
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Graph Wave Networks
Anonymous Author(s)

ABSTRACT
Dynamics modeling has been introduced as a novel paradigm in

message passing (MP) of graph neural networks (GNNs). Existing

methods consider MP between nodes as a heat diffusion process, and
leverage heat equation to model the temporal evolution of nodes in

the embedding space. However, heat equation can hardly depict the

wave nature of graph signals in graph signal processing. Besides,

heat equation is essentially a partial differential equation (PDE) in-

volving a first partial derivative of time, whose numerical solution

usually has low stability, and leads to inefficient model training.

In this paper, we would like to depict more wave details in MP,

since graph signals are essentially wave signals that can be seen

as a superposition of a series of waves in the form of eigenvector.

This motivates us to consider MP as a wave propagation process to
capture the temporal evolution of wave signals in the space. Based

on wave equation in physics, we innovatively develop a graph wave
equation to leverage the wave propagation on graphs. In details,

we demonstrate that the graph wave equation can be connected

to traditional spectral GNNs, facilitating the design of graph wave
networks (GWNs) based on various Laplacians and enhancing the

performance of the spectral GNNs. Besides, the graph wave equa-

tion is particularly a PDE involving a second partial derivative of

time, which has stronger stability on graphs than the heat equa-

tion that involves a first partial derivative of time. Additionally,

we theoretically prove that the numerical solution derived from

the graph wave equation are constantly stable, enabling to signifi-

cantly enhance model efficiency while ensuring its performance.

Extensive experiments show that GWNs achieve state-of-the-art

and efficient performance on benchmark datasets, and exhibit out-

standing performance in addressing challenging graph problems,

such as over-smoothing and heterophily. Our code is available at

https://anonymous.4open.science/r/GWN/.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph Neural Networks, Partial Differential Equations, Wave Equa-

tion

1 INTRODUCTION
The widespread availability of graph data has propelled the devel-

opment of graph neural networks (GNNs) [46]. These methods have

achieved significant success in various applications, such as rec-

ommendation systems [45], social network analysis [26], particle

physics [36], and drug discovery [13].

Currently, mainstream GNNs [10, 19] develop message passing
(MP) paradigm with graph signal processing [37], which delivers

messages node-by-node by stacking graph convolutional layers. In

fact, the MP paradigm can be modelled as a differential equation [6].

Recent studies explore partial differential equations (PDEs) [6, 23, 40]
to consider the spatial and temporal relationships in MP. Intuitively,

gradient on graph

𝛻𝐺𝐱𝑖 = … , 𝐱𝑖 − 𝐱𝑗 , …

divergence on graph

div𝐺 𝛻𝐺𝐱𝑖 = ෍

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑖 − 𝐱𝑗

Figure 1: Top: the partial spectrum on the real-world dataset
Cora, where the graph signal can be treated as a superposi-
tion ofmultiple eigenvector waves u𝑖 with amplitude𝑔𝜃 (𝜆𝑖)𝑥𝑖
(detailed in Eq. (7)). Bottom: the mechanism of wave propa-
gation on the graph (detailed in Sec. 4.2).

they analogize MP to a heat diffusion process between nodes, and

thus leverage the heat equation to model nodes in the embedding

space. In physics, the heat equation describes the evolution of

temperature in the space over time. Consider 3-dimension spa-

tial variables (𝜔1, 𝜔2, 𝜔3) in the space and a time variable 𝑡 , the

Heat Equation is:

𝜕𝑢

𝜕𝑡
= 𝛼

(
𝜕2𝑢

𝜕𝜔2

1

+ 𝜕2𝑢

𝜕𝜔2

2

+ 𝜕2𝑢

𝜕𝜔2

3

)
= 𝛼 · div(∇𝑢), (1)

where𝑢 is the abbreviation symbol for𝑢 (𝜔1, 𝜔2, 𝜔3, 𝑡), denoting the
temperature at position (𝜔1, 𝜔2, 𝜔3) and time 𝑡 , and𝛼 is a coefficient

called the thermal diffusivity of the medium. However, in context

of graph learning, these methods suffer from two drawbacks: First,
the heat equation can hardly depict the wave nature of graph signals.
In graph signal processing theory [37], the graph can be seen as a

combination of waves with different frequencies, where we show

the graph wave spectrum in Figure 1 (Top). The heat equation

is naturally not capable to process the details of wave property

in message passing, which leads to coarse and sub-optimal GNN

designs. Second, the heat equation is essentially a PDE involving a
first partial derivative of time, yet its stability of numerical solution
can be poor on graph. This requires small time step lengths in solving

1

https://anonymous.4open.science/r/GWN/

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’25, April 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Graph heat equation and graph wave equation. X =

X(𝑡), ∇ and div denote gradient and divergence.

Graph Heat

Equation

𝜕𝐗

𝜕𝑡
= div diag 𝑎 𝐱𝑖 , 𝐱𝑗 𝛻𝐗 , 𝐗 ∈ ℝ𝑁×𝑑

𝛻𝐗 𝑖𝑗 = 𝐱𝑗 − 𝐱𝑖 div 𝛻𝐗 𝑖 = ෍

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑗 − 𝐱𝑖

Graph Wave

Equation

𝜕𝐗

𝜕𝑡
= 𝑎2 … , div𝐺 𝛻𝐺𝐱 𝑖 , …

⊤
, 𝐗 ∈ ℝ𝑁×𝑑

𝛻𝐺𝐱𝑖 = … , 𝐱𝑖 − 𝐱𝑗 , …
div𝐺 𝛻𝐺𝐱𝑖 = ෍

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑖 − 𝐱𝑗

PDE, leading to low efficiency in model training, and can be easily

affected by initial values and generate unsatisfactory performance.

We also give the experimental evidence in Sec. 5.

Unlike previous studies [6, 23, 40] that regard MP as a heat diffu-

sion process, we innovatively analogize MP to a wave propagation
process. Particularly, MP basically embodies the information prop-

agation along the nodes at different spatial positions and temporal

steps, which bears a strong resemblance to the propagation ofwaves
in physics, such as electromagnetic waves. To depict the wave prop-

agation process, we explore the wave equation, a PDE involving

the second derivative of time, which describes the evolution of

wave intensity over time and has wide applicability in physics. Also

consider the three spatial variables (𝜔1, 𝜔2, 𝜔3) and a time variable

𝑡 , theWave Equation is:

𝜕2𝑢

𝜕𝑡2
= 𝑎2

(
𝜕2𝑢

𝜕𝜔2

1

+ 𝜕2𝑢

𝜕𝜔2

2

+ 𝜕2𝑢

𝜕𝜔2

3

)
= 𝑎2 · div(∇𝑢), (2)

where 𝑢 is the abbreviation symbol for 𝑢 (𝜔1, 𝜔2, 𝜔3, 𝑡), denoting
the wave intensity at position (𝜔1, 𝜔2, 𝜔3) and time 𝑡 , and 𝑎 is a

coefficient denoting the propagation speed of the wave. Notably,

though the wave equation has similar formulation as heat equation,

it has intrinsically different properties in the context of graph learn-

ing: First, wave equation is naturally suitable for MP in GNNs. Since
GNN is actually a wave filter of frequencies, it can be achieved

by Laplacian. It investigates more details in processcing graph sig-

nals, offering higher accuracy and practicality compared to heat

equation. Second, the wave equation is essentially a PDE involving
a second partial derivative of time, which can offer stronger stable
condition on graph. This property provides more efficient training

process that allows larger time step lengths, and often generates

robust experimental results (see Figure 4). The wave propagation

process on graph can be depicted as Figure 1 (Bottom).

Though applying the above wave equation to MP is attractive

and reasonable, the specific MP formulation of wave equation is not

obvious, and it is non-trivial to conduct further exploration. To this

end, our breakthrough point is to formulate the MP process with the
wave equation at each node, since once the MP process is specified,

the overall GNN is designed. Therefore, we first would like to derive

graph wave equation for MP. Inspired by Chamberlain et al. [6],

we let the gradient on graph be the difference of features between

a central node and each of its neighbors, and the divergence be the

total difference of them. Thereby we can derive the formulation

in graph wave equation, and the details are shown in Table 1. By

introducing the characteristics of graph Laplacian, the graph wave

equation can be further rewritten into a brief form for the solution

of PDEs (detailed in Sec. 4.2).

Based upon the above derived graph wave equation, we then

would like to achieve the MP for GNN design by solving PDEs.

In fact, the solution of PDEs is often an iterative node feature up-

date process, which can actually be interpreted as the MP process.

Existing PDE-based GNN methods [6, 29] utilizing the forward Eu-
ler method to solve PDEs, resulting in conditionally stable explicit
schemes, making it difficult to balance the performance and effi-

ciency of the model. Besides, Chamberlain et al. [6] also attempt

implicit schemes through the backward Euler method, which are con-

stantly stable but require solving linear systems, leading to higher

computational complexity and lower efficiency compared to the

explicit schemes. In this paper, we use the forward Euler method to

solve the graphwave equation, which can obtain constantly stable
explicit schemes. This allows the model to significantly improve

convergence rates by selecting larger time step lengths, thereby

enhancing efficiency of operation while guaranteeing model per-

formance (detailed in Sec. 4.3). Based upon the above designs, we

propose the Graph Wave Networks (termed as GWN) with MP for-

mulated by graph wave equation. Two specified implementations

are provided to achieve our GWN according to different specifica-

tion of Laplacians (detailed in Sec. 4.4).

Our main contributions can be summarized as follows:

• For the first time, we model the message passing from an in-

novative perspective of a wave propagation process, thereby
maintaining the wave nature in graph convolutional operation.

• We develop wave equation into graph wave equation, and pro-

pose a novel graph wave network, namely GWN. It establishes

a connection between wave equation and traditional spectral

GNNs, enhancing them with more details of waves on graphs.

• Through the theoretical evidence, we prove that the explicit

scheme of the graph wave equation is constantly stable, allow-
ing significant efficiency improvements while guaranteeing
robust model prediction results.

• We conduct extensive experiments on 9 benchmark datasets. Ex-

perimental results substantiate that GWN outperforms previous

state-of-the-art methods and achieves efficient performance in

alleviating over-smoothing and heterophily.

2 RELATEDWORK
Spectral GNNs. Spectral GNNs [5] based on Laplacian to design

various filter functions in the spectral domain. One category of

spectral GNNs directly modify the Laplacian. GCN [19] incorpo-

rates self-loops in the normalized Laplacian, which manifests as a

low-pass filter. Some methods [3, 14, 28, 53] introduce additional

high-pass filters to learn difference between nodes. Bianchi et al.

[2] propose an auto-regressive moving average filter to capture

the global graph structure. Defferrard et al. [10] and He et al. [17]

approximate the spectral graph convolution using Chebyshev poly-

nomial. He et al. [16] approximate arbitrary filters using Bernstein

polynomials. Wang and Zhang [42] utilize Jacobi polynomials to

adapt a wider range of weight functions. Chien et al. [9] employ

learnable parameters to approximate the polynomial coefficients.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

These methods are all built upon the traditional graph signal pro-
cessing methods, but few of them fully explore the nature of wave
propagation in the MP process.

