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Graph Wave Networks
Anonymous Author(s)

ABSTRACT
Dynamics modeling has been introduced as a novel paradigm in

message passing (MP) of graph neural networks (GNNs). Existing

methods consider MP between nodes as a heat diffusion process, and
leverage heat equation to model the temporal evolution of nodes in

the embedding space. However, heat equation can hardly depict the

wave nature of graph signals in graph signal processing. Besides,

heat equation is essentially a partial differential equation (PDE) in-

volving a first partial derivative of time, whose numerical solution

usually has low stability, and leads to inefficient model training.

In this paper, we would like to depict more wave details in MP,

since graph signals are essentially wave signals that can be seen

as a superposition of a series of waves in the form of eigenvector.

This motivates us to consider MP as a wave propagation process to
capture the temporal evolution of wave signals in the space. Based

on wave equation in physics, we innovatively develop a graph wave
equation to leverage the wave propagation on graphs. In details,

we demonstrate that the graph wave equation can be connected

to traditional spectral GNNs, facilitating the design of graph wave
networks (GWNs) based on various Laplacians and enhancing the

performance of the spectral GNNs. Besides, the graph wave equa-

tion is particularly a PDE involving a second partial derivative of

time, which has stronger stability on graphs than the heat equa-

tion that involves a first partial derivative of time. Additionally,

we theoretically prove that the numerical solution derived from

the graph wave equation are constantly stable, enabling to signifi-

cantly enhance model efficiency while ensuring its performance.

Extensive experiments show that GWNs achieve state-of-the-art

and efficient performance on benchmark datasets, and exhibit out-

standing performance in addressing challenging graph problems,

such as over-smoothing and heterophily. Our code is available at

https://anonymous.4open.science/r/GWN/.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph Neural Networks, Partial Differential Equations, Wave Equa-

tion

1 INTRODUCTION
The widespread availability of graph data has propelled the devel-

opment of graph neural networks (GNNs) [46]. These methods have

achieved significant success in various applications, such as rec-

ommendation systems [45], social network analysis [26], particle

physics [36], and drug discovery [13].

Currently, mainstream GNNs [10, 19] develop message passing
(MP) paradigm with graph signal processing [37], which delivers

messages node-by-node by stacking graph convolutional layers. In

fact, the MP paradigm can be modelled as a differential equation [6].

Recent studies explore partial differential equations (PDEs) [6, 23, 40]
to consider the spatial and temporal relationships in MP. Intuitively,

gradient on graph

𝛻𝐺𝐱𝑖 = … , 𝐱𝑖 − 𝐱𝑗 , …

divergence on graph

div𝐺 𝛻𝐺𝐱𝑖 = 

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑖 − 𝐱𝑗

Figure 1: Top: the partial spectrum on the real-world dataset
Cora, where the graph signal can be treated as a superposi-
tion ofmultiple eigenvector waves u𝑖 with amplitude𝑔𝜃 (𝜆𝑖 )𝑥𝑖
(detailed in Eq. (7)). Bottom: the mechanism of wave propa-
gation on the graph (detailed in Sec. 4.2).

they analogize MP to a heat diffusion process between nodes, and

thus leverage the heat equation to model nodes in the embedding

space. In physics, the heat equation describes the evolution of

temperature in the space over time. Consider 3-dimension spa-

tial variables (𝜔1, 𝜔2, 𝜔3) in the space and a time variable 𝑡 , the

Heat Equation is:

𝜕𝑢

𝜕𝑡
= 𝛼

(
𝜕2𝑢

𝜕𝜔2

1

+ 𝜕2𝑢

𝜕𝜔2

2

+ 𝜕2𝑢

𝜕𝜔2

3

)
= 𝛼 · div(∇𝑢), (1)

where𝑢 is the abbreviation symbol for𝑢 (𝜔1, 𝜔2, 𝜔3, 𝑡), denoting the
temperature at position (𝜔1, 𝜔2, 𝜔3) and time 𝑡 , and𝛼 is a coefficient

called the thermal diffusivity of the medium. However, in context

of graph learning, these methods suffer from two drawbacks: First,
the heat equation can hardly depict the wave nature of graph signals.
In graph signal processing theory [37], the graph can be seen as a

combination of waves with different frequencies, where we show

the graph wave spectrum in Figure 1 (Top). The heat equation

is naturally not capable to process the details of wave property

in message passing, which leads to coarse and sub-optimal GNN

designs. Second, the heat equation is essentially a PDE involving a
first partial derivative of time, yet its stability of numerical solution
can be poor on graph. This requires small time step lengths in solving

1
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Table 1: Graph heat equation and graph wave equation. X =

X(𝑡), ∇ and div denote gradient and divergence.

Graph Heat 

Equation

𝜕𝐗

𝜕𝑡
= div diag 𝑎 𝐱𝑖 , 𝐱𝑗 𝛻𝐗 , 𝐗 ∈ ℝ𝑁×𝑑

𝛻𝐗 𝑖𝑗 = 𝐱𝑗 − 𝐱𝑖 div 𝛻𝐗 𝑖 = 

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑗 − 𝐱𝑖

Graph Wave 

Equation

𝜕𝐗

𝜕𝑡
= 𝑎2 … , div𝐺 𝛻𝐺𝐱 𝑖 , …

⊤
, 𝐗 ∈ ℝ𝑁×𝑑

𝛻𝐺𝐱𝑖 = … , 𝐱𝑖 − 𝐱𝑗 , …
div𝐺 𝛻𝐺𝐱𝑖 = 

𝑣𝑗∈𝒩 𝑣𝑖

𝐱𝑖 − 𝐱𝑗

PDE, leading to low efficiency in model training, and can be easily

affected by initial values and generate unsatisfactory performance.

We also give the experimental evidence in Sec. 5.

Unlike previous studies [6, 23, 40] that regard MP as a heat diffu-

sion process, we innovatively analogize MP to a wave propagation
process. Particularly, MP basically embodies the information prop-

agation along the nodes at different spatial positions and temporal

steps, which bears a strong resemblance to the propagation ofwaves
in physics, such as electromagnetic waves. To depict the wave prop-

agation process, we explore the wave equation, a PDE involving

the second derivative of time, which describes the evolution of

wave intensity over time and has wide applicability in physics. Also

consider the three spatial variables (𝜔1, 𝜔2, 𝜔3) and a time variable

𝑡 , theWave Equation is:

𝜕2𝑢

𝜕𝑡2
= 𝑎2

(
𝜕2𝑢

𝜕𝜔2

1

+ 𝜕2𝑢

𝜕𝜔2

2

+ 𝜕2𝑢

𝜕𝜔2

3

)
= 𝑎2 · div(∇𝑢), (2)

where 𝑢 is the abbreviation symbol for 𝑢 (𝜔1, 𝜔2, 𝜔3, 𝑡), denoting
the wave intensity at position (𝜔1, 𝜔2, 𝜔3) and time 𝑡 , and 𝑎 is a

coefficient denoting the propagation speed of the wave. Notably,

though the wave equation has similar formulation as heat equation,

it has intrinsically different properties in the context of graph learn-

ing: First, wave equation is naturally suitable for MP in GNNs. Since
GNN is actually a wave filter of frequencies, it can be achieved

by Laplacian. It investigates more details in processcing graph sig-

nals, offering higher accuracy and practicality compared to heat

equation. Second, the wave equation is essentially a PDE involving
a second partial derivative of time, which can offer stronger stable
condition on graph. This property provides more efficient training

process that allows larger time step lengths, and often generates

robust experimental results (see Figure 4). The wave propagation

process on graph can be depicted as Figure 1 (Bottom).

Though applying the above wave equation to MP is attractive

and reasonable, the specific MP formulation of wave equation is not

obvious, and it is non-trivial to conduct further exploration. To this

end, our breakthrough point is to formulate the MP process with the
wave equation at each node, since once the MP process is specified,

the overall GNN is designed. Therefore, we first would like to derive

graph wave equation for MP. Inspired by Chamberlain et al. [6],

we let the gradient on graph be the difference of features between

a central node and each of its neighbors, and the divergence be the

total difference of them. Thereby we can derive the formulation

in graph wave equation, and the details are shown in Table 1. By

introducing the characteristics of graph Laplacian, the graph wave

equation can be further rewritten into a brief form for the solution

of PDEs (detailed in Sec. 4.2).

Based upon the above derived graph wave equation, we then

would like to achieve the MP for GNN design by solving PDEs.

In fact, the solution of PDEs is often an iterative node feature up-

date process, which can actually be interpreted as the MP process.

