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ABSTRACT

Test sets are an integral part of evaluating models and gauging progress in object
recognition, and more broadly in computer vision and Al. Existing test sets for
object recognition, however, suffer from shortcomings such as bias towards the
ImageNet characteristics and idiosyncrasies (e.g. ImageNet-V2), being limited to
certain types of stimuli (e.g. indoor scenes in ObjectNet), and underestimating
the model performance (e.g. ImageNet-A). To mitigate these problems, here we
introduce a new test set, called D20, which is sufficiently different from existing
test sets. Images are diverse, unmodified, and representative of real-world scenarios
and cause state-of-the-art models to misclassify them with high confidence. To
emphasize generalization, our dataset by design does not come paired with a
training set. It contains 8,060 images spread across 36 categories, out of which
29 appear in ImageNet. The best Top-1 accuracy on our dataset is around 60%
which is much lower than 91% best Top-1 accuracy on ImageNet. We find that
popular vision APIs perform very poorly in detecting objects over D20 categories
such as “faces”, “cars”, and “cats”. Our dataset also comes with a “miscellaneous”
category, over which we test the image tagging models. Overall, our investigations
demonstrate that the D20 test set contain a mix of images with varied levels of
difficulty and is predictive of the average-case performance of models. It can
challenge object recognition models for years to come and can spur more research
in this fundamental area. Data and code are publicly available at [Masked].

1 INTRODUCTION

The object recognition problem remains in an unclear state. Despite compelling performance of
state-of-the-art object recognition methods, several questions such as out of distribution generaliza-
tion (Recht et al.,[2019; [Barbu et al., 2019; |Shankar et al., | 2020; Taor1 et al., [2020; Koh et al., [2020)),
“superhuman performance” (He et al.l 2015} |Geirhos et al.,|2018)), adversarial vulnerability (Goodfel{
low et al.,[2014)), and invariance to image transformations and distortions (Hendrycks & Dietterichl
2019) still persist. Raw performance on test sets has been the main indicator of the progress and the
major feedback about the state of the field. Few test sets have been proposed for evaluating object
recognition models. Some follow the footsteps of ImageNet (Recht et al.,2019). Some filter images
based on failures of models (Hendrycks et al.| 2021). Researchers have also used controlled settings
to collect data (Barbu et al., [2019; Borji et al., 2016). While being invaluable, these datasets suffer
from few shortcomings. For example, datasets that only include examples for which the best models
fail give the worst case scenario accuracy. While being useful, they underestimate model performance.
Datasets that are biased towards certain environments (e.g. indoor scenes in ObjectNet (Barbu et al.|
2019)), may not capture the full spectrum of visual stimuli. Most of the new datasets for object
recognition have been centered on ImageNet (e.g. ImageNet-V2, ImageNet-A, ImageNet-O) and thus
may have inherited its biases. This may in turn give us a biased assessment of visual recognition
capability of models. We argue that a good test set should strike the right balance between sample
difficulty and diversity and should reflect the average-case performance of models. We also believe
that new test sets that are sufficiently different from existing ones can provide new insights into the
object recognition problem. To this end, we include images that contain rich semantics and require
cognitive processing (e.g. artistic scenes). Existing datasets lack enough samples of such cases.

Here, we emphasize image diversity and difficulty over scale. While scaling up test sets has a clear
advantage (e.g. covering rare cases), it comes with some shortcomings. It is hard to ensure privacy,
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Figure 1: Sample images from D20 dataset. Categories in order are: acorn, basketball, and cat (left
column), banana, car, and clock (right column).

security, quality, and spurious correlationsﬂin datasets containing millions of images. These problems
are easier to tackle in small scale expert-made datasets. Nonetheless, both small and large datasets
are needed and are complementary.

Our dataset includes 8,060 images across 36 categories (Fig. [I). Images are carefully collected,
verified, and labeled. We do not limit ourselves to object recognition models proposed in academia,
and also consider prominent vision APIs in industry. This allows us to test models over a wider range
of categories than those available in ImageNet and obtain a broader sense of image understanding by
models. State-of-the-art models show a 30% absolute drop in Top-1 acc on D20 test set compared to
the best ImageNet accuracy (around 20% drop using Top-5 acc). Further, over categories for which
we know humans are very good at (e.g. faces, cars), current APIs fail drastically.