Differential Equations on Graphs. Neural ODE [8] models the

embedding representation as a continuous dynamic with respect to

neural network parameters. Poli et al. [31] propose a continuous-

depth GNN framework and solves the forward process using nu-

merical methods. Xhonneux et al. [47] establish the relationship

between the derivative of node embeddings and the initial and

neighboring embeddings of nodes. Rusch et al. [34] relate to tra-

ditional GNNs using second-order ODEs. Nguyen et al. [29] adapt

well-known Kuramoto model to alleviate over-smoothing. Neural

PDE [24] applies partial differential equations to graph-based prob-

lems. Eliasof et al. [11] utilizes non-linear diffusion and non-linear

hyperbolic equations to model message passing. Wang et al. [43]

decouple the terminal time and feature propagation steps from a

continuous perspective. Klicpera et al. [20] define graph diffusion

convolution to overcome the limitation of traditional GNNs in ag-

gregating only direct neighbors. Zhao et al. [52] propose adaptive

diffusion convolution to automatically learn the optimal neigh-

borhood from the data. Recent works introduce the heat diffusion

equation on graphs to simulate the temporal dynamics of node em-

beddings [6]. The explicit scheme stability derived from GRAND is

conditional, ensuring model performance only when using smaller

time steps, leading to inefficient model performance. Thorpe et al.

[40] further utilize a heat diffusion equation with a source term

to define graph convolution, which performs better in low-label-

rate scenarios. Li et al. [23] introduce a general diffusion equation

framework with a fidelity term and establishes the connection

between the diffusion process and GNNs. Compared to consider-

ing message passing as a heat diffusion process between nodes,

treating it as a wave propagation process better aligns with the

process of inter-node information interaction described in graph

signal processing. Moreover, note that there are several DE-based

GNNs [11, 23, 40, 43, 47] lack stability proofs, which can hardly

ensure the robustness of models, and weaker stability conditions

make it challenging to balance model performance and efficiency.

In contrast, in this paper, the proposed graph wave networks can sig-
nificantly enhance efficiency while ensuring model performance, due
to its constantly stable properties.

3 PRELIMINARIES
In this section, we discuss graph signal processing in traditional

GNNs, and then introduce fundamental concepts of wave equations.

3.1 Graph Signal Processing
Graph signal processing [37] is a field that focuses on signal analysis

and processing conducted on graphs.

Notations of Graph. Given a simple undirected graph G, com-

posed of a set of nodesV and a set of edges E, with 𝑁 = |V| nodes
in total. Graph G is associated with a feature matrix X ∈ R𝑁×𝑑

,

where the 𝑖-th row of X corresponds to the feature vector x𝑖 =

[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑] ∈ R𝑑 of node 𝑣𝑖 , and the 𝑗-th column of X corre-

sponds to the graph signal of dimension 𝑗 . We denote the adjacency

matrix as A and the degree matrix as D with 𝐷𝑖𝑖 =
∑
𝑖 𝐴𝑖 𝑗 .

Spectral Graph Convolution. Traditional spectral GNNs de-
sign spectral graph convolution using the symmetric normalized

Laplacian L𝑠𝑦𝑚 = I−D−1/2AD−1/2
, which can be decomposed into

L𝑠𝑦𝑚 = UΛU⊤
, where Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁) is a diagonal matrix

of eigenvalues and U is a matrix of corresponding eigenvectors.

Here, the eigenvalues satisfy 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑁 = 2. Based on this,

the definition of spectral graph convolution is as follows:

(g ∗ X)𝐺 = Ug𝜃U⊤X, (3)

where g𝜃 = g𝜃 (Λ) = diag(𝑔𝜃 (𝜆1), . . . , 𝑔𝜃 (𝜆𝑁)) denotes the graph
filter function.

3.2 Wave Equation
Thewave equation describes the laws of waves in the space evolving

over time, which has been widely adopted to analyze the character-

istics of waves like electromagnetic waves in physics.

Given that 𝑢 (𝜔1, . . . , 𝜔𝑑 , 𝑡) is a scalar-valued function on Ω𝑑 ×
[0,∞) that reflects the wave intensity, where Ω𝑑 = 𝜔1 × · · · × 𝜔𝑑
denotes the spatial dimension, and 𝑡 ∈ [0,∞) denotes the time

dimension, the wave equation can be formulated by the following

partial differential equation (PDE):

𝜕2𝑢

𝜕𝑡2
= 𝑎2

(
𝜕2𝑢

𝜕𝜔2

1

+ · · · + 𝜕2𝑢

𝜕𝜔2

𝑑

)
= 𝑎2Δ𝑢 = 𝑎2 · div(∇𝑢), (4)

where Δ =
∑𝑑
𝑖

𝜕2

𝜕𝜔2

𝑖

denotes Laplacian operator in mathematics, ∇
and div denote gradient and divergence, respectively. 𝑎 denotes

the propagation velocity of waves in the medium (such as the

propagation velocity of electromagnetic waves in vacuum), which

is a scalar or a function to describe the wave.

4 WAVE EQUATION ON GRAPHS
In this section, we would like to analyze the wave nature of graph

signals, and propose graph wave equation with solutions for MP.

4.1 Graph and Wave
This section illustrates the connection between graphs and waves

from the perspective of graph signal processing. For convenience,

we use a toy example of graph signals x = [𝑥1, . . . , 𝑥𝑁]⊤ ∈ R1×𝑁
with𝑁 nodes embedded in 1-dimensional space Ω1

, where the same

principle can be extended to 𝑑-dimensional space Ω𝑑
. First, the

typical implementation of spectral graph convolution transforms

graph signals by Fourier transform:

x̂ = U⊤x =


𝑁∑︁
𝑗=1

𝑢1𝑗𝑥 𝑗 , . . . ,

𝑁∑︁
𝑗=1

𝑢𝑁 𝑗𝑥 𝑗


⊤

∈ R𝑁 , (5)

where the 𝑖-th element 𝑥𝑖 =
∑𝑁

𝑗=1 𝑢𝑖 𝑗𝑥 𝑗 =< u𝑖 , x > of x̂ denotes the

signal strength of the spectral signal corresponding to the eigen-

value 𝜆𝑖 in the spectral domain. Then, based upon them, the spectral

graph convolution is defined as:

g𝜃U⊤x = [𝑔𝜃 (𝜆1)𝑥1, . . . , 𝑔𝜃 (𝜆𝑁)𝑥𝑁]⊤ ∈ R𝑁 . (6)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, April 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Finally, the inverse Fourier transform is used to map the spectral

signal back to the spatial domain:

L𝑠𝑦𝑚x = Ug𝜃U⊤x = [u1, . . . , u𝑁] [𝑔𝜃 (𝜆1)𝑥1, . . . , 𝑔𝜃 (𝜆𝑁)𝑥𝑁]⊤

=

𝑁∑︁
𝑖=1

𝑔𝜃 (𝜆𝑖)𝑥𝑖u𝑖 ∈ R𝑁 .
(7)

Remark 1. The connection between graph and wave. From Eq. (7), we

can observe that the graph signal in spatial domain can be treated as

a linear combination of 𝑁 different eigenvalues in spectral domain,

vividly depicted in Figure 1 (Top). Intuitively, we can interpret the

eigenvalue 𝜆𝑖 as the frequency, its corresponding eigenvector u𝑖
as a particular type of wave, and 𝑔𝜃 (𝜆𝑖)𝑥𝑖 denotes the amplitude

of the wave. This reflects the wave nature of the spectral graph

convolution on any given graphs.

4.2 Graph Wave Equation
We are going to extend the wave equation on the graph. Given

the graph signal X ∈ R𝑁×𝑑
(𝑖 .𝑒 ., node features), for any node

𝑣𝑖 , its node representation acquires messages from its neighbors

𝑣 𝑗 ∈ N (𝑣𝑖) in GNNs. Then, we can derive the gradient of 𝑣𝑖 in MP

on its graph 𝐺 by vector subtraction between 𝑣𝑖 and its neighbors,

which actually captures their signal differences [6]:

∇𝐺x𝑖 := [. . . , x𝑖 − x𝑗 , . . .]⊤ ∈ R |N (𝑣𝑖) |×𝑑 , (8)

where the gradient direction reflects the direction from 𝑣 𝑗 to 𝑣𝑖 in

MP, and the gradient magnitude measures the feature difference

amount between 𝑣𝑖 and 𝑣 𝑗 . Subsequently, we can derive the diver-

gence of 𝑣𝑖 on𝐺 by the sum of feature differences between the node

𝑣𝑖 and all its neighbor 𝑣 𝑗 ∈ N (𝑣𝑖):

div𝐺 (∇𝐺x𝑖) :=
∑︁

𝑣𝑗 ∈N(𝑣𝑖)
(x𝑖 − x𝑗) ∈ R𝑑 , (9)

where the divergence actuallymeasures the total difference between

a node and its neighborhood. Finally, by substituting Eq. (9) into

(4), we propose Graph Wave Equation on the graph:

𝜕2X
𝜕𝑡2

= 𝑎2 [. . . , div𝐺 (∇𝐺x𝑖), . . .]⊤ ∈ R𝑁×𝑑 . (10)

where X is the signal intensity (of all nodes) in the entire graph 𝐺 ,

and can be regarded as the node representations. Each row of X
involves a wave equation at a specific node. By introducing the form

of Laplacian, we can rewrite Eq. (10) as follows (see Appendix A.1
for mathematical proof):

Proposition 1. Let L = D − A denote the discrete form of the

Laplacian operator Δ. The graph wave equation can be rewritten as:

𝜕2X
𝜕𝑡2

= 𝑎2LX := L𝑎X. (11)

where we incorporate 𝑎 into L for a simple form, 𝑖 .𝑒 ., L𝑎 := 𝑎2L.
Here, the propagation velocity 𝑎 controls the speed of wave prop-

agation between nodes on the graph. Note that the propagation

velocity 𝑎 can alternatively be constant or learnable parameters in

practice, leading to different forms of Laplacian (detailed in Eq. (15)

and (17) later). Benefit by treating 𝑎 as learnable parameters, we

can redefine Laplacian with flexibility and establish a connection

between wave equation and Laplacian-based spectral GNNs.

Remark 2. The connection between graph wave equation and
spectral GNNs. With Eq. (11), we can easily combine the wave

equation with spectral GNNs into graph wave equations. Thereby,

the graph wave equation can be flexibly extended and achieved by

specific designed Laplacians of existing spectral GNNs.

4.3 Solution of Graph Wave Equation
In general, it is often intractable to obtain an analytical solution for

a PDE. Fortunately, there are numerical methods that can approxi-

mate PDE solutions. First, the continuous PDE can be discretized

into a finite form of a linear algebraic system using the finite dif-

ference method. Then, an iteration process with initial values can

be employed to solve this linear algebraic system. In the context of

graphs, only the time dimension needs to be further discretized on

each node. To this end, we employ a commonly-used discretization

method in mathematics, namely forward Euler method, to solve the

graph wave equation for node representations (i.e., X) [6].