Existing PDE-based GNN methods [6, 29] utilizing the forward Eu-
ler method to solve PDEs, resulting in conditionally stable explicit
schemes, making it difficult to balance the performance and effi-

ciency of the model. Besides, Chamberlain et al. [6] also attempt

implicit schemes through the backward Euler method, which are con-

stantly stable but require solving linear systems, leading to higher

computational complexity and lower efficiency compared to the

explicit schemes. In this paper, we use the forward Euler method to

solve the graphwave equation, which can obtain constantly stable
explicit schemes. This allows the model to significantly improve

convergence rates by selecting larger time step lengths, thereby

enhancing efficiency of operation while guaranteeing model per-

formance (detailed in Sec. 4.3). Based upon the above designs, we

propose the Graph Wave Networks (termed as GWN) with MP for-

mulated by graph wave equation. Two specified implementations

are provided to achieve our GWN according to different specifica-

tion of Laplacians (detailed in Sec. 4.4).

Our main contributions can be summarized as follows:

• For the first time, we model the message passing from an in-

novative perspective of a wave propagation process, thereby
maintaining the wave nature in graph convolutional operation.

• We develop wave equation into graph wave equation, and pro-

pose a novel graph wave network, namely GWN. It establishes

a connection between wave equation and traditional spectral

GNNs, enhancing them with more details of waves on graphs.

• Through the theoretical evidence, we prove that the explicit

scheme of the graph wave equation is constantly stable, allow-
ing significant efficiency improvements while guaranteeing
robust model prediction results.

• We conduct extensive experiments on 9 benchmark datasets. Ex-

perimental results substantiate that GWN outperforms previous

state-of-the-art methods and achieves efficient performance in

alleviating over-smoothing and heterophily.

2 RELATEDWORK
Spectral GNNs. Spectral GNNs [5] based on Laplacian to design

various filter functions in the spectral domain. One category of

spectral GNNs directly modify the Laplacian. GCN [19] incorpo-

rates self-loops in the normalized Laplacian, which manifests as a

low-pass filter. Some methods [3, 14, 28, 53] introduce additional

high-pass filters to learn difference between nodes. Bianchi et al.

[2] propose an auto-regressive moving average filter to capture

the global graph structure. Defferrard et al. [10] and He et al. [17]

approximate the spectral graph convolution using Chebyshev poly-

nomial. He et al. [16] approximate arbitrary filters using Bernstein

polynomials. Wang and Zhang [42] utilize Jacobi polynomials to

adapt a wider range of weight functions. Chien et al. [9] employ

learnable parameters to approximate the polynomial coefficients.

2
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These methods are all built upon the traditional graph signal pro-
cessing methods, but few of them fully explore the nature of wave
propagation in the MP process.

Differential Equations on Graphs. Neural ODE [8] models the

embedding representation as a continuous dynamic with respect to

neural network parameters. Poli et al. [31] propose a continuous-

depth GNN framework and solves the forward process using nu-

merical methods. Xhonneux et al. [47] establish the relationship

between the derivative of node embeddings and the initial and

neighboring embeddings of nodes. Rusch et al. [34] relate to tra-

ditional GNNs using second-order ODEs. Nguyen et al. [29] adapt

well-known Kuramoto model to alleviate over-smoothing. Neural

PDE [24] applies partial differential equations to graph-based prob-

lems. Eliasof et al. [11] utilizes non-linear diffusion and non-linear

hyperbolic equations to model message passing. Wang et al. [43]

decouple the terminal time and feature propagation steps from a

continuous perspective. Klicpera et al. [20] define graph diffusion

convolution to overcome the limitation of traditional GNNs in ag-

gregating only direct neighbors. Zhao et al. [52] propose adaptive

diffusion convolution to automatically learn the optimal neigh-

borhood from the data. Recent works introduce the heat diffusion

equation on graphs to simulate the temporal dynamics of node em-

beddings [6]. The explicit scheme stability derived from GRAND is

conditional, ensuring model performance only when using smaller

time steps, leading to inefficient model performance. Thorpe et al.

[40] further utilize a heat diffusion equation with a source term

to define graph convolution, which performs better in low-label-

rate scenarios. Li et al. [23] introduce a general diffusion equation

framework with a fidelity term and establishes the connection

between the diffusion process and GNNs. Compared to consider-

ing message passing as a heat diffusion process between nodes,

treating it as a wave propagation process better aligns with the

process of inter-node information interaction described in graph

signal processing. Moreover, note that there are several DE-based

GNNs [11, 23, 40, 43, 47] lack stability proofs, which can hardly

ensure the robustness of models, and weaker stability conditions

make it challenging to balance model performance and efficiency.

In contrast, in this paper, the proposed graph wave networks can sig-
nificantly enhance efficiency while ensuring model performance, due
to its constantly stable properties.

3 PRELIMINARIES
In this section, we discuss graph signal processing in traditional

GNNs, and then introduce fundamental concepts of wave equations.

3.1 Graph Signal Processing
Graph signal processing [37] is a field that focuses on signal analysis

and processing conducted on graphs.

Notations of Graph. Given a simple undirected graph G, com-

posed of a set of nodesV and a set of edges E, with 𝑁 = |V| nodes
in total. Graph G is associated with a feature matrix X ∈ R𝑁×𝑑

,

where the 𝑖-th row of X corresponds to the feature vector x𝑖 =

[𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑑 ] ∈ R𝑑 of node 𝑣𝑖 , and the 𝑗-th column of X corre-

sponds to the graph signal of dimension 𝑗 . We denote the adjacency

matrix as A and the degree matrix as D with 𝐷𝑖𝑖 =
∑
𝑖 𝐴𝑖 𝑗 .

Spectral Graph Convolution. Traditional spectral GNNs de-
sign spectral graph convolution using the symmetric normalized

Laplacian L𝑠𝑦𝑚 = I−D−1/2AD−1/2
, which can be decomposed into

L𝑠𝑦𝑚 = UΛU⊤
, where Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁 ) is a diagonal matrix

of eigenvalues and U is a matrix of corresponding eigenvectors.

Here, the eigenvalues satisfy 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑁 = 2. Based on this,

the definition of spectral graph convolution is as follows:

(g ∗ X)𝐺 = Ug𝜃U⊤X, (3)

where g𝜃 = g𝜃 (Λ) = diag(𝑔𝜃 (𝜆1), . . . , 𝑔𝜃 (𝜆𝑁 )) denotes the graph
filter function.

3.2 Wave Equation
Thewave equation describes the laws of waves in the space evolving

over time, which has been widely adopted to analyze the character-

istics of waves like electromagnetic waves in physics.

Given that 𝑢 (𝜔1, . . . , 𝜔𝑑 , 𝑡) is a scalar-valued function on Ω𝑑 ×
[0,∞) that reflects the wave intensity, where Ω𝑑 = 𝜔1 × · · · × 𝜔𝑑
denotes the spatial dimension, and 𝑡 ∈ [0,∞) denotes the time

dimension, the wave equation can be formulated by the following

partial differential equation (PDE):

𝜕2𝑢

𝜕𝑡2
= 𝑎2

(
𝜕2𝑢

𝜕𝜔2

1

+ · · · + 𝜕2𝑢

𝜕𝜔2

𝑑

)
= 𝑎2Δ𝑢 = 𝑎2 · div(∇𝑢), (4)

where Δ =
∑𝑑
𝑖

𝜕2

𝜕𝜔2

𝑖

denotes Laplacian operator in mathematics, ∇
and div denote gradient and divergence, respectively. 𝑎 denotes

the propagation velocity of waves in the medium (such as the

propagation velocity of electromagnetic waves in vacuum), which

is a scalar or a function to describe the wave.

4 WAVE EQUATION ON GRAPHS
In this section, we would like to analyze the wave nature of graph

signals, and propose graph wave equation with solutions for MP.

4.1 Graph and Wave
This section illustrates the connection between graphs and waves

from the perspective of graph signal processing. For convenience,

we use a toy example of graph signals x = [𝑥1, . . . , 𝑥𝑁 ]⊤ ∈ R1×𝑁
with𝑁 nodes embedded in 1-dimensional space Ω1

, where the same

principle can be extended to 𝑑-dimensional space Ω𝑑
. First, the

typical implementation of spectral graph convolution transforms

graph signals by Fourier transform:

x̂ = U⊤x =


𝑁∑︁
𝑗=1

𝑢1𝑗𝑥 𝑗 , . . . ,

𝑁∑︁
𝑗=1

𝑢𝑁 𝑗𝑥 𝑗


⊤

∈ R𝑁 , (5)

where the 𝑖-th element 𝑥𝑖 =
∑𝑁

𝑗=1 𝑢𝑖 𝑗𝑥 𝑗 =< u𝑖 , x > of x̂ denotes the

signal strength of the spectral signal corresponding to the eigen-

value 𝜆𝑖 in the spectral domain. Then, based upon them, the spectral

graph convolution is defined as:

g𝜃U⊤x = [𝑔𝜃 (𝜆1)𝑥1, . . . , 𝑔𝜃 (𝜆𝑁 )𝑥𝑁 ]⊤ ∈ R𝑁 . (6)

3
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Finally, the inverse Fourier transform is used to map the spectral

signal back to the spatial domain:

L𝑠𝑦𝑚x = Ug𝜃U⊤x = [u1, . . . , u𝑁 ] [𝑔𝜃 (𝜆1)𝑥1, . . . , 𝑔𝜃 (𝜆𝑁 )𝑥𝑁 ]⊤

=

𝑁∑︁
𝑖=1

𝑔𝜃 (𝜆𝑖 )𝑥𝑖u𝑖 ∈ R𝑁 .
(7)

Remark 1. The connection between graph and wave. From Eq. (7), we

can observe that the graph signal in spatial domain can be treated as

a linear combination of 𝑁 different eigenvalues in spectral domain,

vividly depicted in Figure 1 (Top). Intuitively, we can interpret the

eigenvalue 𝜆𝑖 as the frequency, its corresponding eigenvector u𝑖
as a particular type of wave, and 𝑔𝜃 (𝜆𝑖 )𝑥𝑖 denotes the amplitude

of the wave. This reflects the wave nature of the spectral graph

convolution on any given graphs.

