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Abstract

The increasing emphasis on privacy and data security has driven the adoption of fed-
erated learning (FL). Prompt learning (PL), which fine-tunes prompt embeddings
of pretrained models, has gained a surge of interest in FL community, marked by
the emergence of an influx of federated prompt learning (FPL) algorithms. Despite
recent advancements, a systematic understanding of their underlying mechanisms
and principled guidelines for deploying these techniques in different FL scenarios
remain absent. Moreover, inconsistent experimental protocols, limited evaluation
scenarios, and the lack of the proper assessment of centralized PL. methods in
existing works have obscured the essence of these algorithms. To close these
gaps, we introduce a comprehensive benchmark, named FLIP, to achieve standard-
ized FPL evaluation. FLIP assesses the performance of 13 centralized and FPL
methods across 3 FL protocols and 12 open datasets, considering 6 distinct evalua-
tion scenarios. Our findings demonstrate that PL. maintains strong generalization
performance in both in-distribution and out-of-distribution settings with minimal
resource consumption, but there is no silver bullet found for diverse FPL scenarios.
The results (1) pinpoint the suitable application scenarios of each FPL algorithm,
(2) demonstrate the competitiveness of adapted centralized PL methods, and (3)
offer notable insights to interpret their effectiveness and remaining challenges. All
benchmarks and code are available to facilitate further research in this domairf]

1 Introduction

User awareness of privacy and data security and recent legislation such as the General Data Protection
Regulation (GDPR) [} 2, 3] have led to the recent rise of federated learning (FL) [4, 5 16, [7, 18] as
a promising approach to training machine learning models without the need to share the data itself.
Despite the potential benefits of FL, it introduces large computational and communication overheads
due to the need to synchronize models training and data heterogeneity across devices.

Leveraging large-scale text-image aligned data, pretrained vision-language models such as CLIP [9]
and ALIGN [10]] show strong zero-shot image classification performance. Instead of training
new models, prompt learning (PL) [[11} 12} [13] [14} [15} [16]] fine-tunes the prompt embeddings of
these pretrained vision-language models. This technique has demonstrated strong performance,
requiring only one or two examples per class in the in-distribution setting, and also excels in domain
generalization.

In the context of FL, the advantages of federated prompt learning (FPL) are: (1) it incurs lower
computational costs compared to training a model from scratch; (2) it significantly reduces com-
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munication overheads and memory requirements, as the trainable prompt embeddings are much
smaller than the model’s weights; (3) properly utilizing the pretrained model’s knowledge can gain
strong in-distribution and out-of-distribution generalization performance. However, in contrast to the
centralized PL settings, we envision that FL brings new perspectives specific to the paradigm:

* How effective are global and personalized prompt models? Inter-device data heterogene-
ity can naturally arise, potentially leading to slower convergence and degraded generalization
performance of prompts. It remains to be seen how PL algorithms can train shared global
prompts that effectively adapt to data heterogeneity. Conversely, personalized FL trains
client-specific models to address conflicting distributional shifts across devices that arise
due to data heterogeneity. Considering the strong generalization performance of PL, it is
intriguing to explore how it may learn effective personalized prompts.

* Impact of various data distribution shifts on FPL. Prompt learning algorithms show
robust generalization capabilities across diverse distributional shift scenarios [12} 13} [17].
This characteristic is particularly beneficial within federated environments, where devices
often operate under constraints of limited data and computational resources. Our objective
is to assess the effectiveness of FPL algorithms in scenarios characterized by the following:
data scarcity (few-shot learning), unseen classes (test data containing classes not present
during training), and cross-domain distributional shifts (test data comprising the same
classes as training data but from different domains).

* Cost-effectiveness of FPL. Prompt learning in federated settings introduces hyperparam-
eters, such as the number of prompts and prompt length, reflecting the trade-off between
model performance and communication cost. In addition, different baselines may exhibit
varying convergence rates and have different per round computational and communication
costs. Our goal is to conduct sensitivity analyses of various algorithms to examine how
different setups may influence their respective trade-off relationship and algorithm choices.

Beyond providing insights to these questions, we also aim to deliver a comprehensive and extensible
benchmark of the FPL baselines, along with a suite of evaluation metrics that rigorously measure
algorithmic performance. To quantify the effectiveness of FPL algorithms and to provide a stan-
dardized benchmark for rapid, reproducible, and reliable evaluations in FPL, we make the following
contributions:

* We designed and implemented FLIP, a unified, modular and open-source codebase with
unified training and evaluation procedures and interface, comprising a suite of vision-
language models, datasets, faithful implementations of algorithms, and evaluation metrics.
For ease of use, it has swappable modules for PL algorithms and FL strategies.

* We systematically evaluated the performance of FPL algorithms under various challenging
scenarios, including global and personalized learning under data heterogeneity, few-shot,
novel-class, and cross-domain distributional shifts. Our benchmark also includes a rich set
of methods adapted from centralized PL, which are generally overlooked in the evaluation
of existing FPL papers. Moreover, we explored the trade-off relationship between model
performance and communication cost under different PL configurations.

* Finally, FLIP provides a standardized comprehensive benchmark suite and we carried out
the extensive experiments for the 13 FPL baseline algorithms under 3 FL protocols, with 6
metric-reporting scenarios on 12 open datasets. The FLIP codebase is fully open-source and
publicly available for our community.

2 Related Work

Prompt learning of vision-language pretrained models. The recent advent of vision-language
models (VLMs), such as CLIP [9] and ALIGN [[10]], which learn to align text and image pairs in a
shared embedding space using contrastive learning, marks a significant milestone in vision-language
understanding, showing remarkable zero-shot performance on various downstream tasks. Leveraging
the pretrained VLMs, CoOp [11] introduces the optimization of learnable text context embeddings to
adapt pretrained VLMs to improve downstream performance. CoCoOp [[12]] extends CoOp by further
training a Meta-Net to predict suitable prompt embeddings from image features. To prevent PL
from converging to a single point, Prompt Learning with Optimal Transport (PLOT) [18]] formulates



PL as optimal transport between the cosine distances of visual features and the prompt features.
Prompt Distribution Learning (ProDA) [[13] optimizes text prompts by learning to model Gaussian
distributions over the prompt embeddings, and encourages semantic orthogonality among the prompt
embedding vectors to enhance the generalization capability. On a similar note, Prompt-aligned
gradient (ProGrad) [19] aligns the prompt gradients that are in conflicting directions with the zero-
shot predictions, while self-regulating prompts (SRC) [[L7] propose to condition prompted features
to be consistent with the CLIP features with self-consistency regularization, and knowledge-guided
contextual optimization (KgCoOp) [[L5] regularizes the prompt embeddings to be within the proximity
of hand-crafted prompts.

FPL for vision-language model adaptation. Early endeavor in fine-tuning pretrained vision-
language models in a federated setting has been explored in [20] to address the challenges of
inter-client data heterogeneity and improve generalization performance under cross-domain scenarios.
Doing so, however, incurs a heavy communication cost of full model weights. Instead, PL algorithms
in the federated setting can significantly reduce communication overheads by only transmitting the
prompt embeddings, or a small network that predicts the prompt embeddings. PromptFL [21] extends
CoOp [[L1] to the federated setting for the server aggregation of prompt embeddings using FedAvg
[4]. To mitigate feature and label shifts, FedOTP [16]] introduces a strategy where a shared global
prompt is learned to extract consensus information, along with a local prompt for each client to
capture client-specific knowledge. Subsequently, it applies an optimal transport-based alignment to
regularize both the global and local prompts, balancing global consensus and local personalization.
Following a similar direction, PromptFolio [22] borrows concepts from portfolio optimization to
manage a collection of diverse global and local prompts. FedPGP [23]], addresses the global-local
trade-off through low-rank adaptation techniques complemented by contrastive learning objectives.
FedTPG [24] leverages a cross-attention module to generate prompts conditioned on task-related
text input. pFedPG [25] and SGPT [26] explores prompt adaptation and selection for personalized
FPL. FPL has also been investigated under the domain generalization problem [27, 28]]. DP-FPL [29]
introduces differential privacy to enhance the privacy protection of FPL.

FL benchmarks. Several evaluation frameworks or benchmarks have been established for FL
algorithms, each offering unique perspectives. For instance, LEAF [30] and TFF [31] tailor to
heterogeneous datasets, whereas FedML [32]], Flower [33]], and FedScale [34]] emphasize diverse
system resources. Diverging from traditional tasks such as image classification and next word
prediction, FedNLP [35] explores FL with challenging natural language processing applications, while
FS-G [36] directs its attention to graph learning. pFL-Bench [37] offers a comprehensive evaluation
of personalization in FL, while FL-bench [38]] further focuses on domain generalization. Moreover,
FLAIR [39] offers a curated large-scale dataset with fine-grained annotated labels and evaluated
common FL baselines using it. Profit [40] is related to FLIP as it explores PL for personalization FL.
However, they considered the PL of large language models rather than vision-language foundational
models as considered in this paper. To summarize, the majority of the above mostly considers general
FL algorithms, which cannot offer superior generalization performance as PL algorithms under data
scarcity and distribution shifts. While it is crucial to test known hypotheses agreed upon by the
community with standardized evaluations, FLIP presents a new and unique benchmark in anticipation
of future research questions and challenges pertaining to FPL.