Formally, the forward Euler method discretizes the graph wave

equation by performing forward difference in the time dimension,

and then derives the explicit scheme:

X(𝑛+1) − 2X(𝑛) + X(𝑛−1)

𝜏2
= L(𝑛)

𝑎 X(𝑛) , (12)

where 𝜏 is the time step length. The initial values of X(0)
and X(1)

in

the PDE can be obtained using the second-order central quotient:

X(0) = 𝜑0 (X), X(1) = 𝜏𝜑1 (X) +
(
I + 𝜏

2

2

L(0)
𝑎

)
𝜑0 (X), (13)

where 𝜑0 (X) and 𝜑1 (X) can be practically achieved by neural net-

works, such as feedforward networks. Finally, the explicit scheme

of the graph wave equation is given by:

X(𝑛+1) =
(
2I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) − X(𝑛−1) . (14)

Please see Appendix A.2 for the detailed derivation of the forward
Euler method. In particular, we can interpret the above equation

from the perspective of message passing:

Remark 3. The perspective of message passing. By decompos-

ing X(𝑛+1)
into X(𝑛+1) =

(
I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) +

(
X(𝑛) − X(𝑛−1)

)
, the

graph signal at time 𝑡𝑛+1 consists of two components: 1) the ag-

gregation of neighbor information at time 𝑡𝑛 , and 2) the difference

between the graph signal at times 𝑡𝑛 and 𝑡𝑛−1.

4.4 Graph Wave Networks
In this section, we propose two specifications of GWNs with time-

independent and time-dependent Laplacian, respectively.

Symmetric Normalized Laplacian. We consider time-independent

Laplacian, where we let the velocity be a constant. Typically, we

adopt GCN [19] as the base model and design a symmetric nor-

malized Laplacian without self-loops, which behaves as a low-pass

filter in the spectral domain:

L𝑎 = D− 1

2 AD− 1

2 . (15)

GWN-sym. We propose the Graph Wave Network based on the

symmetric normalized Laplacian. With the initial values given by

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Eq. (13), the feature matrix at time 𝑡𝑛+1 can be determined as:

X(𝑛+1) =
(
2I + 𝜏2D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) . (16)

The final feature matrix at the terminal time 𝑇 is transformed into

a prediction matrix by an MLP as Y = MLP(X(𝑇)).

FrequencyAdaptive Laplacian. Next, we consider time-dependent

Laplacian, where the velocity is non-constant learnable parameters.

Typically, we adopt FAGCN [3] as the base model and propose a

frequency adaptive Laplacian with a time-dependent learnable pa-

rameter 𝜀 (𝑛) ∈ (0, 1), which designs both a low-pass filter and a

high-pass filter in the spectral domain:

L(𝑛)
𝑎,𝑙

= 𝜀 (𝑛) I + D− 1

2 AD− 1

2 , L(𝑛)
𝑎,ℎ

= 𝜀 (𝑛) I − D− 1

2 AD− 1

2 . (17)

GWN-fa. We propose the Graph Wave Network based on the

frequency adaptive Laplacian. The initial values are also given by

Eq. (13), and the feature matrix at time 𝑡𝑛+1 can be determined as

(see Appendix A.4 for detailed derivation):

X(𝑛+1) = 𝜀 (𝑛)X(0) +
(
2I + 𝜏2𝜶 (𝑛) ⊙ D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) .

(18)

where the element 𝜶 (𝑛)
𝑖 𝑗

= tanh(g(𝑛)⊤ [x(𝑛)
𝑖

| |x(𝑛)
𝑗

]) of 𝜶 (𝑛)
is the

attention weight between nodes 𝑣𝑖 and 𝑣 𝑗 at time 𝑡𝑛 , and g(𝑛) ∈ R2𝑑

is a learnable parameter vector. Notably, when 𝛼
(𝑛)
𝑖 𝑗

> 0, the two

nodes are more similar and GWN-fa behaves a low-pass filter; and

when 𝛼
(𝑛)
𝑖 𝑗

< 0, two nodes are more dissimilar and GWN-fa behaves

a high-pass filter. The final feature matrix at terminal time𝑇 is also

transformed into a prediction matrix by an MLP.

4.5 Stability
Stability is an important property of differential equations, which is

closely related to the robustness in machine learning [6], and refers

to the property that small perturbations in initial values would not

result in a significant change in solutions. We discuss the initial

value stability of the explicit scheme U(𝑘+1) = CU(𝑘)
. Formally, if

there exists 𝜏0 > 0 and a constant 𝐾 > 0 such that the inequality

∥U(𝑘+1) ∥ = ∥C𝑘+1U(0) ∥ ≤ 𝐾 ∥U(0) ∥ holds for all 0 < 𝜏 ≤ 𝜏0 and

0 < 𝑘𝜏 ≤ 𝑇 , then the explicit scheme is said to be initial value

stable. It is crucial to prove the stability of explicit schemes to

ensure that the resulting GNNs is reliable and feasible. A commonly

used method for proving stability is the matrix method:

Theorem 1. Let 𝜌 (C) = |𝜆 |𝑚𝑎𝑥 denote the spectral radius of

matrix C, if 𝜌 (C) ≤ 1, the numerical scheme is stable.

Based on Theorem 1, we prove that both the explicit schemes

based on the symmetric normalized Laplacian (see Appendix A.3 for
proof) and the frequency adaptive Laplacian (see Appendix A.5 for
proof) are constantly stable.

Theorem 2. Given L𝑎 = D−1/2AD−1/2
with 𝜆 ∈ [−1, 1], the

explicit scheme is constantly stable for any 𝜏 ∈ 𝑅+.
Theorem 3. Given L𝑎,· = 𝜀I ± D− 1

2 AD− 1

2 with 𝜆 ∈ [𝜀 − 1, 𝜀 + 1],
the explicit scheme is constantly stable for any 𝜏 ∈ 𝑅+.

Remark 4. The impact of constantly stability for models. Theoret-
ically, we prove that the explicit scheme of the graph wave equation

is constantly stable, guaranteeing the model performance would

not be affected by the time step length, thus allowing to enhance

the convergence rate and significantly improve the efficiency by

choosing a relatively larger 𝜏 .

Comparisonwith heat equation based GRAND. The explicit scheme

of GRAND is X(𝑛+1) =

(
I + 𝜏A

(
X(𝑛)

))
X(𝑛)

, where A
(
X(𝑛)

)
is

an attention matrix constrained to be a right stochastic matrix sat-

isfying

∑𝑁
𝑗=1 𝛼𝑖 𝑗 = 1 and 𝛼𝑖 𝑗 > 0. Benefiting from being a right

stochastic matrix, the explicit scheme is stable and can be directly

proven. However, it has the two deficiencies: First, the stability of

explicit schemes is conditional (𝑖 .𝑒 ., 0 < 𝜏 < 1), striking a balance

between performance and efficiency. Detailed comparisons and

validations can be found in Sec. 5.4. Second, the attention scores are

constrained to 𝛼𝑖 𝑗 > 0, which performs poorly in distinguishing

inter-class nodes. In contrast, our GWN-fa acts as low-pass and

high-pass filters when 𝛼𝑖 𝑗 > 0 and 𝛼𝑖 𝑗 < 0 respectively, enabling

better handling of various types of graph.

4.6 Complexity Analysis
The number of learnable parameters of GWN-sym and GWN-fa

are 2𝑓 𝑑 +𝑑𝑐 and 2𝑓 𝑑 + (2𝑑 + 1)𝑇 /𝜏 +𝑑𝑐 , compared to 𝑓 𝑑 + 2𝑑2 +𝑑𝑐
in GRAND [6]. Here, 𝑓 , 𝑑 and 𝑐 denote the input dimension, the

hidden layer dimension, and the number of classes, respectively. In

general, 𝑇 /𝜏 < 𝑑 . The computational complexity of each layer of

GWN-sym and GWN-fa are O(𝑀𝑑) and O((𝑁 +𝑀)𝑑), compared

to O(𝑀′𝑑) in GRAND. Here, 𝑁 ,𝑀 and𝑀′
are the number of nodes,

edges and rewritten edges.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. Following the practices [6, 34], we conduct node clas-

sification [35] on the following real-world datasets (see Appen-
dix B.1 for statistics): (1) homophilic datasets [35, 50]: citation net-

works Cora, CiteSeer and PubMed, Amazon co-purchase networks

Computers and Photo, co-author networks CS; (2) heterophilic
datasets [30, 32, 33]: WebKB datasets Texas, Cornell and Wisconsin.

Baselines. We categorize all baselines into the following two

classes: (1)mainstreamGNNs: GCN [19], GAT [41], GraphSAGE [15],

SGC [44], JK-Net [48], ResGCN [21], GCNII [7], FAGCN [3], GPR-

GNN [9], AIR [51], MixHop [1], Geom-GCN [30], H2GCN [54],

LINKX [25], WRGAT [39], GGCN [49], NLMLP [27], GloGNN [22],

NSD [4], ACM-GCN [28], Ordered GNN [38]; (2) GNNs based on
differential equation: CGNN [47], GDC [20], ADC [52], GADC [52],

GRAND [6], GraphCON [34]. Unless specifically state that the re-

sults are from original papers, baselines are reproduced using their

open-source code with fair settings.

Setup.We split the datasets into training/valiation/test sets using

two schemes: 60%/20%/20% [3, 9] and 48%/32%/20% [4, 30, 49, 54].

During the training phase, our method utilizes the cross-entropy

loss function, Adam optimizer [18], and early stopping strategy.

The code is implemented using the PyTorch Geometric library [12]

and parameter search is performed using wandb library. Finally, we

report the mean accuracy and standard deviation of 10 runs.

5.2 Performance
To validate the feasibility of GWN, we first compare it with GNNs

based on differential equations on 6 homophilic datasets. Table 2

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’25, April 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: The results of homophilic datasets: mean accuracy ± standard deviation on 60%/20%/20% random splits of data and 10
runs. ∗ models use the best variants, − indicate the original paper did not report this result.

Datesets Cora CiteSeer PubMed Computers Photo CS

GCN 87.51 ± 1.38 80.59 ± 1.12 87.95 ± 0.83 86.09 ± 0.61 93.04 ± 0.53 95.14 ± 0.25

GAT 87.42 ± 1.46 80.16 ± 1.63 85.91 ± 1.26 87.89 ± 0.82 93.53 ± 0.58 94.37 ± 0.28

GraphSAGE 87.50 ± 1.45 79.39 ± 1.38 89.64 ± 0.73 88.53 ± 0.70 94.49 ± 0.55 95.93 ± 0.25

CGNN 88.29 ± 1.11 79.93 ± 1.04 89.46 ± 0.52 88.31 ± 0.65 94.35 ± 0.56 96.21 ± 0.32

GDC 86.89 ± 1.28 80.05 ± 0.60 86.18 ± 0.42 88.56 ± 0.38 93.56 ± 0.33 94.82 ± 0.22

ADC
∗

87.45 ± 0.89 79.43 ± 0.96 90.23 ± 0.39 88.62 ± 0.56 95.33 ± 0.27 95.82 ± 0.15

GADC 87.64 ± 0.64 78.62 ± 0.57 88.58 ± 0.48 87.78 ± 0.54 94.70 ± 0.35 96.16 ± 0.29

GRAND
∗

88.70 ± 0.99 81.56 ± 1.28 88.39 ± 0.32 89.37 ± 0.41 95.79 ± 0.59 95.77 ± 0.28

GraphCON
∗

87.81 ± 0.92 79.68 ± 1.23 88.54 ± 1.32 − − −

GWN-sym 89.61 ± 0.87 81.81 ± 1.70 90.56 ± 0.54 90.10 ± 0.87 95.31 ± 0.65 96.66 ± 0.26

GWN-fa 89.66 ± 1.29 80.89 ± 1.51 90.64 ± 0.73 90.62 ± 0.61 95.61 ± 0.53 96.67 ± 0.26

Table 3: The results of heterophilic datasets: mean accuracy ± standard deviation on 10 runs. ∗ models use the best variants, †
results of baselines from papers, ‡ results of baselines are reproduced, − indicate the original paper did not report this result.