4.2 Graph Wave Equation
We are going to extend the wave equation on the graph. Given

the graph signal X ∈ R𝑁×𝑑
(𝑖 .𝑒 ., node features), for any node

𝑣𝑖 , its node representation acquires messages from its neighbors

𝑣 𝑗 ∈ N (𝑣𝑖 ) in GNNs. Then, we can derive the gradient of 𝑣𝑖 in MP

on its graph 𝐺 by vector subtraction between 𝑣𝑖 and its neighbors,

which actually captures their signal differences [6]:

∇𝐺x𝑖 := [. . . , x𝑖 − x𝑗 , . . . ]⊤ ∈ R |N (𝑣𝑖 ) |×𝑑 , (8)

where the gradient direction reflects the direction from 𝑣 𝑗 to 𝑣𝑖 in

MP, and the gradient magnitude measures the feature difference

amount between 𝑣𝑖 and 𝑣 𝑗 . Subsequently, we can derive the diver-

gence of 𝑣𝑖 on𝐺 by the sum of feature differences between the node

𝑣𝑖 and all its neighbor 𝑣 𝑗 ∈ N (𝑣𝑖 ):

div𝐺 (∇𝐺x𝑖 ) :=
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
(x𝑖 − x𝑗 ) ∈ R𝑑 , (9)

where the divergence actuallymeasures the total difference between

a node and its neighborhood. Finally, by substituting Eq. (9) into

(4), we propose Graph Wave Equation on the graph:

𝜕2X
𝜕𝑡2

= 𝑎2 [. . . , div𝐺 (∇𝐺x𝑖 ), . . . ]⊤ ∈ R𝑁×𝑑 . (10)

where X is the signal intensity (of all nodes) in the entire graph 𝐺 ,

and can be regarded as the node representations. Each row of X
involves a wave equation at a specific node. By introducing the form

of Laplacian, we can rewrite Eq. (10) as follows (see Appendix A.1
for mathematical proof ):

Proposition 1. Let L = D − A denote the discrete form of the

Laplacian operator Δ. The graph wave equation can be rewritten as:

𝜕2X
𝜕𝑡2

= 𝑎2LX := L𝑎X. (11)

where we incorporate 𝑎 into L for a simple form, 𝑖 .𝑒 ., L𝑎 := 𝑎2L.
Here, the propagation velocity 𝑎 controls the speed of wave prop-

agation between nodes on the graph. Note that the propagation

velocity 𝑎 can alternatively be constant or learnable parameters in

practice, leading to different forms of Laplacian (detailed in Eq. (15)

and (17) later). Benefit by treating 𝑎 as learnable parameters, we

can redefine Laplacian with flexibility and establish a connection

between wave equation and Laplacian-based spectral GNNs.

Remark 2. The connection between graph wave equation and
spectral GNNs. With Eq. (11), we can easily combine the wave

equation with spectral GNNs into graph wave equations. Thereby,

the graph wave equation can be flexibly extended and achieved by

specific designed Laplacians of existing spectral GNNs.

4.3 Solution of Graph Wave Equation
In general, it is often intractable to obtain an analytical solution for

a PDE. Fortunately, there are numerical methods that can approxi-

mate PDE solutions. First, the continuous PDE can be discretized

into a finite form of a linear algebraic system using the finite dif-

ference method. Then, an iteration process with initial values can

be employed to solve this linear algebraic system. In the context of

graphs, only the time dimension needs to be further discretized on

each node. To this end, we employ a commonly-used discretization

method in mathematics, namely forward Euler method, to solve the

graph wave equation for node representations (i.e., X) [6].

Formally, the forward Euler method discretizes the graph wave

equation by performing forward difference in the time dimension,

and then derives the explicit scheme:

X(𝑛+1) − 2X(𝑛) + X(𝑛−1)

𝜏2
= L(𝑛)

𝑎 X(𝑛) , (12)

where 𝜏 is the time step length. The initial values of X(0)
and X(1)

in

the PDE can be obtained using the second-order central quotient:

X(0) = 𝜑0 (X), X(1) = 𝜏𝜑1 (X) +
(
I + 𝜏

2

2

L(0)
𝑎

)
𝜑0 (X), (13)

where 𝜑0 (X) and 𝜑1 (X) can be practically achieved by neural net-

works, such as feedforward networks. Finally, the explicit scheme

of the graph wave equation is given by:

X(𝑛+1) =
(
2I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) − X(𝑛−1) . (14)

Please see Appendix A.2 for the detailed derivation of the forward
Euler method. In particular, we can interpret the above equation

from the perspective of message passing:

Remark 3. The perspective of message passing. By decompos-

ing X(𝑛+1)
into X(𝑛+1) =

(
I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) +

(
X(𝑛) − X(𝑛−1)

)
, the

graph signal at time 𝑡𝑛+1 consists of two components: 1) the ag-

gregation of neighbor information at time 𝑡𝑛 , and 2) the difference

between the graph signal at times 𝑡𝑛 and 𝑡𝑛−1.

4.4 Graph Wave Networks
In this section, we propose two specifications of GWNs with time-

independent and time-dependent Laplacian, respectively.

Symmetric Normalized Laplacian. We consider time-independent

Laplacian, where we let the velocity be a constant. Typically, we

adopt GCN [19] as the base model and design a symmetric nor-

malized Laplacian without self-loops, which behaves as a low-pass

filter in the spectral domain:

L𝑎 = D− 1

2 AD− 1

2 . (15)

GWN-sym. We propose the Graph Wave Network based on the

symmetric normalized Laplacian. With the initial values given by

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Wave Networks WWW’25, April 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Eq. (13), the feature matrix at time 𝑡𝑛+1 can be determined as:

X(𝑛+1) =
(
2I + 𝜏2D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) . (16)

The final feature matrix at the terminal time 𝑇 is transformed into

a prediction matrix by an MLP as Y = MLP(X(𝑇 ) ).

FrequencyAdaptive Laplacian. Next, we consider time-dependent

Laplacian, where the velocity is non-constant learnable parameters.

Typically, we adopt FAGCN [3] as the base model and propose a

frequency adaptive Laplacian with a time-dependent learnable pa-

rameter 𝜀 (𝑛) ∈ (0, 1), which designs both a low-pass filter and a

high-pass filter in the spectral domain:

L(𝑛)
𝑎,𝑙

= 𝜀 (𝑛) I + D− 1

2 AD− 1

2 , L(𝑛)
𝑎,ℎ

= 𝜀 (𝑛) I − D− 1

2 AD− 1

2 . (17)

GWN-fa. We propose the Graph Wave Network based on the

frequency adaptive Laplacian. The initial values are also given by

Eq. (13), and the feature matrix at time 𝑡𝑛+1 can be determined as

(see Appendix A.4 for detailed derivation):

X(𝑛+1) = 𝜀 (𝑛)X(0) +
(
2I + 𝜏2𝜶 (𝑛) ⊙ D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) .

(18)

where the element 𝜶 (𝑛)
𝑖 𝑗

= tanh(g(𝑛)⊤ [x(𝑛)
𝑖

| |x(𝑛)
𝑗

]) of 𝜶 (𝑛)
is the

attention weight between nodes 𝑣𝑖 and 𝑣 𝑗 at time 𝑡𝑛 , and g(𝑛) ∈ R2𝑑

is a learnable parameter vector. Notably, when 𝛼
(𝑛)
𝑖 𝑗

> 0, the two

nodes are more similar and GWN-fa behaves a low-pass filter; and

when 𝛼
(𝑛)
𝑖 𝑗

< 0, two nodes are more dissimilar and GWN-fa behaves

a high-pass filter. The final feature matrix at terminal time𝑇 is also

transformed into a prediction matrix by an MLP.