3 Problem Formulation

Federated Learning. We follow the widely-used federated averaging (FedAvg) [4]] baseline as an
example to introduce the FL problem setup. Specifically, it optimizes the global objective function
F(0) on local private data ID; with a total of |C| participating clients:

min F(6) = ZLSlpiFi(9)7 (1)

OcRd

where F;(0) = ﬁ >_¢ep, fi(0) is the local learning objective of client 4, and Zgl pi = 1. Ineach
communication round, the server first transmits the updated global models to a selected group of
clients. The selected clients perform the local training on private data and then transmit the trained
model to the global server. FedAvg [4] aggregates the models by a weighted-averaging scheme based
on the normalized number of data on each client. Without losing generality, we adapt several existing
PL methods [[L1, 12} 18,13} 117, 19, [15]] to federated training with FedAvg [4].
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Figure 1: Overview of the FLIP framework.

Federated Prompt Learning. Following the success of vision-language pretrained models, recently
the FL community has began to switch from train-from-scratch paradigm to adapting these models to
diverse downstream tasks under federation. Prompt learning, a prevalent technique in NLP [411142}43]
has been investigated under vision applications [44]. Taking CLIP [9] for example, PL aims to adapt
its frozen pretrained models, consisting of an image encoder Ejyag and a text encoder Eiey, for
downstream tasks. In this benchmark, we seek to evaluate continuous PL, which optimizes a set of
soft prompt vectors {vy,va, ... vy, } parameterized by a few learnable weights 6. To obtain the text
features of a class, we can concatenate the learned prompt vectors and the embedding features of a
class name to construct the class-specific embeddings ¢, followed by feeding it to a text pretrained
encoder E.,;. For classification tasks of n classes, the prediction probability of an input image z
for class j can be calculated by comparing the similarity between encoded image features and text
features of each class as follows:

exp(sim(Eimage (), Fiex(t))/T)
i exp(sim(Eimage (), Erex(t:))/T)’

where sim(+, -) represents a metric function such as dot product or cosine similarity, and 7 is a scaling
factor to control the temperature of Softmax operation. To optimize the prompt vectors, FPL enables
the communication-efficient FL training by synchronizing the prompt parameters across clients under
the coordination of a global server. Keeping true to conventional federated training which transmits
trained parameters, FPL. communicates the prompt-related parameters between the server and client
for iterative optimization.

po(y=7l|z)= ()

4 Benchmark Design

Figure [I] provides an overview of the FLIP framework design. This section details the models and
12 datasets used, 13 algorithmic baselines for FPL, and 3 evaluation protocols with various metrics
under 6 evaluation scenarios.

4.1 Models and Datasets

Models All algorithms adopts pretrained CLIP [9]] models as the base models for PL. CLIP models
are vision-language models that consist of an image encoder Ejy,qe and a text encoder Eiex;, both of
which map the input data into a shared feature space. The architecture of the image encoder can either



be a ResNet-50 [45] or Vision Transformer (ViT) [46], whereas the text encoder adopts a transformer
[47] architecture. In the main experiments, we used the CLIP model based on ResNet-50.

Datasets For the main evaluations, we used 8 publicly available datasets with annotated labels for
global shared models o and personalized models a,: Caltech-101 [48], DTD [49], FGVC-Aircraft
[50]], Food-101 [51]], StanfordCars [52], Oxford-Flowers-102 [53]], Oxford-Pets [54], and UCF-101
[55]]. For novel class and few-shot scenarios, we use the first 4 datasets consisting of generic and
fine-grained image recognition tasks. For brevity, we use the bolded part of the dataset names
as the shorthand in the results. For cross-domain metrics, we further examine the robustness of
FPL algorithms on distribution shifts, where the ImageNet [[56]] is used as the source domain, and
the target domains include variants of ImageNet-derived datasets: ImageNet-Sketch [57] (images
transformed to sketches) ImageNet-Adversarial [58]] (natural adversarial examples in the wild), and
ImageNet-Rendition [S9] (images with diverse styles).

4.2 Algorithmic Baselines

We include PromptFL [21], FedOTP [[16]], FedTPG [60], FedPGP [23]], PromptFolio [22], and DP-
FPL [29] as FPL baselines in our comparison. To further enrich baseline comparisons, we adapt a rich
set of centralized prompt tuning algorithms mentioned in Section [2]to the federated setting to form
each federated variant, prefixed with “f-”, namely f-CoCoOp, f-PLOT, f-ProDA, f-ProGrad, f-SRC,
and f-KgCoOp. While we provide other aggregation strategies in our codebase, for a fair comparison
in this paper, all variants use federated averaging (FedAvg) [4] to aggregate prompt-related parameters
on the server. Finally, we include ZS-CLIP, i.e., the pretrained CLIP [9] as a zero-shot baseline (i.e.,
with hand-crafted prompts) to provide a reference point.

4.3 Evaluation Protocols and Metrics

Prompt learning protocols We set the prompt context token length as 4. We try to align the number
of prompts for methods evaluated. Specifically, we use a single set of prompt as default, with the
exceptions that FedOTP, FedPGP, PromptFolio and DPFPL use two set of prompts for global and
local representation. f-ProDA adopts two set of prompts for prompt distribution learning. For all
evaluations, we fix the class token position in the end without token position augmentation. We
only learn the prompt for the text input unless otherwise stated. For specific hyperparameter settings
related to PL, please refer to Appendix

FPL protocols We evaluate the FPL algorithms under 3 protocols as follows. Each experiment was
conducted with 3 runs with different random seeds. We report the best test accuracy on test set with
mean value and standard deviation.

» Standard learning We simulate 10 clients with full participation to train a global model
to evaluate on a shared test set. We use the standard SGD optimizer with initial learning
rate 0.002, momentum 0.9 and a cosine learning rate decay scheduler to guarantee the
convergence of each method. We set the batch size as 16, global communication rounds
to 50, and the local training epoch to 1. For other detailed experimental hyperparameter
settings under this protocol, please refer to Appendix [B.4]

« Partial participation For the client sub-sampling protocol, we follow the standard learning
above and increase the number of clients to 100 with a 10% participation ratio to investigate
the scalability of FPL algorithms.

* Personalized learning This protocol seeks to evaluate the adaptability of FPL methods to
local data distribution for personalization purpose. Following [61], we split a test dataset
sharing similar distribution of the training dataset for evaluation. The personalized learning
protocol uses similar settings as standard learning, except that the performance is evaluated
on personalized test sets instead of a shared test set.

Evaluation scenarios We use the following 6 scenarios where each reports evaluation metrics to
assess the performance of FPL algorithms with different data splits and evaluation settings. Here,
each scenario adopts the standard learning protocol unless otherwise stated.

* Global shared FPL (reports: o) We split the training, validation and testing samples
following [12]. We apply a Dirichlet data partition scheme with the concentration parameter



be set as 0.1 that produces non-i.i.d. data sets for local clients following [62]. This metric is
evaluated under the standard learning and partial participation protocols.

* Personalized FPL (reports: o) The accuracy is reported by a weighted averaging of
local clients’ accuracy based on the number of data each client possesses. This is more
robust than a direct averaging of local clients’ accuracy as it reduces the impact of the
potential fluctuating accuracy of some clients that hold very few training and testing samples.
This metric is evaluated under the personalized learning protocol. For this scenario, we
additionally evaluate methods that are designed for personalized FL, including FedPGP,
PromptFolio, and DP-FPL.

* Base-to-novel class generalization (reports: oy, ay,) As PL algorithms has the ability to
generalize to unseen classes, we evaluate the FL variants on novel class generalization
following the protocol below. First, we split all classes into two equal sets, where only
the first half (containing base classes) is used for training, following the standard learning
protocol with non-i.i.d. data heterogeneity. After training, we evaluate the model on the test
sets of both halves (respectively containing base and novel classes). We report the accuracy
on both sets, denoted as «, and o, respectively, along with the harmonic mean of the two

- A p— —
accuracies, namely, ay, = 2/(ay, Ly azl).

* Few-shot learning (reports: «s—x) For few-shot generalization evaluation, where each
client has only a small training shot K per class, we apply i.i.d. sampling to draw K samples
per class for each client from the training set.

* Cross-domain generalization (reports: c,_,y, where “x” and “y” denote the source and
target domain datasets, respectively.) To evaluate the robustness of FPL algorithms on
distribution shifts, we benchmark the performance on the cross-domain datasets with shared
classes but distinctive domain distributions. Our training setting aligns with the standard
learning protocol with non-i.i.d. data heterogeneity, using a source dataset (e.g., ImageNet)
for training, and a target dataset (e.g., ImageNet-{A,R,S}) for testing.