D20 test set is intentionally not paired with a training set. It comes with a license that disallows
researchers to update the parameters of any model on it. This helps avoid over-fitting on the dataset.
Additionally, to mitigate the danger of leaking our data to other datasets, we mark every image by a
one pixel green border which must be removed on the fly before using.

2 OBIJECT RECOGNITION TEST SETS

A plethora of datasets have been proposed for image classiﬁcatiorﬂ Here, we are concerned with
datasets that focus on core object recognition. ImageNet (Deng et al., 2009) is one of the most used
datasets in computer vision and deep learning. It contains 1000 classes of common objects, with
more than a million training images. Its test set contains 50,000 images. ImageNet test examples tend
to be simple (by today’s standards), clear, and close-up images of objects. As such, they may not
represent harder images encountered in the real world. Further, ImageNet annotations are limited to a
single label per image. To remedy the problems with ImageNet, new test sets have been proposed,
which have been instrumental in gauging performance of models and measuring the gap between
models and humans. The major ones are reviewed below. In addition to these, several other datasets
such as CIFAR-100 (Krizhevsky et al.,|2009), SUN (Xiao et al., 2010), Places (Zhou et al.,[2017)),
ImageNet-Sketch (Wang et al.,[2019), and iLab20M (Borji et al.}|2016) have also been introduced.

ImageNet-V2. Recht et al.| (2019) built this test by closely following the ImageNet creation process.
They reported a performance gap of about 11% (Top-1 acc.) between the performance of the best
models on this dataset and their performance on the original test set. Engstrom et al.|(2020) estimated
that the accuracy drop from ImageNet to ImageNet-V2 is less than 3.6%. Some other works have
also evaluated and analyzed models on this dataset (Shankar et al.| [2020; |Taori et al., 2020).

ImageNet-A, ImageNet-O, ImageNet-C, and ImageNet-P. These datasets are built to measure the
robustness of image classifiers against out of distribution examples and image distortions (Hendrycks
et al.,[2021;Hendrycks & Dietterichl, 2019; |[Hendrycks et al.,2020). Specifically, ImageNet-A dataset
contains images for which a pre-trained ResNet-50 model fails to predict the correct label (Fig. 2).
It has 7,500 images scrapped from iNaturalist, Flickr, and DuckDuckGo websites. Following the
approach in [Hendrycks et al.|(2021), researchers have gathered “natural adversarial examples” for
other problems such as object detection (Lau et al.,|2021) and microscopy analysis (Pedraza et al.,
2022). In contrast to these datasets which benchmark the worst case performance of models, here
we are interested in the average case performance. To this end, instead of filtering images to fool a

'Deep models take advantage of correlations between testing and training sets (a.k.a “spurious cues” or
“shortcuts”). These correlations are easily accessible to models but are not to humans (Geirhos et al.| [2020).
2https ://paperswithcode.com/datasets?task=image-classification&page=2
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Figure 2: Left: Distribution of number of objects per category over our D20 dataset as well as the 11
classes from ImageNet-A that are in common with D20 (inset panel). This subset of Imagenet-A has
a total of 393 images. In total, our dataset contains 8060 images over 36 categories. Right: Sample
images from acorn, banana, and basketball categories of Imagenet-A. The blue box demonstrates the
cropped region used to build the Isolated ImageNet-A dataset. See also Appendix E

classifier, we include a mix of easy and hard examples to get a better sense of accuracy. Notice that a
model that can only solve a very hard test set is not guaranteed to also solve an easy one.

Reassessed Labels (Real.). Beyer et al.|(2020) collected new human annotations over the ImageNet
validation set and used them to reassess the accuracy of ImageNet classifiers. They showed that
model gains are substantially smaller than those reported using the original ImageNet labels. Further,
they found that ReaL labels eliminate more than half of the ImageNet labeling mistakes. This implies
that they provide a superior estimate of the model accuracy.