4.5 Stability
Stability is an important property of differential equations, which is

closely related to the robustness in machine learning [6], and refers

to the property that small perturbations in initial values would not

result in a significant change in solutions. We discuss the initial

value stability of the explicit scheme U(𝑘+1) = CU(𝑘 )
. Formally, if

there exists 𝜏0 > 0 and a constant 𝐾 > 0 such that the inequality

∥U(𝑘+1) ∥ = ∥C𝑘+1U(0) ∥ ≤ 𝐾 ∥U(0) ∥ holds for all 0 < 𝜏 ≤ 𝜏0 and

0 < 𝑘𝜏 ≤ 𝑇 , then the explicit scheme is said to be initial value

stable. It is crucial to prove the stability of explicit schemes to

ensure that the resulting GNNs is reliable and feasible. A commonly

used method for proving stability is the matrix method:

Theorem 1. Let 𝜌 (C) = |𝜆 |𝑚𝑎𝑥 denote the spectral radius of

matrix C, if 𝜌 (C) ≤ 1, the numerical scheme is stable.

Based on Theorem 1, we prove that both the explicit schemes

based on the symmetric normalized Laplacian (see Appendix A.3 for
proof ) and the frequency adaptive Laplacian (see Appendix A.5 for
proof ) are constantly stable.

Theorem 2. Given L𝑎 = D−1/2AD−1/2
with 𝜆 ∈ [−1, 1], the

explicit scheme is constantly stable for any 𝜏 ∈ 𝑅+.
Theorem 3. Given L𝑎,· = 𝜀I ± D− 1

2 AD− 1

2 with 𝜆 ∈ [𝜀 − 1, 𝜀 + 1],
the explicit scheme is constantly stable for any 𝜏 ∈ 𝑅+.

Remark 4. The impact of constantly stability for models. Theoret-
ically, we prove that the explicit scheme of the graph wave equation

is constantly stable, guaranteeing the model performance would

not be affected by the time step length, thus allowing to enhance

the convergence rate and significantly improve the efficiency by

choosing a relatively larger 𝜏 .

Comparisonwith heat equation based GRAND. The explicit scheme

of GRAND is X(𝑛+1) =

(
I + 𝜏A

(
X(𝑛)

))
X(𝑛)

, where A
(
X(𝑛)

)
is

an attention matrix constrained to be a right stochastic matrix sat-

isfying

∑𝑁
𝑗=1 𝛼𝑖 𝑗 = 1 and 𝛼𝑖 𝑗 > 0. Benefiting from being a right

stochastic matrix, the explicit scheme is stable and can be directly

proven. However, it has the two deficiencies: First, the stability of

explicit schemes is conditional (𝑖 .𝑒 ., 0 < 𝜏 < 1), striking a balance

between performance and efficiency. Detailed comparisons and

validations can be found in Sec. 5.4. Second, the attention scores are

constrained to 𝛼𝑖 𝑗 > 0, which performs poorly in distinguishing

inter-class nodes. In contrast, our GWN-fa acts as low-pass and

high-pass filters when 𝛼𝑖 𝑗 > 0 and 𝛼𝑖 𝑗 < 0 respectively, enabling

better handling of various types of graph.

4.6 Complexity Analysis
The number of learnable parameters of GWN-sym and GWN-fa

are 2𝑓 𝑑 +𝑑𝑐 and 2𝑓 𝑑 + (2𝑑 + 1)𝑇 /𝜏 +𝑑𝑐 , compared to 𝑓 𝑑 + 2𝑑2 +𝑑𝑐
in GRAND [6]. Here, 𝑓 , 𝑑 and 𝑐 denote the input dimension, the

hidden layer dimension, and the number of classes, respectively. In

general, 𝑇 /𝜏 < 𝑑 . The computational complexity of each layer of

GWN-sym and GWN-fa are O(𝑀𝑑) and O((𝑁 +𝑀)𝑑), compared

to O(𝑀′𝑑) in GRAND. Here, 𝑁 ,𝑀 and𝑀′
are the number of nodes,

edges and rewritten edges.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. Following the practices [6, 34], we conduct node clas-

sification [35] on the following real-world datasets (see Appen-
dix B.1 for statistics): (1) homophilic datasets [35, 50]: citation net-

works Cora, CiteSeer and PubMed, Amazon co-purchase networks

Computers and Photo, co-author networks CS; (2) heterophilic
datasets [30, 32, 33]: WebKB datasets Texas, Cornell and Wisconsin.

Baselines. We categorize all baselines into the following two

classes: (1)mainstreamGNNs: GCN [19], GAT [41], GraphSAGE [15],

SGC [44], JK-Net [48], ResGCN [21], GCNII [7], FAGCN [3], GPR-

GNN [9], AIR [51], MixHop [1], Geom-GCN [30], H2GCN [54],

LINKX [25], WRGAT [39], GGCN [49], NLMLP [27], GloGNN [22],

NSD [4], ACM-GCN [28], Ordered GNN [38]; (2) GNNs based on
differential equation: CGNN [47], GDC [20], ADC [52], GADC [52],

GRAND [6], GraphCON [34]. Unless specifically state that the re-

sults are from original papers, baselines are reproduced using their

open-source code with fair settings.

Setup.We split the datasets into training/valiation/test sets using

two schemes: 60%/20%/20% [3, 9] and 48%/32%/20% [4, 30, 49, 54].

During the training phase, our method utilizes the cross-entropy

loss function, Adam optimizer [18], and early stopping strategy.

The code is implemented using the PyTorch Geometric library [12]

and parameter search is performed using wandb library. Finally, we

report the mean accuracy and standard deviation of 10 runs.

5.2 Performance
To validate the feasibility of GWN, we first compare it with GNNs

based on differential equations on 6 homophilic datasets. Table 2
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Table 2: The results of homophilic datasets: mean accuracy ± standard deviation on 60%/20%/20% random splits of data and 10
runs. ∗ models use the best variants, − indicate the original paper did not report this result.

Datesets Cora CiteSeer PubMed Computers Photo CS

GCN 87.51 ± 1.38 80.59 ± 1.12 87.95 ± 0.83 86.09 ± 0.61 93.04 ± 0.53 95.14 ± 0.25

GAT 87.42 ± 1.46 80.16 ± 1.63 85.91 ± 1.26 87.89 ± 0.82 93.53 ± 0.58 94.37 ± 0.28

GraphSAGE 87.50 ± 1.45 79.39 ± 1.38 89.64 ± 0.73 88.53 ± 0.70 94.49 ± 0.55 95.93 ± 0.25

CGNN 88.29 ± 1.11 79.93 ± 1.04 89.46 ± 0.52 88.31 ± 0.65 94.35 ± 0.56 96.21 ± 0.32

GDC 86.89 ± 1.28 80.05 ± 0.60 86.18 ± 0.42 88.56 ± 0.38 93.56 ± 0.33 94.82 ± 0.22

ADC
∗

87.45 ± 0.89 79.43 ± 0.96 90.23 ± 0.39 88.62 ± 0.56 95.33 ± 0.27 95.82 ± 0.15

GADC 87.64 ± 0.64 78.62 ± 0.57 88.58 ± 0.48 87.78 ± 0.54 94.70 ± 0.35 96.16 ± 0.29

GRAND
∗

88.70 ± 0.99 81.56 ± 1.28 88.39 ± 0.32 89.37 ± 0.41 95.79 ± 0.59 95.77 ± 0.28

GraphCON
∗

87.81 ± 0.92 79.68 ± 1.23 88.54 ± 1.32 − − −

GWN-sym 89.61 ± 0.87 81.81 ± 1.70 90.56 ± 0.54 90.10 ± 0.87 95.31 ± 0.65 96.66 ± 0.26

GWN-fa 89.66 ± 1.29 80.89 ± 1.51 90.64 ± 0.73 90.62 ± 0.61 95.61 ± 0.53 96.67 ± 0.26

Table 3: The results of heterophilic datasets: mean accuracy ± standard deviation on 10 runs. ∗ models use the best variants, †
results of baselines from papers, ‡ results of baselines are reproduced, − indicate the original paper did not report this result.

