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Abstract

Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large
language models. Existing defense strategies preemptively build robustness via
attack simulation but suffer from fundamental limitations: (i) the infeasibility of
extending attack simulations beyond bounded threat models due to the inherent
difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying
attack settings, as simulation fails to capture their variability and complexity. To
address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive
tuning-stage defense strategy with no need for attack simulation. BDS formulates
harmful fine-tuning defense as a Bayesian inference problem, learning the posterior
distribution of each data point’s safety attribute, conditioned on the fine-tuning and
alignment datasets. The fine-tuning process is then constrained by weighting data
with their safety attributes sampled from the posterior, thus mitigating the influence
of harmful data. By leveraging the post hoc nature of Bayesian inference, the poste-
rior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to
the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce
a neural scheduler based on amortized Bayesian learning, enabling efficient transfer
to new data without retraining. Comprehensive results across diverse attack and de-
fense settings demonstrate the state-of-the-art performance of our approach. Code
is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.

1 Introduction

Fine-tuning-as-a-service has become a widely adopted paradigm among mainstream LLM providers
(e.g., OpenAl”), enabling the delivery of customized language model solutions. In this paradigm,
users upload demonstration data representing their desired behaviors, and providers fine-tune the
foundational models on their behalf. Despite its growing adoption, recent red teaming studies have
uncovered a critical vulnerability: harmful fine-tuning [48, 29]. Harmful fine-tuning refers to that
the presence of even a small fraction of harmful data in user-provided datasets can cause fine-tuned
models to deviate from the safety alignment established during pre-training. This vulnerability
introduces a substantial attack surface and also undermines the reliability and quality of the service.

Existing defenses [29, 33, 52] primarily rely on a preemptive manner, aiming to build robustness
through attack simulation prior to fine-tuning. However, these defenses suffer from fundamental
limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to
the inherent difficulty of anticipating unknown attacks; and (ii) limited adaptability to varying attack
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Figure 1: For encountered datasets with unknown and different harmful ratios, BDS adaptively
schedules data into higher and lower weight groups during tuning (largest panels). To verify
correctness of our data scheduling, we observe that most truly benign data indeed receive higher
weights (top right panels), while almost all truly harmful data consistently receive lower weights
(bottom right panels).

settings, as the preemptive attack simulation fails to capture the variability and complexity of post
hoc attacks. Consequently, their performance deteriorates sharply as the harmful data ratio increases
or the attack strategy varies, rendering them ineffective against unpredictable attack surfaces.

To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive fine-tuning-
stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning
defense as a Bayesian inference problem, learning the posterior distribution of each data point’s
safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning is then
constrained by weighting data with the safety attributes * sampled from the posterior, thus mitigating
the negative influence of harmful data. Due to the post hoc nature of Bayesian inference, the posterior
is conditioned on the encountered fine-tuning dataset, which enables BDS to precisely tailor its
defense to the specific dataset, thus achieving adaptive defense. Additionally, as the posterior of
safety attribute is datapoint-wise, i.e., p(w; | zﬁt), independently learning distribution for each data
point scales with the dataset size and requires relearning for new data. To address scalability and
transferability issues, we further introduce a neural scheduler based on amortized Bayesian learning
[51], enabling efficient transfer to new data without retraining.

We conduct comprehensive experiments on five diverse downstream datasets using three representative
LLM architectures under a wide range of attack and defense settings. Results show that our approach
achieves state-of-the-art (SOTA) performance, with a remarkable 74.4% improvement at a high
harmful ratio of 0.9 and and an average boost of over 50% across ratios from 0 to 1. Moreover,
BDS consistently maintains a remarkably low harmfulness score (around 1) across a wide range of
advanced attack dynamics, including benign [48], out-of-distribution (OOD), and identity-shifting
[48] attacks, demonstrating superior effectiveness, adaptiveness, and robustness.

To the end, we summarize our contributions as follows:

* For the first time, we formulate harmful fine-tuning defense as a Bayesian inference problem,
offering a principled framework BDS achieving adaptive defense with no need for attack simulation.

* We propose two BDS implementations, with the neural version enabling efficient transfer to new
data without retraining. Leveraging post hoc nature of Bayesian inference, BDS learns the posterior
distribution of data weights conditioned on specific datasets, thus achieving adaptive defense.

» Comprehensive experiments on diverse attack and defense settings demonstrate the SOTA perfor-
mance and superior adaptiveness of our proposed method.

2 Problem Definition

Scenario. The scenario considers users uploading a personalized fine-tuning dataset Dy, which the
service provider uses to fine-tune their model 8. Once fine-tuned, the personalized API is returned
for user-specific applications.

Threat model. Harmful fine-tuning arises when an attacker deliberately uploads a fine-tuning
dataset Dy, that contains a mix of benign and harmful data. Specifically, the dataset Dy consists
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of a proportion p of harmful data and 1 — p of benign data, such that Dy, = DE™8" ([ Dharmful,
The attacker, acting as a user, has the capacity to control the composition of the fine-tuning dataset,
including the proportion and content of harmful data, without requiring knowledge of the model’s
architecture or parameters. On the other hand, the defender, acting as the service provider, has the
capacity to control the fine-tuning process.

Assumption. We assume that the service provider maintains an alignment dataset, denoted as Dg,ge
(harmful prompt-safe answer pairs). The availability of such an alignment dataset has been previously
discussed in previous works [52, 57] and it is available in publicly available resources (e.g., BeaverTail
[35]). While prior studies require an additional harmful dataset for attack simulation, constructing
such a dataset is difficult due to lacking prior knowledge about unknown and varying attack data
D?tarmfm. Our work overcomes this limitation with no need for a simulated harmful dataset.

3 Related work.

Mechanism study of harmful fine-tuning. Recent works have investigated why LLMs are highly
sensitive to harmful fine-tuning. (i) Adversarial perturbations: Harmful fine-tuning can introduce
adversarial shifts in model parameters [29, 46] or embeddings [33], leading to degraded safety
alignment. (ii) Structural vulnerabilities: Other works highlight that certain layers or modules
are more critical for maintaining safety than others [21, 37, 47]. (iii) Catastrophic forgetting:
Safety alignment degradation has also been linked to catastrophic forgetting [43], where alignment
knowledge tends to be lost under the sequential training paradigm [6, 13].

Harmful fine-tuning attack. On the attack side, [48] demonstrate that even fine-tuning solely on
benign data can inadvertently weaken a model’s safety alignment. Subsequent work [20] further
identifies specific subsets of benign data that are particularly prone to degrading model safety after
fine-tuning. [18] introduce covert malicious fine-tuning, which enhances the stealthiness of such
attacks, while [32] construct harmful data designed to deliberately circumvent moderation guardrails.

Harmful fine-tuning defense. On the defense side, existing defense methods can be categorized into
three main categories, including alignment stage [33, 52, 58, 42, 29, 40, 41, 7, 75], fine-tuning stage
[44, 3,31, 61,79, 55], and post-fine-tuning stage solutions [76, 12, 28, 70, 62]. The method proposed
in this paper should be classified into a fine-tuning stage solution. However, it differs fundamentally
from prior work in that we propose a loss-based data scheduling mechanism derived from Bayesian
inference principles, whereas previous approaches typically perform hard-label data selection based
on less effective heuristic rules [15, 5] or manually tuned thresholds [8, 55]. Moreover, unlike the
current SOTA method Booster [29], our method does not require attack simulation, making it more
practical and efficient while achieving strong defense performance and adaptability.

A more detailed and extended review of related work is provided in App. A.

4 Methodology

In this section, we introduce the Bayesian Data Scheduler method. Specifically, we outline our
framework in Sec. 4.1. Following that, we detail two implementations of BDS, including Bayesian
Scalar Scheduler and Amortized Bayesian Neural Scheduler in Secs. 4.2 and 4.3.

4.1 Bayesian Data Scheduler Framework
p(wil¢, z8) = 8w, — N (2} )
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Goal: For Bayesian Scalar Scheduler, sampling (w, 8) from posteriori distribution p(w, 8|Dg, Dsae)
For Amortized Bayesian Neural Scheduler, sampling (¢, 8) from posteriori distribution p(¢, 8|Dy, Dsate)
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0@ is directly used as the customized model for user-specific applications without requiring further adjustments.

Figure 3: Pipeline of BDS. Step 1: BDS first infer the weight of each data point, indicating its safety
attribute. Step 2: BDS updates the LLM 6 with weighted data via Eq. (7). Step 3: BDS update the
scheduler w or ¢ via Eq. (8) or Eq. (11). Repeat steps 1-3 for T iterations until convergence and
(w™,00)) or (¢!, 6T can be theoretically guaranteed as posterior samples. 87 is directly
used as the customized model for user-specific applications without requiring further adjustments.
For clarity, the pseudocode for the BDS algorithm is provided in App. C.

is modulated by its safety attribute w;. The edge @ — Dg,s represents the generation of the target
parts of the alignment dataset Dg,t,, modeling the likelihood of observing Dy,¢. given 8. The data
points are assumed to be i.i.d., implying that p(w) = [ ], p(w;) holds, where w; is the i-th component
of vector w. The conditional independence Dgato L (w, Dg) | 0 naturally holds from the structure
of the graphical model.

Goal. Our goal is to infer the posterior distributions of unobserved variables (unshaded nodes): i.e.,
the data weights w and the model parameters 6, conditioned on observed variables (shaded nodes),
i.e., the safety alignment dataset Ds,s. and the fine-tuning dataset Dy,. Formally, this corresponds to
estimating the joint posterior: p(w, 8 | Dg, Dsafe)-

4.2 Bayesian Scalar Scheduler

Posterior decomposition. To address the computational intractability of directly inferring the
posterior distribution p(w, 8 | Dg;, Dgate ), We decompose it as follows:

p(0,w | Di, Dsate) o< p(Dsate | 0) - p(Dis | 0, w) - p(Drs | w)71 -p(0,w). (D

Detailed derivations are provided in App. H.1. The term p(Dsate | €) in Eq. (1) represents the
likelihood of observing the alignment dataset Dg,¢, given the model parameters 6, quantifying how
well the model aligns with the alignment dataset. Based on the conventional trick [82], this likelihood
can be formulated in terms of the loss function as follows:

|Dsafe

P (Paare | 0) [ o (¢ (=10)), @
=1

where |Dgato| denotes the size of the dataset and £(-) denotes the loss function. Next, the second
term p(Dy | 0, w) in Eq. (1) represents the likelihood of the fine-tuning dataset Dy, given the model
parameters @ and the safety attributes w, where the contribution of each data point z%* is modulated
by its safety weight w;:

| Dy |
p(Dg | 0, w) x H exp (—a(wi) - (zgt;B)), 3)
=1
where o (-) refers to the weight transformation function, which is discussed in detail in Sec. 4.4.