ObjectNet. To remove the biases of the ImageNet, |Barbu et al.| (2019) introduced the ObjectNet
dataset. Images are pictured by Mechanical Turk workers using a mobile app in a variety of
backgrounds, rotations, and imaging viewpoints. ObjectNet contains 50,000 images across 313
categories, out of which 113 are in common with ImageNet categories. Astonishingly, Barbu et
al. found that the state-of-the-art object recognition models perform drastically lower on ObjectNet
compared to their performance on ImageNet (about 40-45% drop). Later on, revisited
the Barbu et al. ’s results and found that applying deep models to the isolated objects, rather than the
entire scene as is done in the original paper, leads to 20-30% performance improvement.

3 D20 TEST SET

We followed two approaches to collect the data. In the first one, we used publicly-available and
free-to-distribute sources. We crawled images from the Flicker and Google image search engine
using different search queries. The queries contained terms specifying countries, locations, materials,
different times (e.g. 80s), odd appearances (e.g. odd helmet), etc. We also included images from
various categorized panels in the search results (e.g. drawing, sketch, clip art, icon, neon, clay, etc.).
In the second approach, we used image generation tools such as DALL-E 2 (Ramesh et all,[2022),
Midjourney), and Stable Diffusion (Rombach et al.} [202T) to generate some image or search for some
images generated these tools. We only selected the images that had good quality. Some sample
generated images are shown in Appendix[l] We did our best to ensure that images do contain sensitive
material, have poor resolution, or violate copyright lawﬂ The gathered encompass a wide variety
of visual concepts over both RGB images, paintings, drawings, cartoons, and clip arts. To reduce
ambiguity, most of the images contain one main object. Categories were selected based on the
following two criteria: b) they should be possible to collect a variety of instances for them with
different levels of difficulty, and c) one would consider model errors on them egregious (i.e. confusing
a cat with a dog is more troublesome than confusing a beaver with a marmot). During data collection,
we emphasized choosing the odd items.

Three annotators, who were also computer vision researchers, were presented with an image as well
as its corresponding label. They were asked to verify the label by checking the correct or the incorrect
box. We found that the three annotators agreed with the correct label over all images.

3We choose images that were public domain, did not have copyright, or were released by the government.
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the frequencies of the top 70 most frequent tags. See Appendices |§| and for more stats.

D20 class ]|

ImageNet class

l

clock digital clock, wall clock
elephant Indian elephant African elephant
helmet crash helmet, football helmet, gas mask, respirator, gas helmet
rabbit wood rabbit, cottontall cottontail rabblt Angora, Angora rabbit
squirrel fox s?ulrrel eastern fox squirrel, Sciurus niger
sun glass sung ass, sunglasses, dark glasses, shades
turtle g%]erhead loggerhead turtle, Caretta caretta,
leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea,
mud turtle, box turtle, box tortoise

Table 1: The mapping between categories in our dataset and ImageNet categories.

We did not incorporate any bias towards gender, age, or race during data collection, and tried to
be as inclusive as possible. Most of the categories are about objects. Few classes such as bicycle-
built-for-two, face, helmet, person, sunglass, and umbrella contain humans and faces. We include
and balance the number of images containing different ages and genders. The age groups are (child,
22), (teenager, 30), (adult, 51), and (elderly, 43). The gender groups include (woman, 66) and (man,
80). Notice that these issues are more important to address over large training sets. This is because
sometimes models trained on such datasets are directly deployed in the real-world.

Our dataset contains 8,060 images spread across 36 categories, out of which 29 are in common with
ImageNet. Six categories including {car, cat, cow, face, giraffe, person} donot
appear in ImageNet, and are included mainly because they are very common and easily recognizable
by humans. Seven of the categories correspond to multiple ImageNet categories, as shown in the
mapping in Table[I] For a certain class, if a model predicted any of its corresponding ImageNet
classes, we considered the prediction a hit. Sample images from our dataset are shown in Fig. [T}
Distribution of object frequencies is shown in the left panel of Fig.[2] The most frequent class is the
person followed by car and cat classes. Interestingly, there is a large variation of person in
images as this topic has fascinated many artists over time (e.g. person made of wire, clay, matches).