Datesets Texas Cornell Wisconsin
Splits 48/32/20(%)

†
60/20/20(%)

‡
48/32/20(%)

†
60/20/20(%)

‡
48/32/20(%)

†
60/20/20(%)

‡

GCN 55.14 ± 5.16 79.33 ± 4.47 60.54 ± 5.30 69.53 ± 11.79 51.76 ± 3.06 63.94 ± 4.93

GAT 52.16 ± 6.63 79.59 ± 9.21 61.89 ± 5.05 66.91 ± 15.99 49.41 ± 4.09 63.45 ± 11.65

GraphSAGE 82.43 ± 6.14 86.02 ± 4.78 75.95 ± 5.01 85.06 ± 5.12 81.18 ± 5.56 89.56 ± 3.99

MixHop 77.84 ± 7.73 − 73.51 ± 6.34 − 75.88 ± 4.90 −
Geom-GCN 66.76 ± 2.72 − 60.54 ± 3.67 − 64.51 ± 3.66 −
H2GCN 84.86 ± 7.23 85.90 ± 3.53 82.70 ± 5.28 86.23 ± 4.71 87.65 ± 4.98 87.50 ± 1.77

LINKX 74.60 ± 8.37 − 77.84 ± 5.81 − 75.49 ± 5.72 −
WRGAT 83.62 ± 5.50 − 81.62 ± 3.90 − 86.98 ± 3.78 −
FAGCN 82.43 ± 6.89 85.57 ± 4.75 79.19 ± 9.79 86.38 ± 5.33 82.94 ± 7.95 84.88 ± 9.19

GPR-GNN 78.38 ± 4.36 91.89 ± 4.08 80.27 ± 8.11 85.91 ± 4.60 82.94 ± 4.21 93.84 ± 3.16

GGCN 84.86 ± 4.55 92.13 ± 3.05 85.68 ± 6.63 88.70 ± 4.97 86.86 ± 3.29 94.56 ± 3.26

NLMLP 85.40 ± 3.80 − 84.90 ± 5.70 − 87.30 ± 4.30 −
GloGNN

∗
84.05 ± 4.90 − 85.95 ± 5.10 − 88.04 ± 3.22 −

NSD
∗

85.95 ± 5.51 − 84.86 ± 4.71 − 89.41 ± 4.74 −
ACM-GCN

∗
88.38 ± 3.43 − 86.49 ± 6.73 − 88.43 ± 3.66 −

Ordered GNN 86.22 ± 4.12 90.82 ± 4.18 87.03 ± 4.73 88.09 ± 3.36 88.04 ± 3.63 93.62 ± 2.91

GWN-sym 89.85 ± 5.05 91.64 ± 3.74 88.11 ± 3.17 89.57 ± 3.54 90.88 ± 4.43 93.38 ± 3.18

GWN-fa 92.94 ± 4.45 93.28 ± 3.14 90.81 ± 4.63 92.13 ± 3.76 94.26 ± 1.76 95.63 ± 1.59

Cora CS Texas Cornell

1

0

1

Figure 2: Visualization of the attention matrix 𝜶 of GWN-fa (selected from 100 nodes).

indicates that GWN outperforms heat equation based methods sush
as GRAND on 5 datasets and achieves suboptimal performance on

Photo. Since both GWN-sym and GWN-fa can be treated as low-

pass filters, their performances are closely comparable. Then, we

examine the generality of GWN on heterophilic datasets. Table 3

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

1 2 3 4 5 6 7 8 9 10
#Layers

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)
Cora

GCN
GAT
GraphSAGE
JK-Net
ResGCN
GCNII
FAGCN
GPR-GNN
AIR
GWN-sym
GWN-fa

1 2 3 4 5 6 7 8 9 10
#Layers

40

50

60

70

80

Te
st

 A
cc

ur
ac

y
(%

)

CiteSeer

GCN
GAT
GraphSAGE
JK-Net
ResGCN
GCNII
FAGCN
GPR-GNN
AIR
GWN-sym
GWN-fa

1 2 3 4 5 6 7 8 9 10
#Layers

50

60

70

80

90

Te
st

 A
cc

ur
ac

y
(%

)

PubMed

GCN
GAT
GraphSAGE
JK-Net
ResGCN
GCNII
FAGCN
GPR-GNN
AIR
GWN-sym
GWN-fa

Figure 3: Performances of methods of each layer on citation networks.

=0.2 =0.5 =1.0 =2.0 =5.0

GWN-sym GWN-fa82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

Cora

GRAND

GWN-sym GWN-fa74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

CiteSeer

GRAND

GWN-sym GWN-fa82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

PubMed

ADC

GWN-sym GWN-fa82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y
(%

)

Computers

GRAND

GWN-sym GWN-fa86

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
(%

)

Photo

GRAND

GWN-sym GWN-fa88

90

92

94

96

98

Te
st

 A
cc

ur
ac

y
(%

)

CS

CGNN

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Texas_48

ACM-GCN

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Texas_60

GGCN

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Cornell_48

Ordered GNN

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Cornell_60

GGCN

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Wisconsin_48

NSD

GWN-sym GWN-fa70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

Wisconsin_60

GGCN

Figure 4: Stability analysis of GWN. Red dashed line indicates the SOTA models.

demonstrates that GWN outperforms state-of-the-art methods un-

der two commonly used data splits. GWN-sym and GWN-fa show

a significant difference on heterophilic graphs, which can be at-

tributed to the high-pass filter of GWN-fa. It reflects remarkable
performance in modelling heterophily in graphs. Next, we further
probe whether the low-pass and high-pass filters in GWN-fa per-

form as expected. As shown in Figure 2, we visualize the attention

matrix 𝜶 in Eq. (18). As stated in Sec. 4.4, GWN behaves as a low-

pass filter when 𝛼𝑖 𝑗 > 0 and behaves as a high-pass filter when

𝛼𝑖 𝑗 < 0. This is consistent with the visualized results. Additionally,

it is worth noting that under the 48%/32%/20% split, GWN-fa even

outperforms most state-of-the-art methods under the 60%/20%/20%

split, highlighting its superiority in scenarios with low label rates.

5.3 Over-smoothing Analysis
We investigate the ability of GWN to mitigate over-smoothing on

three citation networks: Cora, CiteSeer, and PubMed. Following

the practice of Chamberlain et al. [6] and Rusch et al. [34], we

set 𝜏 = 1, then the terminal time 𝑇 denotes the number of layers.

Figure 3 demonstrates that compared to GNNs specifically designed

for over-smoothing, GWN not only outperforms all baselines in

terms of performance but also maintains its performance as the

number of layers increases. It demonstrates that our models have
better performance in mitigating the over-smoothing issue.

5.4 Stability Analysis
We analyze the stability of the explicit scheme in experiments. We

run GWN on all datasets and report the accuracy for different 𝜏 .

As depicted in Figure 4, on larger-scale datasets such as CS, GWN

exhibits minimal performance differences when 𝜏 is varied. On

smaller-scale datasets like Texas, due to the high-pass filters, GWN-

fa demonstrates better stability compared to GWN-sym. Compared

to GRAND, which only guarantees stability of the explicit scheme

for 𝜏 = 0.005 [6], GWN can maintain stability at larger 𝜏 while
achieving higher computational efficiency and performance.

5.5 Efficiency Analysis
We analyze the efficiency of GWN in Figure 5. We compare GWN

at different 𝜏 with four basic GNNs and three variants of GRAND

(GRAND-l, GRAND-nl, and GRAND-nl-rw). GWN-sym is faster

than GWN-fa because it has fewer learnable parameters. And as
𝜏 increases, their runtime becomes faster. Taking CiteSeer as an

example, "sym-1.0 (1.7x)" achieves both optimal performance and

competitive efficiency. Furthermore, GRAND exhibits overall less

efficiency, with its three variants mainly cluster on the right side

of figures, and their runtimes are on the order of 10
1
. Considering

its most efficient variant "l-0.5 (3.9x)", its performance and runtime

are still inferior to our variant "sym-1.0 (1.7x)". It demonstrates that

our models can achieve both efficient and effective performance.
7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’25, April 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

100 101

Runtime (s)
86.03

86.94

87.84

88.75

89.66

Te
st

 A
cc

ur
ac

y
(%

)

APPNP (1.0x)

GPR-GNN (3.9x)

GCN (1.9x)

FAGCN (2.0x)

l-0.2 (15.4x)

l-0.5 (11.4x)

l-1.0 (4.3x)

nl-0.2 (20.4x)

nl-0.5 (11.9x)

nl-1.0 (13.0x)

nl-rw-0.2 (18.9x)

nl-rw-0.5 (14.1x)

nl-rw-1.0 (13.4x)

sym-0.2 (6.4x)
sym-0.5 (3.4x)

sym-1.0 (2.6x)

sym-2.0 (2.1x)

sym-5.0 (2.1x)

fa-0.2 (26.0x)

fa-0.5 (9.9x)

fa-1.0 (4.0x)

fa-2.0 (3.0x)

fa-5.0 (2.1x)

Cora

100 101

Runtime (s)
78.80

79.55

80.31

81.06

81.81

Te
st

 A
cc

ur
ac

y
(%

)

APPNP (1.0x)

GPR-GNN (3.8x)GCN (1.2x)

FAGCN (9.5x)

l-0.2 (12.6x)

l-0.5 (3.9x)

l-1.0 (5.5x)

nl-0.2 (23.2x)

nl-0.5 (9.6x)

nl-1.0 (19.6x)
nl-rw-0.2 (35.9x)

nl-rw-0.5 (13.0x)

nl-rw-1.0 (20.6x)

sym-0.2 (3.2x)

sym-0.5 (2.1x)

sym-1.0 (1.7x)

sym-2.0 (1.4x)

sym-5.0 (1.6x)

fa-0.2 (16.1x)fa-0.5 (6.6x)

fa-1.0 (2.6x)

fa-2.0 (2.9x)

fa-5.0 (3.8x)

CiteSeer

100 101

Runtime (s)
87.00

87.91

88.82

89.73

90.64

Te
st

 A
cc

ur
ac

y
(%

)

APPNP (1.0x)

GPR-GNN (3.6x)

GCN (1.6x)

FAGCN (1.4x)

l-1.0 (3.3x)

nl-0.2 (12.8x)

nl-0.5 (10.2x)

nl-1.0 (4.3x)

nl-rw-0.2 (19.7x)

nl-rw-0.5 (8.1x)nl-rw-1.0 (7.6x)

sym-0.2 (5.1x)sym-0.5 (3.1x)sym-1.0 (2.1x)

sym-2.0 (1.6x)

sym-5.0 (1.4x)
fa-0.2 (20.9x)

fa-0.5 (8.7x)fa-1.0 (3.1x)

fa-2.0 (3.8x)

fa-5.0 (1.9x)

PubMed

Figure 5: Accuracy and runtime of the methods: "sym" and "fa" denote two variants of GWN; "l", "nl", and "nl-rw" denote three
variants of GRAND; "-1.0" denotes 𝜏 = 1.0; (2.0x) denotes the multiple of the shortest runtime.

