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Abstract

Denoising diffusion probabilistic models and score matching models have proven1

to be very powerful for generative tasks. While these approaches have also been2

applied to the generation of discrete graphs, they have, so far, relied on continuous3

Gaussian perturbations. Instead, in this work, we suggest using discrete noise for4

the forward Markov process. This ensures that in every intermediate step the graph5

remains discrete. Compared to the previous approach, our experimental results on6

four datasets and multiple architectures show that using a discrete noising process7

results in higher quality generated samples indicated with an average MMDs8

reduced by a factor of 1.5. Furthermore, the number of denoising steps is reduced9

from 1000 to 32 steps leading to a 30 times faster sampling procedure.10

1 Introduction11

Score-based [1] and denoising diffusion probabilistic models (DDPMs) [2, 3] have recently achieved12

striking results in generative modeling and in particular in image generation. Instead of learning a13

complex model that generates samples in a single pass (like a Generative Adversarial Network [4]14

(GAN) or a Variational Auto-Encoder [5] (VAE)), a diffusion model is a parameterized Markov15

Chain trained to reverse an iterative predefined process that gradually transforms a sample into pure16

noise. Although diffusion processes have been proposed for both continuous [6] and discrete [7]17

state spaces, their use for graph generation has only focused on Gaussian diffusion processes which18

operate in the continuous state space [8, 9].19

This contribution suggests adapting the denoising procedure to an actual graph distribution and20

using discrete noise, leading to a random graph model. We describe this procedure based on the21

Discrete DDPM framework proposed by Austin et al. [7], Hoogeboom et al. [10]. Our experiments22

show that using discrete noise greatly reduces the number of denoising steps that are needed and23

improves the sample quality. We also suggest the use of a simple expressive graph neural network24

architecture [11] for denoising, which, while bringing expressivity benefits, contrasts with more25

complicated architectures currently used for graph denoising [8].26

2 Related Work27

Traditionally, graph generation has been studied through the lens of random graph models [12–14].28

While this approach is insufficient to model many real-world graph distributions, it is useful to create29

synthetic datasets and provides a useful abstraction. In fact, we will use Erdős–Rényi (ER) graphs [12]30

to model the prior distribution of our diffusion process.31

Due to their expressive power, deep generative models have achieved better results in modeling32

complex graph distributions. The most successful graph generative models can be divided into two33
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camps: a) auto-regressive graph generative models, which generate the graph sequentially node-by-34

node [15, 16], and b) one-shot generative models which generate the whole graph in a single forward35

pass [17–20, 8, 9, 21]. While auto-regressive models can generate graphs with hundreds or even36

thousands of nodes, they can suffer from mode collapse [20, 21]. One-shot graph generative models37

are more resilient to mode collapse but are more challenging to train while still not scaling easily38

beyond tens of nodes. Recently, one-shot generation has been scaled up to graphs of hundreds of39

nodes thanks to spectral conditioning [21], suggesting that good conditioning can largely benefit40

graph generation. Still, the suggested training procedure is cumbersome as it involves 3 different41

intertwined Generative Adversarial Networks (GANs). Finally, Variational Auto Encoders (VAE)42

have also been studied to generate graphs but remain difficult to train, as the loss function needs to be43

permutation invariant [22] which can necessitate an expensive graph matching step [17].44

In contrast, the score-based models [8, 9] have the potential to provide both, a simple, stable training45

objective similar to the auto-regressive models and good graph distribution coverage provided by46

the one-shot models. Niu et al. [8] provided the first score-based model for graph generation by47

directly using the score-based model formulation of Song and Ermon [1] and additionally accounting48

for the permutation equivariance of graphs. Jo et al. [9] extended this to featured graph generation,49

by formulating the problem as a system of two stochastic differential equations, one for feature50

generation and one for adjacency generation. The graph and the features are then generated in51

parallel. This approach provided promising results for small molecule generation. Importantly, both52

contributions rely on a continuous Gaussian noise process and use a thousand denoising steps to53

achieve good results, which makes for a slow graph generation.54

As shown by Song et al. [6], score matching is tightly related to denoising diffusion probabilistic55

models [3] which provide a more flexible formulation, more easily amendable for the graph generation.56