* Cost-performance trade-offs (reports: global accuracy a,, communication cost «) Finally,
certain PL-specific hyperparameters (e.g., the number of prompts and prompt length) can
influence the trade-off relationship between model performance and system resources, it is
thus important to investigate how these hyperparameters affect the performance of FPL algo-
rithms, in terms of both converged model performance, computational and communication
costs. We conducted sensitivity analyses of various algorithms on these hyperparameters
to explore both how they influence the trade-off relationship, and provide insights for
sweet-spot configurations. We report the relevant results in Appendix[C.2}

Beyond these accuracy metrics, we are also concerned with the stability of evaluated algorithms.
Motivated by the “Ranking Scores” from the Out-of-Distribution Generalization literature [63] 64],
we introduce a superiority indicator, which counts the total number of datasets on which a method’s
performance surpasses the baseline (PromptFL). The corresponding results are shown by columns
with ”#” header in each table. Note that not all FPL methods are tailored to adapt to all scenarios
listed above, therefore we evaluate each FPL method in their focused scenarios. The details are
outlined in Appendix [B.3]

S Experimental Results

We conduct extensive experiments under various FL scenarios. Below we present some important
results on global and personalized performance, base-to-novel class generalization and few-shot
learning capabilities. These metrics are primarily used in FL and PL for performance evaluation.

Global shared FPL In Table|l| we illustrate a comprehensive benchmarking of the performance of
global models across 8 datasets. We summarize some key insights below:

1. After aligning the experimental settings, the performance gaps between the baseline
PromptFL and various PL methods are less significant compared with the results reported in
existing FPL literatures [21. [16]. Indeed, PromptFL [21], a simple combination of CoOp
and FedAvg, serves as a very strong baseline for other FPL methods, occasionally achieving
the best performance on fine-grained image recognition datasets such as OxfordPets and



Table 1: Comparison of global shared model accuracy o, (%) of FPL methods. We report the mean
=+ standard deviation over 3 runs. The best and second-best results for each dataset are highlighted
in bold and underlined, respectively. The “#” column indicates on how many datasets the method
achieves performance exceeding PromptFL.

Global oy | Caltech  DTD  Aircraft  Food Cars  Flowers  Pets UCF | Avg. | #

ZS-CLIP \ 86.0 41.7 16.6 77.9 55.5 65.3 85.7 61.5 \ 61.3 \ -
PromptFL 91.5+05 57.6+13 22.8+04 79.2+01 62.0+04 84.0+17 89.4+05 70.1+08 | 69.6 | -
FedOTP 91.8+0.1 58.0+08 21.9404 78.7+01 62.8+02 83.3+06 89.1+01 69.4+06 | 69.4 | 3
FedTPG 90.2+0.1 56.8+10 19.0x12 793+02 60.7+02 78.0+16 89.0+06 68.3+02 | 67.6 | 1
f-CoCoOp 91.7+03 54.7+10 179445 793401 60.7+05 76.4+07 89.1+01 68.0+09 | 67.2 | 2
f-PLOT 91.6+03 583+14 21.7+05 783+02 60.7+08 83.4+06 88.9+05 69.7+04 | 69.1 | 2
f-ProDA 91.6+03 57.2+11  23.1+07 79.1+02 62.3+05 84.0+08 89.3+04 T70.2+11 | 69.6 | 5
f-ProGrad 90.7+02 57.1+10 21.7+03 79.5+01 60.5+07 83.4+04 89.1+02 70.3+03 | 69.1 | 2
f-PromptSRC | 92.0+08 57.8403 21.2+04 78.6+04 62.4+02 83.6+01 89.2+07 70.3+10 | 69.4 | 4
f-KgCoOp 91.8402 58.2+08 23.0+01 79.4+02 61.7+07 83.9+05 89.4+t02 70.4+07 | 69.7 | 5

Table 2: Comparison of personal model accuracy o, (%) of FPL methods on various datasets.

Personal o, | Caltech  DTD  Aircraft  Food Cars  Flowers Pets UCF | Avg. | #

ZS-CLIP \ 86.0 41.7 16.6 77.9 55.5 65.3 85.7 61.5 | 61.3 | -
PromptFL 91.54+04 69.5+41 33.8+01 82.1+04 67.7+06 89.7+02 89.9+06 7T7.5+15 | 752 |0
FedOTP 91.9+04 73.8+14 36.1+05 82.0+07 68.1+17 89.6+03 89.5+12 80.7+10 | 76.5 | 5
FedTPG 89.9+04 66.8+06 31.6+03 81.9+03 66.2+02 86.0+04 88.9+08 78.0+07 | 73.7 | 1
FedPGP 91.8+04 68.0+05 35.2+04 81.0+02 66.7+06 84.1+16 87.4+03 77.8+05 | 740 | 3
PromptFolio 91.64+03 70.2404 34.6+05 82.0+03 67.4+02 89.2+05 89.4+02 792406 | 755 | 4
DP-FPL 90.2+04 65.2+05 28.5+05 80.1+06 64.5+14 78.6+06 82.4+08 72.2+07 | 702 | 0O
f-CoCoOp 91.84+04 70.3+30 34.0+17 81.8+06 67.4+07 86.4+19 89.5+09 T77.1+09 | 74.8 | 3
f-PLOT 91.7+04 713431  34.0+08 8l1.4+12 67.9+11 89.3+05 88.6+03 79.6+18 | 755 | 5
f-ProDA 91.7+09 69.7+26 34.7+06 82.1+13 67.8+13 89.3+06 89.9+05 T79+15 | 754 | 6
f-ProGrad 91.7+06 69.2+03 32.9+07 81.6+08 67.0+10 88.8+09 89.5+07 77.0+15 | 747 | 1
f-PromptSRC | 91.7+04 69.3+13 324+23 81.8+11 67.6+11 89.2+17 89.3+17 782+11 | 749 | 2
f-KgCoOp 91.6+03 68.6+27 31.3+05 8l.4+07 67.1+14 88.9+09 89.9+03 769409 | 745 | 1

Flowers over its competitors. We advocate acknowledging its simplicity and merits and
including it as a reference baseline in all FPL works.

2. In most cases, the f-CoCoOp produces inferior results compared with PromptFL baseline.
We hypotheses this is caused by its adoption of an image feature aggregation module, which
is susceptible to the data heterogeneity raised by non-i.i.d. data partitions. As a result, its
aggregated features may deviate from real class semantics if the biased local training is not
properly counteracted. This underscores the potential risks of a direct porting of centralized
PL methods to FL regime.

3. From the superiority indicator, we can observe the regularization-based FPL methods,
such as f-SRC and f-KgCoOp generally produce discernible improvements for FL. generic
performance. It demonstrates such regularization can yield a favorable effect to reduce the
local client drift [65]]. Specifically, this regularization enforces all participating clients share
a common objective that encourages the learning of domain knowledge by introduced a
prescribed text prompt. This highlights the similar intuitions behind the regularization-based
FL such as FedProto [66] and PL methods exemplified by PromptSRC [17].

Personalized FPL Table [2] presents the personalized performance comparison. Interestingly, we
find FedOTP [16] generally outperforms other methods, emphasizing the potential of distribution
alignment, for example, with Optimal Transport (OT) to adapt to personalized data distribution.
The results also indicate FedOTP consistently outperforms a baseline method f-PLOT, which also
applying OT to align representations across modalities, demonstrating advantage of imbalanced
Optimal Transport over f-PLOT for personalized FL scenarios. This implies in addition to modality
gap between vision and text representations, the distribution gap under FPL introduces additional
challenges to be addressed. Besides, indicated by the superiority metric ("#”), we observe the
improvements of regularization-based prompt learning methods under personalized data are less
prominent compared with the results in Table |1} This could be an intrinsic dilemma that achieving



Table 3: Base- and novel-class accuracy (%) across 10 different splits of base and novel classes,

ap”, “an” and “ay,” respectively denote base oy, and novel class o, accuracies, and their harmonic
mean oy,.

Caltech Aircraft Cars Flowers Avg.

