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ABSTRACT

Hierarchical Imitation Learning (HIL) is effective for long-horizon decision-
making, but it often requires extensive expert demonstrations and precise super-
visory labels. In this work, we introduce SEAL, a novel framework that lever-
ages the semantic and world knowledge embedded in Large Language Models
(LLMs) to autonomously define sub-goal spaces and pre-label states with seman-
tically meaningful sub-goal representations, without requiring prior task hierar-
chy knowledge. SEAL utilizes a dual-encoder architecture that combines LLM-
guided supervised sub-goal learning with unsupervised Vector Quantization (VQ)
to enhance the robustness of sub-goal representations. Additionally, SEAL in-
corporates a transition-augmented low-level planner, which improves adaptation
to sub-goal transitions. Our experimental results demonstrate that SEAL out-
performs state-of-the-art HIL and LLM-based planning approaches, particularly
when working with small expert datasets and complex long-horizon tasks.

1 INTRODUCTION

The advancement of LLMs brings transformative change to how agents learn to interact and make
decisions (Brohan et al., 2023; Wang et al., 2023). LLMs like GPT-4 (Achiam et al., 2023) possess
remarkable semantic understanding ability (Liu et al., 2023), human-like reasoning capability (Wei
et al., 2022), and rich common sense knowledge (Bubeck et al., 2023), enabling them extracting
insights from language instructions to support decision-making agents (Eigner & Händler, 2024).

A popular paradigm for LLM-assisted decision-making is to enhance Deep Reinforcement Learn-
ing (DRL) agents through improved reward design (Kwon et al., 2023; Ma et al., 2023). However,
DRL suffers from sample inefficiency, requiring extensive interactions with the environment, par-
ticularly for long-horizon tasks with sparse rewards (Zhang et al.). In contrast, Imitation Learn-
ing (IL) avoids the expensive exploration of DRL by learning generalizable policies from expert
demonstrations (Schaal, 1996). Yet, IL struggles with compounding errors in long-horizon tasks,
leading to significant trajectory deviations (Nair & Finn, 2019). To address this, Hierarchical Imi-
tation Learning (HIL) (Le et al., 2018a) decomposes long-horizon tasks into a multi-level hierarchy
of sub-goals, reducing the relevant state-action space for each sub-goal, such as goal-states (Ding
et al., 2019) and task IDs (Kalashnikov et al., 2021). Recent works explore using more informative,
flexible language instruction for sub-goal specification (Stepputtis et al., 2020). While these works
have demonstrated impressive results (Prakash et al., 2021; Hejna et al., 2023), learning effective
language-based sub-goals remains challenging due to the need for large, expensive expert-labeled
datasets (Chevalier-Boisvert et al., 2018a). Although several methods have been proposed to ad-
dress this issue by inferring sub-goal boundaries with supervision-free algorithms (Garg et al., 2022;
Jiang et al., 2022; Kipf et al., 2019; Simeonov et al., 2021), the unstructured language instructions
still limit generalization to new tasks and hinder seamless integration into IL policy training(Wang
et al., 2019a; Mees et al., 2022).

The capabilities brought by Large Language Models (LLMs) offer a new promising solution to
tackle the limitations of traditional HIL methods. LLMs’ strong reasoning and semantic abilities
have been shown to help break down complex, ambiguous language instructions into manageable
steps for high-level planning (Huang et al., 2022; Ahn et al., 2022; Huang et al., 2023). Notably,
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LLMs excel at emulating human-like task decomposition (Huang et al., 2022; Wei et al., 2022),
and researchers have already harnessed this capability to generate structured high-level plans based
on textual task instructions (Ahn et al., 2022; Prakash et al., 2023; Huang et al., 2023). However,
LLMs still face challenges in generating directly executable plans, as they rely on pre-trained low-
level policy agents to perform primitive actions (Prakash et al., 2023). Additionally, most high-level
plans remain static and require frequent, costly interactions with LLM APIs(Song et al., 2023; Hu
et al., 2023). These issues limit the scalability of LLM-based approaches in HIL. Motivated by these
promises and challenges, we aim to answer the following question: “Can pre-trained LLMs serve
as a prior for identifying task’s hierarchical structure? How to autonomously establish sub-goal
library and guide both high-level sub-goal learning and low-level agent?”

In this paper, we answer such questions firmly, where we design a novel scheme to let LLM gener-
ate high-level plans to assist sub-goal learning and policy training jointly in Hierarchical Imitation
Learning framework. The proposed SEmantic-Augmented Imitation Learning (SEAL) uses LLMs
to generate high-level sub-goals as one-hot vector representations, which serve as supervisory la-
bels for learning a lightweight encoder. This reduces the need for continuous LLM APIs calling
while retaining the hierarchical structure dictated by the LLM. Additionally, SEAL incorporates
a dual-encoder design, combining LLM-based supervised sub-goal learning with an unsupervised
Vector Quantization (VQ) encoder (Wang et al., 2019b), which maps expert demonstrations to latent
sub-goals. The dual-encoder structure enhances robustness and reduces overfitting by mitigating re-
liance on weaker encoders (evaluated by their contribution to action selection with success rate as the
metric). To further improve sub-goal completion, SEAL employs a transition-augmented low-level
policy, which implicitly prioritizes intermediate states corresponding to sub-goal transitions. Exper-
iments on the KeyDoor and Grid-World tasks show that SEAL outperforms several state-of-the-art
HIL approaches. To summarize, our main contributions include:

• We propose SEAL, a novel HIL framework that leverages LLMs to autonomously generate
high-level plans and sub-goal representations without prior hierarchical knowledge.

• To enhance SEAL’s effectiveness, we introduce: (1) A dual-encoder structure combining
supervised LLM-based sub-goal learning and unsupervised VQ-based representations for
robust sub-goal learning (2) A transition-augmented low-level planner that improves han-
dling of intermediate states and sub-goal transitions.

• Extensive experiments showSEAL’s superior performance against several state-of-the-art
HIL approaches, in small datasets, long-range tasks, and task variations.