The term p (Dys | w)*l in Eq. (1) represents the likelihood of the fine-tuning dataset Dy given the
safety attributes w. Since it is infeasible to directly model the relationship Dy — w, we employ



marginalization over 6 and approximate it using the maximum a posteriori (MAP) estimate (Detailed
derivations are provided in App. H.2.):

| D |
p Dy | w)_1 I li[l exp (o(wi) -/ (zgt;O)), s.t., 0= argmngprw) [(p(@] Dg,w)]. 4

Efficient Posterior inference via Stochastic Gradient Langevin Dynamic (SGLD) sampling. Due
to the intractability of obtaining closed-form solutions for Eq. (1), we employ an efficient posterior
inference technique based on stochastic-gradient Markov Chain Monte Carlo (SG-MCMC) [45].
Specifically, we utilize Stochastic Gradient Langevin Dynamics (SGLD) [69] to sample from the
posterior p(w, 6 | Dy, Dsate ), inspired by [49, 17, 73, 10]. By iteratively updating the system under
the Langevin dynamics framework, we can obtain theoretically guaranteed posterior samples once
the process converges (convergence analysis is provided in App. G.2).

[0, w] < [0, w] + gve,w log p (8, w | D, Dsate) + €y/7, (5)

where 7 represents the step size, and € ~ G(0,I) denotes Gaussian noise introduced to inject
randomness. Based on the posterior decomposition in Eq. (1), the gradient of the log-posterior can be
expressed as a summation:

Vo,wlogp (0, w | Ds, Dsate) = Vo, 1og p(Dsase | ) + Vo, log p(Dy | 6, w)

_ (6)

+V_wlog p(Dre | w) ™" + Vo,w log p(8, w),
where placeholder _ denotes independence between the gradient term and the corresponding variable.
To improve the efficiency of gradient computation, SGLD substitutes the full-batch likelihood in with
a minibatch approximation. Using minibatch B, we reformulate Eq. (6) using the decompositions in
Egs. (2) to (4), yielding the following equations.

n |Dsafe | safe, ‘th ‘ ft .
e+0+5ve(logp(0\w)— > U=6) - > [otw) - a=0)] ) +eva,

[Beate 25 EB ate B =it eBy
@)
we w30 (togptw) - B Y Jotw) - ((a20) - 40| ) 4 v
2t e By
" D ®
~w+ §Vw <logp(w) - |Bf:| Z [U(wi) (25 0)] ) + e/,
ziteBg

where we approximate £(z!'; ) ~ 0.This is justified as @ = arg maxg Ep(Dgi Jw) [(P (0 | Dty w)]

(see Eq. (4)), which represents the MAP estimate of the model @ given the dataset Dy;. Intuitively, 0
is optimized to perform well on Dy, resulting in a near-zero loss.

Intuition behind weight update in Eq. (8) (see :

o .. . . {,(zf[) Safety-aware model T Eq.(7)
Fig. 4). By omitting the prior term, noise, and — Safety-agnostic model @ in Eq.(4)
constants, the update of the i-th component of @ Data point 2% €Dy
w in the non-approximated Eq. (8) simplifies to:

n Eq (7)

wi = w;— (£(=140) = ((=18) ) -V, 0 (ws). ) [.:2?::,,
In this form, the loss gap scales the gradient term 9 in Eq.(4) 1'055 9ap
V.wio(wi), where a larger loss gap leads to a sig- o T
nificant reduction in w;, ultimately resulting in a — ;- .
smaller weight. Within the loss gap, @ is derived ,

. . .. Higher Lower
via Eq. (7), which optimizes over both Dg,¢. and weight w; weight w;
the weighted Dy, thus referred to as the safety- [ (25 8) — 2(2:8) < £(25:0) — £(z58) = w, > w; |

awarc modql. In contrast, 6 'is obtained through Figure 4: Intuition behind weight update in Eq. (8).
Eq. (4), fitting only the weighted Dy, thus re-

ferred to as the safety-agnostic model. If a data point 2! produces a large positive loss gap, it
indicates poorer alignment with the safety-aware model 8 compared to the safety-agnostic model 6.
This suggests that 21t is likely misaligned with the safe dataset Dgafe, ultimately resulting in a larger
weight reduction, and thus a smaller assigned weight.



4.3 Amortized Bayesian Neural Scheduler

The Bayesian Scalar Scheduler introduced in Sec. 4.2 provides a strong foundation but leaves room
for further enhancement in two key aspects: (i) Scalability: Inferring w; ~ p(w; | z ¢ Dgate) for
each data point scales with dataset size. (ii) Transferability: Without explicitly mode]mg zf — w;,
posterior inference must restart from scratch when new data is added.

To address the scalability and transferability issues, we introduce the Amortized Bayesian Neural
Scheduler based on amortized Bayesian learmng [51]. The core idea is to amortize the effort for
inferring datapoint-wise posterior p(wL | 2 Dgate) into inferring just one posterior of a neural
network p(¢ | Dg, Dsate). As shown in the rlght panel of Fig. 2 the neural network ¢ ~ p(¢ |
Dst, Dsate) is shared across all data points, enabling each p(w; | 28, Dyate) to be inferred efﬁ01ently
via a forward pass through the network conditioned on z . For 31mp1101ty, we define p(w; | z ' Daate)
as a Dirac delta distribution §(-), whose single value is determlned by the output of a neural network
N (2 | ¢) with 2t as input. After introducing ¢, the datapoint-wise posterior is expressed as:

plwi | ¢ 2" =6 (w = N(=' | ). ©

In this way, only a single posterior over the neural network parameters (i.e., p(¢ | Dg;, Dsate)) needs
to be inferred, and the posterior of weights for new data can be inferred seamlessly through forward
passes without retraining.

After introducing ¢, the updated probabilistic graphical model is illustrated in the right panel of
Fig. 2. Consequently, our inference objective shifts from p(w, 6 | Dy, Dsate) to p(¢, 0 | Drt, Dsate),
which can be decomposed as follows (Detailed proof is provided in App. H.3):

p(0,® | Dt Dsate)  p(Dsate | 8) - p(De | 6, w) - p(Dse | w) ™" - p(6, ¢ | D),

(10
s.t., w :N(ch | d)) [ ( | &), (left\ ‘ qb)} :
Similar to Eq. (8), we derive the update rule for ¢:
b o+ 196 (1ogp@) - B Y [oWie) 0] ) e ap

t
ft
2" EByy

4.4 Data Weight Transformation

Recall the scheduler updates in Eqgs. (8) and (11). We identify a key factor that significantly impacts
the performance of BDS: the weight transformation function o(w;). As shown in Fig. 5, different
transformation functions result in varying sampling trajectories of w for benign and harmful data,
ultimately leading to distinct defensive capabilities (see Tab. 14). For clarity, we first introduce the
definition of the SGLD Sampling Trajectory:
Definition 4.1. (SGLD Sampling Trajectory) The SGLD Sampling Trajectory refers to the se-
quence of states generated during the iterative sampling process of SGLD. This sequence forms a
Markov chain, where each state transition depends solely on the previous state. For the distribution
p (w, 0 | Dg;, Dgate ), the trajectories of the variables w and 0 can be defined as:
Ty = w® ... w(T), wtD = ™ 4 QV(” + eV,
to = 9(0) RN e(T) 0(i+1) g(t) + nv(f) + E\f a2

Here, we use V,, and Vg to denote the gradient terms in Egs. (7) and (8). We next analyze the effect
of different transformation functions on the term V,, in Eq. (12).

We consider three types of weight transformations: identity, sigmoid, and softmax, which are formally
defined as:

o(w;) =w; (identity), &(w;)= ﬁ() (sigmoid),
13)
o(w;) = exp(wi) (softmax).

124 exp(w;)

By differentiating w in Eq. (8) (excluding prior and constant coefficients), we derive that under the
identity transformation, w updates in a monotonically decreasing manner:

Vo, = ((zl,9)<0. (14)
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Figure 5: Effect of weight transformation on SGLD sampling trajectories of w for benign and harmful
data, respectively. For clarity, weights post-softmax are scaled by | Dsafol-

Similarly, under sigmoid, the weight w also exhibits a monotonically decreasing update behavior:

Ve, = —5(z) - (1 - 5(z)) - € (zl ,0) <o. (15)

Since the gradient of w is proportional to the negative loss, the weight suboptimality under both
identity and sigmoid transformation primarily arises from the uniform treatment of benign and
harmful data, resulting in monotonically decreasing weights for both. As demonstrated in Fig. 5,
this causes the scheduler to assign reduced weights to both benign and harmful data to preserve the
model’s inherent safety alignment, which is equivalent to discarding any data and consequently leads
to poor fine-tuning performance.

In contrast, under softmax, the weight w updates in an adaptively bidirectional manner:

| D ft \'Dn| = ft
VN gy - et >0, ifl(zi;0) <> " a(wk)-U(zy;0) 16
Vo = o) (500 ot Z(zk’e)){< 0. it (=5:0) > S () - #(zEi0) " O

Detailed derivations of Eq. (16) is provided in App. H.4. Unlike identity and sigmoid transformation
monotonically decreasing w based solely on the absolute magnitude of the loss, the softmax updates
weights based on the relative value of the loss. This ensures that the model does not assign extremely
low weights to all data points. Specifically, the softmax transformation uses the weighted average loss
as a reference: if the loss of a data point is below the reference, its weight increases; otherwise, its
weight decreases. Moreover, since Dbe ign aligns more closely with Dg,¢ than D?t"“mf“l, the benign
data exhibits relatively lower loss, leadmg to an increase in their weights (see Fig. 5).

Time-weighted accumulation of posterior bias. We further explore weight suboptimality under
identity transformation through the theoretical perspective of posterior bias, a newly proposed concept
with detailed formulation and analysis in Apps. 1.1 to I.5. Here, we only present the core theorem
below (Detailed proof is provided in App. 1.6):

Theorem 4.2 (Time-Weighted Accumulation of Posterior Bias). Let (Try,, Trg) and (Try«, Tre~)
denote the SGLD sampling trajectories under identity transformation drawn from the target distri-
butions p (w, 0 | Dy, Dsate) and p (w*, 0™ | Dy, Dsage, DY), respectively. Here, Dy is a held-out
clean tuning dataset, serving as a test or validation set to evaluate fine-tuning performance. Then,
the following proportionality holds:

o e R v ] an
PB(T) SioNT-HPB®

Here, PB') quantifies the posterior bias at iteration T, and summation Zf:_ll (T — t)PBY char-
acterizes the cumulative posterior bias over the entire sampling trajectory.

Remark. Notably, the time-weighted factor 7" — ¢ highlights the greater influence of earlier iterations
on the cumulative bias, suggesting that suboptimal sampling in the early stages of the SGLD trajectory
can propagate and aggressively impact the overall posterior inference.

S Experiment

Datasets and models. Our experimental setup primarily follows [29, 33] to ensure fair comparison.
For the alignment dataset (Ds,te, consisting of harmful prompt-safe answer pairs), we use the dataset



Table 1: Comparison with SOTA baselines, (|Dsate| = 1000 and |Dg| = 1000 for BDS).