Table 4: Comparison with base models using best parameters.

Cora CiteSeer PubMed Computers Photo CS Texas Cornell Wisconsin

GCN 87.51 80.59 87.95 86.09 93.04 95.14 79.33 69.53 63.94

GWN-sym 89.61 (↑ 2.10) 81.81 (↑ 1.22) 90.56 (↑ 2.61) 90.10 (↑ 4.01) 95.31 (↑ 2.27) 96.66 (↑ 1.52) 91.64 (↑ 12.31) 89.57 (↑ 20.04) 93.38 (↑ 29.44)
FAGCN 88.49 81.65 87.58 87.32 93.41 95.79 85.57 86.38 84.88

GWN-fa 89.66 (↑ 1.17) 80.89 (↓ 0.76) 90.64 (↑ 3.06) 90.62 (↑ 3.30) 95.61 (↑ 2.20) 96.67 (↑ 0.88) 93.28 (↑ 7.71) 92.13 (↑ 5.75) 95.63 (↑ 10.75)

Figure 6: Visualization of waveform in wave propagation of
GWN-sym (Left) and GWN-fa (Right) on Cora.

5.6 Analysis of base models
We explore the impact of base models in Table 4, where both GCN

and FAGCN increase their performances in the form of the graph

wave equation. Besides, we also show the visualization of wave

propagation of GWN-sym and GWN-fa on Cora. From Figure 6,

the waveform of GWN-sym are not prominent at early iterations,

while the waveform of GWN-fa demonstrate more frequent infor-

mation interactions at any time. Figure 7(a) depicts wave signals at

a specific time, where the waveform of GWN-sym appears chaotic,

whereas the waveform of GWN-fa is relatively clear. From Fig-

ure 7(b), compared to the waveform of GWN-sym, the waveform

of GWN-fa exhibits periodic variations of peaks and troughs. We

believe that these phenomena can be attributed to the ability of

capturing both the low- and high-frequency signals in GWN-fa.

6 CONCLUSION
In this paper, we consider the message passing in GNNs as a wave

propagation process, and further develop graph wave networks

(a) time view (b) node view

Figure 7: Visualization of time and node view in wave propa-
gation of GWN-sym (Up) and GWN-fa (Down) on Cora.

(GWNs) based on the proposed graph wave equation with spec-

tral GNNs. We demonstrate that compared to the heat equation,

the graph wave equation exhibits superior performance and sta-

bility. Extensive experiments demonstrate that our GWNs obtain

accurate and efficient performance, and show effectiveness in ad-

dressing challenging graph problems such as over-smoothing and

heterophily modelling. Our future work would explore more com-

plex and general Laplacian polynomials to advance GNNs.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. 2019. MixHop:

Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood

Mixing. In Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. PMLR.

[2] Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. 2022.

Graph Neural Networks With Convolutional ARMA Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 44, 7 (2022), 3496–3507. https://doi.org/10.1109/TPAMI.2021.

3054830

[3] Deyu Bo, XiaoWang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency

Information in Graph Convolutional Networks. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press.

[4] Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro

Lió, and Michael M. Bronstein. 2022. Neural Sheaf Diffusion: A Topological

Perspective on Heterophily and Oversmoothing in GNNs. In NeurIPS.
[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).

http://arxiv.org/abs/1312.6203

[6] Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael M. Bronstein,

Stefan Webb, and Emanuele Rossi. 2021. GRAND: Graph Neural Diffusion. In

Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139),
Marina Meila and Tong Zhang (Eds.). PMLR, 1407–1418. http://proceedings.mlr.

press/v139/chamberlain21a.html

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event. PMLR.

[8] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.

Neural Ordinary Differential Equations. In Advances in Neural Information Pro-
cessing Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.

Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman

Garnett (Eds.). 6572–6583. https://proceedings.neurips.cc/paper/2018/hash/

69386f6bb1dfed68692a24c8686939b9-Abstract.html

[9] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems 29: Annual Conference on Neu-
ral Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain.

[11] Moshe Eliasof, Eldad Haber, and Eran Treister. 2021. PDE-GCN: Novel Architec-

tures for Graph Neural Networks Motivated by Partial Differential Equations.

In Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,

and Jennifer Wortman Vaughan (Eds.). 3836–3849. https://proceedings.neurips.

cc/paper/2021/hash/1f9f9d8ff75205aa73ec83e543d8b571-Abstract.html

[12] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning

with PyTorch Geometric. In ICLRWorkshop on Representation Learning on Graphs
and Manifolds.

[13] Thomas Gaudelet, Ben Day, Arian R. Jamasb, Jyothish Soman, Cristian Regep,

Gertrude Liu, Jeremy B. R. Hayter, Richard Vickers, Charles Roberts, Jian Tang,

David Roblin, Tom L. Blundell, Michael M. Bronstein, and Jake P. Taylor-King.

2021. Utilizing graph machine learning within drug discovery and development.

Briefings Bioinform. 22, 6 (2021). https://doi.org/10.1093/BIB/BBAB159

[14] Haoyu Geng, Chao Chen, Yixuan He, Gang Zeng, Zhaobing Han, Hua Chai,

and Junchi Yan. 2023. Pyramid Graph Neural Network: A Graph Sampling and

Filtering Approach for Multi-scale Disentangled Representations. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD 2023, Long Beach, CA, USA, August 6-10, 2023, Ambuj K. Singh, Yizhou Sun,

Leman Akoglu, Dimitrios Gunopulos, Xifeng Yan, Ravi Kumar, Fatma Ozcan,

and Jieping Ye (Eds.). ACM, 518–530. https://doi.org/10.1145/3580305.3599478

[15] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA.

[16] Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. 2021. BernNet:

Learning Arbitrary Graph Spectral Filters via Bernstein Approximation. In Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural

Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan (Eds.). 14239–14251. https://proceedings.neurips.cc/

paper/2021/hash/76f1cfd7754a6e4fc3281bcccb3d0902-Abstract.html

[17] Mingguo He, Zhewei Wei, and Ji-Rong Wen. 2022. Convolutional Neural Net-

works on Graphs with Chebyshev Approximation, Revisited. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,

K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/

2f9b3ee2bcea04b327c09d7e3145bd1e-Abstract-Conference.html

[18] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

[19] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[20] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-

fusion Improves Graph Learning. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach,

Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and

Roman Garnett (Eds.). 13333–13345. https://proceedings.neurips.cc/paper/2019/

hash/23c894276a2c5a16470e6a31f4618d73-Abstract.html

[21] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. 2019. Deep-

GCNs: Can GCNs Go As Deep As CNNs?. In 2019 IEEE/CVF International Confer-
ence on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019. IEEE, 9266–9275. https://doi.org/10.1109/ICCV.2019.00936

[22] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and

Weining Qian. 2022. Finding Global Homophily in Graph Neural Networks

When Meeting Heterophily. In International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA (Proceedings of Machine
Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song,

Csaba Szepesvári, Gang Niu, and Sivan Sabato (Eds.). PMLR, 13242–13256. https:

//proceedings.mlr.press/v162/li22ad.html

[23] Yibo Li, Xiao Wang, Hongrui Liu, and Chuan Shi. 2024. A Generalized Neural

Diffusion Framework on Graphs. In Thirty-Eighth AAAI Conference on Artificial
Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of
Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada,
Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (Eds.). AAAI Press,

8707–8715. https://doi.org/10.1609/AAAI.V38I8.28716

[24] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, An-

drew M. Stuart, Kaushik Bhattacharya, and Anima Anandkumar. 2020. Multipole

Graph Neural Operator for Parametric Partial Differential Equations. In Advances
in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,

and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/

4b21cf96d4cf612f239a6c322b10c8fe-Abstract.html

[25] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar

Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learning on Non-Homophilous

Graphs: New Benchmarks and Strong Simple Methods. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio

Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-

man Vaughan (Eds.). 20887–20902. https://proceedings.neurips.cc/paper/2021/

hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html

[26] Jianghao Lin, Weiwen Liu, Xinyi Dai, Weinan Zhang, Shuai Li, Ruiming Tang,

Xiuqiang He, Jianye Hao, and Yong Yu. 2021. A Graph-Enhanced Click Model for

Web Search. In SIGIR ’21: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, July 11-15,
2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and

Tetsuya Sakai (Eds.). ACM, 1259–1268. https://doi.org/10.1145/3404835.3462895

[27] Meng Liu, Zhengyang Wang, and Shuiwang Ji. 2022. Non-Local Graph Neural

Networks. IEEE Trans. Pattern Anal. Mach. Intell. 44, 12 (2022), 10270–10276.

https://doi.org/10.1109/TPAMI.2021.3134200

[28] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan

Zhang, Xiao-Wen Chang, and Doina Precup. 2022. Revisiting Heterophily For

Graph Neural Networks. In NeurIPS.
[29] Tuan Nguyen, Hirotada Honda, Takashi Sano, Vinh Nguyen, Shugo Nakamura,

and Tan Minh Nguyen. 2024. From Coupled Oscillators to Graph Neural Net-

works: Reducing Over-smoothing via a Kuramoto Model-based Approach. In

International Conference on Artificial Intelligence and Statistics, 2-4 May 2024,
Palau de Congressos, Valencia, Spain (Proceedings of Machine Learning Research,
Vol. 238), Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (Eds.). PMLR, 2710–

2718. https://proceedings.mlr.press/v238/nguyen24c.html

9

https://doi.org/10.1109/TPAMI.2021.3054830
https://doi.org/10.1109/TPAMI.2021.3054830
http://arxiv.org/abs/1312.6203
http://proceedings.mlr.press/v139/chamberlain21a.html
http://proceedings.mlr.press/v139/chamberlain21a.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1f9f9d8ff75205aa73ec83e543d8b571-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1f9f9d8ff75205aa73ec83e543d8b571-Abstract.html
https://doi.org/10.1093/BIB/BBAB159
https://doi.org/10.1145/3580305.3599478
https://proceedings.neurips.cc/paper/2021/hash/76f1cfd7754a6e4fc3281bcccb3d0902-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/76f1cfd7754a6e4fc3281bcccb3d0902-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f9b3ee2bcea04b327c09d7e3145bd1e-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/2f9b3ee2bcea04b327c09d7e3145bd1e-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2019/hash/23c894276a2c5a16470e6a31f4618d73-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/23c894276a2c5a16470e6a31f4618d73-Abstract.html
https://doi.org/10.1109/ICCV.2019.00936
https://proceedings.mlr.press/v162/li22ad.html
https://proceedings.mlr.press/v162/li22ad.html
https://doi.org/10.1609/AAAI.V38I8.28716
https://proceedings.neurips.cc/paper/2020/hash/4b21cf96d4cf612f239a6c322b10c8fe-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4b21cf96d4cf612f239a6c322b10c8fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ae816a80e4c1c56caa2eb4e1819cbb2f-Abstract.html
https://doi.org/10.1145/3404835.3462895
https://doi.org/10.1109/TPAMI.2021.3134200
https://proceedings.mlr.press/v238/nguyen24c.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’25, April 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[30] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

[31] Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime

Asama, and Jinkyoo Park. 2019. Graph Neural Ordinary Differential Equations.