Metric | ap o o | a, o ap | o oy o | ap o on| ap oy o |#
ZS-CLIP ‘ 88.2 92.6 90.3 ‘ 19.6 24.7 21.8 ‘ 59.5 68.1 63.5 ‘ 77.2 71.0 73.9 ‘ 61.1 64.1 62.4‘ -

PromptFL | 92.8+08 92.7+07 92.6+02|20.9+04 24.7+05 22.6402]63.0+0.7 67.6+07 65.2+0.1|79.9+29 69.3+07 74.2+1.0|064.1 63.8 63.8
FedOTP |93.1+02 93.7+04 93.4+0.1|21.0+08 23.7+1.0 22.2408|62.140.1 66.0+0.7 64.0+04|81.0+06 68.7+19 74.3+12|64.3 63.0 63.5
FedTPG |93.6+04 90.0+06 91.8+04|19.5+03 22.7+05 21.0+05|66.4+02 67.7+02 67.0+02|75.0+03 66.0+0.5 70.2+04|63.6 61.6 62.5
FedPGP |93.2+t04 92.7+1.1 92.9+05|19.8+1.0 19.2+2.1 19.54+08|63.7+14 67.8+07 65.7+09|80.7+14 66.8+1.7 73.1x12|64.3 61.6 62.8

f-CoCoOp |92.7+08 93.6+06 93.1+02|18.0+21 17.1+24 17.2422]62.84+06 66.7+03 64.7+02]79.4+14 70.7+18 T4.8+06]63.2 62.0 62.4
f-PLOT  |93.4:£06 93.5+1.0 93.5+08]19.0:£08 23.4+04 21.0+04|62.4+05 65.4+1.4 63.8+07(78.7+30 68.3+1.3 73.1+06|63.4 62.6 62.8
f-ProDA  |93.0+04 92.7+1.1 92.8404(22.0+05 25.1+1.1 23.4406|63.3+0.7 67.7+04 65.4+02|77.9+07 69.6+05 73.5+0.1|64.0 63.8 63.8
f-ProGrad |93.2+04 93.0+04 93.1404|21.6+05 25.2+16 23.3404|64.2+06 67.9+05 66.0+03|80.3+1.1 70.6+0.5 75.2+02|64.7 64.2 64.3
f-SRC 90.2+02 93.0+0.1 91.6+0.1|21.7+1.0 24.9+10 23.1+08|61.2402 67.1+03 64.0+0.1|78.9+1.1 70.2+08 74.3+07|62.3 63.8 62.8
f-KgCoOp |93.5£04 93.4+10 93.4+05(22.3+07 25.1+05 23.6+05|63.7+03 67.5+£03 65.6+0.1|79.6+27 68.9+12 73.9+05|064.8 63.7 64.1
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Table 4: Comparison of few-shot accuracies o,— (%) of FPL 507, i or E e

methods on Tiny-ImageNet. ZS-CLIP accuracy is 34.1%. - FedrrG FPrODA  —F— fKeCoOp
50

k= | 1 2 4 8 16 | Avg. | #

PromptFL | 39.9+t04 42.1+02 44.0+02 45.8+08 47.0+02 | 43.7
FedOTP 41.0+02 43.9+01 46.4+02 48.2+02 49.4+01 | 45.8
FedTPG 40.1+06 41.9+04 424+02 442404 464402 | 41.8

f-CoCoOp | 38.24+04 419402 43.3+03 454+03 453+02 | 42.8
f-PLOT 39.5+02 41.7+01 43.2+04 453+04 46.3+01 | 432
f-ProDA 40.3+0.1 42.0+03 44.0+02 45.6+03 47.2+03 | 43.8
f-ProGrad | 35.6+08 36.7+04 38.6+02 38.8+04 39.8+04 | 379
f-SRC 41.6+04 42.6+05 44.4+05 45.0+02 46.1+02 | 439
f-KgCoOp | 39.6+04 42.0+06 43.6+09 46.3+02 46.5+03 | 43.6

Accuracy (%)
~
W
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Figure 2: Few-shot accuracies on
Tiny-ImageNet.
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improvements on global and personalized performance could compromise each other and requires
further exploration.

Base-to-novel generalization We illustrated the results on base o, and novel «, class accuracies,
along with their harmonic mean oy, in Table[3] Similar to global learning, Table [3]indicates regular-
ization with generic prompt knowledge [[17, 19} [15] prevents the client model from over-fitting the
local data distribution, and it contributes to achieving the best trade-offs between base class fitting
and novel class generalization. Different from the global benchmarking scenario, the naive PromptFL
is less effective in handling this challenging scenario according to the “#” competition metric.

Few-shot generalization Focusing on varying number of shots, Table ] shows the few-shot training
accuracies of FPL methods on Tiny-ImageNet. Notably, we sweep the number of shots with
ke {1,2,4,8,16}. Figurealso visualizes the few-shot training accuracies. Intriguingly, the results
in Table [f]suggest that all three methods that achieve superior performance either use multiple prompt
sets (FedOTP [16] and f-ProDA [13]]) or sample multiple prompts (f-SRC [17]). These results hint
the effectiveness of knowledge ensemble from multiple prompts, which reduce the sample selection

Table 5: Accuracy (%) under client subsampling Table 6: Comparison of few-shot training accu-
with 10% of the total 100 clients. racy as—1 (%) on various datasets.

|Caltech Aircraft  Cars Flowers|Avg. |# |Caltech Aircraft Cars Flowers|Avg. |#

ZS-CLIP | 86.0 16.6 55.5 65.3]559]- ZS-CLIP | 86.0 16.6 55.5 65.3]55.9

PromptFL | 90.3+02 20.9+07 60.9+05 75.9+13|62.0 PromptFL | 88.7+03 17.3+1.0 55.7+02 65.3+12]57.2
FedOTP |91.1+06 21.2408 59.1+0.1 76.2+09|61.9 FedOTP |89.8+04 17.8+12 56.8+02 65.6+08| 57.5
FedTPG |90.8+04 19.2+09 59.8+05 76.0+06|61.5 FedTPG |89.2+02 18.2+06 56.2+04 65.2+04| 57.3

f-CoCoOp |90.4+05 17.5+16 59.7+05 73.9+0.7] 60.4 f-CoCoOp |87.6+06 17.6+05 55.4+02 64.6+13|56.3
f-PLOT |90.6+02 20.5+06 59.1+07 74.8+15|61.3 f-PLOT |87.5+07 17.6+06 55.5+01 65.7+13| 56.6
f-ProDA |90.8+05 21.7+04 61.0406 75.0+07|62.1 f-ProDA |89.0+02 17.3+06 56.1+07 65.7+13|57.0
f-ProGrad |90.7+0.1 22.2+06 60.3+05 74.6+02|61.9 f-ProGrad |89.4+06 18.4+02 56.2+03 63.5+0.6| 56.9
f-SRC 90.6+20 21.9+14 61.5+02 76.2+08| 62.6 f-SRC 89.2+03 18.9+03 56.4+05 65.4+0.1|57.5
f-KgCoOp |91.2+0.1 22.0+06 60.4+03 76.7+1.1| 62.6 f-KgCoOp |88.4+04 18.3+08 56.4+0.1 62.9+0.6| 56.5
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bias raised by limited training samples [67,168]]. In short, FedOTP excels in few-shot learning through
its cooperative global-local prompt design and distribution alignment.

Client sub-sampling In cross-device FL system, the partial participation of massive clients could
have a detrimental forgetting effect on the global model due to their temporarily joining and quitting
FL training. In Table |5, we explored this effect by scaling up to 100 simulated clients with a 10%
participating ratio. We observe that under this scenario, the regularization-based FPL methods usually
gain advantages over the baselines. This could be attributed to the regularization loss which introduces
a common optimization objective among clients, alleviating the catastrophic forgetting effect.

Feature shift heterogeneity Table[7|reports performance under feature-shift heterogeneity among
clients. Although collaborative training uniformly lifts the CLIP baseline, the gains under feature
shift are remarkably slender than those on a regular dataset without such domain gaps (Table [T,
underscoring the persisting difficulty of this scenario and the need for further investigation.

Table 7: Comparison of domain-specific accuracy (%) under feature shifts data heterogenity. The
Avg. column denotes a weighted average of the accuracies of all domains based on their corresponding
image counts.

Feature Shift | Clipart Infograph Painting Quickdraw  Real Sketch | Avg. | #

ZS-CLIP | 54.8 40.9 48.8 6.0 71.7 493 | 446 | -
PromptFL 59.6+02  45.6+03 53.7+03 8.9+0.1 79.8+0.1 54.2+02 | 48.1+01 | -
FedOTP 58.4+02  45.2+01 53.4+02 9.0+0.1 79.2+01 532401 | 47.7+01 | 1
FedTPG 59.8+0.1 45.8+03 53.6+02 8.5+02 79.9+03 54.0+03 | 47.9403 | 3
f-CoCoOp 60.0-+0.1 46.1+02 53.0+03 9.1+02 79.8+02 54.2402 | 48.1+02 | §
f-PLOT 58.5+03  44.8+02 53.0+0.1 9.0+04 79.2+01  53.3+01 | 47.6x01 | 1
f-ProDA 59.5402  45.6+0.1 53.8+02 9.0+02 79.6+0.1 54.0+03 | 48.0+0.1 | 3
f-ProGrad 58.8+0.2 44 5402 52.5+0.1 7.5+02 80.0+0.1  53.0+0.1 | 47.3+01 | 1
f-SRC 59.0+0.1 44.6+04 52.6+0.1 7.840.1 79.7+01 529401 | 47.3+01 | O
f-KgCoOp 59.9+0.1 45.9+02 53.6+0.1 8.840.1 80.2+0.1 54.1+0.1 | 48.2+01 | 4

Cross-domain generalization Table [8| summarizes the cross-domain generalization performance
when clients are trained on ImageNet and subsequently evaluated on test sets that exhibit pronounced
domain shifts. On this challenging benchmark, f-CoCoOp and f-KgCoOp consistently attain the
highest accuracy across most target domains. Their robustness can be attributed to two complementary
design principles: (i) the injection of test-time image features into the prompt-generation process, and
(ii) a self-regularization mechanism that anchors the learned prompts to semantically rich templates.
These designs explicitly reduce the distributional disparity between training and testing environments.