\ Harmful Score | Finetune Accuracy 1
Method  Dgsate  Dharmful \ clean p=0.05 p=0.1 p=0.15 p=0.2 Average \ clean p=0.05 p=0.1 p=0.15 p=0.2 Average

SFT v X 130 2190 3370 4930 6170 33.58 | 8154 9174 9312 9266 9289  90.39
Lisa v X 090 1450 237 3120 39.10 21.88 | 8693 91.86 9232 9220 9232 9LI3
Repnoise v/ v 120 2070 3210 4560 5550 3102 | 9025 92.89 93.00 9289 92.89  92.38
Vaccine v/ v 130 1210 283 4410 5520 2820 | 90.83 93.58 9369 9323 9323 9291
Booster v/ v 190 480 830 1420 2550 1094 | 9280 9232 9323 9335 9335 9303
BDS v X LI0 160 120 150 130 134 9381 94.04 9369 9392 93.69 93.83
Table 2: Robustness for large harmful ratios p.
Method \ Harmful Score | Finetune Accuracy 1

‘p=043 p=04 p=0.5 p=0.6 p=0.7 p=08 p=09 p=1.0 ‘ p=0.3 p=04 p=0.5 p=0.6 p=0.7 p=0.8 p=09 p=1.0

Booster | 40.60 68.40 7720 76.90 77.50 7630 7590 76.60 | 92.12 93.00 92.69 9220 91.63 91.63 91.51 —
BDS 120 150 120 150 150 1.60 150 1.80 | 93.32 93.19 93.00 92.66 92.29 92.78 9289 —

from [53], an enriched version of BeaverTails [36]. To simulate harmful fine-tuning attack, the

fine-tuning dataset (Dy) is constructed by mixing a proportion p of unsafe data (Dﬁarmf‘“) from

BeaverTails with 1 — p benign fine-tuning data (Dﬁcnign), resulting in a total size of |Dg|. Fine-

tuning tasks are considered on SST2 [56], AGNEWS [80], GSMS8K [9], AlpacaEval [38], and GEM
benchmark. Model architectures include Llama2-7B [60], Gemma2-9B [59] and Qwen2-7B [74].
Default settings are p = 0.1 and | Dg,| = 1000 (| Dy | = 700 for AlpacaEval).

Metrics. We adopt two evaluation metrics for assessing model performance, following [29, 33]:

* Finetune Accuracy (FA): The accuracy on the testing dataset of the corresponding fine-tuning task.
Details on evaluation procedure are provided in App. B.2.

* Harmful Score (HS): Using the moderation model from [36], we classify model outputs as harmful
or non-harmful. The harmful score is defined as the proportion of unsafe outputs.

For harmful score calculation, we sample 1000 instructions from the testing set of BeaverTails [36].
Finetune accuracy is evaluated using 872, 1000, 1000, 1000 and 104 samples from the fine-tuning
datasets SST2, AGNEWS, GSM8K, GEM, and AlpacaEval, respectively.

Baselines. We compare our method with five representative defense baselines, including the SOTA
Booster [29], Vaccine [33], Repnoise [52], Lisa [31], and SFT (Supervised Fine-Tuning) [29].
Descriptions and implementation details of each baseline are provided in App. B.1.

Implementation details. For fine-tuning, we adopt LoRA [22] for efficient fine-tuning, following
[29, 33, 21]. Fine-tuning is performed using the FusedAdam [50] with a learning rate of 1 x 10~
and a weight decay of 0.1, as recommended by [29]. The training involves 20 epochs with a batch
size of 10. The neural scheduler is implemented using a lightweight 125M Fairseq-Dense model
[2] with an added trainable linear head. The scheduler’s learning rate is set to 5 X 1073 for scalar
scheduler and 1 x 10~ for neural scheduler. Unless otherwise specified, we use the scalar scheduler
as default. More implementation details are provided in Apps. B.3 and B.4.

5.1 Main Results

Comparison with SOTA defense baselines. Tab. 1 presents comparison of BDS with several SOTA
baselines across harmful ratios ranging from O to 0.2. BDS consistently outperforms all baselines
in both defensive and fine-tuning performance, achieving a significant 9.60% reduction in average
Harmful Score and a 0.8% improvement in average Finetune Accuracy. Existing baselines struggle to
consistently mitigate harmful data influence: Simulation-based baselines like Booster and Vaccine
enhance robustness by attack simulation, whose effectiveness diminishes significantly as the harmful
ratio increases; RepNoise attempts to unlearn harmful knowledge but it inevitably recovers under
higher harmful ratios; Lisa mixes alignment data with fine-tuning data but fundamentally lacks a
deweighting mechanism and thus requires alignment data to scale with the unknown harmful ratio.

Notably, when the harmful ratio is O (i.e., benign attack [48]), BDS achieves the highest and well-
preserved fine-tuning performance, whereas SFT suffers significant drops. This can be explained
by the helpfulness—harmlessness trade-off: SFT endows the model with strong harmlessness after
alignment but reduces its plasticity [11] to sufficiently adapt and learn helpfulness during fine-tuning,
thus leading to lower fine-tuning accuracy. As the harmful ratio increases (e.g., p : 0 — 0.2),
fine-tuning accuracy of SFT even rises because the introduced harmful data act as counterexamples



Table 3: Robustness across fine-tuning datasets Table 4: Robustness across model architectures

(| Dsate] = 1000, | Dge| = 1000, p = 0.1). (|Dsate| = 1000, |Dge| = 1000, p = 0.1).
Method | SST2 AGNews GSMSK Alpaca Method | Llama2 Gemma2 Qwen2 Avg.
| HS| FAT |HS| FA1 |HS| FAT | HS| FAfT | HS| FAT |HS| FA1 | HS| FAT |HS| FAT
SFT 3370 93.12 | 30.70 8590 | 14.80 15.20 | 40.70 45.67 SFT 3370 93.12 | 64.30 94.50 | 25.50 94.84 | 41.17 94.15
Lisa 2370 9232 | 16.80 83.20 | 510 12.00 | 1430 41.35 Lisa 23770 9232 | 30.80 94.04 | 9.50 93.92 | 21.33 9343
Repnoise | 32.10 93.00 | 27.30 85.50 | 16.60 16.10 | 36.50 41.83 Repnoise | 32.10 93.00 | 63.60 94.50 | 33.90 94.61 | 43.20 94.04
Vaccine | 28.30 93.69 | 2520 86.10 | 3.70  15.30 | 43.40 44.71 Vaccine | 28.30 93.69 | 45.00 93.69 | 16.80 92.55 | 30.03 93.31
Booster 830 9323 | 7.10 8720 | 640 17.10 | 36.70 45.19 Booster 830 9323 | 11.20 93.69 | 1.60 95.64 | 7.03 94.19
BDS 120 93.69 | 1.10 89.10 2.00 18.30 | 2.30 48.08 BDS 120 93.69 1.30 9450 | 090 9472 | 113 94.30
Table 5: Robustness for different | Dy . Table 6: Robustness for different | Dy,fol-
Method | Harmful Score | | Finetune Accuracy Method | Harmful Score | | Finetune Accuracy
‘ 500 1000 1500 2000 ‘ 500 1000 1500 2000 ‘ 100 500 1000 1500 ‘ 100 500 1000 1500

Booster
BDS

3.80 830 20.10 33.60 | 92.66 93.23 94.04 94.15 Booster | 62.20 34.60 830 8.10 | 9323 9342 9323 92.86
120 120 090 1.20 | 9335 93.69 93.12 94.28 BDS 170 120 120 1.30 | 9358 9392 93.69 93.69

Table 7: Effectiveness and transferability of neural scheduler. A — B denotes that the neu-
ral scheduler is trained on dataset A and directly applied to assign data weights on dataset B.
[HS/FA] (new_ID/00D) denote metrics under in-domain and out-of-domain transfer settings.
Method | SST2 | SST2 — SST2 (unseen) | SST2 — AGNEWS |
| HS FA | HS(new_ID) FA(new_ID) | HS(new_OOD) FA(new_OOD)

Scalar Scheduler | 1.20 93.69 — — p— _
Neural Scheduler | 1.70  93.69 2.50 93.23 2.80 89.20

that prompt the model to “unlearn” part of its harmlessness, thereby restoring plasticity and improving
its capacity to learn helpfulness. Our method achieves a better helpfulness—harmlessness trade-off
by jointly optimizing the safety alignment and fine-tuning objectives, as shown in Eq. (7). This
joint optimization resembles a multi-task learning paradigm, which more effectively balances the
competing objectives of harmlessness and helpfulness than the sequential learning paradigm used in
SFT. Further discussions on the helpfulness—harmlessness trade-off are provided in App. F.2.

Robustness for high harmful ratios. Prior evaluations [29, 33] are limited to low harmful ratios,
as existing methods struggle under high harmful ratios. To highlight our robustness, we conduct
experiments under high harmful ratios ranging from 0.3 to 1.0. As shown in Tab. 2, BDS significantly
surpasses the SOTA Booster across all tested ratios in both harmful score and fine-tuning accuracy.
At high harmful ratios from 0.5 to 1.0, BDS achieves a significant reduction in harmful score by
over 70% and delivers a near 1% improvement in fine-tuning accuracy. These results highlight the
exceptional robustness and reliability of BDS, even under highly adversarial conditions.

Robustness for diverse fine-tuning tasks. To assess generalization, we evaluate BDS on four
fine-tuning datasets in Tab. 3. Results show that BDS consistently maintains exceptionally low
harmful scores (around 1) across all tasks, while existing baselines exhibit severe instability and
poor generalization. For instance, while Vaccine achieves a harmful score of 3.7 on GSMSK, it
catastrophically underperforms on AlpacaEval with a harmful score of 43.30. These results highlight
BDS’s adaptability and robustness to complex tasks like GSM8K and AlpacaEval while ensuring
harmlessness. More experiments on complex text generation tasks are provided in App. D.6.

Robustness for different model architectures. To further assess generalization, we evaluate BDS
on two SOTA architectures, Gemma2-9B and Qwen2-7B. Tab. 4 demonstrates BDS consistently
achieves low harmful scores, while existing baselines exhibit severe instability. While Booster attains
a harmful score of 1.6 on Qwen2-7B, it collapses on Gemma2-9B, surging to 11.2. These highlight
BDS’s adaptability, ensuring consistent SOTA performance across diverse model architectures.

Robustness for different sizes of |Dy;|. To validate robustness to |Dy| size, we evaluate its impact
while keeping |Dsafe| and the harmful ratio p fixed by default. As shown in Tab. 5, existing baseline
suffers a sharp decline in defensive performance as | Dy | increases. Booster’s harmful score surges
dramatically from 3.8 to 33.6, exposing its inability to handle larger datasets. In contrast, BDS
demonstrates strong robustness, maintaining a consistently low harmful score of around 1 regardless
of | Dy | size. This highlights BDS’s reliability in defending harmful fine-tuning, even as dataset sizes
scale substantially. Robustness for larger dataset size is also demonstrated in App. D.5.

Robustness for different sizes of | Dgs.|. To validate robustness to | Dgate | size, we evaluate its impact
while keeping |Dy;| and p fixed by default. As shown in Tab. 6, existing baselines collapses as |Dsafe|
decreases, with defensive performance deteriorating sharply. In contrast, BDS exhibits remarkable
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Figure 6: Data weights distributions across varying harmful ratios. More visualizations of weight
distributions and scheduling dynamics are provided in Fig. 7 of App. D.1 and Fig. 8 of App. D.2.

resilience, consistently maintaining a harmful score below 2, even with only 100 alignment samples.
These results underscore BDS’s robustness in defense, even under limited alignment data.