CoRR abs/1911.07532 (2019). arXiv:1911.07532 http://arxiv.org/abs/1911.07532

[32] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale Attributed

Node Embedding. CoRR abs/1909.13021 (2019). arXiv:1909.13021

[33] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic Functions on

Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Mod-

els. In CIKM ’20: The 29th ACM International Conference on Information and
Knowledge Management, Virtual Event, Ireland, October 19-23, 2020. ACM. https:

//doi.org/10.1145/3340531.3411866

[34] T. Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra,

and Michael M. Bronstein. 2022. Graph-Coupled Oscillator Networks. In Inter-
national Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA (Proceedings of Machine Learning Research, Vol. 162), Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan

Sabato (Eds.). PMLR, 18888–18909. https://proceedings.mlr.press/v162/rusch22a.

html

[35] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. CoRR
abs/1811.05868 (2018). arXiv:1811.05868

[36] Jonathan Shlomi, Peter W. Battaglia, and Jean-Roch Vlimant. 2021. Graph neural

networks in particle physics. Mach. Learn. Sci. Technol. 2, 2 (2021), 21001. https:

//doi.org/10.1088/2632-2153/ABBF9A

[37] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. 2013. The Emerging Field of Signal Processing on Graphs:

Extending High-Dimensional Data Analysis to Networks and Other Irregular

Domains. IEEE Signal Process. Mag. 30, 3 (2013), 83–98. https://doi.org/10.1109/

MSP.2012.2235192

[38] Yunchong Song, Chenghu Zhou, XinbingWang, and Zhouhan Lin. 2023. Ordered

GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing.

In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https://openreview.net/pdf?id=

wKPmPBHSnT6

[39] Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. 2021.

Breaking the Limit of Graph Neural Networks by Improving the Assortativity

of Graphs with Local Mixing Patterns. In KDD ’21: The 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore,
August 14-18, 2021, Feida Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). ACM,

1541–1551. https://doi.org/10.1145/3447548.3467373

[40] Matthew Thorpe, Tan Minh Nguyen, Hedi Xia, Thomas Strohmer, Andrea L.

Bertozzi, Stanley J. Osher, and Bao Wang. 2022. GRAND++: Graph Neural

Diffusion with A Source Term. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net.
https://openreview.net/forum?id=EMxu-dzvJk

[41] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[42] XiyuanWang and Muhan Zhang. 2022. How Powerful are Spectral Graph Neural

Networks. In International Conference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA (Proceedings of Machine Learning Research,
Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang

Niu, and Sivan Sabato (Eds.). PMLR, 23341–23362. https://proceedings.mlr.press/

v162/wang22am.html

[43] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the Diffusion Process in Linear Graph Convolutional Networks. In Advances

in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and

Jennifer Wortman Vaughan (Eds.). 5758–5769. https://proceedings.neurips.cc/

paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html

[44] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In

Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA. PMLR.

[45] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2023. Graph Neural

Networks in Recommender Systems: A Survey. ACM Comput. Surv. 55, 5 (2023),
97:1–97:37. https://doi.org/10.1145/3535101

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Trans. Neural Networks Learn. Syst. 32, 1 (2021), 4–24. https://doi.org/10.1109/

TNNLS.2020.2978386

[47] Louis-Pascal A. C. Xhonneux, Meng Qu, and Jian Tang. 2020. Continuous Graph

Neural Networks. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research, Vol. 119). PMLR, 10432–10441. http://proceedings.mlr.press/

v119/xhonneux20a.html

[48] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018. PMLR.

[49] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.

2022. Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph

Convolutional Neural Networks. In IEEE International Conference on Data Mining,
ICDM 2022, Orlando, FL, USA, November 28 - Dec. 1, 2022. IEEE. https://doi.org/

10.1109/ICDM54844.2022.00169

[50] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

Semi-Supervised Learning with Graph Embeddings. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. JMLR.org.

[51] Wentao Zhang, Zeang Sheng, Ziqi Yin, Yuezihan Jiang, Yikuan Xia, Jun Gao,

Zhi Yang, and Bin Cui. 2022. Model Degradation Hinders Deep Graph Neural

Networks. In KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, August 14 - 18, 2022, Aidong Zhang and

Huzefa Rangwala (Eds.). ACM, 2493–2503. https://doi.org/10.1145/3534678.

3539374

[52] Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang. 2021.

Adaptive Diffusion in Graph Neural Networks. In Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on Neural Information Pro-
cessing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio

Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-

man Vaughan (Eds.). 23321–23333. https://proceedings.neurips.cc/paper/2021/

hash/c42af2fa7356818e0389593714f59b52-Abstract.html

[53] Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yuguang Wang, Pietro Lió, Ming Li,

and Guido Montúfar. 2021. How Framelets Enhance Graph Neural Networks.

In Proceedings of the 38th International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research,
Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 12761–12771. http:

//proceedings.mlr.press/v139/zheng21c.html

[54] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. BeyondHomophily in GraphNeural Networks: Current Limitations

and Effective Designs. In Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual.

10

https://arxiv.org/abs/1911.07532
http://arxiv.org/abs/1911.07532
https://arxiv.org/abs/1909.13021
https://doi.org/10.1145/3340531.3411866
https://doi.org/10.1145/3340531.3411866
https://proceedings.mlr.press/v162/rusch22a.html
https://proceedings.mlr.press/v162/rusch22a.html
https://arxiv.org/abs/1811.05868
https://doi.org/10.1088/2632-2153/ABBF9A
https://doi.org/10.1088/2632-2153/ABBF9A
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://openreview.net/pdf?id=wKPmPBHSnT6
https://openreview.net/pdf?id=wKPmPBHSnT6
https://doi.org/10.1145/3447548.3467373
https://openreview.net/forum?id=EMxu-dzvJk
https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.mlr.press/v162/wang22am.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/2d95666e2649fcfc6e3af75e09f5adb9-Abstract.html
https://doi.org/10.1145/3535101
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
http://proceedings.mlr.press/v119/xhonneux20a.html
http://proceedings.mlr.press/v119/xhonneux20a.html
https://doi.org/10.1109/ICDM54844.2022.00169
https://doi.org/10.1109/ICDM54844.2022.00169
https://doi.org/10.1145/3534678.3539374
https://doi.org/10.1145/3534678.3539374
https://proceedings.neurips.cc/paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/c42af2fa7356818e0389593714f59b52-Abstract.html
http://proceedings.mlr.press/v139/zheng21c.html
http://proceedings.mlr.press/v139/zheng21c.html

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A DETAILED MATHEMATICAL DERIVATION
A.1 Proof of Proposition 1

Proof. Since L = D − A, then

LX = (D − A)X

=
©­­«

∑

𝑗 𝐴1𝑗 · · · 0

.

.

.
. . .

.

.

.

0 · · · ∑
𝑗 𝐴𝑁 𝑗

 −

𝐴11 · · · 𝐴1𝑁

.

.

.
. . .

.

.

.

𝐴𝑁 1 · · · 𝐴𝑁𝑁


ª®®¬


x1
.
.
.

x𝑁


=


∑

𝑗 𝐴1𝑗 −𝐴11 · · · −𝐴1𝑁

.

.

.
. . .

.

.

.

−𝐴𝑁 1 · · · ∑
𝑗 𝐴𝑁 𝑗 −𝐴𝑁 1




x1
.
.
.

x𝑁


= [. . . ,

∑︁
𝑣𝑗 ∈N(𝑣𝑖)

(x𝑖 − x𝑗), . . .]⊤ .

(19)

where 𝐴𝑖 𝑗 = 1, if 𝑒𝑖 𝑗 ∈ E; 𝐴𝑖 𝑗 = 0, otherwise. Hence, the graph

wave equation can be rewritten as:

𝜕2X
𝜕𝑡2

= 𝑎2LX. (20)

□

A.2 Derivation of Explicit Scheme
For any node 𝑣𝑖 at time 𝑡 , we first discretize 𝑡 as 𝑡𝑛 = 𝑛𝜏 (𝑛 = 0, 1, . . .).
Then, considering its node representation x𝑖 along with a time step

𝜏 , its time difference of wave equation is given by:

𝜕2X(x𝑖 , 𝑡𝑛)
𝜕𝑡2

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖)
𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
, (21)

where 𝐿
(𝑛)
𝑖 𝑗

denotes the element of L𝑎 . Moreover, we can expand at

point (x𝑖 , 𝑡𝑛) using Taylor series, and obtain

X(x𝑖 , 𝑡𝑛+1) − 2X(x𝑖 , 𝑡𝑛) + X(x𝑖 , 𝑡𝑛−1)
𝜏2

=
𝜕2X(x𝑖 , 𝑡𝑛)

𝜕𝑡2
+ 𝜏

2

12

𝜕4X(x𝑖 , 𝑡𝑛)
𝜕𝑡4

+𝑂 (𝜏4).
(22)

By substituting Eq. (21) into Eq. (22), we obtain

X(x𝑖 , 𝑡𝑛+1) − 2X(x𝑖 , 𝑡𝑛) + X(x𝑖 , 𝑡𝑛−1)
𝜏2

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖)
𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
+ 𝑅 (𝑛)

𝑖
(X),

(23)

where 𝑅
(𝑛)
𝑖

(X) = 𝜏2

12

𝜕4

𝜕𝑡4
X(x𝑖 , 𝑡𝑛) + 𝑂 (𝜏4) denotes the truncation

error. By truncating it, we obtain the forward time difference

X(𝑛+1)
𝑖

− 2X(𝑛)
𝑖

+ X(𝑛−1)
𝑖

𝜏2
=

∑︁
𝑣𝑗 ∈N(𝑣𝑖)

𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
, (24)

where X(𝑛)
𝑖

(𝑛 = 1, 2, . . .) denotes the approximate value of X at

(x𝑖 , 𝑡𝑛). Transforming the Eq. (24) into matrix form

X(𝑛+1) − 2X(𝑛) + X(𝑛−1)

𝜏2
= L(𝑛)

𝑎 X(𝑛) . (25)

We define the problem of solving the partial differential equation

as an initial value problem, with the initial values given by the

second-order central difference quotient:

X(0) = 𝜑0 (X), (26)

X(1) − X(−1)

2𝜏
= 𝜑1 (X), (27)

where 𝜑1 (X) and 𝜑2 (X) can be obtained through neural layers. Let

𝑛 = 0, then

X(1) − 2X(0) + X(−1)

𝜏2
= L(0)

𝑎 X(0) . (28)

By eliminating X(−1)
using the initial value Eq. (27), we obtain the

node representation at time 𝑡1:

X(1) = 𝜏𝜑1 (X) +
(
I + 𝜏

2

2

L(0)
𝑎

)
𝜑0 (X). (29)

Finally, we can derive the node representation at time 𝑡𝑛+1:

X(𝑛+1) =
(
2I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) − X(𝑛−1) . (30)

A.3 Proof of Theorem 2
According to Theorem 1., to prove the stability of the explicit

scheme X(𝑛+1) = AX(𝑛)
, we would like to prove that |𝜆 |𝑚𝑎𝑥 ≤ 1.