Datesets Texas Cornell Wisconsin
Splits 48/32/20(%)

†
60/20/20(%)

‡
48/32/20(%)

†
60/20/20(%)

‡
48/32/20(%)

†
60/20/20(%)

‡

GCN 55.14 ± 5.16 79.33 ± 4.47 60.54 ± 5.30 69.53 ± 11.79 51.76 ± 3.06 63.94 ± 4.93

GAT 52.16 ± 6.63 79.59 ± 9.21 61.89 ± 5.05 66.91 ± 15.99 49.41 ± 4.09 63.45 ± 11.65

GraphSAGE 82.43 ± 6.14 86.02 ± 4.78 75.95 ± 5.01 85.06 ± 5.12 81.18 ± 5.56 89.56 ± 3.99

MixHop 77.84 ± 7.73 − 73.51 ± 6.34 − 75.88 ± 4.90 −
Geom-GCN 66.76 ± 2.72 − 60.54 ± 3.67 − 64.51 ± 3.66 −
H2GCN 84.86 ± 7.23 85.90 ± 3.53 82.70 ± 5.28 86.23 ± 4.71 87.65 ± 4.98 87.50 ± 1.77

LINKX 74.60 ± 8.37 − 77.84 ± 5.81 − 75.49 ± 5.72 −
WRGAT 83.62 ± 5.50 − 81.62 ± 3.90 − 86.98 ± 3.78 −
FAGCN 82.43 ± 6.89 85.57 ± 4.75 79.19 ± 9.79 86.38 ± 5.33 82.94 ± 7.95 84.88 ± 9.19

GPR-GNN 78.38 ± 4.36 91.89 ± 4.08 80.27 ± 8.11 85.91 ± 4.60 82.94 ± 4.21 93.84 ± 3.16

GGCN 84.86 ± 4.55 92.13 ± 3.05 85.68 ± 6.63 88.70 ± 4.97 86.86 ± 3.29 94.56 ± 3.26

NLMLP 85.40 ± 3.80 − 84.90 ± 5.70 − 87.30 ± 4.30 −
GloGNN

∗
84.05 ± 4.90 − 85.95 ± 5.10 − 88.04 ± 3.22 −

NSD
∗

85.95 ± 5.51 − 84.86 ± 4.71 − 89.41 ± 4.74 −
ACM-GCN

∗
88.38 ± 3.43 − 86.49 ± 6.73 − 88.43 ± 3.66 −

Ordered GNN 86.22 ± 4.12 90.82 ± 4.18 87.03 ± 4.73 88.09 ± 3.36 88.04 ± 3.63 93.62 ± 2.91

GWN-sym 89.85 ± 5.05 91.64 ± 3.74 88.11 ± 3.17 89.57 ± 3.54 90.88 ± 4.43 93.38 ± 3.18

GWN-fa 92.94 ± 4.45 93.28 ± 3.14 90.81 ± 4.63 92.13 ± 3.76 94.26 ± 1.76 95.63 ± 1.59

Cora CS Texas Cornell

1

0

1

Figure 2: Visualization of the attention matrix 𝜶 of GWN-fa (selected from 100 nodes).

indicates that GWN outperforms heat equation based methods sush
as GRAND on 5 datasets and achieves suboptimal performance on

Photo. Since both GWN-sym and GWN-fa can be treated as low-

pass filters, their performances are closely comparable. Then, we

examine the generality of GWN on heterophilic datasets. Table 3
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Figure 3: Performances of methods of each layer on citation networks.
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Figure 4: Stability analysis of GWN. Red dashed line indicates the SOTA models.

demonstrates that GWN outperforms state-of-the-art methods un-

der two commonly used data splits. GWN-sym and GWN-fa show

a significant difference on heterophilic graphs, which can be at-

tributed to the high-pass filter of GWN-fa. It reflects remarkable
performance in modelling heterophily in graphs. Next, we further
probe whether the low-pass and high-pass filters in GWN-fa per-

form as expected. As shown in Figure 2, we visualize the attention

matrix 𝜶 in Eq. (18). As stated in Sec. 4.4, GWN behaves as a low-

pass filter when 𝛼𝑖 𝑗 > 0 and behaves as a high-pass filter when

𝛼𝑖 𝑗 < 0. This is consistent with the visualized results. Additionally,

it is worth noting that under the 48%/32%/20% split, GWN-fa even

outperforms most state-of-the-art methods under the 60%/20%/20%

split, highlighting its superiority in scenarios with low label rates.

5.3 Over-smoothing Analysis
We investigate the ability of GWN to mitigate over-smoothing on

three citation networks: Cora, CiteSeer, and PubMed. Following

the practice of Chamberlain et al. [6] and Rusch et al. [34], we

set 𝜏 = 1, then the terminal time 𝑇 denotes the number of layers.

Figure 3 demonstrates that compared to GNNs specifically designed

for over-smoothing, GWN not only outperforms all baselines in

terms of performance but also maintains its performance as the

number of layers increases. It demonstrates that our models have
better performance in mitigating the over-smoothing issue.

5.4 Stability Analysis
We analyze the stability of the explicit scheme in experiments. We

run GWN on all datasets and report the accuracy for different 𝜏 .

As depicted in Figure 4, on larger-scale datasets such as CS, GWN

exhibits minimal performance differences when 𝜏 is varied. On

smaller-scale datasets like Texas, due to the high-pass filters, GWN-

fa demonstrates better stability compared to GWN-sym. Compared

to GRAND, which only guarantees stability of the explicit scheme

for 𝜏 = 0.005 [6], GWN can maintain stability at larger 𝜏 while
achieving higher computational efficiency and performance.

5.5 Efficiency Analysis
We analyze the efficiency of GWN in Figure 5. We compare GWN

at different 𝜏 with four basic GNNs and three variants of GRAND

(GRAND-l, GRAND-nl, and GRAND-nl-rw). GWN-sym is faster

than GWN-fa because it has fewer learnable parameters. And as
𝜏 increases, their runtime becomes faster. Taking CiteSeer as an

example, "sym-1.0 (1.7x)" achieves both optimal performance and

competitive efficiency. Furthermore, GRAND exhibits overall less

efficiency, with its three variants mainly cluster on the right side

of figures, and their runtimes are on the order of 10
1
. Considering

its most efficient variant "l-0.5 (3.9x)", its performance and runtime

are still inferior to our variant "sym-1.0 (1.7x)". It demonstrates that

our models can achieve both efficient and effective performance.
7
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Figure 5: Accuracy and runtime of the methods: "sym" and "fa" denote two variants of GWN; "l", "nl", and "nl-rw" denote three
variants of GRAND; "-1.0" denotes 𝜏 = 1.0; (2.0x) denotes the multiple of the shortest runtime.

Table 4: Comparison with base models using best parameters.

Cora CiteSeer PubMed Computers Photo CS Texas Cornell Wisconsin

GCN 87.51 80.59 87.95 86.09 93.04 95.14 79.33 69.53 63.94

GWN-sym 89.61 (↑ 2.10) 81.81 (↑ 1.22) 90.56 (↑ 2.61) 90.10 (↑ 4.01) 95.31 (↑ 2.27) 96.66 (↑ 1.52) 91.64 (↑ 12.31) 89.57 (↑ 20.04) 93.38 (↑ 29.44)
FAGCN 88.49 81.65 87.58 87.32 93.41 95.79 85.57 86.38 84.88

GWN-fa 89.66 (↑ 1.17) 80.89 (↓ 0.76) 90.64 (↑ 3.06) 90.62 (↑ 3.30) 95.61 (↑ 2.20) 96.67 (↑ 0.88) 93.28 (↑ 7.71) 92.13 (↑ 5.75) 95.63 (↑ 10.75)

Figure 6: Visualization of waveform in wave propagation of
GWN-sym (Left) and GWN-fa (Right) on Cora.

5.6 Analysis of base models
We explore the impact of base models in Table 4, where both GCN

and FAGCN increase their performances in the form of the graph

wave equation. Besides, we also show the visualization of wave

propagation of GWN-sym and GWN-fa on Cora. From Figure 6,

the waveform of GWN-sym are not prominent at early iterations,

while the waveform of GWN-fa demonstrate more frequent infor-

mation interactions at any time. Figure 7(a) depicts wave signals at

a specific time, where the waveform of GWN-sym appears chaotic,

whereas the waveform of GWN-fa is relatively clear. From Fig-

ure 7(b), compared to the waveform of GWN-sym, the waveform

of GWN-fa exhibits periodic variations of peaks and troughs. We

believe that these phenomena can be attributed to the ability of

capturing both the low- and high-frequency signals in GWN-fa.

6 CONCLUSION
In this paper, we consider the message passing in GNNs as a wave

propagation process, and further develop graph wave networks

(a) time view (b) node view

Figure 7: Visualization of time and node view in wave propa-
gation of GWN-sym (Up) and GWN-fa (Down) on Cora.

(GWNs) based on the proposed graph wave equation with spec-

tral GNNs. We demonstrate that compared to the heat equation,

the graph wave equation exhibits superior performance and sta-

bility. Extensive experiments demonstrate that our GWNs obtain

accurate and efficient performance, and show effectiveness in ad-

dressing challenging graph problems such as over-smoothing and

heterophily modelling. Our future work would explore more com-

plex and general Laplacian polynomials to advance GNNs.
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A DETAILED MATHEMATICAL DERIVATION
A.1 Proof of Proposition 1

Proof. Since L = D − A, then

LX = (D − A)X

=
©«

∑

𝑗 𝐴1𝑗 · · · 0

.

.

.
. . .

.

.

.

0 · · · ∑
𝑗 𝐴𝑁 𝑗

 −

𝐴11 · · · 𝐴1𝑁

.

.

.
. . .

.

.

.

𝐴𝑁 1 · · · 𝐴𝑁𝑁


ª®®¬


x1
.
.
.

x𝑁


=


∑

𝑗 𝐴1𝑗 −𝐴11 · · · −𝐴1𝑁

.

.

.
. . .

.

.

.