The miscellaneous category. This category includes images that do not simply fall under a specific
category and may cover multiple concepts (e.g. hybrid animals or strange objects). Thus, this category
is suitable for testing image tagging algorithms. It contains 576 images covering a wide variety of
concepts and topics including hybrid animals, hybrid objects, art, illusions, camouflage objects, out
of context objects, shadow, animals, fruits, drawings, paintings, objects made from different materials
(e.g. glass, metal, clay, cloud, tattoos, or Lego), impersonating objects, strange daily objects, and
objects from odd viewpoints. Sample images alongside their tags are shown in Fig.[3] This figure
also presents the tag frequencies. The top 10 most frequent tags include (camouflage, 60),
(person,57), (Lego,41), (fish,40), (dog,33), (art,32), (house,20),
(chair,18), (bird,16), (hand,16),and (duck,14).

To put our dataset in perspective with other datasets and for cross-dataset comparison, we also
evaluate models over 11 classes of the ImageNet-A dataset that also exist in our dataset. Sample
images from three of these categories are shown in the right panel of Fig. 2]

The D20 dataset is substantially different from ImageNet and ImageNet-A validation sets measured
in terms of the Fréchet Inception Distance (FID) (Heusel et al.,|2017). The FID between D20 and
these sets in order are 45.2 and 51.3 indicating a large distribution shift. To put these numbers in



Under review as a conference paper at ICLR 2023

Average Accuracy over Models Average Accuracy over Models

- TplAcc

m— op-1 Acc
- Top-5 Acc

kite
pizza
sock
ella
eat
ter
tor
vase
clock
ter
ula
ella
ball

uuuu

mmmmm

rabbit
turtle
elephant
acom
helmet
banana
bagel
syringe
mouse
teddy
pretzel
pillow
syringe
corm
oom
etzel
d

squirrel
sunglass

£ £ g

mushroom
basketball
bell pepper
umbi
toilet
toa
tra
bell pepper
mushi
p
to
spa
umbi
baske

]
2
g
=
g
&

Figure 4: Per category performance of the models on our dataset (left) and on ImageNet-A dataset
(right), averaged over 10 models. The dashed lines show the average performance over categories.
See Appendix |§| for performance of individual models.
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Figure 5: Per category performance of the best model (resnext101_32x8d_ws.

perspective, the FID between ImageNet’s validation and the test set is approximately 0.99. Notice
that the lower the FID, the more similar the two distributions.

4 RESULTS AND ANALYSES
4.1 GENERIC OBJECT RECOGNITION

We tested 10 state-of-the-art object recognition modelﬂ pre-trained on ImageNet, on our dataset.
These models have been published over the past several years and have been immensely successful
over the ImageNet benchmarks. They include AlexNet (Krizhevsky et al.,2012), MobileNetV2 (San:
dler et al.| [2018), GoogleNet (Szegedy et al.| [2015)), DenseNet (Huang et al., 2017), ResNext (Xie
et al., 2017)), ResNet101 and ResNet152 (He et all, 2016)), Inception_V3 (Szegedy et all, 2016),
Deit (Touvron et al} [2021)), and ResNext_WSL (Mahajan et al.,[2018). Details on accuracy computa-
tion are given in Appendix [A]

Models are trained on ImageNet and tested only on the classes shared with ImageNet. Performance
per D20 category, averaged over models, is shown in Fig. 4] The average performance, over all
models and categories, is around 30% using Top-1 acc and around 50% using Top-5 acc. The
corresponding numbers over the ImageNet-A dataset are about 5% and 15%, respectively. Therefore,
ImageNet-A images are on average harder than D20 images for models, perhaps because they contain
a lot of clutter. Prior research has shown that clutter and crowding severely hinder deep models
(e.g. [Volokitin et al.| (2017)). It is not clear which object is the main one in most of the ImageNet-A
images (See Fig. 2). To pinpoint whether and how much clutter contributes to low performance on
this dataset, we manually cropped the object of interest in images (the blue bounding boxes in Fig. [2)).
The cropped objects have low resolution, but they are still recognizable by humans. Results on this
dataset, called ImageNet-A-Isolated, will be discussed in the following.