2 RELATED WORKS

Imitation Learning. Imitation Learning encompasses two primary approaches: Behavioral Cloning
(BC) (Bain & Sammut, 1995) and Inverse Reinforcement Learning (IRL) (Ng et al., 2000). BC re-
lies on a pre-collected expert dataset of demonstrations, where the agent learns to mimic the actions
in an offline manner. While BC is simple to implement, it is prone to compounding errors, partic-
ularly when the agent encounters states not present in the expert’s demonstrations (Zhang, 2021).
In contrast, IRL methods (Ho & Ermon, 2016; Reddy et al., 2019; Brantley et al., 2019) involve
interacting with the environment to collect additional demonstrations, aiming to infer the underly-
ing reward function that the expert is optimizing. The agent then learns by optimizing this inferred
reward. However, IRL approaches are more challenging to implement (Kurach et al., 2018), typ-
ically requiring more computational resources and data. In this work, we primarily adopt the BC
architecture in a hierarchical setting, while incorporating insights from IRL by using environment
interactions to validate the reliability of learned latent sub-goal variables.

Bi-Level Planning and Execution. Hierarchical Imitation Learning (HIL) enhances the ability of
imitation learning agents to tackle complex, long-horizon tasks by breaking them down into smaller
sub-goals and conditioning the agent’s behavior on those sub-goals. The high-level agent chooses
the sub-goals, while the low-level agent learns to accomplish specific controls under selected sub-
goals (Jing et al., 2021). Many HIL approaches, such as Hierarchical Behavior Cloning (Le et al.,
2018a) and Thought Cloning (Hu & Clune, 2024), rely on supervisory labels for sub-goal learning,
but such annotations are often difficult to obtain. To address this limitation, unsupervised methods
like Option-GAIL (Jing et al., 2021), LOVE (Jiang et al., 2022), SDIL (Zhao et al., 2023), and
CompILE (Kipf et al., 2019) have been developed to infer sub-goals directly from expert trajectories.
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However, the lack of labeled guidance in these approaches makes meaningful sub-goal discovery
more challenging and hence reduces the reliability of the learned policies.

LLMs for Planning. Large Language Models (LLMs) have demonstrated significant potential in
decision-making processes. Direct generation of action sequences usually do not lead to accurate
plans (Silver et al., 2022; Valmeekam et al., 2023; Kambhampati et al., 2024). Recent studies have
successfully utilized LLMs to decompose natural language task instructions into executable high-
level plans, represented as a sequence of intermediate sub-goals (Ahn et al., 2022; Prakash et al.,
2023; Huang et al., 2023). While LLMs can be also applied to translate user-given language in-
structions to symbolic goals (Mavrogiannis et al., 2024; Xie et al., 2023) Additionally, LLMs can
function as encoders, identifying current sub-goals based on both observations (sometimes images)
and language task descriptions to facilitate high-level plan execution (Fu et al., 2024; Malato et al.,
2024; Du et al., 2023). However, these approaches typically still depend on pre-trained low-level
planners for generating executable primitive actions. In this work, we leverage LLM-generated
high-level plans to assist in learning both sub-goals and low-level actions simultaneously.

3 PRELIMINARY

In this paper, we look into the long-horizon, compositional decision-making problem as as a
discrete-time, finite-step Markov Decision Process (MDP). MDP can be represented by a tuple
(S,A, T , r, γ), where S,A denotes the state and action space, T (st+1|st, at) : S ×A → S denotes
the transition function, r : S ×A → R is the reward function and γ ∈ [0, 1] is the discount factor.

In standard settings of Hierarchical Imitation Learning (HIL), instead of having access to the reward
function r, the agent has access to a dataset of expert demonstrations D = {τe1 , τe2 , ..., τeN}, which
contains N expert trajectory sequences consisting of state-action pairs {(st, at)}, where st ∈ S,
at ∈ A, T is the time horizon for planning, 0 ≤ t ≤ T . In this paper, the expert trajectories are not
labeled with any rewards nor subhorizon segments. We assume HIL agents operate in a two-level
hierarchy though our method can also be applied to problems with more levels:

• High-level Sub-goal Encoder πH(gt|st): Selects a sub-goal gt ∈ G based on the current
states st, where G is the space of sub-goals.

• Low-level Policy Agent πL(at|gt, st): Executes actions conditioned on both the current
state st and sub-goal gt.

In this work, we focus on settings where agents lack access to the sub-goal space G, relying in-
stead on an oracle full task instructionM in natural language. While well-defined G aids efficient
HIL agent learning (Hauskrecht et al., 2013), its acquisition is difficult due to missing task-specific
knowledge (Nachum et al., 2018; Kim et al., 2021). Natural language task instructions, though eas-
ier to obtain as they are common-used commands from human (Stepputtis et al., 2020), are hard to
map to hierarchical structures due to their complex and ambiguous nature (Zhang & Chai, 2021;
Ahuja et al., 2023; Ju et al., 2024). In this work, we investigate leveraging LLMs to parameterize G
from language instructions with its powerful semantic and world knowledge, and pre-label states in
D to guide effective learning of πH and πL in hierarchical imitation learning.

4 SEAL FOR HIERARCHICAL IMITATION LEARNING

The key idea of SEAL is to learn high-level sub-goal representations using supervisory labels gen-
erated by LLMs. In previous works, such labels were typically provided by human experts via
instructions (Pan et al., 2018; Le et al., 2018a), making them expensive to obtain. However, with
the assistance of LLMs, we introduce an efficient and reliable method to automatically generate
labels that map states to sub-goals. Specifically, LLMs are used to semantically extract a high-
level plan from the full-task language instruction M and map states in expert demonstrations to
sub-goals within this plan. Using these learned sub-goal representations, the model then learns the
corresponding low-level actions. An overview of our SEAL framework is illustrated in Fig. 1.
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Figure 1: Overview of SEAL Architecture: The LLM aids in discovering sub-goal spaces for the
task by semantically decomposing the full-task instruction and labeling each state with a reference
latent vector that represents its corresponding sub-goal. These reference labels are then used to train
a high-level sub-goal encoder, which works in conjunction with an unsupervised VQ encoder.