−𝐴𝑁 1 · · · ∑
𝑗 𝐴𝑁 𝑗 −𝐴𝑁 1




x1
.
.
.

x𝑁


= [. . . ,

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

(x𝑖 − x𝑗 ), . . . ]⊤ .

(19)

where 𝐴𝑖 𝑗 = 1, if 𝑒𝑖 𝑗 ∈ E; 𝐴𝑖 𝑗 = 0, otherwise. Hence, the graph

wave equation can be rewritten as:

𝜕2X
𝜕𝑡2

= 𝑎2LX. (20)

□

A.2 Derivation of Explicit Scheme
For any node 𝑣𝑖 at time 𝑡 , we first discretize 𝑡 as 𝑡𝑛 = 𝑛𝜏 (𝑛 = 0, 1, . . . ).
Then, considering its node representation x𝑖 along with a time step

𝜏 , its time difference of wave equation is given by:

𝜕2X(x𝑖 , 𝑡𝑛)
𝜕𝑡2

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
, (21)

where 𝐿
(𝑛)
𝑖 𝑗

denotes the element of L𝑎 . Moreover, we can expand at

point (x𝑖 , 𝑡𝑛) using Taylor series, and obtain

X(x𝑖 , 𝑡𝑛+1) − 2X(x𝑖 , 𝑡𝑛) + X(x𝑖 , 𝑡𝑛−1)
𝜏2

=
𝜕2X(x𝑖 , 𝑡𝑛)

𝜕𝑡2
+ 𝜏

2

12

𝜕4X(x𝑖 , 𝑡𝑛)
𝜕𝑡4

+𝑂 (𝜏4).
(22)

By substituting Eq. (21) into Eq. (22), we obtain

X(x𝑖 , 𝑡𝑛+1) − 2X(x𝑖 , 𝑡𝑛) + X(x𝑖 , 𝑡𝑛−1)
𝜏2

=
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
+ 𝑅 (𝑛)

𝑖
(X),

(23)

where 𝑅
(𝑛)
𝑖

(X) = 𝜏2

12

𝜕4

𝜕𝑡4
X(x𝑖 , 𝑡𝑛) + 𝑂 (𝜏4) denotes the truncation

error. By truncating it, we obtain the forward time difference

X(𝑛+1)
𝑖

− 2X(𝑛)
𝑖

+ X(𝑛−1)
𝑖

𝜏2
=

∑︁
𝑣𝑗 ∈N(𝑣𝑖 )

𝐿
(𝑛)
𝑖 𝑗

(
x(𝑛)
𝑗

− x(𝑛)
𝑖

)
, (24)

where X(𝑛)
𝑖

(𝑛 = 1, 2, . . . ) denotes the approximate value of X at

(x𝑖 , 𝑡𝑛). Transforming the Eq. (24) into matrix form

X(𝑛+1) − 2X(𝑛) + X(𝑛−1)

𝜏2
= L(𝑛)

𝑎 X(𝑛) . (25)

We define the problem of solving the partial differential equation

as an initial value problem, with the initial values given by the

second-order central difference quotient:

X(0) = 𝜑0 (X), (26)

X(1) − X(−1)

2𝜏
= 𝜑1 (X), (27)

where 𝜑1 (X) and 𝜑2 (X) can be obtained through neural layers. Let

𝑛 = 0, then

X(1) − 2X(0) + X(−1)

𝜏2
= L(0)

𝑎 X(0) . (28)

By eliminating X(−1)
using the initial value Eq. (27), we obtain the

node representation at time 𝑡1:

X(1) = 𝜏𝜑1 (X) +
(
I + 𝜏

2

2

L(0)
𝑎

)
𝜑0 (X). (29)

Finally, we can derive the node representation at time 𝑡𝑛+1:

X(𝑛+1) =
(
2I + 𝜏2L(𝑛)

𝑎

)
X(𝑛) − X(𝑛−1) . (30)

A.3 Proof of Theorem 2
According to Theorem 1., to prove the stability of the explicit

scheme X(𝑛+1) = AX(𝑛)
, we would like to prove that |𝜆 |𝑚𝑎𝑥 ≤ 1.

Proof. To facilitate the stability analysis of the explicit scheme

X(𝑛+1) =
(
2I + 𝜏2L𝑎

)
X(𝑛) − X(𝑛−1)

, we first need to transform it

into the form of U(𝑛+1) = CU(𝑛)
. Therefore, we assume

U(𝑛+1) =
[
X(𝑛+1)

X(𝑛)

]
,C =

[
C1 C2

C3 C4

]
, (31)

then, we can obtain the system of linear equations:{
X(𝑛+1) = C1X(𝑛) + C2X(𝑛−1)

X(𝑛) = C3X(𝑛) + C4X(𝑛−1) . (32)

According the equation of the explicit scheme, we can obtain the

values of each block matrix in C:

C1 = 2I + 𝜏2L𝑎,C2 = −I,C3 = I,C4 = 0, (33)

resulting in C(𝑛)
as follows:

C =

[
2I + 𝜏2L𝑎 −I

I 0

]
. (34)

According to the Lemma 1, now we only need to compute the

spectral radius of matrix C to determine the condition that ensures

the stability of the explicit scheme.

For convenience, we still use C1 instead of 2I+𝜏2L𝑎 , and let 𝜆, 𝜆′

denote the eigenvalue ofC,C1, respectively. Then, the characteristic

determinant of C is given by:

𝑑𝑒𝑡{C − 𝜆I2𝑁 } =
����C1 − 𝜆I −I

I −𝜆I

���� = ��(1 + 𝜆2)I − 𝜆C1

��
=

��� 1+𝜆2
𝜆

I − C1

��� = 0.

(35)

Evidently,

��� 1+𝜆2
𝜆

I − C1

��� = 0 is the characteristic equation of C1, with

the eigenvalue 𝜆′ = 1+𝜆2
𝜆

. According to the L𝑎 ’s eigenvalue belongs
to the interval [−1, 1], then 𝜆′ ∈ [2 − 𝜏2, 2 + 𝜏2]. Next, we will

investigate the range of values for 𝜆.

Considering the equation obtained from 𝜆′ = 1+𝜆2
𝜆

:

𝜆2 − 𝜆′𝜆 + 1 = 0, 𝜆′ ∈ [2 − 𝜏2, 2 + 𝜏2] . (36)
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Figure 8: The function curve of real roots 𝜆1 (Left) and 𝜆2 (Right).

If Δ = 𝜆′2 − 4 < 0, that is −2 < 𝜆′ < 2, then the equation has a pair

of complex conjugate roots 𝜆1 = 𝜆′+𝑖
√
4−𝜆′2
2

and 𝜆2 = 𝜆′−𝑖
√
4−𝜆′2
2

.

And if Δ = 𝜆′2 − 4 ≥ 0, that is |𝜆′ | ≥ 2, then the equation has a pair

of real roots 𝜆1 = 𝜆′+
√
𝜆′2−4
2

and 𝜆2 = 𝜆′−
√
𝜆′2−4
2

. We next discuss

whether the |𝜆 | ≤ 1 satisfies for different 𝜏 , considering different

cases.

Case 1. If 𝜏 ∈ (0, 2).
a) When 𝜆′ ∈ [2 − 𝜏2, 2), the equation has a pair of complex

conjugate roots 𝜆1,2. Evidently, |𝜆1,2 | =
√︂(

𝜆′
2

)
2

+
(√

4−𝜆′2
2

)
2

= 1.

Therefore, for any 𝜏 ∈ (0, 2), |𝜆1,2 | ≤ 1.

b) When 𝜆′ ∈ [2, 2 + 𝜏2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at (0, 2).
As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at (0, 2).
Caes 2. If 𝜏 ∈ [2, +∞).
a) When 𝜆′ ∈ [2 − 𝜏2,−2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ ≤ −2, |𝜆1 | ≤ 1, 𝜏 can take

any positive real number at [2, +∞).
As shown in Figure 8 (Right), when 𝜆′ = −2, |𝜆2 | = 1, 𝜏 can take

any positive real number at [2, +∞).
b) When 𝜆′ ∈ (−2, 2), the equation has a pair of complex conju-

gate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for any 𝜏 ∈ [2, +∞),
|𝜆1,2 | ≤ 1.

c) When 𝜆′ ∈ [2, 2 + 𝜏2], the equation has a pair of real roots

𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at [2, +∞).
As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at [2, +∞).
In conclusion, when 𝜏 ∈ 𝑅+, the eigenvalues 𝜆 ofC satisfy |𝜆 | ≤ 1,

then the explicit scheme based on symmetric normalized Laplacian

is constantly stable. □

A.4 Derivation of GWN-fa
Given frequency adaptive Laplacian as follow:

L(𝑛)
𝑎,𝑙

= 𝜀 (𝑛) I + D− 1

2 AD− 1

2 , L(𝑛)
𝑎,ℎ

= 𝜀 (𝑛) I − D− 1

2 AD− 1

2 , (37)

where L(𝑛)
𝑎,𝑙

is a low-pass filter, and L(𝑛)
𝑎,ℎ

is a high-pass filter. Based

on the aforementioned two Laplacian, we can capture the low-

frequency and high-frequency signals at time 𝑡𝑛+1:

X(𝑛+1)
𝑙

=

(
2I + 𝜏2

(
𝜀 (𝑛) I + D− 1

2 AD− 1

2

))
X(𝑛) − X(𝑛−1) ,

X(𝑛+1)
ℎ

=

(
2I + 𝜏2

(
𝜀 (𝑛) I − D− 1

2 AD− 1

2

))
X(𝑛) − X(𝑛−1) .