Table 8: Comparing the cross-domain performance of FPL methods. Here, the source domain
is ImageNet (IN), and the target domains are ImageNet-A(dversarial), -R(endition), and -S(ketch),
respectively denoted as IN-A, IN-R, IN-S.

Cross-domain an—,. | IN-A IN-R IN-S | Avg. #

ZS-CLIP | 217 56.1 334 | 371 -
PromptFL 24.9+04 58.2+03 35.6+06 | 39.6 -
FedOTP 23.8403 58.3+08 352404 | 39.1 1
FedTPG 24.54+04 58.6+06 35.7+03 | 39.6 2
f-CoCoOp 24.0+06 59.8+11 36.0+t10 | 399 2
f-PLOT 23.8+07 57.5+03 34.6+06 | 38.6 O
f-ProDA 24.7+17 583+06 35.6+08 | 39.5 1
f-ProGrad 23.541.1 583405 35.5+12 | 39.1 1
f-SRC 24.0+07 58.7+09 35.1+05 | 393 1
f-KgCoOp 24.7+12 58.7+14 359407 | 39.8 2




More benchmark results Due to space limitation, we present additional benchmark results of
centralized training (Appendix [C.I)). Moreover, in Appendix [C.2) we show that FLIP fully support the
cost-performance trade-off exploration between accuracies and training costs, and provide benchmark
results on the trade-off relationship. In Appendix [C.3] we present the evaluation results with a
Transformer (ViT-B/16) as the image encoder. To summarize, we present the key takeaways from our
benchmark results:

Key Takeaways

* Global shared FPL PromptFL, combining CoOp and FedAvg, serves as a simple
yet effective baseline and is competitive on fine-grained datasets like Oxford-Pets
and Flowers.

Personalized FPL FedOTP generally outperforms other personalized methods,
highlighting the efficacy of distribution alignment in adapting to personalized data.

» Base-to-novel Generalization Regularization prevents overfitting and balances base
and novel class metrics, without it (PromptFL) is less effective.

* Few-shot Generalization Methods that use multiple prompts (e.g., FedOTP, f-
ProDA, f-SRC) perform best in few-shot scenarios, indicating ensembling helps
reduce sample selection bias.

* Client Sub-sampling The regularization-based methods alleviate catastrophic for-
getting better.

Feature Shift Heterogeneity It remains challenging to counteract the adverse impact
of feature shift for all evaluated FPL methods.

* Cross-domain Generalization Test-time image feature injection and self-
regularization contribute to improving the robustness against cross domain shift.

* Cost-performance Trade-offs Extra learnable parameters (CoCoOp) do not neces-
sarily improve performance but could be detrimental to computational and commu-
nication efficiency.

6 Conclusion

This paper presents FLIP, the first comprehensive evaluation for FPL algorithms for vision-language
model adaptation. Through extensive experiments on various datasets and evaluation scenarios,
we demonstrate the effectiveness of PL in federated settings, particularly in challenging scenarios
characterized by data scarcity, unseen classes, and cross-domain distributional shifts. FLIP provides
a standardized and extensible open-source codebase, complete with evaluation metrics and various
open datasets, facilitating further research in this promising area. FLIP serves as a valuable tool
for researchers and practitioners to explore the trade-offs between model performance and system
resources in FPL, paving the way for the development of more efficient and effective algorithms.

Limitations First, there is currently a lack of understanding of whether PL. methods may impose
higher or lower safety risks compared to conventional FL methods. Future research should thus
investigate the safety implications of PL. Second, further research is required to examine the robust-
ness of FPL methods against adversarial clients attempting to compromise the FL process through
manipulated local data or corrupted model updates.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We designed and implemented a unified, modular and open-source codebase
with unified training and evaluation metrics of FPL for vision-language model adapta-
tion. We provide the comprehensive benchmark results of FPL algorithms under various
challenging scenarios and datasets.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ’Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed instructions regarding the environment setup, dataset
preparation and hyperparameter choice to reproduce our results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification:

Our code is publicly available. We offer detailed information on environment setup, data
preparation in our project documentation and hyperparameter choices in our supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are provided in the supplemental material (Appendix [B).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We evaluated all methods with repeated experimental runs and reported mean
and standard variation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide computational resources in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss social impact in Appendix [D.3]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please refer to the codebase for the license information.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Datasets

We evaluated FPL methods on 12 datasets, including generic image recognition, fine-grained image
recognition and domain generalization tasks. These datasets are prevalent in the FL and PL literature,
covering a wide range of scales, domains and partitions. For the detailed experimental setup steps of
these datasets, please refer to the instructions from our project page. Below, we briefly summarize
these datasets.

A.1 Generic Image Recognition
For generic image recognition, we considered the following three datasets.

* The Caltech-101 [48] contains 9,146 images divided into 101 distinct object categories,
along with a background category. Each object category has between 40 to 800 images,
with most categories having around 50 images. The images are of variable sizes and depict
objects in various poses and viewpoints against different backgrounds.

* The ImageNet dataset [56]] we used in our experiments contains over 1.2 million labeled
images spread across 1,000 categories.

* The Tiny-ImageNet dataset is a downsized variant of the ImageNet dataset. It consists of
200 distinct classes, each containing 500 training images, 50 validation images, and 50 test
images, summing up to 100,000 images in total.

A.2 Fine-grained Image Recognition
For fine-grained image recognition, we evaluated 7 datasets:

* The Describable Textures Dataset (DTD) [49] is a collection of images specifically
designed for studying texture recognition task. It contains 5,640 images categorized into
47 classes, each representing a distinct texture described by human-centric attributes like
“bumpy,” “striped,” or “polka-dotted.” Each class includes 120 images sourced from diverse
environments, ensuring variability in appearance. The DTD is commonly used to develop
and evaluate algorithms for recognizing and classifying textures based on their describable

properties.

The FGVC Aircraft dataset [S0] is a specialized collection of images aimed at fine-grained
visual classification of aircraft models. It includes 10,000 images of aircraft, encompassing
100 different aircraft model variants. Each image is annotated with detailed information
such as aircraft type, variant, and manufacturer. This dataset is used to develop and evaluate
algorithms that can distinguish between visually similar aircraft models, making it valuable
for applications requiring precise classification within a narrowly defined category.

The Food-101 dataset [51]] is a collection of images designed for food recognition tasks in
computer vision. It contains 101 categories of food, with each category represented by 1,000
images, totaling 101,000 images. The images are split into a training set of 75,750 images
and a test set of 25,250 images. This dataset is used to develop and test algorithms that
can accurately identify different types of food, making it useful for applications in dietary
tracking, culinary automation, and food-related research.

* The Oxford Pets dataset [54] is a collection of images for the fine-grained classification
and segmentation of pet breeds. It includes 37 categories, encompassing different breeds of
cats and dogs, with roughly 200 images per category. Each image is annotated with breed
labels and additional information like pixel-level segmentation masks. This dataset is used
to develop and evaluate algorithms for pet breed identification and object segmentation.

The Oxford Flowers dataset [33] is a collection of images designed for flower classification
tasks. It comprises 102 flower categories, with each category containing between 40 and
258 images, totaling 8,189 images. The images are annotated with class labels, making the
dataset suitable for automated botanical identification.

Stanford Cars [52] includes 16,185 images of 196 car models, covering a variety of makers,
models, and years. The dataset is divided into 8,144 training images and 8,041 testing
images.
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» UCF Action Recognition dataset [53] is a widely used dataset for action recognition in
videos. It consists of thousands of video clips collected from YouTube across 101 action
categories, such as walking, running, and jumping. In our experiments, we use the static
frames of each action for PL, and evaluate the model performance on a disjoint test set.

A.3 Domain Generalization

To evaluate the domain generalization ability of these algorithms, we optimize the prompt on
ImageNet and further evaluate the obtained model on three datasets with domain shifts:

 The ImageNet-A (dvarsarial) dataset [58]] introduces 7,500 testing images for 200 ImageNet
classes. It contains real-world, unmodified, and naturally occurring examples that can
significantly degrade the performance of machine learning models.

 The ImageNet-R(endition) dataset [39] consists of the renditions of ImageNet images such
as art, cartoons and graffiti. It contains 200 ImageNet classes, with each class 150 images,
resulting in total 30,000 images.

» The ImageNet-S(ketch) dataset [57] comprises 50,889 images, with about 50 images
corresponding to each of the 1,000 ImageNet classes. These images are obtained through
Google Image searches using the query “sketch of a <class>”. The search is restricted
to the ”’black and white” color scheme. Initially, 100 images are queried for each class,
followed by manual curation to remove irrelevant and similar images. In cases where fewer
than 50 images remain after cleaning, the dataset is augmented through image flipping and
rotation.