4.1 PRETRAINED LLMS FOR GUIDING SUB-GOALS LEARNING

Our key design of leveraging LLMs to guide high-level sub-goals learning can be divided into two
stages: (i) Use LLM-generated high-level plan based on full-task instruction as sub-goal space; (ii)
Let LLMs encode states in expert demonstrations to sub-goal representations.

Derive Sub-goal Space of Task Prior works have demonstrated that LLMs can establish a mean-
ingful chain of sub-tasks from task instruction as high-level plan (Huang et al. (2022); Prakash et al.
(2023); Singh et al. (2023)). Yet few of them incorporate it with Hierarchical Imitation Learning
(HIL). In SEAL, we use LLMs to specify the unknown sub-goal space G in HIL formulations. Feed-
ing LLMs with the full-task language instructionM, we notice that the decomposed sub-goals in
high-level plan naturally consist of a language-based sub-goal set: {ĝ1, ĝ2, ..., ĝK} = fllm(M),
where K is the total number of generated sub-goals. We treat this estimated sub-goal dataset as the
finite sub-goal space: G = {ĝ1, ĝ2, ..., ĝK}.
Labeling Sub-goals for States in Expert Dataset After devising the sub-goal space G with LLM-
generated sub-goals, we use them to map states st ∈ D to a sub-goal latent space. These LLM-
defined labels guide the high-level encoder to learn task-relevant sub-goal representations. To pa-
rameterize the language-based sub-goals ĝi ∈ G and facilitate learning, we establish a codebook
C = {z1, z2, ..., zK}, where each latent variable zi ∈ RK is a one-hot vector (i.e. i-th element in
zi equals to 1, others equal to 0, i = 1, 2, ...,K) representing sub-goal ĝi in G. We then prompt
the same LLM to perform a encoding function hllm, which map st to latent vector z(ref)t ∈ C by
checking whether it belongs to sub-goal ĝi ∈ G: z(ref)t = hllm(st,G). We stipulate the output of
LLM must be ‘yes’ or ‘no’ and then convert it to integer 1 or 0, as this form of answer has shown to
be more reliable than the open-ended answer (Du et al. (2023)). By repeatedly asking K times we
can finally establish the K-dim latent variable z

(ref)
t which represents the sub-goal for all st in D.

We use these LLM-given latent representations z(ref)t as supervisory labels for high-level sub-goal
encoder training in HIL. Once we obtain these labels, we have no need to interact to LLMs later.

4.2 DUAL-ENCODER FOR SUB-GOAL IDENTIFICATION

Naturally, we consider using these LLM-generated labels for sub-goal representations to train a
high-level sub-goal encoder πH(st) in a supervised manner. Compared to previous unsupervised
approaches, this supervised method helps reduce the randomness of output sub-goals by leveraging
the guidance provided by the labels. However, it is prone to over-fitting on the training dataset.
To address this challenge, inspired by (Ranzato & Szummer (2008); Le et al. (2018b)), we pro-
pose a Dual-Encoder structure for high-level sub-goal identification. This design integrates both a
supervised learning encoder and an unsupervised learning encoder, producing a weighted-average
sub-goal representation. The weighted combination allows for flexibility, prioritizing the encoder
that performs better for a particular task or dataset, ultimately enhancing robustness and improving
generalization.

Supervised LLM-Label-based Encoder Considering that the codebook C, representing the sub-
goal space G, is discrete and finite, we formulate the supervised sub-goal learning as a multi-class
classification problem. To train this supervised learning encoder π

(llm)
H , we define the sub-goal
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learning objective by maximizing the log-likelihood of the labels generated by the LLMs:

L(llm)
H = E

(st,z
(ref)
t )∼D − log π

(llm)
H (z

(ref)
t |st). (1)

Unsupervised VQ Encoder Given the codebook C = {z1, z2, ..., zK}, we apply Vector Quantiza-
tion (VQ) (Van Den Oord et al. (2017)) to design the unsupervised sub-goal encoder in our SEAL
framework. It is a widely used approach that can map the input state st to a finite, discrete latent
space like C. In VQ, the encoder π(vq)

H first predicts a continuous latent vector: z(con)t = π
(vq)
H (st).

This latent vector is then matched to the closest entry in C:

z
(vq)
t = argminzi∈C ∥z(con)t − zi∥22. (2)

The learning objective of π(vq)
H , named commitment loss, encourages the predicted continuous latent

vector z(con)t to cluster to the final output sub-goal representation z
(vq)
t :

L(vq)
H = E(st)∼D ∥stop gradient(z(vq)t )− z

(con)
t ∥22; (3)

where stop gradient(·) denotes stop-gradient operation.

4.3 TRANSITION-AUGMENTED LOW-LEVEL POLICY

We compute a weighted-average vector zt over z(llm)
t ,z(vq)t obtained by dual-encoders to finalize

the predicted sub-goal representation:

zt = Wvqz
(vq)
t +Wllmz

(llm)
t ; (4)

where the weights Wvq and Wllm quantifies how the predicted sub-goal representations z(vq)t and
z
(llm)
t contribute to the task completion success rate. The weights are updated by validations during

the training process. The update details will be demonstrated in Section 4.4.

Given the predicted sub-goal representations zt for each st in the expert dataset, normally the low-
level policy agent follows a goal-conditioned behavioral cloning (GC-BC) architecture. It is trained
by maximizing the log-likelihood of the actions in the expert dataset, using the sub-goal representa-
tions as auxiliary inputs:

LGC−BC = E(st,at,zt)∼D − log πL(at|st, zt). (5)

However, this low-level policy design overlooks the imbalanced distribution and importance of the
hierarchical structure captured by high-level sub-goal encoders. Several studies have highlighted
that certain states, where transitions between sub-goals occur in long-horizon demonstrations, have
a significant impact on the policy agent’s performance (Jain & Unhelkar, 2024; Zhai et al., 2022;
Wen et al., 2020). Despite their critical role, these states make up only a small portion of expert
demonstrations. Successfully reaching these intermediate states and taking appropriate actions im-
proves sub-goal completion, thereby increasing the overall task success rate. We formally define
these states as intermediate states:

Definition 4.3.1. (Intermediate States). Let st ∈ S, 0 ≤ t ≤ T be a state observed when running
the HIL agent, zt is its corresponding latent variable learnt by high-level encoder πH that represents
sub-goal. st+1 is the following state. The state st is defined as an intermediate state only when the
sub-goal changes: zt+1 ̸= zt.