In particular, for the noisy samples to remain discrete graphs, the perturbations need to be discrete.57

Such discrete diffusion has been successfully used for quantized image generation [23, 24] and text58

generation [25]. Diffusion using the multinomial distribution was proposed in Hoogeboom et al.59

[10]. Then, Austin et al. [7] extended the previous work by Hoogeboom et al. [10], Song et al. [26]60

and provided a general recipe for denoising diffusion models in discrete state-spaces which mainly61

requires the specification of a doubly-stochastic Markov transition matrix Q which ensures the62

Markov process conserves probability mass and converges to a stationary distribution. In the next63

section, we describe a formulation of this perturbation matrix Q leading to the ER random graphs.64

3 Discrete Diffusion for Simple Graphs65

Diffusion models [2] are generative models based on a forward and a reverse Markov process.66

The forward process, denoted q(A1:T | A0) =
∏T

t=1 q(At | At−1) generates a sequence of67

increasingly noisier latent variables At from the initial sample A0, to white noise AT . Here68

the sample A0 and the latent variables At are adjacency matrices. The learned reverse process69

pθ(A1:T ) = p(AT )
∏T

t=1 q(At−1 | At) attempts to progressively denoise the latent variable At in70

order to produce samples from the desired distribution. Here we will focus on simple graphs, but the71

approach can be extended in a straightforward manner to account for different edge types. We use the72

model from [10] and, for convenience, adopt the representation of [7] for our discrete process.73

3.1 Forward Process74

Let the row vector aij
t ∈ {0, 1}2 be the one-hot encoding of i, j element of the adjacency matrix At.75

Here t ∈ [0, T ] denotes the timestep of the process, where A0 is a sample from the data distribution76

and AT is an ER random graph. The forward process is described as repeated multiplication of each77

adjacency element type row vector aij
t = aij

t−1Qt with a double stochastic matrix Qt. Note that the78

forward process is independent for each edge/non-edge i ̸= j . The matrix Qt ∈ R2×2 is modeled as79

Qt =

[
1− βt βt

βt 1− βt

]
, (1)

where βt is the probability of not changing the edge state . This formulation has the advantage80

to allow direct sampling at any timestep of the diffusion process without computing any previous81

timesteps. Indeed the matrix Qt =
∏

i<t Qi can be expressed in the form of (1) with βt being82
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replaced by βt =
1
2 − 1

2

∏
i<t(1 − 2βi). Eventually, we want the probability βt ∈ [0, 0.5] to vary83

from 0 (unperturbed sample) to 0.5 (pure noise). In this contribution, we limit ourselves to symmetric84

graphs and therefore only need to model the upper triangular part of the adjacency matrix. The noise85

is sampled i.i.d. over all of the edges.86

3.2 Reverse Process87

To sample from the data distribution, the forward process needs to be reversed. Therefore, we need to88

estimate q(At−1|At,A0). In our case, using the Markov property of the forward process this can be89

rewritten as (see Appendix A for derivation):90

q(At−1|At,A0) = q(At|At−1)
q(At−1|A0)

q(At|A0).
(2)

Note that (2) is entirely defined by βt and β̄t and A0 (see Appendix A, Equation 4).91

3.3 Loss92

Diffusion models are typically trained to minimize a variational upper bound on the negative log-93

likelihood. This bound can be expressed as (see Appendix C or [3, Equation 5]):94

Lvb(A0)) := Eq(A0)

DKL(q(AT |A0)∥pθ(AT ))︸ ︷︷ ︸
LT

+

T∑
t=1

Eq(At|A0) DKL(q(At−1|At,A0)∥pθ(At−1|At))︸ ︷︷ ︸
Lt

−Eq(A1|A0) log(pθ(A0|A1))︸ ︷︷ ︸
L0


Practically, the model is trained to directly minimize the losses Lt, i.e. the KL divergence95