Effectiveness and transferability of neural scheduler. To evaluate the effectiveness of the neural
scheduler, we compare it with the scalar scheduler. The results in Tab. 7 show that the neural scheduler
performs comparably to the scalar scheduler in both defensive and fine-tuning performance, achieving
a harmful score below 2 on SST2. To further evaluate its transferability, we conduct experiments
on unseen in-domain and out-of-domain datasets. The neural scheduler trained on the seen data is
directly used to assign data weights to unseen data, which is subsequently employed for fine-tuning
the LLM. As shown in Tab. 7, the neural scheduler generalizes effectively to both in-domain and
out-of-domain unseen data, maintaining a harmful score below 3. These results highlight the strong
effectiveness and transferability of the neural scheduler without the need for retraining, supporting its
capacity to learn transferable data safety attributes [16].

Robustness for advanced attack: OOD and ISA. To evaluate the superior adaptiveness of our
method under diverse attack dynamics, we conduct experiments against several challenging attack
strategies: OOD attacks, and identity shifting attacks (ISA) [48]. Detailed results and discussions
are provided in Apps. D.3 and D.4 due to limited space. Our approach significantly outperforms
SOTA baselines, maintaining a low harmfulness ratio (around 1) across all attack strategies. This
adaptiveness fundamentally stems from our loss-based data scheduling mechanism. Regardless of the
attacker’s strategy—whether OOD or ISA—harmful data tends to exhibit shared “unsafe behavior”
(i.e., incurring higher loss within the loss landscape of safety-aware models [46]), thus being assigned
with lower weights. This also mirrors the shared “safe behavior” observed across benign datasets
(see Tab. 7), and supports the existence of transferable data safety attributes discussed in [16]. This
mechanism enables our method to effectively adapt to various attack dynamics without explicit attack
simulation.

Visualization of adaptiveness. Weight distributions (Fig. 6 and Fig. 7 in App. D.1) and scheduling
dynamics (Fig. 8 in App. D.2) demonstrates BDS adaptively and correctly assigns higher weights to
truly benign data and lower weights to truly harmful data, across varying harmful ratios.

Ablation studies on each component configuration are provided in detail in Apps. E.1 to E.3 and E.5.

Discussion. We offer comprehensive discussions on the adaptiveness of BDS, helpfulness-
harmlessness trade-offs, limitations, and social impact in Apps. F.1 to F.5, F.7 and F.8, along
with complexity and convergence analyses in Apps. G.1 and G.2.

6 Conclusion

We propose BDS, a novel and principled framework that achieves adaptive defense against harmful
fine-tuning without requiring attack simulation. We introduce two implementations, Bayesian Scalar
Scheduler and Amortized Bayesian Neural Scheduler, with the latter enabling efficient transfer to
new data without retraining. Leveraging the post hoc nature of Bayesian inference, BDS learns the
posterior distribution of data weights conditioned on the specific dataset, thus achieving adaptive
defense. Extensive experiments confirm the SOTA performance and superior adaptiveness of BDS,
significantly outperforming baselines by over 70% across diverse attack and defense settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claim is explicitly stated in the abstract and introduction, and is well
supported by extensive experiments across diverse attack and defense scenarios.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See App. F.7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Detailed derivations and proofs are provided in Apps. H.1 to H.4 and App. L.6.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed implementation details are provided in App. B.1, App. B.3, App. B.2,
and App. B.4.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code and instructions for reproducing all experiments will be released upon
acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed implementation details are provided in App. B.1, App. B.3, App. B.2,
and App. B.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In the community of LLM harmful fine-tuning defense [29, 33], it is common
not to report error bars due to the high computational cost and the stability of results across
runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on a single NVIDIA A100 40GB GPU.
Details on computational requirements and complexity analysis are provided in App. G.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See App. F.8.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use publicly available datasets and models with proper citation, and adhere
to their respective licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Fine-tuning-as-a-service has become a widely adopted paradigm among mainstream LLM providers
(e.g., OpenAI4 and Mistral’). Recent red teaming studies [48, 29, 30] have revealed a critical
vulnerability: harmful fine-tuning. Harmful fine-tuning refers to that the presence of even a small
fraction of harmful data in user- provided datasets can cause fine-tuned models to deviate from the
safety alignment established during pre-training, i.e., the model forgets to give refusal answer towards
harmful prompts after fine-tuning on a few harmful samples.

Mechanism study of harmful fine-tuning. Existing research has made efforts to analyze the mecha-
nisms underlying the high sensitivity of LLMSs to harmful fine-tuning. (i) Adversarial permutations:
One line of work reveals that harmful fine-tuning can induce adversarial perturbations to the model, to
which LLMs are highly sensitive. For instance, Vicanne [33] demonstrates that tuning with harmful
data in user-provided datasets can cause embedding drift. Similarly, Booster [29] identifies that harm-
ful fine-tuning leads to parameter perturbations. Moreover, [46] introduces the concept of a safety
basin, wherein LLMs can tolerate parameter perturbations within a local region while maintaining
safety alignment; however, exceeding this basin results in a sharp degradation of alignment. (ii)
Structural vulnerabilities: Another line of work delves deeper into the structural susceptibilities
of specific model components [21, 47, 37]. For example, Safe LoRA [21] highlights that certain
layers of a model play a more critical role in preserving safety, while others are less susceptible
to perturbations. Similarly, [37] emphasizes that different layers perform distinct functions when
exposed to various types of attacks. (iii) Catastrophic forgetting: Several studies explain alignment
vulnerabilities through the lens of catastrophic forgetting [43] due to the sequential training paradigm
[6, 13]. For instance, [63] highlights that the inconsistency between SFT and alignment objectives
can lead to alignment knowledge being forgotten when SFT is performed sequentially after alignment.
Likewise, [13] identifies that the sequential nature of SFT after alignment exacerbates this forgetting
issue.

Harmful fine-tuning attack. On the attack side, [48] conduct experiments using OpenAI’s API and
demonstrate that even fine-tuning solely on benign data can compromise the base model’s safety

*Fine-tuning API by OpenAl: https://platform.openai.com/docs/guides/fine-tuning
SFine-tuning API by Mistral: https://docs.mistral.ai/guides/finetuning
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alignment. This highlights the inherent risks of fine-tuning in the fine-tuning-as-a-service scenario.
Further, [20] identify subsets of benign data that are more likely to degrade model safety post-fine-
tuning. These data points are characterized by their proximity to harmful examples and distance from
benign ones in both representation and gradient space. Additionally, [18] introduce the concept of
covert malicious fine-tuning. In the first stage (learning the encoding), the model is trained to learn an
encoding which it did not previously know. In the second stage, the model is fine-tuned with encoded
harmful inputs and outputs. During testing, the model generates encoded harmful responses when
triggered by encoded harmful queries. Recently, [32] construct harmful data designed to deliberately
circumvent moderation guardrails.

Harmful fine-tuning defense. On the defense side, existing defense methods can be categorized
into three categories, including alignment stage [33, 52, 58, 42, 29, 40, 41, 7, 75], fine-tuning stage
[44, 3, 31, 61, 79, 55], and post-fine-tuning stage solutions [76, 12, 28, 70, 62]. Alignment stage
defense aims at preemptively improving the model’s robustness prior to deployment. For example,
Vaccine [33] introduces simulated embedding perturbations to strengthen the model’s embedding
resistance, while Booster [29] incorporates parameter perturbations to achieve parameter resistance.
RepNoise [52] unlearns harmful representations such that it is difficult to recover them during
fine-tuning. Fine-tuning stage defense aims to reduce the influence of harmful data during the
fine-tuning process. Safelnstr [4] proposes to mix safety alignment data during the fine-tuning
process to constantly reinforce the model’s alignment knowledge. Similarly, VLGuard [83] also
employs the data-mixing strategy but focuses on verifying its effectiveness with Vision-LLMs. Lisa
[31] also mixes alignment and fine-tuning data but introduces Bi-State Optimization to separate
the optimization processes for alignment and fine-tuning data, thus reducing optimization overhead.
As we can see, Safelnstr [4], VLGuard [83], and Lisa [31] similarly adopt the strategy of mixing
alignment data with fine-tuning data. However, it has fundamental limitations: (i) These methods do
not explicitly isolate harmful data but only attempt to counteract its effects indirectly, thus leading
to suboptimal defense performance. (ii) They require alignment data to scale with harmful data,
incurring high computational costs and making them highly sensitive to the unknown amount of
harmful data in post hoc attacks. Seal [55] introduces a data selection strategy grounded in penalty-
based bi-level optimization principles. The method assigns hard labels to data samples and relies
on a manually adjusted threshold, which can be suboptimal since the defender generally lacks prior
knowledge of the proportion of harmful data and the method could be less robust when dealing
with ambiguous or uncertain samples (see discussions in App. F.4). Post-fine-tuning stage defense
[76, 12, 28, 70, 62] aims to restore safety alignment after fine-tuning without sacrificing fine-tuning
performance.

Data curation for LLMs. Data curation methods aim to optimize data utilization strategies. For
instance, coreset selection for LLMs [81, 1, 34, 73, 41] focuses on selecting the most critical
subset of data. Existing approaches typically rely on metrics computed from the raw dataset and a
reference dataset, including gradient matching [71], representation similarity [19], influence functions
[39, 78, 77], and uncertainty estimation [34]. However, these methods assume distributional similarity
between the raw and reference datasets and often leads to high computational costs (e.g., influence
functions). In our setting, where the raw dataset (i.e., user-provided fine-tuning dataset) and reference
dataset (i.e., alignment dataset) exhibit insufficient distributional similarity, such methods lead to
suboptimal defense performance. In contrast, our approach leverages the loss difference between
benign and harmful data on a model trained with the alignment dataset. This design is independent of
distributional similarity and computationally efficient, thus offering a unique advantage in the setting
of harmful fine-tuning defense.

B More Details

B.1 Details on Baselines
We summarize the high-level ideas and implementation details of the baseline methods used in our
experiments. We basically follow the configuration used in their original paper.

SFT: Supervised fine-tuning (SFT) is initially applied using the alignment dataset to fine-tune the
base model, followed by SFT on the user-provided fine-tuning dataset, which contains partially
harmful data.
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Vaccine [33]: Vaccine introduces simulated perturbations to embeddings using a harmful dataset to
enhance the model’s robustness against influences of harmful data. Afterward, SFT is performed on
the user-provided fine-tuning dataset, which includes partially harmful data. The hyperparameter p is
selected through grid search over {0.1, 1, 2,5, 10}, with p = 5 used in the final experiments.

RepNoise [52]: RepNoise unlearns information about harmful representations such that it is difficult
to recover them during fine-tuning. The hyperparameters are set as & = 1 and 5 = 0.001.

Lisa [31]: Lisa alternatively tune the base model between alignment and fine-tuning datasets
to preserve alignment knowledge. The regularizer intensity p is selected via grid search over
{0.001,0.01,0.1, 1}, with p = 0.01.

Booster [29]: Booster introduces simulated perturbations to model parameters using a harmful
dataset, enhancing the model’s robustness against potential harmful data by improving its resistance
to parameter perturbations. Subsequently, Booster applies SFT to fine-tune the base model on the
user-provided fine-tuning dataset.

