infinity at appropriate rates, consistency and
asymptotic normality of the proposed estimators are established.
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Biomarker trajectory in longitudinal data often exhibits the pattern captured by the SMRE model (4) and assump-
tion (5). In the early stages, biomarker values tend to linearly increase, decrease, or remain stable at a steady rate.
Possible reasons include patients’ relatively better health conditions at early stage of disease or the effectiveness of
taking medication. However, as the patient’s condition worsens, biomarker values often show nonlinear and irregular
changes due to declining health. For instance, the frequently studied AIDS data in Figure 3 of Yao indicates that,
for those patients taking zalcitabine, the population CD4 trajectory is linearly decreasing in the early stage of AIDS
but becomes nonlinear over time.20 Similarly, the PBC data in Figure 3 of Ding and Wang shows that the population
serum bilirubin trajectory is linearly increasing in the early stage but becomes nonlinear over time.21

In the construction of the working likelihood function LS (θ2 ) in (9) for the survival submodel, we only consider
data from subjects with greater than three longitudinal measurements . This is because we need to ensure the exis-
tence of the weighted least squares estimate for the three-dimensional random effects bi = (bi0, bi1, bi2 )⊤. However,
this does not mean that we should discard data from subjects with fewer than three longitudinal measurements when
constructing the working likelihood function LL (θ1 ) in (6) for the longitudinal submodel, as data from these subjects
contribute to the longitudinal working likelihood function.

In Section 3.4, we suggest to select the appropriate covariance structure of Σi among some parametric candidates.
However, it is important to acknowledge that in real-world scenarios, Σi may exhibit a completely unstructured pattern
andmay not be accurately captured by any of candidates. In such a case, the modified Cholesky decomposition (MCD)
may be a promising approach for modeling Σi , since MCD is widely used to build model for unstructured covariance
matrices and can provide flexible and effective representations of the underlying correlation structure.33 Although
we do not delve into this specific modeling approach in this paper, we recognize its potential and leave it as an avenue
for future research.

Supporting Information

Supporting information for this article is available online. Section S1 includes proofs and a simulation study which
provide evidence that the Conditional Score method and the Corrected Score method may lead to biased parameter
estimates in survival submodel when neglecting correlation in longitudinal measurement errors. Section S2 includes a
simulation study evaluating the cost ofmisspecifying the SMREmodel (4) with assumption (5). Section S3 gives explicit
expression forU (θ) . Sections S4-S9 present rigorous proofs for theoretical results with required regularity conditions
and useful lemmas. Section S10 gives explicit expression for Σ̂J . Section S11 presents a detailed version of algorithm
to obtain θ̂. Section S12 presents additional simulation results. Section S13 presents a discussion for interpreting the
impact of the Gaussian weight function ωσ (t − s ) on the cumulative trajectory and cumulative variability at current
time t . Section S14 discusses why it is not appropriate to describe the cumulative variability using absolute value
of derivative of trajectory. Finally, Section S15 gives detailed discussion for the impact of neglecting correlation in
longitudinal measurement errors on parameter estimators for the survival submodel.
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F IGURE 1 Estimated population SBP (EPSBP) for ARIC study.
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F IGURE 2 Shapes of two population longitudinal trajectories m† (t ) (left figure) and m‡ (t ) (right figure).
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F IGURE 3 Impact of overlooking correlation in longitudinal measurement errors for µ (t ) = t 2 (sin(t ) + 1) ,
σ1 = σ2 = 4 and normal random effects. Top: averaged estimates of α1 and α2 with 95% confidence interval. Bottom:
histogram of coverage probability of α1 and α2. Black solid line: parameter estimates. Red dashed line: 95%
confidence interval. Blue horizontal line: true value of α1 or α2. Blue vertical line: true value of correlation parameter
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F IGURE 4 The mean function and the first eigenfunction (right) of gi (t ) for the ARIC data. The eigenvalue of
the first eigenfunction is 1.149 and the summation of all the eigenvalues are 1.274, which means the first
eigenfunction explains 90.142% of the variation of gi (t ) .
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F IGURE 5 SBP trajectories (solid line for observed trajectories and dotted line for fitted trajectories), fitted
cumulative SBP trajectories and fitted cumulative SBP variability for randomly selected 5 subjects in the
Atherosclerosis Risk in Communities data.
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F IGURE 6 EPSBP Trajectory (top left), EPCSBP Trajectory (top right), EPCSBP Variability (bottom left) and µ (t )
of the SMRE model (bottom right) in the ARIC data.
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TABLE 1 Simulation Studies for µ† (t ) = t 2 (sin(t ) + 1) with σ1 = σ2 = 4.
Parameter KSP PS WM