DKL(q(At−1 | At,A0)∥pθ(At−1 | At)) by using the tractable parametrization of q(At−1|At,A0)96

from (2). Note that the discrete setting of the selected noise distribution prevents training the model to97

approximate the gradient of the distribution as done by score-matching graph generative models [8, 9].98

Parametrization of the reverse process. While it is possible to predict the logits of pθ(At−1 | At)99

in order to minimize Lvb, we follow [3, 10, 7] and use a network nnθ(At) that predict the logits of100

the distribution pθ(A0 | At). This parametrization is known to stabilize the training procedure. To101

minimize Lvb, (2) can be used to recover pθ(At−1 | At) from A0 and At.102

Alternate loss. Many implementations of DDPMs found it beneficial to use alternative losses. For103

instance, [3] derived a simplified loss function that reweights the ELBO. Hybrid losses have been104

used in [27] and [7]. As shown in Appendix D, using the parametrization pθ(A0 | At), one can105

express the term: Lt as Lt = − log (pθ (A0 | At)). Empirically, we found that minimizing106

Lsimple := −Eq(A0)

T∑
t=1

(
1− 2 · βt +

1

T

)
· Eq(At|A0) log pθ (A0 | At)) (3)

leads to stable training and better results. Note that this loss equals the cross-entropy loss between107

A0 and nnθ(At). The re-weighting 1− 2 · βt +
1
T , which assigns linearly more importance to the108

less noisy samples, has been proposed in [23, Equation 7].109

3.4 Sampling110

For each loss, we used a specific sampling algorithm. For both approaches, we start by sampling111

each edge independently from a Bernoulli distribution with probability p = 1/2 (ER random graph).112

Then, for the Lvb loss we follow Ho et al. [3] and iteratively reverse the chain by sampling Bernoulli-113

sampling from pθ(At−1 | At) until we obtain at our sample of pθ(A0 | A1). For the loss function114

Lsimple, we sample A0 directly from pθ(A0|At) for each step t and obtain At−1 by sampling again115

from q(At−1 | A0). The two approaches are described algorithmically in Appendix E.116
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The values of β̄t are selected following a simple linear schedule for our reverse process [2] . We117

found it works similarly well as other options such as cosine schedule [27]. Note that in this case βt118

can be obtained from β̄t in a straightforward manner (see Appendix B).119

4 Experiments120

Community Ego
Model Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg. Total

GraphRNN† 0.030 0.030 0.010 0.017 0.040 0.050 0.060 0.050 0.033
GNF† 0.120 0.150 0.020 0.097 0.010 0.030 0.001 0.014 0.055
EDP-Score† 0.006 0.127 0.018 0.050 0.010 0.025 0.003 0.013 0.031
SDE-Score† 0.045 0.086 0.007 0.046 0.021 0.024 0.007 0.017 0.032

EDP-Score1 0.016 0.810 0.110 0.320 0.04 0.064 0.005 0.037 0.178
PPGN-Score 0.081 0.237 0.284 0.200 0.019 0.049 0.005 0.025 0.113

PPGN Lvb 0.023 0.061 0.015 0.033 0.025 0.039 0.019 0.027 0.03
PPGN Lsimple 0.019 0.044 0.005 0.023 0.018 0.026 0.003 0.016 0.019
EDP Lsimple 0.024 0.04 0.012 0.026 0.019 0.031 0.017 0.022 0.024

Table 1: MMD results for the Community and the Ego
datasets. All values are averaged over 5 runs with 1024
generated samples without any sub-selection. The "To-
tal" column denotes the average MMD over all of the
6 measurements. The best results of the "Avg." and
"Total" columns are shown in bold. † marks the results
taken from the original papers.

SBM-27 Planar-60
Model Deg. Clus. Orb. Avg. Deg. Clus. Orb. Avg. Total

EDP-Score 0.014 0.800 0.190 0.334 1.360 1.904 0.534 1.266 0.8

PPGN Lsimple 0.007 0.035 0.072 0.038 0.029 0.039 0.036 0.035 0.036
EDP Lsimple 0.046 0.184 0.064 0.098 0.017 1.928 0.785 0.910 0.504

Table 2: MMD results for the SBM-27 and the Planar-
60 datasets.