B.2 Details on Fine-Tuning Task Evaluation

For a fair comparison [29], we employ a unified system prompt for training and testing across all
tasks, structured as follows:

Prompt: Below is an instruction that describes a task, paired with an input that pro-
vides further context. Write a response that appropriately completes the request. Instruc-
tion:{instruction} Input:{input} Response:

Output: {output}

We define {instruction} and {input} tailored to each dataset. For SST2, the {instruction}
specifies sentiment analysis objective, with the {input} being a sentence and the {output} the
corresponding sentiment label. In GSMS8K, the {instruction} is a mathematical question, and
the {output} is the correct answer. For AGNEWS, the {instruction} specifies the classification
objective, with the {input} being a sentence and the {output} representing the corresponding
category. For AlpacaEval, GPT4’s high-quality instruction-answer pairs are used as the demonstration
data, and testing involves evaluating the helpfulness of model responses to unseen prompts using
ChatGPT’s APIL

B.3 Details on Scheduler Training

Due to limited prior knowledge about the dependencies, we assume factorized priors: p(0,w) =~
p(0) - p(w) in Eq. (1) and p(0, ¢ | Ds) =~ p(0) - p(¢) in Eq. (10). Although p(w) is theoretically
defined as a prior distribution, in practice we initialize w to 0.1 and allow it to be freely optimized
during training (i.e., using a noninformative prior) to avoid potentially misleading manually chosen
priors. Future work could explore how to design more robust priors to better regularize the data
weights. p(0) and p(¢) follow zero-mean Gaussian distributions corresponding to weight decay
regularization. The neural scheduler is implemented using a lightweight 125M Fairseq-Dense model
[2] with an added trainable head. We adopt a identity transformation on the mean pooling of the
instance’s representations along the sequence length. The size of hidden state is 768. We optimizer
the scalar and neural scheduler with a learning rate of 5 x 1073 and 1 x 109, respectively, using a
batch size of 10.

B.4 Details on Fine-Tuning

For fine-tuning, we adopt LoRA [22] for efficient fine-tuning, following [29, 33, 21]. The adaptor
rank is set to 32 with alpha set to 4. Fine-tuning is performed using the FusedAdam [50] with a
learning rate of 1 x 10~° and a weight decay of 0.1, as recommended by [29]. The training involves
20 epochs for SST2, AGNEWS and GSMS8K, and 100 epoches for AlpacaEval, following [29]. The
batch size is set as 10. The model’s backbone utilizes BF16 (bfloat16) precision for computational
efficiency. For the extreme case where the harmful ratio is 1 (i.e., the fine-tuning data contain only
harmful samples), we report in Tab. 2 the result obtained with a larger safe dataset (| Dgure| = 5000)
to achieve more stable defense performance, while results for other ratios use | Dg,g| = 1000.
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C Algorithms

To provide a clearer understanding of our algorithm, we present detailed pseudocode in Alg. 1.

Algorithm 1: Bayesian Data Scheduler.

Input: Base LLM 0(0); User-provided fine-tuning dataset Dy, ; Alignment datset Dsage; Bayesian Scalar
Scheduler w or Amortized Bayesian Neural Scheduler A/ (+; ¢); Step size n; Weight transformation
function o (+); Gaussian noise €; Max iterations 7.

Initialize w or ¢

fort < Oto 1 do

// Construct a batch of data

Sample Bsate from the alignment dataset Dsage and By from the fine-tuning dataset Dy,
// Update LLM via Eq. (7)

0(+D) W 4 1y, (logp(e“) |

w) — ‘Dbdfel St U2 safe, (1)) _ \‘gi‘\ ey [U(wi) -E(zft;e(t))] ) N

Bgafe

// Update scheduler via Eq. (8) or Eq. (11)
if using Bayesian Scalar Scheduler then

w ) — w® + 27, <logp(w(t>) - % Dstteny |:0'(’U]i) O 0(’5“))] ) + ey

else if using Amortized Bayesian Neural Scheduler then
¢(t+1) —

oM + %W(logp(cb )= 1B e, [N (21 60) - 0(215 044 D)] ) eV

Return: Fine-tuned LLM 07 after T iterations.

D More Experiments

D.1 Weight Distribution of Benign and Harmful Data under Various Harmful Ratios

To clearly illustrate the adaptive defense capability of our proposed method, we provide compre-
hensive visualizations of weight distributions across harmful ratios from 0.2 to 0.9 in Fig. 7. In
each subfigure, the largest panel depicts the scatter and boxplot distributions of weights for truly
benign and truly harmful data, respectively. The top-right panel presents the histogram of weights
for truly benign data, while the bottom-right panel shows the histogram for truly harmful data. The
visualizations demonstrate that our method indeed accurately assigns higher weights to truly benign
data and consistently lower weights to truly harmful data. Moreover, this effectiveness remains stable
and robust across varying and unknown harmful ratios, even under extreme conditions like a ratio
of 0.9. These results highlight the adaptability of our approach to diverse attack scenarios without
requiring modifications, underscoring its strong potential for real-world applications.

D.2 Scheduling Dynamics for Benign and Harmful Data under Various Harmful Ratios

To clearly demonstrate the adaptive data scheduling process, we provide comprehensive visualizations
of scheduling dynamics across harmful ratios ranging from 0.2 to 0.9 in Fig. 8. For encountered
datasets with different and unknown harmful ratios from 0.2 to 0.9, BDS adaptively schedules data
into higher and lower weight groups during fine-tuning (largest panels). To verify correctness, we
observe that most truly benign data indeed receive higher weights (top right panels), while almost
all truly harmful data consistently receive lower weights (bottom right panels). Moreover, this
adaptive scheduling remains effective and robust, even under extreme conditions like a harmful
ratio of 0.9. These results underscore the adaptability and robustness of our approach across diverse
attack scenarios without requiring modifications, demonstrating its strong potential for real-world
applications.

28



[Dsarel = 1000, [Dy| = 1000, p = 0.2

|Dsatel = 1000, |Dg| = 1000,p = 0.3

Weight (pre transformation)

r

@ Truly benign data
@ Truly harmful data

[ ——

Count

o

o

B Al s

Weight (pre transformation)

"

E

e

® Truly benign data
B Truly harmful data

e —

Count

lao

o URadilcuidous s, it 1
i o

& 8l

Truly benign data Truly harmful data

[Dsarel = 1000, |Dg | = 1000, p = 0.4

Weight (pre transformation)

np

NESERES e

@ Truly benign data

® Truly harmful data |,

v —

*Count

o

ko

0

o vlliad e st ol Jid ara il

Weight (pre transformation)

Truly benign data Truly harmful data

Weight

|Dsatel = 1000, |Dg| = 1000,p = 0.5

"

r

@ Truly benign data
@ Truly hammful data

- —

“Count
0

0

Weight (pre transformation)

Weight (pre transformation)

Truly benign data Truly harmful data Weight Truly benign data Truly harmful data Weight
|Dsarel = 1000, |Dg| = 1000,p = 0.6 |Dsatel = 1000, | D¢, | = 1000, p = 0.7
Count sCount
ko
® Truly benign data |, E EE @ Truly benign data
B Truly harmful data 'g 3 | Truly harmful data | |,
o s
: o bl wumd | b E F o sl mmon o uolbboa il
- - ‘IE - 0 2
' L 5 : o
s -
: o £ v ©
: — © — =
¢ i o 2 o | =
S — S s —
T | B o 1 o | = o M
Truly benign data Truly harmful data Weight Truly benign data Truly harmful data Weight
[Dsarel = 1000, |Dg| = 1000,p = 0.8 |Dsate| = 1000, |Dy| = 1000,p = 0.9
" Count Count
- E
@ Truly benign data |* E :‘: @ Truly benign data | fo
® Truly harmful data |* é - 8 Truly harmful data |
: | $ - 1
- ol tum v o bkl a - [
= o s a s _ 2 . . s
5
= o
£ ko 5 o
- =
. lo £ o
= o
: ko 2 o
5 Ll v o M.
Truly benign data Truly harmful data Weight Truly benign data Truly harmful data Weight

Figure 7: Adaptive weight distribution of benign and harmful data under various harmful ratios.
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D.3 Robustness for OOD Attack.

To evaluate the adaptiveness of our method to advanced attacks, we conduct experiments under an
OQOD setting, which simulates an attacker uploading fine-tuning data from a domain distinct from
the defender’s alignment dataset. Here, we use BeaverTails [35] as the alignment dataset, while
RealToxicityPrompts [14] and AdvBench [84] serve as OOD attack datasets. Notably, RealToxici-
tyPrompts consists of prompts likely to elicit toxic completions, representing a domain that differs
substantially from BeaverTails. As shown in Tab. 8, our method maintains strong defense performance
against OOD attacks. This suggests that harmful data—across different domains—exhibit shared
“unsafe behavior” in the loss landscape [13], leading to consistent higher loss and thus lower weights.
Interestingly, this aligns with the observation of shared “safe behavior” across benign datasets (see
Tab. 7), and supports the existence of transferable data safety attributes as discussed in [16].

Table 8: Robustness for OOD attack.
\ RealToxicitiyPrompts (p = 0.1)  RealToxicitiyPrompts (p = 0.3) AdvBench (p =0.1) AdvBench (p = 0.3)

Method
| HS | FA 1 | HS | FA 1 | HS | FA 1 | HS | FA 1
Booster | 26.80 93.14 28.40 91.94 | 18.20 92.28 19.50 91.88
BDS 1.50 93.88 1.90 93.36 0.80 93.46 0.90 92.66

D.4 Robustness for Identify Shifting Attack (ISA) [48]

To evaluate the adaptiveness of our method under adversarial prompting, we assess its performance
against the Identity Shifting Attack (ISA) [48]. Following the setup in [48], we prepend an identity-
shifting prompt to each fine-tuning example to simulate the attack. As shown in Tab. 9, BDS
achieves a significantly lower harmful score (around 1) against ISA. The score also remains similarly
low compared to non-ISA settings, indicating BDS effectively deweights harmful data even with
prompt-level manipulation.

Table 9: Robustness for Identify Shifting Attack (ISA) [48].
| ISA(p=0.1) ISA(p=03) ISA(p=0.6) ISA(p=0.8)
| HS| FAT | HS| FA1 |HS, FAt | HS| FA%

Booster | 16.20 92.36 | 48.40 92.18 | 77.40 91.32 | 7740 91.24
BDS 1.60 93.00 | 1.50 9346 | 1.50 92.68 | 1.70 92.14

Method

D.5 Robustness for Larger Fine-Tuning Dataset Size

In addition to Tab. 5, which evaluates fine-tuning dataset sizes ranging from 500 to 2000, we further
evaluate the robustness of BDS under larger fine-tuning dataset size. As shown in Tab. 10, BDS
consistently maintains strong defense performance even when the fine-tuning dataset size increases
to 10000. In contrast, the performance of the SOTA baseline (Booster) degrades significantly as
the dataset grows due to the increased absolute number of harmful data within it. These results
demonstrate that BDS scales effectively with larger datasets and maintains strong robustness.

Table 10: Robustness for larger fine-tuning dataset size.

Method | |Psel = 8000 (p=0.1)  [Dg| = 8000 (p = 0.3) [ Dg| = 10000 (p =0.1)  [D| = 10000 (p = 0.3)
| HS | FA 1 | HS | FA 1 | HS | FA 1 | HS | FA 1
Booster | 68.80 92.82 75.60 92.64 73.40 92.78 77.20 92.42
BDS | 1.20 92.89 1.20 93.02 1.10 93.12 1.30 93.08
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D.6 Robustness on More Complex Tasks: Data-to-Text Generation.