(38)

Then, we adaptively combine low-frequency and high-frequency

signals using attention weights and obtain the feature vector of

node 𝑣𝑖 at time 𝑡𝑛+1:

x(𝑛+1)
𝑖

= 𝛼
(𝑛)
𝑙,𝑖 𝑗

x(𝑛+1)
𝑙,𝑖

+ 𝛼 (𝑛)
ℎ,𝑖 𝑗

x(𝑛+1)
ℎ,𝑖

=

(
2 + 𝜀 (𝑛)𝜏2

)
𝛼
(𝑛)
𝑙,𝑖 𝑗

x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )

𝜏2𝛼
(𝑛)
𝑙,𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖 )𝑑𝑒𝑔(𝑣 𝑗 )
x(𝑛)
𝑗

− 𝛼 (𝑛)
𝑙,𝑖 𝑗

x(𝑛−1)
𝑖

+
(
2 + 𝜀 (𝑛)𝜏2

)
𝛼
(𝑛)
ℎ,𝑖 𝑗

x(𝑛)
𝑖

−
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )

𝜏2𝛼
(𝑛)
ℎ,𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖 )𝑑𝑒𝑔(𝑣 𝑗 )
x(𝑛)
𝑗

− 𝛼 (𝑛)
ℎ,𝑖 𝑗

x(𝑛−1)
𝑖

,

(39)

where 𝑑𝑒𝑔(𝑣) denotes the degree of node 𝑣 . Let 𝛼 (𝑛)
𝑖 𝑗

= 𝛼
(𝑛)
𝑙,𝑖 𝑗

− 𝛼 (𝑛)
ℎ,𝑖 𝑗

and 𝛼
(𝑛)
𝑙,𝑖 𝑗

+ 𝛼 (𝑛)
ℎ,𝑖 𝑗

= 1, we have

x(𝑛+1)
𝑖

= 𝜀 (𝑛)𝜏2x(𝑛)
𝑖

+ ©«2x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )

𝜏2𝛼
(𝑛)
𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖 )𝑑𝑒𝑔(𝑣 𝑗 )
x(𝑛)
𝑗

ª®¬ − x(𝑛−1)
𝑖

.
(40)

Weight 𝛼
(𝑛)
𝑖 𝑗

= tanh(g⊤ [x(𝑛)
𝑖

| |x(𝑛)
𝑗

]) ∈ [−1, 1] can denote the

correlation between nodes 𝑣𝑖 and 𝑣 𝑗 , and it is computed using

attention mechanism, where g ∈ R2𝑑 is a learnable parameter

vector. Since 𝜀 is a learnable parameter, we can simplify 𝜀 (𝑛)𝜏2 as

12
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𝜀 (𝑛) . Furthermore, in order to preserve the original node features,

we replace x(𝑛)
𝑖

with x(0)
𝑖

[3]. So we can obtain

x(𝑛+1)
𝑖

= 𝜀 (𝑛)x(0)
𝑖

+©«2x(𝑛)
𝑖

+
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )

𝜏2𝛼
(𝑛)
𝑖 𝑗√︁

𝑑𝑒𝑔(𝑣𝑖 )𝑑𝑒𝑔(𝑣 𝑗 )
x(𝑛)
𝑗

ª®¬−x(𝑛−1)
𝑖

.

(41)

Rewrite Eq. (41) in matrix form

X(𝑛+1) = 𝜀 (𝑛)X(0) +
(
2I + 𝜏2𝜶 (𝑛) ⊙ D− 1

2 AD− 1

2

)
X(𝑛) − X(𝑛−1) ,

(42)

where the 𝛼
(𝑛)
𝑖 𝑗

is the element of 𝜶 (𝑛)
.

A.5 Proof of Theorem 3
Similar to the proof of Theorem 2 (in A.3), we prove the stability of

frequency adaptive Laplacian.

Proof. Given L𝑎 = D− 1

2 AD− 1

2 , we have

L𝑎,· = 𝜀I ± D− 1

2 AD− 1

2 = 𝜀I ± L𝑎, (43)

and its eigenvalues satisfy [𝜀 − 1, 𝜀 + 1], 𝜀 ∈ (0, 1).
According to the proof of Theorem 1, when L𝑎,· ’s eigenvalue

belongs to the interval [𝜀 − 1, 𝜀 + 1], then the eigenvalue 𝜆′ of
C1 = 2I + 𝜏2L𝑎,· satisfies 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2 + 𝜏2 (𝜀 + 1)]. Next, we
will investigate the range of values for 𝜆.

Considering the equation obtained from 𝜆′ = 1+𝜆2
𝜆

:

𝜆2 − 𝜆′𝜆 + 1 = 0, 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2 + 𝜏2 (𝜀 + 1)] . (44)

If 𝜆′2 − 4 < 0, that is −2 < 𝜆′ < 2, then the equation has a pair

of complex conjugate roots 𝜆1 = 𝜆′+𝑖
√
4−𝜆′2
2

and 𝜆2 = 𝜆′−𝑖
√
4−𝜆′2
2

.

And if 𝜆′2 − 4 ≥ 0, that is |𝜆′ | ≥ 2, then the equation has real roots

𝜆1 = 𝜆′+
√
𝜆′2−4
2

and 𝜆2 = 𝜆′−
√
𝜆′2−4
2

. We next discuss whether the

|𝜆 | ≤ 1 satisfies for different 𝜏 , considering different cases.

Case 1. If 𝜏 ∈
(
0, 2√

1−𝜀

)
.

a) When 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1), 2), the equation has a pair of

complex conjugate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for

any 𝜏 ∈
(
0, 2√

1−𝜀

)
, |𝜆1,2 | ≤ 1.

b) When 𝜆′ ∈ [2, 2 + 𝜏2 (𝜀 + 1)], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at

(
0, 2√

1−𝜀

)
.

As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at

(
0, 2√

1−𝜀

)
.

Caes 2. If 𝜏 ∈
[

2√
1−𝜀 , +∞

)
.

a) When 𝜆′ ∈ [2 + 𝜏2 (𝜀 − 1),−2], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ ≤ −2, |𝜆1 | ≤ 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

As shown in Figure 8 (Right), when 𝜆′ = −2, |𝜆2 | = 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

b) When 𝜆′ ∈ (−2, 2), the equation has a pair of complex con-

jugate roots 𝜆1,2. Evidently, |𝜆1,2 | = 1. Therefore, for any 𝜏 ∈[
2√
1−𝜀 , +∞

)
, |𝜆1,2 | ≤ 1.

c) When 𝜆′ ∈ [2, 2 + 𝜏2 (𝜀 + 1)], the equation has a pair of real

roots 𝜆1,2.

As shown in Figure 8 (Left), when 𝜆′ = 2, |𝜆1 | = 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

As shown in Figure 8 (Right), when 𝜆′ ≥ 2, |𝜆2 | ≤ 1, 𝜏 can take

any positive real number at

[
2√
1−𝜀 , +∞

)
.

In conclusion, when 𝜏 ∈ 𝑅+, the eigenvalues 𝜆 ofC satisfy |𝜆 | ≤ 1,

then the explicit scheme based on frequency adaptive Laplacian is

constantly stable. □

B IMPLEMENTATION DETAILS
For all experiments, each method was run on a single NVIDIA Tesla

V100 GPU with 16GB memory, and the CPU used is Intel Xeon

E5-2660 v4 CPUs. All models train 200 epochs and employed an

early stopping strategy triggered when the loss exceed the average

loss of the last 10 epochs.

B.1 Dataset Statistics
As shown in Table 5, we report the statistical information of datasets

used in this paper.

Table 5: Dataset statistics.

Datesets #Nodes #Edges #Features #Classes

Cora 2708 5278 1433 7

CiteSeer 3327 4552 3703 6

PubMed 19717 44324 500 3

Computers 13752 245861 767 10

Photo 7650 119081 745 8

CS 18333 81894 6805 15

Texas 183 325 1703 5

Cornell 183 298 1703 5

Wisconsin 251 515 1703 5

B.2 Parameter Search
We employ the wandb library for parameter search with Bayes

scheme. The ranges for each hyperparameter are outlined in Table 6.

C ADDITIONAL EXPERIMENTAL RESULTS
C.1 Performance and Efficiency
As shown in Table 7 and Table 8, we present the complete per-

formance and efficiency of GWN at different 𝜏 . The results and

runtimes for all models are obtained using the optimal parameters.