We compare our graph discrete diffusion121

approach to the original score-based ap-122

proach proposed by Niu et al. [8]. Models123

using this original formulation are denoted124

by score. We follow the training and evalu-125

ation setup used by previous contributions126

[15, 19, 8, 9]. More details can be found127

in Appendix G. For evaluation, we com-128

pute MMD metrics from [15] between the129

generated graphs and the test set, namely,130

the degree distribution, the clustering co-131

efficient, and the 4-node orbit counts. To132

demonstrate the efficiency of the discrete133

parameterization, the discrete models only134

use 32 denoising steps, while the score-135

based models use 1000 denoising steps, as136

originally proposed. We compare two ar-137

chitectures: 1. EDP-GNN as introduced by138

Niu et al. [8], and 2. a simpler and more ex-139

pressive provably powerful graph network140

(PPGN) [11]. See Appendix F for a more141

detailed description of the architectures.142

Table 1 shows the results for two datasets,143

Community-small (12 ≤ n ≤ 20) and Ego-small (4 ≤ n ≤ 18), used by Niu et al. [8]. To better144

compare our approach to traditional score-based graph generation, in Table 2, we additionally perform145

experiments on slightly more challenging datasets with larger graphs. Namely, a stochastic-block-146

model (SBM) dataset with three communities, which in total consists of (24 ≤ n ≤ 27) nodes and a147

planar dataset with (n = 60) nodes. Detailed information on the datasets can be found in Appendix H.148

Additional details concerning the evaluation setup are provided in Appendix G.4.149

Results. In Table 1, we observe that the proposed discrete diffusion process using the Lvb loss and150

PPGN model leads to slightly improved average MMDs over the competitors. The Lsimple loss further151

improve the result over Lvb. The fact that the EDP-Lsimple model has significantly lower MMD values152

than the EDP-score model is a strong indication that the proposed loss and the discrete formulation153

are the cause of the improvement rather than the PPGN architecture. This improvement comes with154

the additional benefit that sampling is greatly accelerated (30 times) as the number of timesteps155

is reduced from 1000 to 32. Table 2 shows that the proposed discrete formulation is even more156

beneficial when graph size and complexity increase. The PPGN-Score even becomes infeasible to157

run in this setting, due to the prohibitively expensive sampling procedure. A qualitative evaluation of158

the generated graphs is performed in Appendix I. Visually, the Lsimple loss leads to the best samples.159

5 Conclusion160

In this work, we demonstrated that discrete diffusion can increase sample quality and greatly improve161

the efficiency of denoising diffusion for graph generation. While the approach was presented for162

simple graphs with non-attributed edges, it could also be extended to graphs with edge attributes.163

1The discrepancy with the SDE-Score† results comes from the fact that using the code provided by the
authors, we were unable to reproduce their results. Strangely, their code leads to good results when used with
our discrete formulation and Lsimple loss improving over the result reported in their contribution.
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A Reverse Process Derivations243

In this appendix, we provide the derivation of the reverse probability q(At−1|At,A0). Using the244

Bayes rule, we obtain245

q(At−1|At,A0) =
q(At | At−1,A0) · q(At−1,A0)

q(At,A0)

=
q(At | At−1) · q(At−1 | A0)q(A0)

q(At | A0) · q(A0)

= q(At | At−1) ·
q(At−1 | A0)

q(At | A0)
,

where we use the fact that q(At | At−1,A0) = q(At | At−1) since At is independent of A0 given246

At−1.247

This reverse probability is entirely defined with βt and β̄t. For the i, j element of A (denoted Aij),248

we obtain:249

q(Aij
t−1 = 1|Aij

t ,A
ij
0 ) =



(1− βt) ·
(1−βt−1)

1−βt

, ifAij
t = 1,Aij

0 = 1

(1− βt) ·
βt−1

βt

, if Aij
t = 1,Aij

0 = 0

βt ·
(1−βt−1)

βt

, if Aij
t = 0,Aij

0 = 1

βt ·
βt−1

1−βt

, if Aij
t = 0,Aij

0 = 0

(4)