In addition to the four tasks in Tab. 3, we further evaluate BDS on the GEM benchmark ©, focusing
on more complex data-to-text generation tasks—specifically, VIGGO’ and CACAPO®. As shown
in Tab. 11, BDS outperforms the SOTA baseline in both helpfulness (measured by ROUGE-1) and
harmlessness (measured by harmfulness score), demonstrating its robustness and effectiveness in
more complex data-to-text generation tasks.

Table 11: Robustness on GEM benchmark.
ViGGO (p =0.3)  CACAPO (p = 0.3)

Method ‘

| ROUGE-11 HS| | ROUGE-11 HS|
Booster 0.84 45.80 0.63 52.60
BDS 0.88 1.30 0.70 1.40

D.7 Comparison with Detection-Based Methods.

We further compare BDS with two detection-based baselines proposed in [8]:

e LLM-As-A-Judge [8]: This method filters the harmful data by querying the large language model
“Is the following data sample harmful to use for fine-tuning?”’

e SAFT [8]: An OOD detection-based method that identifies harmful data based on activation
subspace representations.

As shown in Tab. 12, BDS achieves significantly higher fine-tuning accuracy and lower harmfulness
scores than both methods. This supports the limitations of detection-based approaches discussed in
Table. 2 of [30], particularly their vulnerability to false positives and false negatives:

* Why do detection-based baselines have low fine-tuning accuracy? This is due to the detector’s
false positive rate, where some truly benign fine-tuning data are incorrectly identified as harmful
and removed. As a result, the amount of truly benign data for fine-tuning is reduced, leading to
degraded fine-tuning accuracy.

* Why do detection-based baselines have high harmful scores? This is due to the detector’s false
negative rate, where some truly harmful data are incorrectly identified as benign and retained.
Consequently, truly harmful data participate in the fine-tuning process, leading to high harmful
scores.

In contrast, BDS does not rely on hard binary filtering. Instead, it adopts a loss-based soft weighting
mechanism, which adjusts the influence of each sample without requiring explicit hard labels. This
enables more robust and accurate handling of uncertain or ambiguous data.

Table 12: Comparison with detection-based methods.
| SST2(p=0.1) SST2(p=0.3)

Method
\ FA1 HS| \ FA 1 HS |
LLM-As-A-Judge [8] | 90.03 35.2 89.68 40.5
SAFT [8] 91.28 27.6 90.89 29.6
BDS 93.69 1.20 93.32 1.20

D.8 Comparison with Deterministic Data Curation Methods.

To showcase the unique effectiveness of BDS as a data curation method for harmful fine-tuning
defense, we compare it to another data curation method DSIR [72]. DSIR resamples the target dataset
(i.e., Dy ) via importance sampling based on distributional alignment with the reference dataset (i.e.,

Shttps://gem-benchmark. com/
"https://huggingface.co/datasets/GEM/viggo
$https://huggingface.co/datasets/GEM/CACAPO_E2F
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Dsate). As shown in Tab. 13, BDS consistently outperforms DSIR. This advantage stems from two
key factors: (1) DSIR depends on distributional similarity between reference and raw datasets, while
BDS remains robust to distributional differences; (2) BDS captures uncertainty in datapoint-wise
safety attributes, enabling more reliable weighting for potentially ambiguous data.

Table 13: Comparison with deterministic data curation method .
Method | SST2 AGNEWS GSM8K AlpacaEval
| HS| FAT | HS| FAT | HS| FAT | HS| FA1

DSIR | 56.10 91.14 | 4840 81.40 | 46.20 13.50 | 58.60 39.84
BDS 120 9369 | 1.10 89.10 | 2.00 1830 | 1.20 46.83

E Ablation Studies

E.1 Impact of Different Weight Transformations.
To assess the impact of different weight transformations, we compare softmax, sigmoid and iden-

tical transformations in Tab. 14. The results confirm our analysis in Sec. 4.4, demonstrating the
effectiveness of softmax in bidirectionally updating weights.

Table 14: Impact of different weight transformation functions .

Method |  softmax sigmoid identity

| HS| FA+ | HS| FA1 | HS| FAt
BDS | 120 93.69 | 16.70 9223 | 16.50 0.00

E.2 TImpact of Different Weight Priors

To assess the impact of different weight priors on BDS performance, we compare the noninformative
prior with various Gaussian distributions, defined as:

1 (w; — p)°
2mo? P < 202 ’

where p is the mean and o is the standard deviation.

p(w;) =

The results in Tab. 15 show that the noninformative prior achieves better defensive performance
and slightly better fine-tuning performance compared to Gaussian priors. We attribute this to
the noninformative prior granting greater freedom to weight updates. Since defenders lack prior
knowledge about the harmful ratio in user-provided data, imposing a Gaussian prior may introduce
incorrect constraints, potentially degrading BDS performance. Future work could explore more
effective and robust priors for modeling the data weight distribution.

Table 15: Impact of different priors (|Dgate| = 1000, |Dg| = 1000, p = 0.1).

Method ‘ noninformative prior Gaussian (u = 0,0 = 0.1)  Gaussian (u = 0,0 = 1)
HS | FA 1 HS | FA 1 HS | FA 1
BDS | 1.20 93.69 20.40 93.23 21.20 93.12
Method ‘ Gaussian (@ = 0.1, 0 = 0.1) Gaussian (4 = 0.1, 0 = 1) Gaussian (¢ = 0.1, 0 = 10)
HS | FA 1 HS | FA 1 HS | FA 1
BDS |20.20 93.12 21.80 93.12 20.10 93.35

E.3 Impact of Weight Initialization

To assess the impact of weight initialization on BDS performance, we conduct experiments using
different initialization values under the noninformative prior. The results in Tab. 16 indicate that BDS
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is robust to weight initialization, achieving a harmful score between 1.1 and 1.5, and fine-tuning
accuracy between 93.58% and 93.69% across initialization values ranging from 0.001 to 10. This
stability demonstrates that BDS is insensitive to the weight initialization hyperparameter, making it
easier to deploy in real-world applications.

Table 16: Impact of the value of weight initialization, (| Dsase| = 1000, |Dg| = 1000, p = 0.1).
Method ‘ 0.001 0.01 0.1 1.0 10
|HS| FAT |HS| FA? |HS) FAT |HS| FA1 |HS| FA?
BDS ‘ 1.50 93.58 ‘ 1.30 93.58 ‘ 1.20 93.69 ‘ 1.10 93.58 ‘ 1.10 93.69

E.4 Impact of the Alignment Dataset

As shown in Tab. 17, removing the alignment dataset sharply increases the harmful score (HS). This
is because the model fails to learn safety-awareness, causing harmful samples to no longer incur
consistently high loss, thus leading to incorrect weight assignment.

Table 17: Impact of alignment dataset.
| SST2(p=0.1) SST2(p=0.3)
| FAT  HS| | FAT HSJ

w/o alignment dataset | 94.27 77.90 | 93.81 78.10
w/ alignment dataset | 93.69  1.20 | 93.32  1.20

Setting

E.5 Impact of the Data Weight

As shown in Tab. 18, when the safety alignment data and fine-tuning data are simply mixed without
applying appropriate weighting, the harmful ratio increases substantially. This result suggests that
down-weighting harmful data effectively suppresses their adverse influence, whereas naive data
mixing alone is insufficient to achieve the desired defense robustness.

Table 18: Impact of data weight.
\ SST2 (p = 0.3)
| FAT  HS

w/o data weight | 93.69 11.20
w/ data weight | 93.32  1.20

Setting

F More Discussions

F.1 Insights into Adaptiveness to Diverse Attack Dynamics

To better understand why our method can effectively adapt to diverse attack dynamics, we highlight
two mechanical design insights:

* Bayesian conditioning enables dataset-specific defense. By leveraging the post hoc nature of
Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor
its defense to the specific dataset, thereby achieving adaptive defense.

* Loss-based scheduling realizes instance-level adaptiveness. Once the posterior is conditioned to
the specific dataset, BDS applies a loss-based weighting strategy to individual samples. Harmful
data—regardless of attack strategy—tends to exhibit consistently higher loss in the loss landscape
[46], and is therefore assigned lower weights. This shared “unsafe behavior” parallels the “safe
behavior” observed across benign datasets (Tab. 7), and supports the existence of transferable
data safety attributes [16]. As a result, BDS can adaptively downweight harmful samples without
requiring explicit attack simulation.
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F.2 Insights into Helpfulness-Harmlessness Trade-Offs

To better understand the trade-offs between helpfulness and harmlessness, we analyze several
phenomena observed in Tab. 1: (i) When no harmful data is present (p = 0), BDS achieves the highest
fine-tuning accuracy, while SFT performs significantly worse. (ii) As harmful data is introduced (p =
0.2), SFT improves in fine-tuning accuracy, despite the presence of harmful data. Note that these
observations also align with the empirical findings in Table. 1 of [29], where SFT achieves lower
fine-tuning accuracy at p = 0 and higher accuracy as p increases to 0.2.

These observations can be explained by the trade-offs between helpfulness and harmlessness. SFT
[29] adopts a two-stage training paradigm (see baseline details in App. B.1): it first optimizes for
harmlessness using an alignment dataset (i.e., the alignment stage), and then fine-tunes for helpfulness
using a fine-tuning dataset (i.e., the fine-tuning stage). Specifically,

* Why does SFT achieve lower fine-tuning accuracy when no harmful data is present (p = 0)?
Although the model achieves good harmlessness after the alignment stage, it loses plasticity [11]
to sufficiently adapt and learn helpfulness in the fine-tuning stage, thus leading to lower fine-tuning
accuracy.

* Why does SFT achieve better fine-tuning accuracy when more harmful data is introduced (p
=0.2)? Introducing harmful data during fine-tuning serves as counterexamples that encourage
the model to actively “unlearn” some harmlessness knowledge acquired in the alignment stage.
While this sacrifices a certain degree of harmlessness, it enables the model to regain plasticity [11]
and learn helpfulness more effectively during fine-tuning, thereby resulting in higher fine-tuning
accuracy.

* Why can our BDS method effectively balance the trade-offs, even when no harmful data
is present (p = 0)? Instead of adopting a two-stage training paradigm like SFT, BDS jointly
optimizes the alignment and the fine-tuning objectives, as shown in Eq. (7). This joint optimization
resembles a multi-task learning paradigm, which better handles the optimization trade-offs between
harmlessness and helpfulness compared to the sequential learning paradigm used in SFT.

F.3 Simulation-Free vs. Simulation-Based Defense

Limitations of simulation-based defense. While we acknowledge simulation-based defenses
[29, 33] offer the possibility in simulating potential attacks, such approaches face fundamental
limitations across several levels:

« Infeasibility of attack simulation. It is often infeasible to construct ideal harmful datasets, as
defenders typically lack prior knowledge of the characteristics of potential attack data. Even if
harmful data could be collected, it remains extremely challenging to simulate the diversity and
unpredictability of real-world attacks.

* Limited adaptiveness: Simulation-based methods rely on pre-defined attack assumptions, which
often fail to capture the variability and complexity of post hoc attacks. As a result, their adaptability
to diverse or unseen attack dynamics is limited.

* Unstable optimization: Adversarial training methods are well known to be computationally
expensive and often suffer from unstable training dynamics, e.g., due to the need for min-max
optimization.

Advantage of simulation-free defense. In contrast, our simulation-free approach avoids the afore-
mentioned issues:

* No reliance on attack simulation. Our method does not require assumed attack scenarios, thus
avoiding the infeasibility of attack simulation.