Proof. To facilitate the stability analysis of the explicit scheme

X(𝑛+1) =
(
2I + 𝜏2L𝑎

)
X(𝑛) − X(𝑛−1)

, we first need to transform it

into the form of U(𝑛+1) = CU(𝑛)
. Therefore, we assume

U(𝑛+1) =
[
X(𝑛+1)

X(𝑛)

]
,C =

[
C1 C2

C3 C4

]
, (31)

then, we can obtain the system of linear equations:{
X(𝑛+1) = C1X(𝑛) + C2X(𝑛−1)

X(𝑛) = C3X(𝑛) + C4X(𝑛−1) . (32)

According the equation of the explicit scheme, we can obtain the

values of each block matrix in C:

C1 = 2I + 𝜏2L𝑎,C2 = −I,C3 = I,C4 = 0, (33)

resulting in C(𝑛)
as follows:

C =

[
2I + 𝜏2L𝑎 −I

I 0

]
. (34)

According to the Lemma 1, now we only need to compute the

spectral radius of matrix C to determine the condition that ensures

the stability of the explicit scheme.

For convenience, we still use C1 instead of 2I+𝜏2L𝑎 , and let 𝜆, 𝜆′

denote the eigenvalue ofC,C1, respectively. Then, the characteristic

determinant of C is given by:

𝑑𝑒𝑡{C − 𝜆I2𝑁 } =
����C1 − 𝜆I −I

I −𝜆I

���� = ��(1 + 𝜆2)I − 𝜆C1

��
=

��� 1+𝜆2
𝜆

I − C1

��� = 0.

(35)

Evidently,

��� 1+𝜆2
𝜆

I − C1

��� = 0 is the characteristic equation of C1, with

the eigenvalue 𝜆′ = 1+𝜆2
𝜆

. According to the L𝑎 ’s eigenvalue belongs
to the interval [−1, 1], then 𝜆′ ∈ [2 − 𝜏2, 2 + 𝜏2]. Next, we will

investigate the range of values for 𝜆.

Considering the equation obtained from 𝜆′ = 1+𝜆2
𝜆

:

𝜆2 − 𝜆′𝜆 + 1 = 0, 𝜆′ ∈ [2 − 𝜏2, 2 + 𝜏2] . (36)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW’25, April 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 8: The function curve of real roots 𝜆1 (Left) and 𝜆2 (Right).

If Δ = 𝜆′2 − 4 < 0, that is −2 < 𝜆′ < 2, then the equation has a pair

of complex conjugate roots 𝜆1 = 𝜆′+𝑖
√
4−𝜆′2
2

and 𝜆2 = 𝜆′−𝑖
√
4−𝜆′2
2

.

And if Δ = 𝜆′2 − 4 ≥ 0, that is |𝜆′ | ≥ 2, then the equation has a pair

of real roots 𝜆1 = 𝜆′+
√
𝜆′2−4
2

and 𝜆2 = 𝜆′−
√
𝜆′2−4
2

. We next discuss

whether the |𝜆 | ≤ 1 satisfies for different 𝜏 , considering different

cases.

Case 1. If 𝜏 ∈ (0, 2).
a) When 𝜆′ ∈ [2 − 𝜏2, 2), the equation has a pair of complex

conjugate roots 𝜆1,2. Evidently, |𝜆1,2 | =
√︂(

𝜆′
2

)
2

+
(√

4−𝜆′2
2

)
2

= 1.

Therefore, for any 𝜏 ∈ (0, 2), |𝜆1,2 | ≤ 1.

b) When 𝜆′ ∈ [2, 2 + 𝜏2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at (0, 2).
As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at (0, 2).
Caes 2. If 𝜏 ∈ [2, +∞).
a) When 𝜆′ ∈ [2 − 𝜏2,−2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ ≤ −2, |𝜆1 | ≤ 1, 𝜏 can take

any positive real number at [2, +∞).
As shown in Figure 8 (Right), when 𝜆′ = −2, |𝜆2 | = 1, 𝜏 can take

any positive real number at [2, +∞).
b) When 𝜆′ ∈ (−2, 2), the equation has a pair of complex conju-

gate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for any 𝜏 ∈ [2, +∞),
|𝜆1,2 | ≤ 1.

c) When 𝜆′ ∈ [2, 2 + 𝜏2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at [2, +∞).
As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at [2, +∞).
In conclusion, when 𝜏 ∈ 𝑅+, the eigenvalues 𝜆 ofC satisfy |𝜆 | ≤ 1,

then the explicit scheme based on symmetric normalized Laplacian

is constantly stable. □

A.4 Derivation of GWN-fa
Given frequency adaptive Laplacian as follow:

L(𝑛)
𝑎,𝑙

= 𝜀 (𝑛) I + D− 1

2 AD− 1

2 , L(𝑛)
𝑎,ℎ

= 𝜀 (𝑛) I − D− 1

2 AD− 1

2 , (37)

where L(𝑛)
𝑎,𝑙

is a low-pass filter, and L(𝑛)
𝑎,ℎ

is a high-pass filter. Based

on the aforementioned two Laplacian, we can capture the low-

frequency and high-frequency signals at time 𝑡𝑛+1:

X(𝑛+1)
𝑙

=

(
2I + 𝜏2

(
𝜀 (𝑛) I + D− 1

2 AD− 1

2

))
X(𝑛) − X(𝑛−1) ,

X(𝑛+1)
ℎ

=

(
2I + 𝜏2

(
𝜀 (𝑛) I − D− 1

2 AD− 1

2

))
X(𝑛) − X(𝑛−1) .

(38)

Then, we adaptively combine low-frequency and high-frequency

signals using attention weights and obtain the feature vector of

node 𝑣𝑖 at time 𝑡𝑛+1:

x(𝑛+1)
𝑖

= 𝛼
(𝑛)
𝑙,𝑖 𝑗

x(𝑛+1)
𝑙,𝑖

+ 𝛼 (𝑛)
ℎ,𝑖 𝑗

x(𝑛+1)
ℎ,𝑖

=

(
2 + 𝜀 (𝑛)𝜏2

)
𝛼
(𝑛)
𝑙,𝑖 𝑗

x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖)

𝜏2𝛼
(𝑛)
𝑙,𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣 𝑗)
x(𝑛)
𝑗

− 𝛼 (𝑛)
𝑙,𝑖 𝑗

x(𝑛−1)
𝑖

+
(
2 + 𝜀 (𝑛)𝜏2

)
𝛼
(𝑛)
ℎ,𝑖 𝑗

x(𝑛)
𝑖

−
∑︁

𝑣𝑗 ∈N(𝑣𝑖)

𝜏2𝛼
(𝑛)
ℎ,𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣 𝑗)
x(𝑛)
𝑗

− 𝛼 (𝑛)
ℎ,𝑖 𝑗

x(𝑛−1)
𝑖

,

(39)

where 𝑑𝑒𝑔(𝑣) denotes the degree of node 𝑣 . Let 𝛼 (𝑛)
𝑖 𝑗

= 𝛼
(𝑛)
𝑙,𝑖 𝑗

− 𝛼 (𝑛)
ℎ,𝑖 𝑗

and 𝛼
(𝑛)
𝑙,𝑖 𝑗

+ 𝛼 (𝑛)
ℎ,𝑖 𝑗

= 1, we have

x(𝑛+1)
𝑖

= 𝜀 (𝑛)𝜏2x(𝑛)
𝑖

+ ©­«2x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖)

𝜏2𝛼
(𝑛)
𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣 𝑗)
x(𝑛)
𝑗

ª®¬ − x(𝑛−1)
𝑖

.
(40)

Weight 𝛼
(𝑛)
𝑖 𝑗

= tanh(g⊤ [x(𝑛)
𝑖

| |x(𝑛)
𝑗

]) ∈ [−1, 1] can denote the

correlation between nodes 𝑣𝑖 and 𝑣 𝑗 , and it is computed using

attention mechanism, where g ∈ R2𝑑 is a learnable parameter

vector. Since 𝜀 is a learnable parameter, we can simplify 𝜀 (𝑛)𝜏2 as

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

𝜀 (𝑛) . Furthermore, in order to preserve the original node features,

we replace x(𝑛)
𝑖

with x(0)
𝑖

[3]. So we can obtain

x(𝑛+1)
𝑖

= 𝜀 (𝑛)x(0)
𝑖

+©­«2x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖)

𝜏2𝛼
(𝑛)
𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖)𝑑𝑒𝑔(𝑣 𝑗)
x(𝑛)
𝑗

ª®¬−x(𝑛−1)
𝑖

.

(41)

Rewrite Eq. (41) in matrix form

X(𝑛+1) = 𝜀 (𝑛)X(0) +
(
2I + 𝜏2𝜶 (𝑛) ⊙ D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) ,

(42)

where the 𝛼
(𝑛)
𝑖 𝑗

is the element of 𝜶 (𝑛)
.

A.5 Proof of Theorem 3
Similar to the proof of Theorem 2 (in A.3), we prove the stability of

frequency adaptive Laplacian.

Proof. Given L𝑎 = D− 1

2 AD− 1

2 , we have

L𝑎,· = 𝜀I ± D− 1

2 AD− 1

2 = 𝜀I ± L𝑎, (43)

and its eigenvalues satisfy [𝜀 − 1, 𝜀 + 1], 𝜀 ∈ (0, 1).
According to the proof of Theorem 1, when L𝑎,· ’s eigenvalue

belongs to the interval [𝜀 − 1, 𝜀 + 1], then the eigenvalue 𝜆′ of
C1 = 2I + 𝜏2L𝑎,· satisfies 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2 + 𝜏2 (𝜀 + 1)]. Next, we
will investigate the range of values for 𝜆.

Considering the equation obtained from 𝜆′ = 1+𝜆2
𝜆

:

𝜆2 − 𝜆′𝜆 + 1 = 0, 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2 + 𝜏2 (𝜀 + 1)] . (44)

If 𝜆′2 − 4 < 0, that is −2 < 𝜆′ < 2, then the equation has a pair

of complex conjugate roots 𝜆1 = 𝜆′+𝑖
√
4−𝜆′2
2

and 𝜆2 = 𝜆′−𝑖
√
4−𝜆′2
2

.

And if 𝜆′2 − 4 ≥ 0, that is |𝜆′ | ≥ 2, then the equation has real roots

𝜆1 = 𝜆′+
√
𝜆′2−4
2

and 𝜆2 = 𝜆′−
√
𝜆′2−4
2

. We next discuss whether the

|𝜆 | ≤ 1 satisfies for different 𝜏 , considering different cases.

Case 1. If 𝜏 ∈
(
0, 2√

1−𝜀

)
.

a) When 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2), the equation has a pair of

complex conjugate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for

any 𝜏 ∈
(
0, 2√

1−𝜀

)
, |𝜆1,2 | ≤ 1.

b) When 𝜆′ ∈ [2, 2 + 𝜏2 (𝜀 + 1)], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at

(
0, 2√

1−𝜀

)
.

As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at

(
0, 2√

1−𝜀

)
.