As ImageNet-A and ImageNet-R contain only a fractional of classes from the original ImageNet
dataset, we curated a subset of ImageNet that contains the images belonging to the 200 classes of
training data. For ImageNet-S dataset, we use all 1,000 classes of ImageNet as the training data.
Examples of these datasets are shown in Figure 3]

(c) ImageNet-S.

Figure 3: Example images sampled from ImageNet-A, ImageNet-R, and ImageNet-S.

24



B Training Details

B.1 Models

To align with previous works [21]], we adapt the pretrained models from CLIP [9]] to FPL. Specifically,
we use a ResNet-50 model as the image feature encoder and a Transformer [69] model with 63
million parameters and 8 attention heads as the textual feature encoder. We freeze the weights of
image and text encoders and only tune the learnable prompt for fext input.

B.2 Data Heterogeneity
B.2.1 Feature-Shift Data Heterogeneity

In a FL system, the participating clients may collect data from distinct domains. This introduce the
training-time feature shift data heterogeneity that could hinder the generalization of obtained models.
In light of this, we evaluate the resilience of FPL algorithms under such data heterogeneity in addition
to label distribution data heterogeneity. We use the DomainNet [70] dataset consisting of six domains,
each representing a distinct visual domain such as Clipart, Painting, Real, Quickdraw, Infograph,
and Sketch. Figure [ exemplifies the images sampled from these domains. For each domain, we
assign the training data to two clients, resulting in 12 clients with each client only possessing training
data from a single domain.
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Figure 4: An illustration of images sampled from DomainNet mﬂ

B.2.2 Class-Shift Data Heterogeneity

We adopt two data partition strategies for local clients, i.e., the IID and non-IID, according to FL
scenarios or metrics we evaluated:

* The IID dataset partition is only applied to evaluate the fewshot generalization performance
of global models. Concretely, we assign each client equal training samples of each class
based on the number of shots to evaluate the performance under limited training data.

* The non-IID dataset partition is applied to evaluate the performance of methods under
label distribution data heterogeneity. We take the partition strategy from [62] to simulate
heterogeneous data partition based on a Dirichlet distribution controlled by a concentration
parameter «.. A smaller « indicates more aggressive data heterogeneity, while an infinitely
large o degenerates to the i.i.d. data partition. We set o = 0.1 by default in all experiments
unless otherwise stated. To partition the original training data for multiple clients, we
first subsample a smaller balanced dataset from the original training set, and then apply
the Dirichlet data partition. For all experiments, we subsample 8 images for each class to
construct the dataset for partition except for few-shot experiments mentioned above. Besides,
we set 16 images for each class for partial participation scenarios.

*https://ai.bu.edu/M3SDA/,

25


https://ai.bu.edu/M3SDA/

Notably, the experimental setting on evaluating DomainNet introduces additional feature shift data
heterogeneity raised by domain-specific features on each client. This can be considered as an
extension on the non-i.i.d. data partition with domain heterogeneity.

B.3 Methods

We consider the following methods as baselines of FPL. For more comprehensive comparison, we also
include centralized methods, such as CoCoOp, PLOT, ProDA, ProGrad, Prompt-SRC and KgCoOp.
All centralized methods are implemented for local client training and combined with FedAvg [4]] for
global aggregation. The evaluation helps to understand the properties of existing PL. methods under a
broad range of evaluation metrics for federated training. This also conveys insights of the appropriate
application scenarios of each method under federation.

Below we make a brief introduction of FL methods:

* PromptFL [21] is a simple yet effective FPL method that can be viewed as a federated
variant of CoOp [[L1] with FedAvg [4] for global aggregation. PromptFL only communicates
the shared soft prompts instead of a shared global model as in conventional FL. This
drastically reduces the communication cost of FL. We evaluate PromptFL in all experiments
as an important baseline.

. FedOTlﬂ [16]] extends upon the PLOT [18] and designs a novel optimization scheme
for imbalanced optimal transport. It also proposes to learn both local and global aligned
representation for better generalization. The FedOTP is originally designed for personalized
FL. To evaluate its performance on generic FL, we make a small alteration to allow all local
prompt parameters to be communicated and updated. This allows the evaluation of FedOTP
in most FPL scenarios.

. FedTPGE] [60] designs a text-driven prompt generation network, which is conditioned on
task-related text input, enabling robust generalization to both seen and unseen classes.. We
evaluate FedTPG in most FPL scenarios except for cost-performance trade-off due to its
employment of attention modules, which incur significantly larger communication overhead
than other methods.

. FedPGPE] [23] strikes a balance between personalization and generalization of FPL via
low-rank adaptation and contrastive learning. As it focuses on personalized performance
and generalization capability of client models. We evaluate it in personalized PFL and
base-to-novel generalization scenarios.

. PromptFoli(ﬂ [22]] introduces a portfolio consisting of global prompt and local prompt to
balance the generalization and personalization, motivated by portfolio optimization. This
work also establishes a theoretical analysis framework for FPL based on feature learning
theory. We evaluate it in the personalized FPL scenario.

. DP-FP [29]] leverages global and local differential privacy to achieve a privacy-preserving
personalized FPL approach for multi-modal LLMs. We evaluate it in the personalized FPL
scenario.

In addition, we also evaluate a rich set of centralized prompt learning methods by seamlessly adapting
them to FPL as a local training methods on clients. These methods are comprehensively evaluated in
all FPL scenarios with the exception of MaPLe [71]], which requires tuning the image and textual
prompts in their corresponding Transformer models. Therefore, we only evaluate it on FPL scenarios
with the vision Transformer (ViT-B/16) as the image encoder (Appendix [C.3). Below are the details
of evaluated algorithms:

. CoCoOlﬂ [12] addresses the base- and novel-classes generalization dilemma of PL by
introducing conditional inference. It optimizes an additional meta-net to deliver the im-

*https://github.com/Hongxialee/Fed0TP,
>https://github.com/boschresearch/FedTPG.
https://github.com/TianyuCuiOv0/FedPGP
"https://github. com/PanBikang/PromptFolio
$https://github.com/linhhtran/DP-FPL
https://github.com/KaiyangZhou/CoOp.
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age features for complementing the domain specific information during inference, which
alleviates the over-fitting issue of the CoOp [11].

. PLO’IFE] [[18]] introduces optimal transport to match the image and textual features. This
benefits the distribution alignment of cross-modality features to reduce the modality gaps.

. PI‘ODA[]II [[13] proposes a optimization framework to learn a Gaussian distribution over
possible prompts rather than relying on a single static prompt. It also prompts the diversity
of prompt sets by introducing a orthogonality regularization loss term.

. ProGraﬂ [19] updates the prompt with aligned gradient (or non-conflicting) to the general
knowledge which is achieved by regularizing gradient update with tailored prompts for
domain-specific dataset.

. KgCoO [15] is a concurrent work that also introduces tailored prompts for each dataset
as an anti-overfitting technique for guiding the prompt optimization. This reduces the
discrepancy between the textual features produced by learnable prompts and the hand-
crafted prompts, enhancing the generalization ability for unseen classes.

. SR [17] regularizes the PL with the predictions of the frozen model, multiple prompts
over the training trajectory and textual diversity from different prompt templates. It reduces
the catastrophic forgetting of generalizable knowledge from the pretrained CLIP models.

. MaPLeE] [71] promotes better vision-language alignment on downstream tasks by intro-
ducing multi-modal PL. It also employs a coupling function to condition vision prompts on
language counterparts, acting as a bridge between two modalities. We evaluate MaPLe on
FPL scenarios with the vision Transformer (ViT-B/16) as the image encoder.

To unify the experimental settings for fair and faithful results, we adapt the official public code
implementation of these centralized methods into our FL framework with minimal alterations such as
renaming their original arguments. For methods that lacked public code, we either re-implement their
algorithms or port the unofficial code with careful scrutinizing of the algorithmic details to ensure
alignment with original papers. We will continuously include more FPL methods into FLIP.

B.4 Hyperparameters
B.4.1 General Hyperparameter Settings

We use the standard SGD optimizer with initial learning rate 0.002, momentum 0.9, and a cosine
learning rate decay scheduler to guarantee the sufficient convergence of each method. We set the
batch size as 16, global communication rounds 50 and the local training epoch 1. For each run, we
use random prompt initialization without prompt position augmentation when constructing the entire
prompt with prefix, class name and suffix. The input images is resized to 240 x 240 then cropped
with size 224 x 224 to match the input image size of CLIP [9] image encoder, followed by random
horizontal flipping and normalization. For each experiments, we conduct 3 independent runs with
different random seeds and report the mean and standard variance of accuracy on the test set. Notably,
Zhou et al.[12] splits the base and novel classes based on sorted class names (in alphabetical order).
To rigorously benchmark FPL algorithms across different base and novel class splits, we expand
the base-to-novel setup with nine random partitions plus the one from [12]]. We report the averaged
accuracy obtained from these different base and novel dataset partitions.