Among the models, resnexthl_32x8d_wsE| ranks the best over both datasets, as shown in
Fig.[5] It achieves around 60% Top-1 accuracy, which is much higher than its Top-1 acc over the

“Models are available in PyTorch hub: https://pytorch.org/hub/, We used a 12 GB NVIDIA
Tesla K80 GPU to conduct the experiments.
3This model scores 85.4% (97.6% top-5) over ImageNet-1k validation set (single-crop).
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Figure 6: Left: Performance of models averaged over categories (29 categories of D20 and 11 categories of
ImageNet-A). Right: Fraction of images over which all models fail or they all succeed.
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Figure 7: Sample failures of resnext101_32x8d_ws model over the kite (top) and other cate-
gories. Model predictions are overlaid on images. The confidence for the top-1 prediction is also
shown. Please see also Appendixﬁ

ImageNet-A dataset (~40%). The Top-5 acc of this model on our dataset is about 80% compared to
its 60% over ImageNet-A. The success of this model can be attributed to the fact that it is trained
to predict hashtags on billions of social media images in a weakly supervised manner. The best
performance on our dataset is much lower than the best performance on the ImageNet validation set.
The best Top-1 and Top-5 performance over the latter are about 91% and 99%, respectivelyﬁ We find
that better performance on ImageNet translates to better performance on D20.

Performance per model, averaged over D20 categories, is shown in the left panel of Fig.[6] We
observe a big difference between accuracy of resnext101_32x8d_ws model vs. other models.
This model is about 20% better than the second best model deit_bas_patchl6_224, using
Top-1 accuracy. The former model is based on weakly supervised learning whereas the latter is a
transformer-based model. See Appendix for performance of individual models.

As shown in Fig. [} models perform much better over the Isolated ImageNet-A dataset than the
original ImageNet-A, even though the former has low resolution images due to region cropping. This
supports our argument that lower performance on ImageNet-A dataset is partly due to its scenes being
cluttered. All categories enjoy an improvement in accuracy (See Appendix [C).

We also test the SwinTransformer on D20. This model has improved the state-of-
the-art over several computer vision problems including object detection, semantic segmentation, and
action recognition. It scores 58.2% (Top-1) and 76.1% (Top-5). It performs much better than ResNet,
Inception and Deit models, but is slightly below the resnext101_32x8d_ws model.

®https://paperswithcode.com/sota/image-classification-on-imagenet
"https://github.com/microsoft/Swin-Transformer
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Figure 8: Sample face images along with predictions of OpenCV (Red), Microsoft API (Green),
MEGVII Face++ API (Blue), and Google MediaPipe (Black) face detectors.

Illustrative Failure Modes. According to Fig.[d] the top five most difficult D20 categories for all
models in order are kite, rabbit, squirrel, turtle,and mushroom which happen to
be the most difficult categories for the best model as well (Fig.[5). The kite class is often confused
with parachute, balloon, and umbrella classes. Sample failure cases from the categories along with
the predictions of the resnext101_32x8d_ws model are shown in Fig. m Models often fail on
drawings, unusual objects, or images where the object of interest is not unique. We also computed the
fraction of images, per category, over which all models succeed, or they all fail, as shown in the right
panel of Fig. |6l For some categories models consistently fail (e.g. kite, rabbit, turtle, squirrel), while
for some others they all do very well (e.g. toaster, tractor, pretzel). When all models succeed, they
are correct at best over 30% of the images (toaster). This result indicates that models share similar
weaknesses and strengths.

4.2 PERFORMANCE OF VISION APIs

We also tested several APIs from Microsofiﬂ, Googleﬂ and MEGVIﬂ over the D20 categories that
do not exist in ImageNet: {face, person, car, cat, cow, giraffe}). These APIs
are very popular and highly accurate. The goal here is to see how models behave beyond ImageNet.