It is important to note that the runtime, in addition to the time step

𝜏 , can be influenced by parameters such as the number of layers,

learning rate, and hidden layer dimensions. Therefore, there may be

cases where the runtime increases for larger 𝜏 compared to smaller

𝜏 .
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Table 6: The range of hyperparameters.

Hyperparameters Range Distribution

The dimension of hidden layer 𝑑 {32, 64, 128, 256} set

Time size 𝜏 {0.2, 0.5, 1.0, 2.0, 5.0} set

Terminal time 𝑇 [1, 20] uniform

Dropout [0, 0.8] uniform

Learning rate [0.001, 0.25] log_uniform_values

Weight decay [0, 0.1] uniform

Table 7: The performances (%) and runtimes (s) of methods on homophilic datasets: mean accuracy ± standard deviation on
60%/20%/20% random splits and 10 runs. sym-0.2 indicates GWN-sym under 𝜏 = 0.2. Bold and underline indicate optimal and
suboptimal results, respectively. OOM denotes out of memory.

Datesets Cora CiteSeer PubMed Computers Photo CS

SGC 86.10 ± 1.37 (0.7) 80.35 ± 1.33 (0.7) 83.45 ± 0.51 (0.8) 84.45 ± 0.56 (0.7) 88.95 ± 0.86 (0.6) 95.15 ± 0.24 (0.7)

APPNP 88.97 ± 0.88 (0.7) 80.91 ± 1.43 (0.8) 88.58 ± 0.56 (0.9) 86.73 ± 0.74 (0.8) 93.74 ± 0.57 (0.8) 95.58 ± 0.20 (1.6)

GPR-GNN 88.61 ± 1.28 (2.7) 80.60 ± 1.27 (3.0) 90.08 ± 0.70 (3.2) 88.55 ± 0.90 (1.4) 94.61 ± 0.68 (2.5) 96.26 ± 0.27 (1.3)

GCN 87.51 ± 1.38 (1.3) 80.59 ± 1.12 (1.0) 87.95 ± 0.83 (1.4) 86.09 ± 0.61 (1.3) 93.04 ± 0.53 (1.4) 95.14 ± 0.25 (0.9)

FAGCN 88.49 ± 1.18 (1.4) 81.65 ± 0.96 (7.6) 87.58 ± 1.15 (1.3) 87.32 ± 0.51 (1.2) 93.41 ± 0.76 (1.0) 95.79 ± 0.26 (4.8)

sym-0.2 89.16 ± 0.80 (4.5) 81.43 ± 1.73 (2.6) 90.56 ± 0.54 (4.6) 89.97 ± 0.56 (8.8) 94.82 ± 0.43 (4.1) 96.60 ± 0.28 (3.6)

sym-0.5 89.23 ± 0.69 (2.4) 81.12 ± 1.77 (1.7) 90.35 ± 1.08 (2.8) 89.92 ± 0.72 (3.8) 94.96 ± 0.69 (3.6) 96.51 ± 0.29 (2.8)

sym-1.0 89.61 ± 0.87 (1.8) 81.81 ± 1.70 (1.4) 90.36 ± 0.75 (1.9) 90.10 ± 0.87 (3.7) 95.31 ± 0.65 (4.0) 96.66 ± 0.26 (3.2)

sym-2.0 88.90 ± 1.38 (1.5) 80.91 ± 1.05 (1.1) 89.62 ± 0.64 (1.4) 89.75 ± 1.10 (2.0) 94.84 ± 0.59 (1.9) 96.52 ± 0.32 (2.3)

sym-5.0 88.18 ± 1.14 (1.5) 79.54 ± 1.44 (1.4) 89.83 ± 0.30 (1.3) 90.01 ± 1.12 (2.9) 94.83 ± 0.69 (1.4) 95.91 ± 0.26 (3.1)

fa-0.2 89.00 ± 1.30 (18.2) 80.19 ± 1.09 (12.9) 90.03 ± 0.81 (18.8) OOM OOM OOM

fa-0.5 89.26 ± 0.73 (6.9) 80.23 ± 1.71 (5.3) 90.61 ± 0.77 (7.8) OOM 95.25 ± 0.55 (6.9) 96.53 ± 0.25 (5.5)

fa-1.0 89.66 ± 1.29 (2.8) 80.89 ± 1.51 (2.1) 90.64 ± 0.73 (2.8) 90.62 ± 0.61 (5.6) 95.61 ± 0.53 (3.5) 96.67 ± 0.26 (8.6)

fa-2.0 88.67 ± 1.56 (2.1) 80.60 ± 1.77 (2.3) 90.27 ± 0.82 (3.4) 89.29 ± 0.99 (5.9) 94.22 ± 0.59 (1.7) 96.62 ± 0.30 (2.5)

fa-5.0 88.33 ± 1.26 (1.5) 80.80 ± 0.70 (3.0) 89.70 ± 0.74 (1.7) 89.22 ± 0.98 (3.6) 94.56 ± 0.75 (2.3) 96.62 ± 0.21 (5.4)

Table 8: The performances (%) and runtimes (s) of methods on heterophilic datasets: mean accuracy ± standard deviation on
random splits and 10 runs. sym-0.2 indicates GWN-sym under 𝜏 = 0.2. Bold and underline indicate optimal and suboptimal
results, respectively.

Datesets Texas Cornell Wisconsin
Splits 48/32/20(%) 60/20/20(%) 48/32/20(%) 60/20/20(%) 48/32/20(%) 60/20/20(%)

SGC - 74.90 ± 8.23 (0.6) - 60.60 ± 11.92 (0.6) - 63.75 ± 5.14 (0.8)

APPNP - 81.64 ± 3.17 (1.2) - 73.40 ± 4.62 (1.3) - 71.50 ± 5.92 (1.5)

GPR-GNN - 91.89 ± 4.08 (0.9) - 85.91 ± 4.60 (0.8) - 93.84 ± 3.16 (0.9)

GCN - 79.33 ± 4.47 (2.2) - 69.53 ± 11.79 (2.9) - 63.94 ± 4.93 (1.1)

FAGCN - 85.57 ± 4.75 (4.6) - 86.38 ± 5.33 (3.7) - 84.88 ± 9.19 (5.6)

sym-0.2 89.85 ± 5.05 (2.3) 91.48 ± 5.40 (2.6) 87.03 ± 7.41 (2.2) 88.30 ± 6.04 (2.7) 89.85 ± 4.57 (2.2) 91.62 ± 3.12 (2.5)

sym-0.5 87.84 ± 3.18 (1.7) 90.33 ± 6.30 (1.6) 85.95 ± 4.73 (1.8) 87.23 ± 4.70 (1.7) 88.53 ± 3.72 (1.7) 91.12 ± 2.67 (1.7)

sym-1.0 86.47 ± 3.13 (1.4) 88.52 ± 2.56 (1.4) 83.14 ± 5.52 (1.4) 84.26 ± 4.40 (1.4) 85.74 ± 5.10 (1.4) 88.75 ± 3.78 (1.5)

sym-2.0 89.41 ± 3.23 (1.1) 91.64 ± 3.74 (1.2) 88.11 ± 3.17 (1.1) 89.57 ± 3.54 (1.1) 90.88 ± 4.43 (1.0) 93.38 ± 3.18 (1.1)

sym-5.0 82.75 ± 4.41 (1.1) 84.59 ± 5.02 (1.2) 84.59 ± 5.56 (1.1) 87.23 ± 5.85 (1.1) 85.15 ± 3.06 (1.2) 87.50 ± 4.49 (1.2)

fa-0.2 92.94 ± 4.45 (4.4) 93.28 ± 3.41 (5.1) 90.00 ± 3.83 (4.2) 90.85 ± 3.02 (5.9) 93.82 ± 3.24 (3.7) 94.25 ± 2.65 (4.2)

fa-0.5 92.16 ± 2.61 (2.1) 92.79 ± 3.01 (2.4) 90.27 ± 7.12 (2.1) 92.13 ± 3.76 (2.0) 94.12 ± 3.02 (2.0) 94.75 ± 1.85 (2.1)

fa-1.0 91.57 ± 4.24 (1.8) 92.46 ± 3.30 (1.8) 88.38 ± 6.12 (1.8) 89.57 ± 4.65 (1.7) 93.82 ± 3.24 (2.0) 94.63 ± 1.77 (1.8)

fa-2.0 91.74 ± 3.06 (1.4) 93.28 ± 4.19 (1.4) 90.81 ± 4.63 (1.4) 91.28 ± 3.81 (1.7) 94.26 ± 1.76 (1.3) 95.63 ± 1.59 (1.3)

fa-5.0 90.59 ± 3.56 (1.3) 90.33 ± 3.97 (1.3) 88.65 ± 3.56 (1.3) 89.79 ± 6.17 (1.5) 94.12 ± 1.70 (1.2) 94.13 ± 2.13 (1.4)
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