B.4.2 Hyperparameters for FPL Algorithms

In addition to above general hyperparameters shared by all evaluated algorithms, we also conducted
hyperparameter tuning for each algorithm in our benchmark. The goal was to identify optimal con-
figurations that maximize performance while maintaining consistency across different experimental
settings. While enforcing equal hyperparameter tuning budgets across all algorithms is critical for

Yhttps://github.com/CHENGY12/PLOT.
"https://github.com/bbbdylan/prodal (unofficial).
"https://github.com/BeierZhu/Prompt-align.
Bhttps://github.com/htyao89/KgColp!
“https://github.com/muzairkhattak/PromptSRC,

“https://github. com/muzairkhattak/multimodal-prompt-learning,
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fairness, disparities in the number and complexity of tunable parameters per algorithm introduce
challenges in comparative evaluation. Specifically, some algorithms have no tunable hyperparam-
eters other than the general hyperparameters shared by all algorithms, while others may occupy
multiple extra hyperparameters. Moreover, the total computational cost grows exponentially w.r.z.
the total number of hyperparameters of a FPL algorithm, making exhaustive hyperparameter tuning
prohibitively expensive. To address this, we adopt a fixed tuning budget for each algorithm with a set
of hyperparameter variants similar to those reported in their original papers. We report the averaged
results of 3 experimental runs under the best hyperparameter configuration. In Table[0] we detail the
hyperparameters explored for each algorithm.

Table 9: The hyperparameters explored for evaluated FPL algorithms.

Algorithms \ Hyperparameters Specification

FedOTP ~v €10.7,0.8,0.9] hyperparameter for unbalanced OT

FedPGP € [0.5,1,5] tradeoff parameter for the contrastive loss
PromptFolio | 6 € [0.1,0.2,0.4] balancing coefficient

DP-FPL Cyn € [5,10,20] clipping threshold

f-PLOT A €10.01,0.1,1] Entropy regularization hyperparameter for OT
f-ProDA A €[0.01,0.1,0.5] tradeoff parameter for semantic orthogonality
f-ProGrad A €10.4,0.8,1] tradeoff parameter for gradient regularization
f-SRC A1, A2 € [(1,1),(5,10),(10,25)]  balancing coefficients for regularization losses
f-KgCoOp A €[1,4,8] tradeoff parameter of the regularization loss

C Additional Results

C.1 Centralized Setting

In Table[I0] we report the training accuracy values of PL methods under the centralized setting. With
the initialization of the pretrained models, there is only a slender margin between centralized and
federated settings. We speculate the underlying reason is that rich features from the pretrained models
significantly reduce the potential gradient conflict among client updates. This observation holds
the promise of closing the gap between centralized and federated training, motivating practical and
efficient algorithms that specifically seek out better generalization with pretrained vision-language
models.

Table 10: Comparison of training accuracy (%) of PL methods under the centralized (i.e. non-FL)
setting. We report the mean =+ standard deviation over 3 runs.

Centralized \ Caltech DTD Aircraft Food Cars Flowers Pets UCF

ZS-CLIP \ 86.0 41.7 16.6 77.9 55.5 65.3 85.7 61.5
CoOp 91.5+08 58.1+10 23.5+08 79.3+03 63.0+02 86.4+01 89.3+05 70.7+03
CoCoOp 919402 57.2+10 19.1+14 79.4+05 62.7+02 79.9+15 88.9+02 68.7+15
PLOT 91.7+03 58.8+04 23.4+08 783+01 62.4+t06 86.1+02 89.6+03 T71.0+o0.1
ProDA 91.8+03 57.0+08 22.8+02 79.0+02 63.6+06 88.6+07 89.0+02 70.9+05

ProGrad 91.2+03 57.8+10 21.7+13 79.4+01 63.3+01 87.9+03 89.1+12 70.1+09
PromptSRC | 92.2+01 579+16 22.7+02 789+01 63.5+02 84.2+32 89.4+01 T1.5+03
KgCoOp 91.8402 58.6+05 23.8+01 79.5+03 64.3+06 84.3+20 89.6+07 71.3+07

C.2 Cost-performance Trade-offs

Tables |1 1| and [12] present the communication and performance trade-off by changing the number
of prompts or prompt context token length.  Figures [5a] and [5b]| present the communication and
performance trade-offs by changing the number of prompts and prompt token lengths respectively.
First, we note that a direct scaling of the learnable parameters does not necessarily deliver positive
improvements. For example, f-CoCoOp employs a meta-net to aggregate the conditional image
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Table 11: Trade-offs between accuracy (%) and the number of communicated parameters (in
millions) under different number of prompts on Caltech. Here, we sweep the number of prompts

with {1, 2,4} while keeping the number of prompt tokens fixed at 4.

Number 1 2 4 Avg. | #
of Prompts | Accuracy Cost | Accuracy Cost | Accuracy Cost

PromptFL | 91.5+05 2.05 | 91.4+04 4.10 | 91.7+01 819 | 916 | -
FedOTP 91.8+0.1 4.10 | 91.8405 8.19 | 91.9+03 1638 | 91.8 | 3
f-CoCoOp | 91.7403 10093 | 91.3+03 10298 | 91.7+01 107.07 | 91.5 | 1
f-PLOT 91.6+03 2.05 | 91.2+03 4.10 | 91.4+02 819 | 914 | 1
f-ProDA 91.6+03 4.10 | 91.1x01 8.19 | 91.7+0.1 1638 | 91.5 | 1
f-ProGrad | 90.7+02 2.05 | 9l.1+o01 4.10 | 91.4+01 819 | 91.1 | O
f-SRC 92.0+0.8 2.05 | 92.0+03 4.10 | 92.1+0.1 819 | 92.0 | 3
f-KgCoOp | 91.8+02 2.05 | 91.4+02 4.10 | 91.9+02 8.19 | 91.7 | 2

Table 12: Trade-offs between accuracy (%) and the number of communicated parameters (in
millions) under different number of prompt tokens on Caltech. Here, we sweep the number of

tokens with {4,8, 16} while keeping the number of prompts fixed at 1.

Number 4 8 16 Avg. | #
of Tokens Accuracy Cost | Accuracy Cost | Accuracy Cost

PromptFL | 91.5+05 2.05 | 91.0+o0s6 4.10 | 91.7+02 819 | 914 | -
FedOTP 91.8+0.1 4.10 | 91.8+02 8.19 | 92.0+03 1638 | 91.8 | 3
f-CoCoOp | 91.7403 10093 | 91.6+09 10298 | 91.8402 107.07 | 91.7 | 3
f-PLOT 91.6+03 2.05 | 91.4+03 4.10 | 91.7+o. 819 | 916 | 2
f-ProDA 91.6+03 4.10 | 91.5+06 8.19 | 91.8+02 1638 | 916 | 3
f-ProGrad | 90.7+02 2.05 | 91.0+03 4.10 | 91.6+0.1 819 | 91.1 | 1
f-SRC 92.0+0.8 2.05 | 92.1+03 4.10 | 92.2+0.1 819 | 921 | 3
f-KgCoOp | 91.8+02 2.05 | 91.2+04 4.10 | 91.4+0.1 819 | 915 | 2

information, which drastically increases the number of communications. However, this does not
translates to accuracy boost over the simple baseline in most experiments. Besides, by comparing
the accuracies increments of a single methods with different number of prompt or prompt length,
we can conclude that methods with distribution alignment (f-FedOTP) or diversity regularization
(f-ProDA) usually bring in stable improvements when scaling up the prompt parameters. Finally,
both approaches for tweaking the prompt parameters yield similar improvements. Indeed, we do not
observe clear dominance of them over the other.

C.3 Evaluation on Transformer Image Encoder

In Tables [[3]to[I3] we respectively report the global, personal and base-to-novel accuracy metrics for
the ViT-B/16 image encoder, following the evaluation protocols used in Tables[T]to[3] To sum up, these
results show a similar trend on those of ResNet-50, and the ViT-B/16 in most experiments delivers
better results than the ResNet-50 image encoder. Notably, f-MaPLe manifests clear advantages
because of its multi-modal prompt optimization in both image and textual encoders, serving as a
strong competitor compared with other federated prompt learning algorithms.

D Discussion

D.1 Implementation Details
Environments We implement all evaluated methods with PyTorch [[72] of version 2.1.0. We try to

minimize the number of packages used in our code framework, and setting up the environment only
requires minutes. To alleviate computational burden, we apply the automatic mixed precision (AMP)
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Figure 5: Trade-offs between accuracy (%) and the number of communicated parameters (in
millions) on Caltech-101.