Due to the scarcity of these intermediate states, it becomes very challenging to imitate the correct
behavior in such states. To address this issue, inspired by the practice of assigning extra rewards
to sub-goal transition points in hierarchical RL (Ye et al. (2020); Berner et al. (2019); Zhai et al.
(2022); Wen et al. (2020)), we augment the importance of these intermediate states by assigning
higher weights to them in the low-level policy training loss:

LL = E(st,at,zt)∼D − e∥zt+1−zt∥2
2 log πL(at|st, zt); (6)

where the term e∥zt+1−zt∥2
2 measures the L2-distance between the current sub-goal representation

zt and the next sub-goal zt+1. Given that zt is a one-hot vector, we have the term:

e∥zt+1−zt∥2
2 =

{
e, if zt+1 ̸= zt

1, if zt+1 = zt
(7)
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Thus, this term can serve as an adaptive weight to enhance the imitation of expert behavior at inter-
mediate states. By incorporating this transition-augmented low-level policy design, we emphasize
the importance of sub-goal transitions, and in simulations we also observe this design can greatly
help agents make transitions across each sub-goal.

4.4 TRAINING

We train our SEAL model end-to-end, jointly updating parameters of πH and πL by minimizing the
loss function L = βLH + LL, where β is a hyper-parameter that controls the weight of high-level
sub-goal learning in relation to the overall training process. Additionally, in order to evaluate the
reliability of the latent variables predicted by the VQ encoder and LLM-Label-based encoder and
determine the weight combination that can better improve task performance, we keep validating the
success rates of those two different latent variables in the environment during training. Based on the
validation results, we dynamically update the weights Wvq and Wllm in Eq. 4.

For validation, we simultaneously execute actions conditioned on both the VQ-encoder and the
LLM-label-based encoder: a

(vq)
t = πL(st, z

(vq)
t ) and a

(llm)
t = πL(st, z

(llm)
t ). We then run

episodes to test the different success rates, SRvq and SRllm, for completing the full task. The
updated weights Wvq and Wllm are then computed as Wvq = SRvq/(SRllm + SRvq); Wllm =
SRllm/(SRllm + SRvq) respectively. Wvq , Wllm measure the relative task-completion perfor-
mance of the policy agent under the guidance of z(vq)t and z

(llm)
t , respectively. We refer to these

weights as confidences, indicating the preference for trust between z
(vq)
t and z

(llm)
t .

We also use these weights to finalize the overall training loss of SEAL as a weighted combination
of two end-to-end losses under guidance z

(llm)
t and z

(vq)
t . We finalize the overall training loss of

SEAL by using a weighted combination of two end-to-end losses, conditioned on z
(llm)
t and z

(vq)
t ,

with the same weights Wvq , Wllm determining the contribution of each loss:

Lvq = βL(vq)
H (st) + LL(st, z

(vq)
t );Lllm = βL(llm)

H (st) + LL(st, z
(llm)
t );LSEAL = WvqLvq +WllmLllm.

(8)
Since the low-level policy agent’s actions are conditioned on the latent sub-goal representations,
minimizing this weighted-combination loss LSEAL allows our SEAL to adapt the trainable param-
eters of the low-level policy based on task-completion performance. This approach helps the agent
make better decisions by adjusting to updated latent predictions zt = Wvqz

(vq)
t +Wllmz

(llm)
t dur-

ing training process. As a result, our SEAL framework can continuously adapt both the high-level
sub-goal encoders and the low-level policy agent, leading to more reliable and robust sub-goal rep-
resentations, as well as improved decision-making for action selection. The complete algorithm for
SEAL is illustrated in Algorithm 1.

5 EXPERIMENTS

In this section, we evaluate the performance of SEAL on two long-horizon compositional tasks:
KeyDoor and Grid-World (See detailed settings in Appendix). We compare SEAL’s performance
with various baselines, including non-hierarchical, unsupervised, and supervised hierarchical IL
methods, in both large and small expert dataset scenarios. Following this, we analyze how SEAL
enhances task completion performance.

5.1 BASELINES

We compare SEAL with four other approaches: one non-hierarchical approach, Behavioral Cloning
(BC) (Bain & Sammut, 1995), two unsupervised approaches, LISA (Garg et al., 2022) and SDIL
(Zhao et al., 2023), and one LLM-enabled supervised approach, Thought Cloning (TC) (Hu &
Clune, 2024). The details of each method are as follows:

Behavioral Cloning (BC): A classical non-hierarchical imitation learning method, where the policy
agent π(at|st) is trained by maximizing the log-likelihood: LBC = E(st,at)∈D − logπ(at|st).
LISA: A hierarchical imitation learning (HIL) approach with an unsupervised VQ-based sub-goal
learner. We implement the low-level policy using only the current state st, rather than a sequence of
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Algorithm 1 SEmantic-Augmented Imitation Learning (SEAL) via Language Model

1: Input: Expert Trajectory Dataset D, Natural Language Task InstructionM, Pre-trained LLM
llm for sub-goal decomposition and labeling.

2: Initialize VQ-encoder π(vq)
H (st; θ1), LLM-Label-based encoder π(llm)

H (st; θ2), Low-level pol-
icy agent πL(st, zt; θ3), Wvq = Wllm = 0.5 .

3: (LLM Guiding Sub-goal Learning)
4: Specify sub-goal space withM: G = {ĝ1, ĝ2, ..., ĝK} = fllm(M) .
5: Labeling st ∈ D to latent sub-goal representations z(ref)t : z(ref)t = hllm(st,G) (z(ref)t ∈ C =
{z1, z2, ..., zK}) .