Face Detection. D20 face category has 289 images and includes a lot of odd and difficult faces,
some are shown in Fig.[8] We are mainly interested in finding whether a model is close enough in
detecting faces. To this end, we refrain from using mAP to evaluate the APIs and use the accuracy
score, which is easier to understand and interpret. An image is considered as a hit if the API is able
to generate a bounding box with IOU greater than or equal to 0.5 with a face in the image. Otherwise,
the image is considered a mistake. We also manually verified all the predicted boxes. Our evaluation
is an overestimation of performance rather than being a strict benchmark. Over the images for which
the APIs failed, most often the predicted boxes did not overlap with any face in the image. In the
majority of the mistakes, though, the face was missed.

Even with the above relaxed evaluation, APIs did not do well. Microsoft Azure face detection API
achieves 45.3% accuracy in detecting D20 faces. The MEGVII Face++ API achieves 23.9% accuracy,
slightly above the 23.2% by OpenCV face detector. Google MediaPipe face detector achieves 50.5%
accuracy. Sample face images and predictions of the APIs are shown in Fig.[§]

Person Detection. MEGVII API person detector obtains about 16% accuracy over the 1,217 person
images in the person category. OpenCV person detector achieves 5% accuracy. Microsoft object
detection API achieves 27.4% accuracy. If this API predicted a correct bounding box with any of
the following classes {person, snowman, bronze sculpture, sculpture, doll},
we counted it as a hit. Evaluation is done the same way as in face detection.

Cat Detection. Over the cat category (407 images), Microsoft object detection API, predicted 95
images as cat (95/407=0.23), 9 images as Persian cat (9/407=0.022), 26 images as animal (6/407 =

$https://azure.microsoft.com/en-us/services/cognitive-services/
‘nttps://google.github.io/mediapipe/
Ohttps://www.faceplusplus.com/face-detection/
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Figure 9: Sample images from the person, cat, cow, giraffe, and car categories (row-wise) along with
predictions of Microsoft object detector. For the person category, the blue and green boxes represent
Microsoft and MEGVII person detectors, respectively.

0.064), and 95 images as mammal (95/407= 0.23). Considering all of these images as hits, this API
achieves 54.8% accuracy.

Cow Detection. Over the cat category (407 images), Microsoft object detection API, predicted 95
images as cat (95/407=0.23), 9 images as Persian cat (9/407=0.022), 26 images as animal (6/407 =
0.064), and 95 images as mammal (95/407= 0.23). Considering all of these images as hits, this API
achieves 54.8% accuracy.

Giraffe Detection. Over the giraffe category (138 images), Microsoft object detection API predicted
30 images as giraffe (30/138=0.217), 15 images as animal (15/138=0.108), and 46 images as mammal
(46/138=0.333). Considering all of these images as hits, this API achieves 65.9% accuracy.

Car Detection. Microsoft object detection API achieves 25.8% accuracy (139 out of 539)
on this category. An image was considered a hit if the API predicted a correct bounding
box with any of these labels {car, land vehicle, all terrain vehicle, taxi,
vehicle, race car, limousine, Van, station wagon}.

On the one hand, our investigation shows that APIs perform very poorly, even considering overes-
timated accuracy, over categories that are very easy for humans. On the other hand, it reveals that
our test set is challenging for a large array of models trained on a variety of datasets. Sample images
from the above categories and predictions of the APIs on them are shown in Fig.[9]

4.3 TAGGING RESULTS APIL overlap no overlap no fractional
We used the Microsoft tagging e Tazeer E;Z’j g?; predi)ctlon O;elﬂ;p
API to annotate the 576 images in " Detector 35 363 559 171
the miscellaneous category. " Recognizer 0 91.3 8.7 0
For 46.4% of the images, there is " Captioning 30.9 69.1 0 13.8

a common tag between predicted ~ Google Tagger 399 60.1 0 7.1

tags and ground truth tags (cal- Table 2: Image tagging performance of APIs over the miscellaneous
culated for each image and then category of our dataset. “No prediction” column shows the percent of
averaged over images). For the images for which there was no prediction.