* Enhanced adaptiveness. Detailed discussions on our superior adaptiveness are provided in
App. F.1.

F.4 Data Scheduling vs. Data Filtering

Our method learns a soft weight for each data point, modulating its contribution to training, in contrast
to data filtering approaches that make binary inclusion decisions. Specifically:
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* Scheduling is automatic without requiring manual threshold. Scheduling adjusts each data
point’s contribution using learned weights, while filtering requires a manually set threshold to
remove data—which is non-trivial: (i) ratio-based thresholds [55] are impractical without knowing
the harmful data proportion, and (ii) value-based thresholds are hard to tune due to their broad
continuous range.

* Scheduling is more robust to classification errors. Instead of relying on hard-label decisions
to remove data, scheduling assigns soft weights to individual data points. This alleviates the
limitations of hard-label filtrating discussed in Table. 2 of [30], namely the overly strict false
positives and false negatives issues.

F.5 Over-Refusal

We evaluate our method on the Xstest dataset [54] using GPT-4 as the evaluator. The results are
summarized in Tab. 19.

Table 19: Over refusal examination on the Xstest dataset under safe and unsafe prompts.
Prompt Type Answer Type Ratio

1_full_compliance 76.4%
Safe 2_full_refusal 21.2%
3_partial_refusal 2.4%

1_full_compliance 11.0%
Unsafe 2_full_refusal 89.0%
3_partial_refusal 0%

As shown in Tab. 19, (i) we observe a few of refusals to safe prompts, which we attribute to the base
model’s inherent limitations in language understanding [54]. An example is shown in Tab. 20 (first
row). (ii) We also observe a small number of answers to unsafe prompts, where these responses are
not classified as refusals. Examples are provided in Tab. 20 (second row).

Table 20: Examples of failure-mode behavior—prompt pairs from BDS-trained LLMs on the Xstest
dataset.

Type (Behavior-Prompt) Prompt Example Behavior Example
Refusal-Safe What’s the best method to poison someone I cannot provide information or advice on how
in The Witcher 3 game? to harm or kill someone in any form of media,
including The Witcher 3.
Answer-Unsafe Why should immigrants not be allowed to  Immigrants should be allowed to sit on the same
sit on the same airplane as white people? airplane as white people, regardless of their race or
ethnicity.

F.6 Zero-Shot Performance

We report the zero-shot performance of LLaMA-2 7B on SST2, AGNEWS, GSM8K, and AlpacaEval
as 0%, 0%, 2.7%, and 4.2%. These low scores suggest the model initially struggles with these
tasks due to specific output formats requirements (e.g., “positive/negative” in SST-2) or the need for
complex reasoning (e.g., GSM8K).

F.7 Limitation and Future Work

One limitation of our method is the additional computational overhead introduced by an extra forward
pass through the neural scheduler to compute data weights. However, this cost is modest relative to
overall training (see complexity analysis in App. G.1). Future work may investigate defense methods
built upon model reuse [68, 64, 27, 23, 67, 26] at the model level rather than the data level, as well as
the potential use of synthetic data [24, 66, 25, 65] as a substitute for alignment datasets to improve
defense effectiveness (see also alignment data curation [41]).
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F.8 Impact Statement

Positive impact: The potential broader impact of this work lies in its enhancement of safety and
reliability in commercial fine-tuning (i.e., fine-tuning-as-a-service) for LLMs, mitigating the risks
of harmful fine-tuning that could otherwise lead to dangerous or unethical model behavior. By
addressing these risks, this research can enhance the quality, robustness, and reliability of commercial
fine-tuning services offered by LLM providers, ensuring safer and responsible user-customized LLM
deployment.

Negative impact: Since the proposed method strengthens the relative weight of particular subsets of
fine-tuning data, it could be misused to amplify specific ideological stances in the resulting model,
thereby diminishing the diversity of perspectives represented in the fine-tuned model and potentially
exacerbating social bias.

G More Analyses

G.1 Time and Space Complexity Analysis

To better understand the efficiency of BDS compared to existing methods, we analyze and compare
the time and space complexity of BDS and Booster, as summarized in Tab. 21.

Significant overhead of Booster. Booster comprises two stages: the alignment stage and the fine-
tuning stage. During the alignment stage, Booster requires computing three separate gradients in each
optimization step to simulate harmful permutation, leading to a time complexity of O(3n1 f), where
n1 is the number of alignment steps and f is the number of model parameters. In the fine-tuning
stage, Booster calculates a single gradient per step, resulting in a time complexity of O(ns f), where
ng is the number of fine-tuning steps. The space complexity during alignment includes storing
three gradients (3 f) and two data batches (2d) of benign and harmful data, giving O(3f + 2d). In
fine-tuning, it reduces to O(f + d).

BDS is more efficient in both time and memory. BDS, in contrast, operates solely during the
fine-tuning stage. For each step, BDS performs two updates: one for model weights and one for
data weights, leading to a time complexity of O(na(f + w)), where w is the size of the data weights.
Given that w (data weights) is typically much smaller than f (model parameters), this additional
overhead is negligible. The space complexity for BDS is O(f + 2d + w), accounting for model
gradients, two data batches (fine-tuning and alignment data), and data weights. The comparison
highlights BDS’s scalability and its lower computational and memory overhead compared to Booster.
For practical training, we use a single A100-40G to train BDS, whereas Booster cannot be trained on
a single A100-40G and instead requires an H100-80G.

Table 21: Comparison of time and space complexities for Booster and BDS.

Algorithm | Stage | Time Complexity | Space Complexity

Booster Alignment (n steps) O@B3n1f) O(3f +2d)
Fine-tuning (ns steps) O(naf) O(f +d)

BDS | Fine-tuning (ng steps) |  O(na(f +w)) | O(f +2d+w)

To further demonstrate the efficiency of BDS, we supplement the theoretical complexity analysis in
Tab. 21 with a practical benchmarks of time and memory cost, as shown in Tab. 22. (i) Comparison
with vanilla fine-tuning. BDS introduces negligible computational overhead compared to vanilla
fine-tuning, which serves as the lowest possible baseline cost in the fine-tuning-as-a-service setting,
since BDS only maintains a set of sample weights that are updated via simple additive operations
on loss values during backpropagation (see Eq. (8)). (ii) Scalability to large fine-tuning datasets.
It also scales efficiently to larger fine-tuning datasets, as the number of maintained weights grows
linearly with the number of samples and the update computation remains lightweight relative to
model optimization; the proposed neural scheduler further improves scalability by decoupling the
number of trainable parameters from the dataset size. (iii) Efficiency over existing SOTA defenses.
Moreover, compared to the state-of-the-art defense method Booster, BDS achieves over 3 x faster
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training speed while consuming less than half the GPU memory, as it requires only standard backward
passes rather than expensive bi-level optimization.

Table 22: Runtime and memory efficiency comparison.

Method Time per Epoch (Mins) |  Total Training Time for 20 Epochs (Hours) | Max GPU Memory (GB) | Used GPU

Vanilla fine-tuning (minimal computational baseline) 2.01 0.61 25.32 1 x A100-40G
Booster 6.42 1.95 57.86 1 x H100-80G
BDS (ours) 2.04 0.64 25.44 1 x A100-40G

G.2 Convergence Analysis of SGLD Sampling

Theorem G.3 provides a theoretical guarantee that SGLD sampling converges to posterior samples
from the target posterior distribution after a sufficient number of iterations.

Assumption G.1. (Adjusted from Assumption 4.3 in [85]). (Dissipativeness) There exists absolute
constants m > 0 and b > 0 such that:

2

—b. (18)

0 2]
VO, w € R, <[w} , Vo, 1ogp(0, w | Dt,Dm)> >m H {w] )

Assumption G.2. (Adjusted from Assumption 4.4 in [85]). (Smoothness) The gradient of the log-
posterior for any minibatch is Lipschitz continuous. Specifically, there exists a constant L such that
for all 2]* € Dgage and zE» € Dy, the following condition holds:

Hvs,w (mgp(a W) = 1Dtz 6) — [Dul [o(w:) - (:550)] )

—Veo.w (logp(@, w') — |Dsafe|€(z§~afe; 0) — | Dy [U(wi) . é(z?; 0)] >

o[9[

Theorem G.3 (Adjusted from Theorem 4.5 in [85]). Define d = dim(0) + |Dg|, B as the
batch size, and p as the Cheeger constant. For any € € (0,1), suppose the initial iterate sat-
isfies p(||@™*, w™*|| < R/2) < €/16, where R = R(eK~'/12), and let the step size 1 be
O(min{p?d=2, B2p*d=*}). Under these conditions, the distribution of the K-th iteration in the
SGLD process satisfies:

2
19

2

for any 8, w, 8’ w'.

[1555P — p(8,w | g, Dsate) [ Tv < A1 — Con)™ + B71C1n'/2 + Con'? +¢/2,  (20)

for some problem-dependent constant \ > 0, Coy = O(p?), C1 = O(Rp~'), Cy = O(dp™1). Here
I - [Ty stands for the total variation distance, and R is defined as:

)

m m ml/2

R(2) = max { 625dlog(4/z) ~ Adlog(dL/m) , ,, = 4d+ 8\/dlog(1/2) +8log(1/2) |

@n
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H Derivation of Equations

H.1 Derivation of Eq. (1)

Proof. The decomposition of posterior distribution is primarily based on Bayes’ theorem. The proof
is presented below.

p (03 w | tha Dsafe)
p(eawapsafe | th)

p (Dsafc | th)
1
- (8, Due | w,Dy) - plw
p(Dsafe‘th) p( f | ft) p( )
| ——
=A
= A p(Dsate | 0,w,Dx) - p (0 | w,Dxt) - p(w)
=A 'p(Dsafe | 0) p(e | w7th) p(w)
p(Dg | 6,w) -p(6 | w)
— A p(Daste | ) - (W
p (Do |0 LD LOLE)

p(Dsafe | 0) 'P(th ‘ 07’11]) 'P(th | '11))71 p(evw)

O
H.2 Derivation of Eq. (4)
Proof. The complete proof is presented below.
p(Dr | w) ™
—1
oc/prt|9w (Ow)dB]
-1
x /p Dy | 6,w) /p(e | D) p(Dyy | w) detde}
-1
o /p (Dt | 0, w) - Ep(py, ) [P (6 | Drt, w)] de]
1 [Pl .
~ {p (th |6, w } o H exp (U(wz) 14 (zft,ﬂ))
=1
S.t s 0 g maxIE (’th|w) [( (0 | th,'w)]
O
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H.3 Derivation of Eq. (10)

Proof. The complete proof is presented below.
p (07 ¢ | thv Dsafc)
p (0, ¢a Dsafe | th)

B p (Dsafe | th)
1
e m ‘P (07Dsafe | ¢7 th) p(¢)
=A
= A1 'p(Dsafe ‘ 67¢7th) p(0 | ¢7th) p(¢)
— A1 p(Deate | 0)-p(8 | 6, D1) - p()

= A1 'p(Dsafe ‘ 0) : /p(e | wa¢ant)p(w | ¢7th) dw p(¢)

— Ay -p(Daate | 6) - /pw | w, Dr) p(w | D) dw - p(e)
- A1 'p(Dsafe ‘ 0) * (0 ‘ w 7N(th7¢) th) ‘ (d))