6: (Training)
7: for Iteration j (j = 1, 2, ..., Jmax) do
8: For st ∈ D, z(llm)

t ← π
(llm)
H (st), z

(vq)
t ← π

(vq)
H (st).

9: Get L(llm)
H and L(vq)

H using Eq. 1 and Eq. 3.
10: L(llm)

L ← LL(st, at, z
(llm)
t ),L(vq)

L ← LL(st, at, z
(vq)
t ), using Eq. 6.

11: LSEAL ←Wllm(L(llm)
H + L(llm)

L ) +Wvq(L(vq)
H + L(vq)

L )

12: Update θ1, θ2, θ3: θi ← θi − ∂LSEAL

∂θi
(i = 1, 2, 3)

13: Validate for: SR(llm), SR(vq)

14: Update: Wvq =
SRvq

SRllm+SRvq
,Wllm = SRllm

SRllm+SRvq
.

15: end for

previous states, assuming the task is MDP-based.
SDIL:A HIL approach with an unsupervised sub-goal learner, using only the skill discovery compo-
nent while omitting skill optimality estimation, as our expert bot generates optimal demonstrations.

Sub-goal selection is performed by: argmaxi
1/D(zi,z

′
t)∑K

i=1 1/D(zi,z
′
t)

, where D is the Euclidean distance,

z
′

t is the continuous output vector of πH , zi ∈ C. We use Gumbel-Softmax (Jang et al., 2016) to
replace the argmax for differentiability.
Thought Cloning (TC): A HIL approach with supervised sub-goal learner. TC consists of a thought
generator πu(tht|st, tht−1) (where tht equals to our zt) and an action generator πl(at|st, tht). We
apply the LLM-generated sub-goal representations z(ref)t as labels for supervised training of πu.

We also evaluate two variants of SEAL: SEAL-L, which relies solely on the LLM-label-based high-
level sub-goal encoder, and SEAL, which uses the dual-encoder design. SEAL-L is compared with
TC to highlight the effectiveness of the low-level transition-augmented design, while SEAL demon-
strates the superiority of the dual-encoder approach over SEAL-L.

5.2 MAIN RESULTS

Task # Traj BC LISA SDIL TC SEAL-L SEAL

KeyDoor

30 0.09±0.02 0.09±0.02 0.23±0.05 0.26±0.02 0.27±0.06 0.30±0.04
100 0.50±0.06 0.53±0.05 0.45±0.04 0.50±0.03 0.52±0.02 0.56±0.03
150 0.67±0.05 0.66±0.03 0.63±0.05 0.69±0.05 0.68±0.03 0.75±0.04
200 0.74±0.02 0.69±0.04 0.70±0.04 0.70±0.02 0.76±0.04 0.82±0.04

GridWorld
200 0.26±0.04 0.24±0.03 0.43±0.04 0.44±0.03 0.39±0.04 0.29±0.03
300 0.31±0.04 0.44±0.05 0.48±0.01 0.52±0.07 0.65±0.04 0.61±0.02
400 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02

Table 1: Simulation Results: Success rates (ranging from 0 to 1) for completing the tasks of Key-
Door and Grid-World (3 Objects), averaged over 5 random seeds. Our SEAL approach outperforms
others in most cases. The best-performing method is highlighted in bold.

We first evaluate SEAL in two compositional environments: KeyDoor and Grid-World with 3 ob-
jects. Their limited sub-goals facilitate high-level encoder learning in HIL settings. We use LLM
GPT-4o (Islam & Moushi, 2024) to decompose full task instructions into sub-goals: LLM gives
sub-goal count K = 4 for KeyDoor and K = 6 for Grid-World. These sub-goals label states in the
expert dataset for supervised encoder training. For fair comparison, unsupervised baselines (LISA,
SDIL) use the same sub-goal counts. Additional details are in the Appendix.
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We train the models using randomly sampled expert demonstrations, with 30, 100, 150, and 200
samples for the KeyDoor environments, and 200, 300, and 400 samples for Grid-World with 3
objects. Grid-World is more complex environment, so additional expert data is collected. Task
success rates are reported in Table 1. The results show in most cases, our SEAL either outperforms
or is competitive with the other baselines.

Does LLM help capture a better task hierarchy? We observe both HIL baselines and our SEAL
outperform non-hierarchical behavior cloning (BC) thanks to additional information learned from
hierarchical sub-goal structures. LLM-label-based methods like TC and our SEAL show greater
and more consistent leading, particularly as training samples increase and the gap between BC and
HIL narrows due to exposure to more scenarios. Such advantage partly stems from the LLM labels
more accurately capturing the task’s ground-truth hierarchical structure. As shown in Fig. 2, both
TC and SEAL achieve higher sub-goal identification accuracy, while unsupervised methods like
SDIL may struggle to capture this structure, leading to irregular actions. Additionally, the high-level
plans generated by LLMs help determine the appropriate sub-goal space size, eliminating the need
to tune hyper-parameter K (the number of sub-goals). As shown in Fig. 3, both overestimating and
underestimating the sub-goal count lead to performance degradation in unsupervised methods like
LISA and SDIL, whereas SEAL captures a sub-goal space closer to the ground truth.

Sub-goals # Traj BC LISA SDIL TC SEAL-L SEAL

Pick up the
Key
(KeyDoor)

30 0.29±0.05 0.22±0.03 0.42±0.05 0.52±0.04 0.55±0.10 0.56±0.04
100 0.78±0.04 0.77±0.06 0.65±0.02 0.67±0.02 0.82±0.05 0.80±0.02
150 0.81±0.06 0.81±0.03 0.80±0.02 0.82±0.03 0.93±0.02 0.93±0.04
200 0.87±0.01 0.88±0.03 0.83±0.03 0.86±0.01 0.97±0.02 0.98±0.01

Pick up
Object 1
(GridWorld)

200 0.58±0.09 0.58±0.05 0.79±0.02 0.78±0.04 0.83±0.04 0.67±0.03
300 0.64±0.06 0.71±0.07 0.75±0.02 0.85±0.03 0.90±0.04 0.85±0.04
400 0.75±0.03 0.79±0.03 0.85±0.03 0.87±0.04 0.95±0.02 0.98±0.01

Pick up
Object 2
(GridWorld)

200 0.39±0.09 0.36±0.06 0.56±0.04 0.64±0.05 0.61±0.04 0.50±0.05
300 0.44±0.06 0.55±0.06 0.59±0.03 0.52±0.05 0.80±0.04 0.73±0.03
400 0.57±0.05 0.63±0.04 0.70±0.04 0.62±0.03 0.90±0.02 0.89±0.01

Table 2: Success rates of sub-goals completion in both KeyDoor and Grid-World, averaged over 5
random seeds. For the KeyDoor environment, the sub-goal is to pick up the key, while for Grid-
World with 3 objects, the sub-goals are to pick up object 1 and object 2.