Caes 2. If 𝜏 ∈
[

2√
1−𝜀 , +∞

)
.

a) When 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1),−2], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ ≤ −2, |𝜆1 | ≤ 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

As shown in Figure 8 (Right), when 𝜆′ = −2, |𝜆2 | = 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

b) When 𝜆′ ∈ (−2, 2), the equation has a pair of complex con-

jugate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for any 𝜏 ∈[
2√
1−𝜀 , +∞

)
, |𝜆1,2 | ≤ 1.

c) When 𝜆′ ∈ [2, 2 + 𝜏2 (𝜀 + 1)], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

In conclusion, when 𝜏 ∈ 𝑅+, the eigenvalues 𝜆 ofC satisfy |𝜆 | ≤ 1,

then the explicit scheme based on frequency adaptive Laplacian is

constantly stable. □

B IMPLEMENTATION DETAILS
For all experiments, each method was run on a single NVIDIA Tesla

V100 GPU with 16GB memory, and the CPU used is Intel Xeon

E5-2660 v4 CPUs. All models train 200 epochs and employed an

early stopping strategy triggered when the loss exceed the average

loss of the last 10 epochs.

B.1 Dataset Statistics
As shown in Table 5, we report the statistical information of datasets

used in this paper.

Table 5: Dataset statistics.

Datesets #Nodes #Edges #Features #Classes

Cora 2708 5278 1433 7

CiteSeer 3327 4552 3703 6

PubMed 19717 44324 500 3

Computers 13752 245861 767 10

Photo 7650 119081 745 8

CS 18333 81894 6805 15

Texas 183 325 1703 5

Cornell 183 298 1703 5

Wisconsin 251 515 1703 5

B.2 Parameter Search
We employ the wandb library for parameter search with Bayes

scheme. The ranges for each hyperparameter are outlined in Table 6.

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Performance and Efficiency
As shown in Table 7 and Table 8, we present the complete per-

formance and efficiency of GWN at different 𝜏 . The results and

runtimes for all models are obtained using the optimal parameters.

It is important to note that the runtime, in addition to the time step

𝜏 , can be influenced by parameters such as the number of layers,

learning rate, and hidden layer dimensions. Therefore, there may be

cases where the runtime increases for larger 𝜏 compared to smaller

𝜏 .

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW’25, April 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 6: The range of hyperparameters.

Hyperparameters Range Distribution

The dimension of hidden layer 𝑑 {32, 64, 128, 256} set

Time size 𝜏 {0.2, 0.5, 1.0, 2.0, 5.0} set

Terminal time 𝑇 [1, 20] uniform

Dropout [0, 0.8] uniform

Learning rate [0.001, 0.25] log_uniform_values

Weight decay [0, 0.1] uniform

Table 7: The performances (%) and runtimes (s) of methods on homophilic datasets: mean accuracy ± standard deviation on
60%/20%/20% random splits and 10 runs. sym-0.2 indicates GWN-sym under 𝜏 = 0.2. Bold and underline indicate optimal and
suboptimal results, respectively. OOM denotes out of memory.

Datesets Cora CiteSeer PubMed Computers Photo CS

SGC 86.10 ± 1.37 (0.7) 80.35 ± 1.33 (0.7) 83.45 ± 0.51 (0.8) 84.45 ± 0.56 (0.7) 88.95 ± 0.86 (0.6) 95.15 ± 0.24 (0.7)

APPNP 88.97 ± 0.88 (0.7) 80.91 ± 1.43 (0.8) 88.58 ± 0.56 (0.9) 86.73 ± 0.74 (0.8) 93.74 ± 0.57 (0.8) 95.58 ± 0.20 (1.6)

GPR-GNN 88.61 ± 1.28 (2.7) 80.60 ± 1.27 (3.0) 90.08 ± 0.70 (3.2) 88.55 ± 0.90 (1.4) 94.61 ± 0.68 (2.5) 96.26 ± 0.27 (1.3)

GCN 87.51 ± 1.38 (1.3) 80.59 ± 1.12 (1.0) 87.95 ± 0.83 (1.4) 86.09 ± 0.61 (1.3) 93.04 ± 0.53 (1.4) 95.14 ± 0.25 (0.9)

FAGCN 88.49 ± 1.18 (1.4) 81.65 ± 0.96 (7.6) 87.58 ± 1.15 (1.3) 87.32 ± 0.51 (1.2) 93.41 ± 0.76 (1.0) 95.79 ± 0.26 (4.8)

sym-0.2 89.16 ± 0.80 (4.5) 81.43 ± 1.73 (2.6) 90.56 ± 0.54 (4.6) 89.97 ± 0.56 (8.8) 94.82 ± 0.43 (4.1) 96.60 ± 0.28 (3.6)

sym-0.5 89.23 ± 0.69 (2.4) 81.12 ± 1.77 (1.7) 90.35 ± 1.08 (2.8) 89.92 ± 0.72 (3.8) 94.96 ± 0.69 (3.6) 96.51 ± 0.29 (2.8)

sym-1.0 89.61 ± 0.87 (1.8) 81.81 ± 1.70 (1.4) 90.36 ± 0.75 (1.9) 90.10 ± 0.87 (3.7) 95.31 ± 0.65 (4.0) 96.66 ± 0.26 (3.2)

sym-2.0 88.90 ± 1.38 (1.5) 80.91 ± 1.05 (1.1) 89.62 ± 0.64 (1.4) 89.75 ± 1.10 (2.0) 94.84 ± 0.59 (1.9) 96.52 ± 0.32 (2.3)

sym-5.0 88.18 ± 1.14 (1.5) 79.54 ± 1.44 (1.4) 89.83 ± 0.30 (1.3) 90.01 ± 1.12 (2.9) 94.83 ± 0.69 (1.4) 95.91 ± 0.26 (3.1)

fa-0.2 89.00 ± 1.30 (18.2) 80.19 ± 1.09 (12.9) 90.03 ± 0.81 (18.8) OOM OOM OOM

fa-0.5 89.26 ± 0.73 (6.9) 80.23 ± 1.71 (5.3) 90.61 ± 0.77 (7.8) OOM 95.25 ± 0.55 (6.9) 96.53 ± 0.25 (5.5)

fa-1.0 89.66 ± 1.29 (2.8) 80.89 ± 1.51 (2.1) 90.64 ± 0.73 (2.8) 90.62 ± 0.61 (5.6) 95.61 ± 0.53 (3.5) 96.67 ± 0.26 (8.6)

fa-2.0 88.67 ± 1.56 (2.1) 80.60 ± 1.77 (2.3) 90.27 ± 0.82 (3.4) 89.29 ± 0.99 (5.9) 94.22 ± 0.59 (1.7) 96.62 ± 0.30 (2.5)

fa-5.0 88.33 ± 1.26 (1.5) 80.80 ± 0.70 (3.0) 89.70 ± 0.74 (1.7) 89.22 ± 0.98 (3.6) 94.56 ± 0.75 (2.3) 96.62 ± 0.21 (5.4)

Table 8: The performances (%) and runtimes (s) of methods on heterophilic datasets: mean accuracy ± standard deviation on
random splits and 10 runs. sym-0.2 indicates GWN-sym under 𝜏 = 0.2. Bold and underline indicate optimal and suboptimal
results, respectively.

Datesets Texas Cornell Wisconsin
Splits 48/32/20(%) 60/20/20(%) 48/32/20(%) 60/20/20(%) 48/32/20(%) 60/20/20(%)

SGC - 74.90 ± 8.23 (0.6) - 60.60 ± 11.92 (0.6) - 63.75 ± 5.14 (0.8)

APPNP - 81.64 ± 3.17 (1.2) - 73.40 ± 4.62 (1.3) - 71.50 ± 5.92 (1.5)

GPR-GNN - 91.89 ± 4.08 (0.9) - 85.91 ± 4.60 (0.8) - 93.84 ± 3.16 (0.9)

GCN - 79.33 ± 4.47 (2.2) - 69.53 ± 11.79 (2.9) - 63.94 ± 4.93 (1.1)

FAGCN - 85.57 ± 4.75 (4.6) - 86.38 ± 5.33 (3.7) - 84.88 ± 9.19 (5.6)

sym-0.2 89.85 ± 5.05 (2.3) 91.48 ± 5.40 (2.6) 87.03 ± 7.41 (2.2) 88.30 ± 6.04 (2.7) 89.85 ± 4.57 (2.2) 91.62 ± 3.12 (2.5)

sym-0.5 87.84 ± 3.18 (1.7) 90.33 ± 6.30 (1.6) 85.95 ± 4.73 (1.8) 87.23 ± 4.70 (1.7) 88.53 ± 3.72 (1.7) 91.12 ± 2.67 (1.7)

sym-1.0 86.47 ± 3.13 (1.4) 88.52 ± 2.56 (1.4) 83.14 ± 5.52 (1.4) 84.26 ± 4.40 (1.4) 85.74 ± 5.10 (1.4) 88.75 ± 3.78 (1.5)

sym-2.0 89.41 ± 3.23 (1.1) 91.64 ± 3.74 (1.2) 88.11 ± 3.17 (1.1) 89.57 ± 3.54 (1.1) 90.88 ± 4.43 (1.0) 93.38 ± 3.18 (1.1)

sym-5.0 82.75 ± 4.41 (1.1) 84.59 ± 5.02 (1.2) 84.59 ± 5.56 (1.1) 87.23 ± 5.85 (1.1) 85.15 ± 3.06 (1.2) 87.50 ± 4.49 (1.2)

fa-0.2 92.94 ± 4.45 (4.4) 93.28 ± 3.41 (5.1) 90.00 ± 3.83 (4.2) 90.85 ± 3.02 (5.9) 93.82 ± 3.24 (3.7) 94.25 ± 2.65 (4.2)

fa-0.5 92.16 ± 2.61 (2.1) 92.79 ± 3.01 (2.4) 90.27 ± 7.12 (2.1) 92.13 ± 3.76 (2.0) 94.12 ± 3.02 (2.0) 94.75 ± 1.85 (2.1)

fa-1.0 91.57 ± 4.24 (1.8) 92.46 ± 3.30 (1.8) 88.38 ± 6.12 (1.8) 89.57 ± 4.65 (1.7) 93.82 ± 3.24 (2.0) 94.63 ± 1.77 (1.8)

fa-2.0 91.74 ± 3.06 (1.4) 93.28 ± 4.19 (1.4) 90.81 ± 4.63 (1.4) 91.28 ± 3.81 (1.7) 94.26 ± 1.76 (1.3) 95.63 ± 1.59 (1.3)

fa-5.0 90.59 ± 3.56 (1.3) 90.33 ± 3.97 (1.3) 88.65 ± 3.56 (1.3) 89.79 ± 6.17 (1.5) 94.12 ± 1.70 (1.2) 94.13 ± 2.13 (1.4)

14

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Signal Processing
	3.2 Wave Equation

	4 Wave Equation on Graphs
	4.1 Graph and Wave
	4.2 Graph Wave Equation
	4.3 Solution of Graph Wave Equation
	4.4 Graph Wave Networks
	4.5 Stability
	4.6 Complexity Analysis

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance
	5.3 Over-smoothing Analysis
	5.4 Stability Analysis
	5.5 Efficiency Analysis
	5.6 Analysis of base models

	6 Conclusion
	References
	A Detailed mathematical derivation
	A.1 Proof of Proposition 1
	A.2 Derivation of Explicit Scheme
	A.3 Proof of Theorem 2
	A.4 Derivation of GWN-fa
	A.5 Proof of Theorem 3

	B Implementation Details
	B.1 Dataset Statistics
	B.2 Parameter Search

	C Additional Experimental Results
	C.1 Performance and Efficiency