True value Estimates SE SD CP Estimates SE SD CP Estimates SE SD CP
Normal Random Effects

β 0.700 0.701 0.069 0.073 0.936 0.701 0.069 0.073 0.936 0.701 0.069 0.073 0.936
φ0 0.200 0.198 0.021 0.020 0.956 0.198 0.021 0.020 0.956 0.198 0.021 0.020 0.956
φ1 0.700 0.707 0.035 0.036 0.936 0.707 0.035 0.036 0.936 0.707 0.035 0.036 0.936
ρ 0.500 0.513 0.069 0.078 0.924 0.513 0.069 0.078 0.924 0.513 0.069 0.078 0.924
σ2
ϵ 0.100 0.105 0.015 0.020 0.922 0.105 0.015 0.020 0.922 0.105 0.015 0.020 0.922

σ2
b

0.120 0.115 0.005 0.006 0.906 0.115 0.005 0.006 0.906 0.115 0.005 0.006 0.906
γ -1.000 -0.996 0.116 0.120 0.944 -0.997 0.116 0.121 0.944 -0.058 0.156 0.375 0.044
α1 0.500 0.496 0.054 0.055 0.940 0.492 0.053 0.055 0.944 -0.213 0.042 0.114 0.000
α2 1.000 0.989 0.144 0.139 0.960 0.983 0.144 0.139 0.956 -0.834 0.143 0.357 0.000

Uniform Random Effects
β 0.700 0.697 0.070 0.072 0.940 0.697 0.070 0.072 0.940 0.697 0.070 0.072 0.940
φ0 0.200 0.199 0.021 0.022 0.934 0.199 0.021 0.022 0.934 0.199 0.021 0.022 0.934
φ1 0.700 0.707 0.035 0.036 0.932 0.707 0.035 0.036 0.932 0.707 0.035 0.036 0.932
ρ 0.500 0.486 0.085 0.098 0.924 0.486 0.085 0.098 0.924 0.486 0.085 0.098 0.924
σ2
ϵ 0.100 0.100 0.017 0.019 0.920 0.100 0.017 0.019 0.920 0.100 0.017 0.019 0.920

σ2
b

0.120 0.119 0.009 0.010 0.936 0.119 0.009 0.010 0.936 0.119 0.009 0.010 0.936
γ -1.000 -0.996 0.120 0.120 0.960 -0.996 0.121 0.121 0.960 -0.376 0.152 0.341 0.166
α1 0.500 0.505 0.057 0.057 0.950 0.501 0.056 0.057 0.946 -0.164 0.043 0.114 0.000
α2 1.000 0.958 0.159 0.160 0.946 0.949 0.158 0.160 0.936 -1.015 0.152 0.373 0.000

TABLE 2 Correlation misspecification results for µ† (t ) = t 2 (sin(t ) + 1) with σ1 = σ2 = 4 and the normal random
effects. Compound symmetry is used as working correlation structure in both of left and right half of the table. CS:
compound symmetry. AR(1): first-order autoregressive. The true value of correlation parameter is ρ = 0.8. The
proportion of correctly selecting the correlation parameter using the AIC and BIC is approximately 91% when CS is
used as true correlation structure

True correlation structure: CS True correlation structure: AR(1)

True value 0.5 1 True value 0.5 1 True value 0.5 1 True value 0.5 1

ρ = 0 α1 α2 ρ = 0.5 α1 α2 ρ = 0 α1 α2 ρ = 0.5 α1 α2

AIC 23.580 Estimates 0.431 1.197 AIC 23.538 Estimates 0.468 1.071 AIC 25.268 Estimates 0.468 1.086 AIC 25.231 Estimates 0.491 1.034

BIC 5.692 SE 0.053 0.144 BIC 5.650 SE 0.054 0.145 BIC 7.380 SE 0.048 0.138 BIC 7.343 SE 0.048 0.139

SD 0.053 0.143 SD 0.053 0.139 SD 0.055 0.148 SD 0.055 0.144

CP 0.724 0.730 CP 0.918 0.920 CP 0.891 0.876 CP 0.923 0.923

ρ = 0.1 α1 α2 ρ = 0.6 α1 α2 ρ = 0.1 α1 α2 ρ = 0.6 α1 α2

AIC 23.575 Estimates 0.440 1.164 AIC 23.522 Estimates 0.471 1.059 AIC 25.263 Estimates 0.475 1.062 AIC 25.219 Estimates 0.492 1.031