Does Transition-augmented low-level policy help ensure the success of sub-goal transitions?
Compared to Thought Cloning (TC), which also uses a single encoder relying solely on LLM labels
for sub-goal learning, our SEAL-L with a transition-augmented low-level encoder shows a signif-
icantly higher sub-goal completion rate (as shown in Table 2). This indicates that the transition-
augmented low-level policy helps select appropriate actions at critical intermediate states during
sub-goal transitions, improving the transition success rate.

Object Num # Traj BC LISA SDIL TC SEAL-L SEAL

3 300 0.31±0.04 0.44±0.05 0.48±0.01 0.52±0.07 0.65±0.04 0.61±0.02
400 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02

4 400 0.16±0.03 0.13±0.01 0.22±0.04 0.24±0.05 0.26±0.03 0.32±0.03
500 0.39±0.04 0.36±0.04 0.40±0.01 0.39±0.03 0.49±0.03 0.51±0.03

5 500 0.09±0.02 0.11±0.04 0.11±0.02 0.23±0.06 0.25±0.05 0.42±0.03
600 0.30±0.03 0.47±0.03 0.64±0.05 0.35±0.03 0.65±0.03 0.73±0.03

Table 3: Success rates on longer-range compositional tasks (Grid-World) with 3, 4 and 5 objects.

Does Dual-encoder design help enhance the performance of SEAL? Compared to SEAL-L,
which relies solely on the LLM-label-based sub-goal encoder, SEAL with a dual-encoder design
shows slightly higher success rates across both tasks. This advantage is more pronounced for longer
compositional tasks with more sub-goals. As shown in Table 3, when we extend the Grid-World
environment with more objects (4 and 5 objects, LLM-decomposed sub-goal numbers K = 8, 10
respectively), purely supervisory methods like TC and SEAL-L struggle due to the increasing dif-
ficulty of accurate sub-goal identification caused by sparsity of sub-goals. However, SEAL’s dual-
encoder design overcomes this issue by providing an unsupervised sub-goal learning alternative
when the supervisory encoder becomes less effective.
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Figure 2: Visualization: Sub-goal selection in an example trajectory instance of Grid-World with 3
Objects. We color-code each sub-goal and black circle marks the final step of each trajectory. The
ground-truth is labeled by human in this case, and SEAL achieve the best sub-goal transitions.

(a) #Traj = 200 (b) #Traj = 300 (c) #Traj = 400

Figure 3: Comparison of success rates among different sub-goal number K selection in unsupervised
HIL baselines LISA and SDIL. Experiments set on Grid-World with 3 Objects. x-axis represents
the different settings of K.

5.3 ADAPTATION TO TASK VARIATIONS

To further evaluate SEAL’s adaptability, we alter the pick-up order in the Grid-World environment
(objects A, B, and C), creating new tasks. We use 400 expert demonstrations for the ABC order
and 10 each for ACB, BCA, and BAC. The trained agent is then tested on these variations. As
shown in Table 4, SEAL slightly outperforms baselines, suggesting better generalization. However,
this only holds when order changes do not introduce new sub-goals so the learned sub-goals remain
applicable, which indicates such adaptability of SEAL to task variations is limited.

Table 4: Success rates under task variations on Grid-World averaged over 5 random seeds.

Test Env BC LISA SDIL TC SEAL-L SEAL
ABC 0.48±0.04 0.53±0.03 0.62±0.04 0.62±0.04 0.83±0.02 0.85±0.02
ACB 0.01±0.00 0.08±0.02 0.11±0.04 0.13±0.05 0.18±0.07 0.14±0.03
BAC 0.01±0.00 0.05±0.01 0.06±0.02 0.09±0.02 0.11±0.03 0.08±0.02
BCA 0.00±0.00 0.03±0.01 0.08±0.03 0.08±0.02 0.08±0.01 0.09±0.03

6 CONCLUSION

In this work, we introduce SEAL, a novel HIL framework that leverages LLMs’ semantic and world
knowledge to define sub-goal spaces and pre-label states as meaningful sub-goal representations
without prior task hierarchy knowledge. SEAL outperforms baselines like BC, LISA, SDIL, and TC,
especially in low-sample and complex long-range compositional tasks, achieving higher success and
sub-goal completion rates. The dual-encoder design proves more robust than the pure LLM encoder,
and the transition-augmented low-level policy enhances sub-goal transitions. SEAL also adapts
well to varying task complexities and latent dimensions. However, training instability remains a
challenge, and we aim to make SEAL more standardized and efficient, particularly for tasks with
partially observed states, more complex sub-goal space and more ambiguous textual instructions.
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7 ETHICS STATEMENT

In this work, we develop a new algorithm for hierarchical imitation learning, which builds upon pre-
trained large language models (LLMs). The LLMs used in our experiments are based on publicly
available GPT-4o API from OpenAI and do not involve any personally identifiable information or
sensitive data. The authors are not aware of any additional ethical concerns related to the methodol-
ogy presented in this research.
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via search in demonstration dataset. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7590–7594. IEEE, 2024.

Angelos Mavrogiannis, Christoforos Mavrogiannis, and Yiannis Aloimonos. Cook2ltl: Translat-
ing cooking recipes to ltl formulae using large language models. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 17679–17686. IEEE, 2024.