Table 13: Comparison of shared global model accuracy o, (%) of FPL methods with a ViT-B/16
image encoder. Results are reported in a similar style as TableE}

Global oy | Caltech  DTD  Aircraft  Food Cars  Flowers  Pets UCF | Avg. | #

ZS-CLIP \ 93.5 45.0 24.3 85.5 65.6 68.0 89.2 67.5 | 67.3 | -
PromptFL 95.5+0.1 59.6+07 31.2+03 86.8+01 70.2+13 86.2+17 924402 T7.5+06 | 749 | -
FedOTP 95.6+0.1  60.6+07 324406 86.9+02 70.6+05 85.6+03 92.2+05 76.6+06 | 75.1 | 5
FedTPG 95.4+02 60.2+03 31.4+02 86.8+02 70.2+01 85.7+03 91.8+01 76.2+03 | 74.8 | 3
f-CoCoOp 95.6+02 57.7+10 31.0406 86.6+02 68.5+03 81.6+08 92.4+07 7T4.5+05 | 73.5 | 1
f-PLOT 954402 59.6+09 31.3+04 86.5+01 70.1+13 85.8+22 924402 77.5+03 | 74.8 | 3
f-ProDA 95.4+02 58.6+10 31.3+08 86.6+01 70.8+12 84.7+04 92.5+02 77.0+05 | 74.6 | 3
f-ProGrad 952401 56.5+04 30.0+04 87.1+01 69.3+01 81.3+14 92.6+03 75.4+05 | 734 | 2
f-PromptSRC | 94.0+05 58.1+03 31.4+02 86.8+01 70.3+02 853406 92.5+02 75.1+01 | 742 |3
f-KgCoOp 954401 594406 31.6+05 86.9+01 702410 83.7+15 92.5+04 T6.7+02 | 74.6 | 4
f-MaPLe 96.2+04 61.2+02 31.8+02 87.6+03 70.3+04 86.8+t0.1 92.8404 78.1+t02 | 75.6 | 8

trainin which leverages the 16-bit floating point format to reduce GPU memory consumption
and computation cost. We do not apply the AMP on DP-FPL because it requires operations such as
gradient clipping in full precision format.

Code Framework To date, there still lacks a comprehensive and reliable evaluation of FPL algorithms
for vision tasks. Zhou et al. [12] established the first seminal library for centralized prompt learning,
which is later reused by a line of subsequent works. However, this library is not tailored for federated
learning. Namely, it poses additional challenges to incorporate various federated algorithms with
existing PL techniques in a flexible and scalable way.

To close this gap, we release the first framework with large-scale evaluations to push the frontier of
FPL. To harvest the rapid progress from FL and PL literature, we decouple the design of the FL and
PL modules, making it easier to integrate the progress from both research fields in a scalable and
efficient way. We simplify and unify the interface of data-loading to achieve better adaptation of new
datasets and also make it readily available for users to adapt to their customized datasets for new
tasks with minimal modification. We plan to actively support more applications beyond the evaluated
image classification tasks.

D.2 Computational Resources

The experiments are conducted on a cluster consisting of multiple servers equipped with NVIDIA
A100 graphic cards. We run experiments on servers equipped with the SLURM'’|job scheduler.

https://pytorch.org/docs/stable/amp.html!
""https://slurm.schedmd.com/documentation.html,
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Table 14: Comparison of personal model accuracy o, (%) of FPL methods on various datasets
with a ViT-B/16 image encoder.

Personal o, | Caltech  DTD  Aircraft  Food Cars  Flowers  Pets UCF | Avg. | #

ZS-CLIP \ 93.5 45.0 24.3 85.5 65.6 68.0 89.2 67.5 | 67.3 | -
PromptFL 95.7+04 73.3+06 43.6+05 89.1+06 76.7+13 88.5+10 92.8+11 82.5+06 | 80.3 | -
FedOTP 96.2+05 752+22  46.8+1.1 90.1+09 77.7+18 91.6+02 93.1+07 84.2+15 | 81.9 | 8
FedTPG 95.7+02 73.8401  45.2+03 88.8+02 76.2+08 89.4+03 92.3+05 83.3+02 | 80.6 | 4
FedPGP 95.24+03 73.8404 45.6+04 88.8+03 76.8407 87.6+06 92.6+04 82.9+06 | 80.3 | 4
PromptFolio 95.8403 74.24+05 45.4+04 889+06 76.5+03 88.4+04 92.6+05 83.8+05 | 80.7 | 4
DP-FPL 95.0403 71.2405 42.4+02 84.2+08 75.4+05 82.8+16 92.8+04 80.0+06 | 78.0 | O
f-CoCoOp 95.8405 72.2+17 459+01 90.1+08 75.84+06 88.1+06 93.9+07 82.7+11 | 80.6 | 5
f-PLOT 95.8+03 71.5+03 44.3+10 88.7+04 76.8+13 88.8+18 929+12 82.0+12 | 80.1 | 5
f-ProDA 95.8404 70.3+1.1  433+14 88.7+04 76.9+17 89.1+20 92.9+05 82.0+06 | 799 | 4
f-ProGrad 95.1+03 70.2+07 44.4+12 889+06 759+10 87.3+15 923+10 8l.5+08 | 795 | 1
f-PromptSRC | 94.84+05 71.2+14 44.2+08 88.4+08 76.8407 88.0+09 92.7+14 82.4+08 | 79.8 | 2
f-KgCoOp 95.5+02 71.4+14 404+07 88.7+10 753+13 88.0+11 92.2+07 81.2+18 | 79.1 | O
f-MaPLe 96.4+04 75.8+05 45.6+04 90.6+04 77.2+03 91.2+03 93.5+06 84.6+06 | 81.9 | 8

Table 15: Comparison of base and novel class accuracy (%) of FPL methods with a ViT-B/16
image encoder. Evaluation follows Table|3|except the use of a ViT-B/16 image encoder.

Caltech Aircraft Cars Flowers Avg.

Metric | o o o | ap oy an | o an | o o | oan oap |#
ZS-CLIP ‘ 95.6 95.5 95.5 ‘ 29.5 34.1 31.6 ‘ 67.1 76.5 71.5 ‘ 81.6 68.0 74.2 ‘(73.—1 68.5 68.2‘-

PromptFL | 96.6+03 95.6:04 96.1+03|32.2+12 34.6+1.0 33.4+1.1|73.2+08 74.9+08 74.0+03|87.4+01 69.1+1.1 77.2+07|72.4 68.5 70.2
FedOTP |97.3+02 95.4+08 96.3+04|32.5+18 34.7+22 33.5405|72.1+03 74.5+0.1 73.3+0.1|86.5+25 70.5+08 77.6+06|72.1 68.8 70.2
FedTPG | 96.7+03 95.7+06 96.2+04|32.8+04 33.2+04 33.0+02|73.0+0.1 75.9+03 74.4+03|85.8404 68.0+03 75.9+03|72.1 67.8 69.9

f-CoCoOp |96.5+02 96.0+06 96.2+03|30.4+26 35.8+1.0 32.9426|71.7+04 75.3+03 73.5+04|84.0+15 72.1+1.0 77.6+02|69.7 67.3 68.1
f-PLOT  |96.5+04 95.7+03 96.1+03|32.7+08 34.7+07 33.74+08|71.7+0.1 76.2+0.1 73.9+0.1|88.4+43 68.6+25 77.2+12|54.4 49.8 51.7
f-ProDA  |96.7+04 95.1+1.1 95.9+06|31.7+1.1 35.7+1.1 33.5+08|72.6+06 74.7+05 73.6+0.1|86.0+25 70.3+1.5 77.3+07|71.7 69.0 70.1
f-ProGrad |96.8+03 96.2+04 96.5+04|32.4+05 34.4+12 33.44+08|72.0+05 76.5+06 74.2+0.1|86.6+20 70.3+08 77.6+07|72.0 69.4 70.4
f-SRC 96.7+0.1 95.8+402 96.2+0.1|32.2+1.0 35.5+08 33.8+0.7|72.4+03 77.0+02 74.6+0.1|86.4+05 73.4+05 79.4+05(71.9 70.4 71.0
f-KgCoOp |96.7+0.6 96.0+02 96.3+03|33.4+05 34.3+1.0 33.8406(72.9+1.0 75.9+02 74.3+05|88.0+2.1 70.6+04 78.3+07|72.8 69.2 70.7
f-MaPLe |98.4+03 97.0+04 97.6+03|34.6+03 35.9+02 35.2+03|74.2+05 77.1+03 75.6+04|88.9+09 72.7+08 80.0+08|74.0 70.7 72.1

AR RNDNDND|NW

D.3 Social Impact

On the positive side, our benchmark results shed lights on the suitable application scenarios of each
FPL algorithm. This allows more efficient model adaptation without centralized data collection,
reducing risks of sensitive data exposure. This also promotes Al applications relying on multi-modal
models in privacy-sensitive scenarios, e.g., assistive technology for disabilities, federated medical
imaging analysis. On the negative side, if personalized datasets in the FL network are homogenous or
skewed, the personalized model via FPL algorithms may perpetuate or amplify biases (e.g., cultural
stereotypes) of pretrained models.
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