remaining 53.6% of images, there is no overlap between the two sets. The fractional overlap between
predicted and GT tags per image, computed as the number of common tags over the number of GT
tags, is 21.8%. The Google Vision API''|performed slightly worse than the Microsoft API. Results
are shown in Table 2] and Fig. [T0}

"https://cloud.google.com/vision
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Figure 10: Sample images from the miscellaneous category along with ground truth tags (red) and predictions
of the Microsoft (blue), and Google (black) tagging APIs.

We also used Microsoft detection, recognition, and captioning APIs as image taggers by considering
their generated labels or words as tags. Using the detection API, for 8.5% of the images, there was
at least one tag in common between the detected label set and the ground truth tags. For 36.3% of
the images, there was no overlap at all. For the remaining 55.2% of images, the API did not detect
anything. The fractional overlap between the predicted and ground-truth tags is 17.1%. Using the
recognition API, 91.3% of images had no overlap and the remaining 8.7% had no prediction at all.
Using the Microsoft captioning API, for 30.9% of the images there was an overlap between predicted
and ground-truth tags (69.1% had no overlap). The fractional overlap between the two sets is 13.8%.
Overall, the tagging APIs perform better in tagging images than APIs that are not tailored for this
task, but all of them still perform poorly in tagging images. Please see Table 2]

5 DISCUSSION AND CONCLUSION

We introduced a new test for object recognition and evaluated several models and APIs on it. We
find that, despite years of research and significant progress in this field, there is still a large gap in
performance of models over our dataset vs. ImageNet.

Some datasets rooted in ImageNet are biased towards borrowing its images and classes, or its data
collection strategy. Here, we intended to deviate from these biases For example, unlike ImageNet-A,
our dataset is model independent. ImageNet-A contains images from ImageNet for which models
fail. Our dataset also includes categories, such as cows or cats, that perhaps everyone can easily
recognize. These categories are missing in the ImageNet-based datasets. Further, our work encourages
researchers and small teams to build carefully-curated, small-scale and versatile test sets frugally.
Presently, the mindset is that datasets can only be collected by large institutions since data collection
and annotation is difficult and expensive.

We share the dataset and code to facilitate future work, and will organize an annual challenge and
associated workshop to discuss state-of-the-art methods and best practices. To stop or limit the misuse
of our D20 by bad actors, we have made a dataset request for We review the requests that we
receive and allow access for a legitimate use. The dataset we share contains images and questions is a
zip file. The package also contains the detailed documentation with all relevant metadata specified to
users. Our dataset is licensed under Creative Commons Attribution 4.0 (AppendixH).

Zhttps://bit.ly/3JxIKh3
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A MEASURING ACCURACY

Since some of our classes cover multiple ImageNet classeﬂ we had to make some adjustments for
computing accuracy. For example, ImageNet has three types of clocks including ‘digital clock’, ‘wall
clock’, and ‘analog clock’. Here, we only have the ‘clock’ class, containing mostly analog clocks.
We chose to give the benefit of the doubt to models. A prediction is correct if the ground-truth label
is in the set of the words predicted by the model. In the mentioned scenario, if a model predicts ‘wall
clock’, then a hit is counted. If the model predicts ‘wall’ or anything else, then the prediction would
be considered a mistake. The same is true for the top-5 accuracy computation. For example, if the
top five model predictions are ‘bib’, ‘necklace’, ‘toilet seat’, ‘pick’, ‘wall clock’, then the prediction
is counted as a hit. In practice, first all words in the predicted labels are extracted, and then the
prediction is counted as a hit if the ground-truth is in this set. In case of ground-truth having two
words (e.g. ‘toilet seat’), then it should happen in the set of words exactly as it is.

Notice that this way of accuracy measurement gives an overestimation of the model performance, but
it is good enough for our purposes here. Even with this overestimation, as we will show, models still
perform poorly.