B Conversion of βt to βt250

The selected linear schedule provides us with the values of βt. In this appendix, we compute251

an expression for βt from βt, which allows us easy computation of (2). By definition, we have252

Qt = Qt−1Qt which is equivalent to253 (
1− β̄t−1 β̄t−1

β̄t−1 1− β̄t−1

)(
1− βt βt

βt 1− βt

)
=

(
1− β̄t β̄t

β̄t 1− β̄t

)
Let us select the first row and first column equality. We obtain the following equation254 (

1− β̄t−1

)
(1− βt) + β̄t−1βt = 1− β̄t,

which, after some arithmetic, provides us with the desired answer255

βt =
β̄t−1 − β̄t

2β̄t−1 − 1
.

C ELBO derivation256

The general Evidence Lower Bound (ELBO) formula states that257

log (pθ (x)) ≥ Ez∼q

[
log

(
p (x, z)

q (z)

)]
for any distribution q and latent z. In our case, we use A1:T as a latent variable and obtain258

− log (pθ (A0)) ≤ EA1:T∼q(A1:T |A0)

[
log

(
pθ (A0:T )

q (A1:T | A0)

)]
:= Lvb(A0)

7



We use Lvb = E [Lvb(A0))] and obtain259

Lvb = Eq(A0:T )

[
− log

(
pθ (A0:T )

q (A1:T | A0)

)]
= Eq

[
− log (pθ (AT ))−

T∑
t=1

log

(
pθ (At−1 | At)

q (At | At−1)

)]

= Eq

[
− log (pθ (AT ))−

T∑
t=2

log

(
pθ (At−1 | At)

q (At | At−1)

)
− log

(
pθ (A0 | A1)

q (A1 | A0)

)]

= Eq

[
− log (pθ (AT ))−

T∑
t=2

log

(
pθ (At−1 | At)

q (At−1 | At,A0)
· q (At−1 | A0)

q (At | A0)

)
− log

(
pθ (A0 | A1)

q (A1 | A0)

)]
(5)

= Eq

[
− log

(
pθ (AT )

q (AT | A0)

)
−

T∑
t=2

log

(
pθ (At−1 | At)

q (At−1 | At,A0)

)
− log (pθ (A0 | A1))

]

= EEq(A0)

[
DKL(q(AT |A0)∥pθ(AT )) +

T∑
t=2

Eq(At|A0)DKL(q(At−1|At,A0)∥pθ(At−1|At))

−Eq(A1|A0) log(pθ(A0|A1))
]

where (5) follows from260

q (At−1 | At,A0) =
q (At | At−1,A0) q (At−1,A0)

q (At,A0)

=
q (At | At−1) q (At−1 | A0)

q (At | A0)
.

D Simple Loss261

Using the parametrization pθ(A0 | At), we can simplify the KL divergenc of the term Lt.262

DKL (q (At−1 | At,A0) ∥pθ (At−1 | At)) = Eq(At−1|At,A0)

[
− log

(
pθ (At−1 | At)

q (At−1 | At,A0)

)]
= Eq(At−1|At,A0) [− log (pθ (A0 | At))]

= − log (pθ (A0 | At))

We note that this term corresponds to the cross-entropy of the distribution pθ (A0 | At) with the263

ground truth of A0.264

E Sampling Algorithms265

Here in Algorithms 1 and 2 we provide an algorithmic description of the two sampling approaches266

described in Section 3.4. Here Bp=1/2 denotes the Bernoulli distribution with parameter p = 1/2,267

which corresponds to the Erdős–Rényi random graph model.268

Algorithm 1 Sampling for Lvb

1: ∀i, j|i > j: Aij
T ∼ Bp=1/2

2: for t = T, ..., 1 do
3: Compute pθ(At−1|At)
4: At−1 ∼ pθ(At−1|At)
5: end for

Algorithm 2 Sampling for Lsimple

1: ∀i, j|i > j: Aij
T ∼ Bp=1/2

2: for t = T, ..., 1 do
3: Ã0 ∼ pθ(A0|At)