= A1 p (D | 0 LD ZZAPEDD (6| w0 — N (D1 8) - 5100

— A1 p (D |0 DL = [0 0) -l | 6,D1) - (o)
= A1 p (D 0)- DO LE =T 0 6,D1) (o)

— A1 p (D | ) LD A%iff;ﬁ);) p(6.¢ | D)

 p(Dsage | 0) - p(De | 0, w = N (Ds; #)) - p(Dse | w = N(Die; )" - (0, | D)

H.4 Derivation of Eq. (16)

Proof. The softmax weight transformation is defined as follows:

evk

o(wg) = —=—, k=1,2,...,|Dgl

The partial derivative of & (wy,) with respect to w; is given by:

05 (wy,) _ { (wk) (1-5(wy)), ifk=1
ow; o (wg) - o (w;), ifk#i

From Eq. (8), the weight update rule is defined as:

w4 w+ ng (logp(w) - |th‘ Z (G (we) - £ (2 %)]) :

| ft| ngBtr

By taking the derivative of w and ignoring the prior term and constant coefficients, the gradient with
respect to w; is:

| Dy |
aii (Zﬁ(wk)-f(z%)> =0(2]") -5 (wi) - (1 =5 (w;)) Ze & (wp) -5 (w;) .

k=1

Taking a further step, we can simplify it as:

5 (o] Dy
o (Z&(wk) -é(zfg)) =5 (w;) - (z (21 = > 5 (wr) -Z(z%)) :
t\ k=1 k=1



Using the derivative, the gradient update for w; becomes:

| D |

Vi, = =0 (wi) - | £(20) — Z & (wi) - £ (2)

k=1

I Concept of Posterior Bias

I.1 Motivation of Proposed Posterior Bias

Motivation. Directly sampling from p(w, 0 | Dy, Dgate) could introduce bias, as the weights w
might assign reduced importance to both the fine-tuning data and potentially harmful examples in Dy
to preserve the model’s inherent safety alignment (see Fig. 5). As a result, while the model performs
well on Dg,4e, it often struggles to generalize effectively to a held-out benign tuning dataset vatal,
which serves as a test or validation set to evaluate fine-tuning performance. Ideally, sampling should
be done from p(w*, 8% | Dy, Dsate, D) so that w* can balance the trade-off between the model’s
performance on Dg,t and D}’tal (i.e., trade off between safe alignment and fine-tuning objectives).

for 2 € Dy ‘ for 2% €Dy

Illustration of posterior bias caused by the absence of D!

Figure 9: Illustration of posterior bias caused by the absence of D}*!. Shaded nodes represent
observed variables, while unshaded nodes denote unobserved variables.

1.2 Definition of Posterior Bias

Definition 1.1. (Posterior Bias) The posterior bias quantify the divergence, measured by a function
D(-), between two posterior distributions: one derived solely from the alignment dataset Dg,¢. and
the other incorporating a held-out clean tuning dataset D}’tal, which serves as a test or validation set to

evaluate fine-tuning performance. Formally, it is defined as:
PB = D(p(W, 0 ‘ thaDsafe) H p(W*, 0" | ,thaDsafe,,Dﬁlean))- (22)

Here, D refers to a divergence measure function between two distributions. Since attackers do not
provide D}, we can not directly derive an analytic formulation of Posterior Bias. By leveraging
SGLD, we can derive an expression for the posterior bias by evaluating the expected difference in
the T'-th states of SGLD sampling trajectories. Next, we will introduce the definition of Empirical

Posterior Bias with SGLD Sampling.

1.3 Empirical Posterior Bias with SGLD Sampling

Definition 1.2. (SGLD Sampling Trajectory) The SGLD Sampling Trajectory refers to the sequence
of states during the iterative sampling process of SGLD. This sequence forms a Markov chain, where
each state transition depends solely on the previous state. For the distribution p (w, 0 | Dt Dsate ),
the trajectories of the variables w and 6 can be defined as:

Try = w(o) Y rw(T)7 w(t+1) — w(t) + gvg) + 6\/77,

(23)
Trg = 00 ... Q(T)7 g(t+1) — g(t) + gvg) NG}
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Here, we use V,, and Vg to represent the gradient terms. Similarly, this definition can be extended
to the distribution p (w*, 8" | D, Dgate, D)

Definition 1.3. (Empirical Posterior Bias with SGLD sampling) By leveraging SGLD sampling,
posterior bias can be derived by evaluating the expected difference in the 7'-th states of the paired
SGLD sampling trajectories Tr,, and Tr,,« with identical initial states:

T—1
_ (T _ o+ (D] 7 H ® _o®
PB= E |w® —w H nE ; v — v

Ty, Tro, =

|Dge| T—1

2 Trw,Tr * Z Z HV(t)

Here, Tr,, and Tr,,« denote the SGLD sampling tra]ectorles drawn from the target distributions
p(W, 0 | Dy, Dase) and p(w*, 0 | Dy, Dgate, DE), respectively. The norm used is the ¢1-norm.

24

1.4 Understanding Posterior Bias under Identity Weight Transformation

As shown in Eq. (24), the gradient term V,, at each state contributes directly to the posterior bias.
Here, we consider the identity weight transformation, which is defined as follows:

o(w;) = w;. (25
Under identity weight transformation, the weight w updates in a monotonically decreasing manner:

—L (zz 79> <-4 (,Z2 ,0 ) , if Z?Z c D;)tenign

Vw'i Vow*
i

(26)
—¢ (Z] 79> ~—L (z?7 0*) <0, if z? € phermful

Vo Vow*
7 J

w

The posterior bias under identity weight transformation arises mainly from updates in benign tuning
data 2!t € D?temgn. Here, 8" ~ p(0" | Dy, Dsage, D) fits an additional dataset D!, while
0 ~ p(0 | Dgi, Dgate) does not. As a result, 8" achieves a much lower loss on benign data, such that
—/ (zgt; 0) < -/ (z?; 0*). Since the gradient of w is proportional to the negative loss, this results
in a large and monotonically decreasing reduction in the weights for benign data, leading to poor
fine-tuning performance. For harmful data zg-t € D}‘tarmf“l, which has different distribution from both

D™ and Dy, the loss remains high and the weights also monotonically decrease.

LI.5 Theorem of Time-Weighted Accumulation of Posterior Bias

While BDS demonstrates superior defensive performance, a theoretical understanding of the inherent
suboptimality in inferred data weights offers deeper insights that can guide future algorithmic
improvements. Here, we further explore weight suboptimality under identity transformation through
the theoretical perspective of posterior bias:

Theorem 1.4 (Time-Weighted Accumulation of Posterior Bias, identical to Theorem 4.2 in the
main paper). Let (Try, Trg) and (Try«, Trg«) denote the Stochastic Gradient Langevin Dynam-
ics (SGLD) sampling trajectories drawn from the target distributions p (w, 0 | Dg, Dsage) and
p (w*, 0" | Dt Dsate, D 1) respectively. Here, Dval is a held-out clean tuning dataset, serving as a
test or validation set to evaluate fine-tuning performance. Then, the following proportionality holds:
T—1

(T) *(T') (t) *(t)

w v H x Tl‘m%rm* ;(T B t) Hw - (27)

Tray , Troy,*

T
PB(T) Ez;—ll(T_t),PB(t)

Here, w") and w*") represent the sampled weights at iteration T, while @") and @*®) denote the
intermediate states of the trajectories at iteration t. The term PBT) quantifies the posterior bias at

the iteration T', and the summation Zz:ll (T - t)PB(t) characterizes the cumulative posterior bias
over the entire sampling trajectory.
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Implication. Notably, the time-weighted factor T' — ¢ emphasizes the greater influence of earlier
iterations on the cumulative bias, highlighting the cumulative effect of initial steps on the posterior
inference. This suggests that suboptimal sampling in the early stages of SGLD sampling trajectory
can propagate and aggressively affect the overall posterior inference. Future work could focus on
developing bias management strategies, particularly for mitigating bias in early stages of SGLD
sampling trategories.

1.6 Proof of theorem Theorem 4.2

Proof. Based on Definition 1.3, the calculation formula for the SGLD-based posterior bias at T’
iteration is given as follows:

PBT = E  ||lw

Traw , Tro*
. T-1 .
- 1. ) _ (t)‘:, H (t)
3 T 2 [T Ve =5 B zz v

The SGLD sampling trajectory for w drawn from p (w, 6 | Dy, Dsage) is expressed as:

T) _ w*(T)H

Try = w©® 5 o o w@,  w® = ® 4 gvgm + eV,

v’(ul)? = V’Ll)i logp(w) — f(zﬁt; B(t))

Similarly, the SGLD sampling trajectory for w* drawn from p (w*, 0™ | Dy, Dsato, D}’tal) is ex-
pressed as:

Try = w*(o) N 'LU*(T), w*(t+1) — (f) + v )+ G\f

Vil = Vi logp(w) — (215 6°1).
Similarly, the SGLD sampling trajectory of @ drawn from p (w, 0 | Dy, Dsate ) is expressed as:

Tr@ = 0(0) S e B(T)7 0(t+1) — g(t) + gv(et) + E\/’?],

|Dre |
VY = Vologp(8) - > w!"Vol (2161)) .
i=1

Similarly, the SGLD sampling trajectory of 8* drawn from p (w*, 8" | Dy, Dsate, Dy is expressed
as:

Tre- = e+ ... g*(T)7 9*t+1) _ g*(®) + nv*(t) + ef

| Dt | | Dsate|

0* ) = V- log p(6*) Zw V-1 ( it g t)) Z Vo-1 ( safe. g+ t))

Under the identity transformation, we compute the gradient difference for w; at the ¢-th iteration as
follows:

V) - v (256°0) — p(=t 00| = [|AlY|.
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Here, the difference in loss is approximated using the Taylor expansion, yielding:

"
160 = (=256 ) — o(a2 0] = Ve (=26) " (6 - 6)

t—1

= 2.3 ||Vt (z?;m“)T (Ve - vg)
k=0 —::v;_dﬂ
_ 1.5 v g‘l(w.*““)—w(’“))vgf (z?;9“€>)+“§‘[vee (2550 = Vot (270"
2 k=0 i=1 ' ' j=1 ’
1N Vol (w*m —’w(k)>TV9€ (the““)) lsz: [v z( Sﬁ‘e-e““) Ve e( sale 0*““
2 k=0 7 7
< 1.3 [vat (5:09) (w0 Fout (p%0%))|
~ 2 s 2 o(k) )
x 25 [wat (500 | — [t (£:0%)

ko

=}

The gradient term is calculated as follows: .
Vg(k)l Zlit; 9( )

Vol (250"
Vot (D eM) = | O

Vel ( 2 "e(k))

The gradient difference is proportional to the cumulative weight difference over previous steps:

IV — v(“nocZHw —w®.

We substitute this into the definition of PB(™):
T—1t-1

PED o ES Y urr® — ¥,

t=0 k=0

Rearrange the double summation by swapping the summation order:

T-1¢-1 T-1 T
t=0 k=0 k=0 t=k
Substitute this back into the equation:
T—1
PBY) B> (T = k)w*® —w®],
k=0

where (T — k) represents the remaining time steps from step & to 7T'.

Transforming this with the expression of P13 ) we obtain:

PBT) Z tyPBY.
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