Oier Mees, Lukas Hermann, and Wolfram Burgard. What matters in language conditioned robotic
imitation learning over unstructured data. IEEE Robotics and Automation Letters, 7(4):11205–
11212, 2022.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon tasks
via visual subgoal generation. arXiv preprint arXiv:1909.05829, 2019.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Xinlei Pan, Eshed Ohn-Bar, Nicholas Rhinehart, Yan Xu, Yilin Shen, and Kris M Kitani. Human-
interactive subgoal supervision for efficient inverse reinforcement learning. arXiv preprint
arXiv:1806.08479, 2018.

Bharat Prakash, Nicholas Waytowich, Tim Oates, and Tinoosh Mohsenin. Interactive hierarchical
guidance using language. arXiv preprint arXiv:2110.04649, 2021.

Bharat Prakash, Tim Oates, and Tinoosh Mohsenin. Llm augmented hierarchical agents. arXiv
preprint arXiv:2311.05596, 2023.

Marc’Aurelio Ranzato and Martin Szummer. Semi-supervised learning of compact document rep-
resentations with deep networks. In Proceedings of the 25th international conference on Machine
learning, pp. 792–799, 2008.

Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

12



Published as a workshop paper at ICLR 2025 World Models

Tom Silver, Varun Hariprasad, Reece S Shuttleworth, Nishanth Kumar, Tomás Lozano-Pérez, and
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A SIMULATION ENVIRONMENTAL SETUP

KeyDoor The MiniGrid Dataset (Chevalier-Boisvert et al., 2018b) is a collection of grid-based envi-
ronments designed for evaluating reinforcement learning and imitation learning algorithms in tasks
requiring navigation, exploration, and planning. Among these environments, we start with KeyDoor,
an easy-level compositional task that requires the player to move to the key and pick up it to unlock
the door. To add complexity, we enlarge the original 3 × 3 grid environment to 10 × 10 size, and
randomly initialize the locations of player, key and door for each episode. To facilitate understand-
ing by LLMs, we convert the environment into a vector-based state, with elements including the
coordinates of the player, key, and door, as well as the different statuses of the key (picked or not)
and door (locked or not). The maximum time-steps T of one episode is set to 100. We evaluate our
SEAL on expert datasets with 30, 100, 150, 200 demonstrations generated by an expert bot.

Grid-World The environment is a 10x10 grid world with a single player and multiple objects ran-
domly distributed at various locations. The player’s objective is to visit and pick up these objects in
a specific order. This task is more challenging than KeyDoor due to its longer-range compositional
nature, involving more sub-goals. In this work, we set the number of objects in the grid world to
range from 3 to 5, to test SEAL’s effectiveness in solving longer-range tasks. Similar to KeyDoor,
the fully observed environment is converted into a vector-based state, with elements representing
the coordinates of the player and objects, as well as their statuses (picked or not). The maximum
time-steps per episode is set to 100. We evaluate SEAL on expert datasets with 200, 300, and 400
demonstrations generated by an expert bot.

B ADDITIONAL ENVIRONMENT INFORMATION

Figure 4: Examples of compositional-task-related environments used in our experiments. Left:
KeyDoor. The player needs to pick up the key and then use it to unlock the door. Right: Grid-
World. The player needs to pick up the different objects in a pre-specified order.

KeyDoor The environment is based on the DoorKey setting from the MiniGrid Dataset, but with
modifications to make the state compatible with LLM input for sub-goal mapping. Instead of us-
ing image states, we convert the state into an 8-dimensional vector that captures crucial object in-
formation: {x-coordinate of key, y-coordinate of key, x-coordinate of door, y-coordinate of door,
x-coordinate of player, y-coordinate of player, key status (picked: 1, not picked: 0), and door status
(unlocked: 1, locked: 0) }. Wall obstacles are removed to avoid interference. The action space
consists of 6 primitive actions: move up, move down, move right, move left, pick up, and unlock.
The key can be picked up only when the player reaches the key’s coordinates, and the door can
be unlocked only if the player reaches the door’s coordinates with the key already picked up. The
language task instructionM is defined as: ”Pick up the key, and then unlock the door.” The episode
ends when the door is successfully unlocked or the maximum time steps T = 100 are reached.

Grid-World The environment is based on the grid world used in (Kipf et al., 2019; Jiang et al.,
2022). Similar to KeyDoor, the image-based states are converted into a vector format for LLM input,
capturing crucial information about objects: x and y coordinates of Object 1, x and y coordinates of
Object 2, ..., x and y coordinates of the player, status of Object 1 (picked: 1, not picked: 0), status
of Object 2, .... For Grid-World with 3, 4, or 5 objects, the state vector has dimensions 11, 14, and
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Figure 5: A schematic illustrating how LLMs are prompted to define sub-goal spaces from task
instructions and map states to sub-goal representations, serving as supervisory labels for training the
high-level sub-goal encoder in SEAL.

17, respectively. Wall obstacles and irrelevant objects are removed to avoid interference. The action
space consists of 5 primitive actions: move up, move down, move right, move left, and pick up. An
object can be picked up only when the player reaches its coordinates. The language task instruction
M is defined as: ”Pick up Object 1, then pick up Object 2, then...” The episode ends when the
player picks up all objects in the correct order or after the maximum time step T = 100. At the start
of each episode, the coordinates of all objects and the player are randomly reset.

Sub-goal Spaces Identified by LLMs We use GPT-4o to decompose the language task instructions
for both the KeyDoor and Grid-World environments into their respective sub-goal spaces. In the
KeyDoor environment, there are K = 4 sub-goals: {move to the key, pick up the key, move to the
door, unlock the door}. In the Grid-World environment, with 3, 4, and 5 objects, the number of
sub-goals is K = 6, K = 8, and K = 10, respectively, including: {move to object 1, pick up object
1, move to object 2, pick up object 2, ...}. For both sub-goal spaces, we parameterize each language
sub-goal in it by a K-dim one hot vector.