4: At−1 ∼ q(At−1|Ã0)
5: end for

269
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F Models270

F.1 Edgewise Dense Prediction Graph Neural Network (EDP-GNN)271

The EDP-GNN model introduced by Niu et al. [8] extends GIN [28] to work with multi-channel272

adjacency matrices. This means that a GIN graph neural network is run on multiple different adjacency273

matrices (channels) and the different outputs are concatenated to produce new node embeddings:274

X(k+1)′

c = Ã(k)
c X(k) + (1 + ϵ)X(k),

275

X(k+1) = Concat(X(k+1)′

c for c ∈ {1, . . . , C(k+1)}),

where X ∈ Rn×h is the node embedding matrix with hidden dimension h and C(k) is the number of276

channels in the input multi-channel adjacency matrix Ã(k) ∈ RC(k)×n×n, at layer k. The adjacency277

matrices for the next layer are produced using the node embeddings:278

Ã
(k+1)
·,i,j = MLP(Ã(k)

·,i,j ,Xi,Xj).

For the first layer, EDP-GNN computes two adjacency matrix Ã(0) channels, original input adjacency279

A and its inversion 11T −A. For node features, node degrees are used X(0) =
∑

i Ai.280

To produce the final outputs, outputs of all intermediary layers are concatenated:281

Ã = MLPout(Concat(Ã(k) for k ∈ {1, . . . ,K})).

The final layer always has only one output channel, such that A(t) = EDP-GNN(A(t−1)).282

To condition the model on the given noise level βt, noise-level-dependent scale and bias parameters283

αt and γt are introduced to each layer f of every MLP:284

f(Ã·,i,j) = activation((WÃ·,i,j + b)αt + γt).

F.2 Provably Powerful Graph Network (PPGN)285

The input to the PPGN model used is the adjacency matrix At concatenated with the diagonal matrix286

βt · I , resulting in an input tensor Xin ∈ Rn×n×2. The output tensor is Xout ∈ Rn×n×1, where287

each [Xout]ij represents p([A0]ij | [At]ij).288

Our PPGN implementation, which closely follows Maron et al. [11] is structured as follows:289

Let P denote the PPGN model, then290

P (Xin) := (lout ◦ C)(Xin) (6)
291

C : Rn×n×2 → Rn×n×(d·h) (7)
292

C(Xin) := Concat((Bd ◦ ... ◦B1)(Xin), (Bd−1 ◦ ... ◦B1)(Xin), ..., B1(Xin)) (8)

The set {B1, ..., Bd} is a set of d different powerful layers implemented as proposed by Maron et al.293

[11]. We let the input run through different amounts of these powerful layers and concatenate their294

respective outputs to one tensor of size n× n× (d · h). These powerful layers are functions of size:295

∀Bi ∈ {B2, ..., Bd}, Bi : Rn×n×h → Rn×n×h (9)
296

B1 : Rn×n×1 → Rn×n×h. (10)

Finally, we use an MLP 2 to reduce the dimensionality of each matrix element down to 1, so that we297

can treat the output as an adjacency matrix.298

lout : Rd·h → R1, (11)

where lout is applied to each element [C(Xin)]i,j,. of the tensor C(Xin) over all its d · h channels. It299

is used to reduce the number of channels down to a single one which represents p(A0|At).300
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G Training Setup301

G.1 EDP-GNN302

The model training setup and hyperparameters used for the EDP-GNN were directly taken from [8].303

We used 4 message-passing steps for each GIN, then stacked 5 EDP-GNN layers, for which the304

maximum number of channels is always set to 4 and the maximum number of node features is 16.305

We use 32 denoising steps for all datasets besides Planar-60, where we used 256. Opposed to 6 noise306

levels with 1000 sample steps per level as in the Score-based approach.307

G.2 PPGN308

The PPGN model we used for the Ego-small, Community-small, and SBM-27 datasets consist of309

6 layers {B1, ..., B6}. After each powerful layer, we apply an instance normalization. The hidden310

dimension was set to 16. For the Planar-60 dataset, we have used 8 layers and a hidden dimension of311