Bhttps://deeplearning.cms.waikato.ac.nz/user-guide/class-maps/IMAGENET/
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B SAMPLES IMAGES FROM THE IMAGENET-A AND ISOLATED IMAGENET-A
DATASETS

The rows correspond to acorn, banana, basketball, spatula, teddy, and toaster categories. The blue
bounding box shows the region that we cropped to construct the Isolated ImageNet-A dataset.

Figure 11: Some sample images from the ImagenetA dataset. The blue box shows the isolated region.
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E SAMPLE FAILURE CASES OF BEST MODEL (RESNEXT101_32xX8D_wWs)
OVER D20 DATASET
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Figure 16: Predictions of the resnext101_32x8d_wsl model over spatula category.
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Figure 17: Predictions of the resnext101_32x8d_wsl model over helmet category.
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Figure 18: Predictions of the resnext101_32x8d_wsl model over sunglass category.
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Figure 19: Predictions of the resnext101_32x8d_wsl model over toaster category.
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F SAMPLE FAILURE CASES OF BEST MODEL (RESNEXT101_32x8D_ws)
OVER IMAGENET-A DATASET
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Figure 20: Predictions of the resnext101_32x8d_wsl model over spatula category.
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Figure 21: Predictions of the resnext101_32x8d_wsl model over toaster category.
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Figure 22: Predictions of the resnext101_32x8d_wsl model over bell pepper category.
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Figure 23: Predictions of the resnext101_32x8d_wsl model over mushroom category.
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Figure 24: Predictions of the resnext101_32x8d_wsl model over acorn category.
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Figure 25: Predictions of the resnext101_32x8d_wsl model over basketball category.
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G SAMPLE FAILURE CASES OF BEST MODEL (RESNEXT101_32x8D_WwWs)
OVER SISOLATED IMAGENET-A DATASET
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Figure 26: Predictions of the resnext101_32x8d_wsl model over spatula category.

28



Under review as a conference paper at ICLR 2023

chest
barrel
spotli
pencil
switch

Figure 27: Predictions of the resnext101_32x8d_wsl model over toaster category.
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Figure 28: Predictions of the resnext101_32x8d_wsl model over bell pepper category.
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Figure 29: Predictions of the resnext101_32x8d_wsl model over mushroom category.
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Figure 30: Predictions of the resnext101_32x8d_wsl model over acorn category.
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Figure 31: Predictions of the resnext101_32x8d_wsl model over basketball category.
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H DATASET LICENSE

D20 dataset is free to use only for research and academic purposes (not commercial). It is licensed
under Creative Commons Attribution 4.0 with three additional clauses:

1. D20 may never be used to tune the parameters of any model.

2. The images containing people should not to be posted anywhere unless the people in the
images are appropriately de-identified. Even in this case, written agreement from dataset
creators is required. This is to check whether all the clauses are properly followed.

To stop or limit the misuse of our D20 by bad actors, we have made a dataset request form '} We
review the requests that we receive and allow access for a legitimate use. The dataset we share
contains images and questions is a zip file. The package also contains the detailed documentation
with all relevant metadata specified to users.

“https://bit.ly/3bDYOMS
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I SAMPLE GENERATED IMAGES

Figure 32: Sample generated images by Midjourney from Pillow, Person, Pizza, Banana, Helmet,
Toaster, Mushroom, and Rabbit classes.

35



	Introduction
	Object Recognition Test Sets
	D2O Test Set
	Results and Analyses
	Generic Object Recognition
	Performance of Vision APIs 
	Tagging results

	Discussion and Conclusion
	Measuring accuracy
	Samples images from the ImageNet-A and Isolated ImageNet-A datasets
	Classification accuracy of individual models
	Frequency of ground-truth tags and model predicted tags
	Sample failure cases of best model (resnext101_32x8d_ws) over D2O dataset
	Sample failure cases of best model (resnext101_32x8d_ws) over ImageNet-A dataset
	Sample failure cases of best model (resnext101_32x8d_ws) over SIsolated ImageNet-A dataset
	Dataset License
	Sample generated images