C EXAMPLE PROMPTS

In SEAL, we prompt LLMs to generate supervisory labels for training the high-level encoder. Fig.
5 illustrates the detailed prompting process. First, we prompt the LLMs to break down the task
instruction into a finite set of sub-goals. Then, for each state, the LLM is prompted K times to de-
termine whether it corresponds to each of the decomposed sub-goals, mapping the states to sub-goal
representations. Example prompts for both task decomposition and sub-goal labeling are provided
in the following sub-sections.

C.1 PROMPTS FOR TASK DECOMPOSITION

An example prompt used in Grid-World experiment with 3 objects for task decomposition is listed
below. We use GPT-4o to produce the answer.
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# Task Description: Pick up the key, then Pick up the ball, and then pick up the diamond.

# Environment Details:

The environment is a 10×10 2D Grid-world.

Objects {Key, Ball, Diamond, Player} (Key, Ball, and Diamond’s coordinates are fixed, The
player can move)

Observation Space: {o1: The coordinate of the key
o2: The coordinate of the ball
o3: The coordinate of the diamond
o4: The coordinate of player itself
o5: The status of key (picked/not)
o6: The status of ball (picked/not)
o7: The status of diamond (picked/not)}

Action Space: {move up/right/left/down, pick up}

# Role Instruction:
You should give an abstract plan to solve the given task step-by-step. For each step in plan,
you need to extract relevant features in observation space. You should answer in format:

{Step 1:. . . , Relevant Features:{o1,....} , Step 2:. . . , Relevant Features:{o1,....} . . . . . . Step
N: ..., Relevant Features:{o1,....} }

The GPT-4o answer with:

Here is the abstract plan to solve the task step-by-step, with relevant features in the
observation space for each step:

Step 1: Move the player to the key’s coordinate.
Relevant Features: o1: The coordinate of the key. o4: The coordinate of the player.

Step 2: Pick up the key.
Relevant Features: o1: The coordinate of the key. o4: The coordinate of the player. o5:
Status of the key (picked/not).

Step 3: Move the player to the ball’s coordinate.
Relevant Features: o2: The coordinate of the ball. o4: The coordinate of the player. o5:
Status of the key (picked/not).

Step 4: Pick up the ball.
Relevant Features: o2: The coordinate of the ball. o4: The coordinate of the player. o6:
Status of the ball (picked/not).

Step 5: Move the player to the diamond’s coordinate.
Relevant Features: o3: The coordinate of the diamond. o4: The coordinate of the player.
o5: Status of the key (picked/not). o6: Status of the ball (picked/not).

Step 6: Pick up the diamond.
Relevant Features: o3: The coordinate of the diamond. o4: The coordinate of the player.
o7: Status of the diamond (picked/not).

This step-by-step plan ensures that the player collects the objects in the specific required
order: key, ball, and then diamond.
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C.2 PROMPTS FOR MAPPING STATES TO SUB-GOAL REPRESENTATIONS

An example prompt used in KeyDoor experiment for mapping states in expert demonstration to
sub-goal representations is listed below. We use GPT-4o to produce the answer.

# Environment:
A 2D-grid World with a key and and a door in it. The grid world’s size is 10 * 10. The
coordinate in grid is written as [x, y] (x=0,1,2,3,4, y=0,1,2,3,4) Key at the coordinate: [3, 3].
Door at the coordinate: [0, 1]. Key is not picked up. (key state = 0) Door is locked. (door
state = 0)
(Hint: You can only pick up the key when you at the key location, and can only unlock the
door when you are at the door location and have already picked up the key).

# Current State:
The player is currently at [3, 0]. The key state = 0. The door state = 0. The next coordinate
of player is at [3,3].

# Sub-goal Judgement:
You need to judge which stage the player in:
1. The player should move to the Key.
2. The player should pick up the Key.
3. The player should move to the Door.
4. The player should unlock the Door.
Please check whether the current state in the above stages in turn. For each judgement
please answer with 1(Yes) or 0 (No).

You should finally answer with a 4-dimension vector format: [1/0, 1/0, 1/0, 1/0]

The GPT-4o response with:

The current state of the player is at [3, 0] and the next coordinate is [3, 3], which is the
location of the key.

Here’s the judgment for each state:

The player should move to the Key: 1 (The player is moving towards the key)
The player should pick up the Key: 0 (The player is not yet at the key location)
The player should move to the Door: 0 (The player has not picked up the key yet)
The player should unlock the Door: 0 (The player needs to pick up the key first)

So, the 4-dimension vector is: [1, 0, 0, 0]

D MODEL IMPLEMENTATION DETAILS

Methods Loss Hidden dim of MLPs β
BC LBC = E(st,at)∈D − logπ(at|st) [128, 128] /

LISA LLISA = βL(vq)
H (st) + LL(st, z

(vq)
t ) [128, 128] 0.4

SDIL LSDIL = E(st,at)∈DEzt∈πH (zt|st) − logπL(at|zt, st) [128, 128] /
TC LTC = E(st,at,zt)∈D − log(βπH(zt|zt−1, st) + πL(at|st, zt)) [128, 128] 0.4

SEAL LSEAL = Wllm(L(llm)
H + L(llm)

L ) + Wvq(L(vq)
H + L(vq)

L ) [128, 128] 0.4

Table 5: Hyperparameters settings of Model Implementations.

We outline the model implementation details for all four baselines and SEAL in the KeyDoor and
Grid-World environments. For non-hierarchical BC baselines, we use a two-layer Multi-layer Per-
ceptron (MLP) as the trainable policy agent π(at|st). In HIL approaches like LISA, SDIL, and TC,
this same two-layer MLP is used for both the high-level sub-goal encoder πH(st) and the low-level
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policy agent πL(at|st, zt). We use Adam (Kingma, 2014) as the optimizer for all models, with
learning rates initialized at 5e-5 for KeyDoor and 5e-6 for Grid-World. To ensure fair comparison,
we maintain consistent hyper-parameters across all simulations, including the high-level encoder
loss weight β, the hidden dimensions of the MLPs, and the number of sub-goals K for both HIL
baselines and SEAL. Detailed implementations are presented in Table 5.
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