128. We used a batch size of 64 for all datasets and used the Adam optimizer with parameters chosen312

as follows: learning rate is 0.001, betas are (0.9, 0.999) and weight decay is 0.999.313

G.3 Model Selection314

We performed a simple model selection where the model which achieves the best training loss is315

saved and used to generate graphs for testing. We also investigated the use of a validation split and316

computation of MMD scores versus this validation split for model selection, but we did not find this317

to produce better results while adding considerable computational overhead.318

G.4 Additional Details on Experimental Setup319

Here we provide some details concerning the experimental setup for the results in Tables 1 and 2.320

Details for MMD results in Table 1: From the original paper Niu et al. [8], we are unsure if the321

GNF, GraphRNN, and EDP-Score model selection were used or not. The SDE-Score results in the322

first section are sampled after training for 5000 epochs and no model selection was used. Due to the323

compute limitations on the PPGN model, the results for PPGN Lvb are taken after epoch 900 instead324

of 5000, as results for SDE-Score and EDP-Score have been. The results for PPGN Lsimple and EDP325

Lsimple were trained for 2500 epochs.326

Details for MMD results in Table 2: All results using the EDP-GNN model are trained until epoch327

5000 and the PPGN implementation was trained until epoch 2500.328

H Datasets329

In this appendix, we describe the 4 datasets used in our experiments.330

Ego-small: This dataset is composed of 200 graphs of 4-18 nodes from the Citeseer network (Sen331

et al. [29]). The dataset is available in the repository2 of Niu et al. [8].332

Community-small: This dataset consists of 100 graphs from 12 to 20 nodes. The graphs are333

generated in two steps. First two communities of equal size are generated using the Erdos-Rényi334

model [12] with parameter p = 0.7. Then edges are randomly added between the nodes of the two335

communities with a probability p = 0.05. The dataset is directly taken from the repository of Niu336

et al. [8].337

SBM-27: This dataset consists of 200 graphs with 24 to 27 nodes generated using the Stochastic-338

Block-Model (SBM) with three communities. We use the implementation provided by Martinkus339

et al. [21]. The parameters used are pintra = 0.85, pinter=0.046875, where pintra stands for the340

intra-community (i.e. for node within the same community) edge probability and pinter stands for the341

2https://github.com/ermongroup/GraphScoreMatching
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inter-community (i.e. for nodes from different community) edge probability. The number of nodes342

for the 3 communities is randomly drawn from {7, 8, 9}. In expectation, these parameters generate 3343

edges between each pair of communities.344

Planar-60: This dataset consists of 200 randomly generated planar graphs of 60 nodes. We use345

the implementation provided by Martinkus et al. [21]. To generate a graph, 60 points are first346

random uniformly sampled on the [0, 1]2 plane. Then the graph is generated by applying Delaunay347

triangulation to these points [30].348

I Visualization of Sampled Graphs349

In the following pages, we provide a visual comparison of graphs generated by the different models.350
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Figure 1: Sample graphs from the training set of
Ego-small dataset. Figure 2: Sample graphs generated with the

model EDP-Score [8] for the Ego-small dataset.

Figure 3: Sample graphs generated with the
PPGN Lvb model for the Ego-small dataset.

Figure 4: Sample graphs generated with the EDP
Lsimple model for the Ego-small dataset.
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Figure 5: Sample graphs from the training set of
the Community dataset

Figure 6: Sample graphs generated with the
model EDP-Score [8] for the Community
dataset.

Figure 7: Sample graphs generated with the
PPGN Lvb model for the Community dataset.

Figure 8: Sample graphs generated with the EDP
Lsimple model for the Community dataset.
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Figure 9: Sample graphs from the training set of the Planar-60 dataset.

Figure 10: Sample graphs generated with the model EDP-Score [8] for the Planar-60 dataset.

Figure 11: Sample graphs generated with the PPGN Lsimple model for the Planar-60 dataset.
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Figure 12: Sample graphs from the training set of the SBM-27 dataset.

Figure 13: Sample graphs generated with the model EDP-Score [8] for the SBM-27 dataset.

Figure 14: Sample graphs generated with the PPGN Lsimple model for the SBM-27 dataset.
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