BIC 5.687 SE 0.053 0.144 BIC 5.634 SE 0.054 0.146 BIC 7.375 SE 0.048 0.138 BIC 7.331 SE 0.048 0.139

SD 0.053 0.141 SD 0.053 0.139 SD 0.055 0.146 SD 0.055 0.144

CP 0.782 0.806 CP 0.919 0.946 CP 0.902 0.888 CP 0.925 0.928

ρ = 0.2 α1 α2 ρ = 0.7 α1 α2 ρ = 0.2 α1 α2 ρ = 0.7 α1 α2

AIC 23.568 Estimates 0.449 1.135 AIC 23.502 Estimates 0.473 1.052 AIC 25.257 Estimates 0.481 1.050 AIC 25.207 Estimates 0.493 1.028

BIC 5.680 SE 0.053 0.145 BIC 5.614 SE 0.054 0.146 BIC 7.369 SE 0.048 0.138 BIC 7.319 SE 0.048 0.139

SD 0.053 0.140 SD 0.053 0.140 SD 0.055 0.145 SD 0.055 0.146

CP 0.836 0.868 CP 0.922 0.948 CP 0.908 0.899 CP 0.926 0.932

ρ = 0.3 α1 α2 ρ = 0.8 α1 α2 ρ = 0.3 α1 α2 ρ = 0.8 α1 α2

AIC 23.560 Estimates 0.456 1.109 AIC 23.487 Estimates 0.474 1.050 AIC 25.250 Estimates 0.485 1.042 AIC 25.206 Estimates 0.494 1.026

BIC 5.672 SE 0.053 0.145 BIC 5.598 SE 0.054 0.146 BIC 7.362 SE 0.048 0.138 BIC 7.318 SE 0.048 0.140

SD 0.053 0.139 SD 0.053 0.141 SD 0.055 0.145 SD 0.055 0.145

CP 0.874 0.896 CP 0.934 0.952 CP 0.914 0.909 CP 0.927 0.936

ρ = 0.4 α1 α2 ρ = 0.9 α1 α2 ρ = 0.4 α1 α2 ρ = 0.9 α1 α2

AIC 23.551 Estimates 0.463 1.088 AIC 23.542 Estimates 0.473 1.053 AIC 25.242 Estimates 0.489 1.038 AIC 25.300 Estimates 0.492 1.029

BIC 5.662 SE 0.055 0.145 BIC 5.654 SE 0.055 0.146 BIC 7.354 SE 0.048 0.139 BIC 7.4115 SE 0.048 0.140

SD 0.053 0.139 SD 0.053 0.141 SD 0.055 0.144 SD 0.055 0.146

CP 0.902 0.908 CP 0.920 0.948 CP 0.919 0.917 CP 0.925 0.933
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TABLE 3 Model selection results for ARIC data analysis. d : degree of spline basis functions. l : number of spline
knots. S: structure of covariance of measurement errors within the same subject. In: independence structure CS:
compound symmetry structure. AR: first-order autoregressive structure.

(d , l , S)
(3, 1, In) (3, 2, In) (3, 3, In) (4, 1, In) (4, 2, In) (4, 3, In)

AIC -6.055 -6.042 -6.040 -6.041 -6.028 -5.700
BIC -5.890 -5.860 -5.842 -5.860 -5.830 -5.486

(3, 1, CS) (3, 2, CS) (3, 3, CS) (4, 1, CS) (4, 2, CS) (4, 3, CS)
AIC -6.196 -6.181 -6.186 -6.183 -6.175 -6.171
BIC -6.031 -6.000 -5.988 -6.002 -5.977 -5.956

(3, 1, AR) (3, 2, AR) (3, 3, AR) (4, 1, AR) (4, 2, AR) (4, 3, AR)
AIC -6.105 -6.091 -6.093 -6.099 -6.084 -6.041
BIC -5.940 -5.909 -5.895 -5.910 -5.887 -5.827

TABLE 4 Estimation Results for the Atherosclerosis Risk in Communities data.

Model with correlated measurement errors Model assuming independent measurement errors
Parameter Estimate SE P value Estimate SE P value

β1 0.004 0.034 0.906 -0.010 0.165 0.952
β2 -0.034 0.045 0.450 0.012 0.220 0.957
φ0 2.500 0.023 <0.001 2.508 0.097 <0.001
φ1 0.073 0.017 <0.001 0.069 0.098 0.481
ρ 0.485 0.050 <0.001 - - -
σ2
ϵ 0.096 0.009 <0.001 0.030 0.003 <0.001

σ2
b

0.012 0.004 0.003 0.004 0.004 0.317
γ1 0.614 0.200 0.002 0.589 0.188 0.001
γ2 0.218 0.250 0.383 0.089 0.260 0.732
α1 0.013 0.036 0.361 0.014 0.036 0.697
α2 0.025 0.009 0.006 0.032 0.007 <0.001
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