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Abstract

In Retrieval-Augmented Generation (RAG),001
generative models are prone to performance002
degradation due to retrieved irrelevant docu-003
ments. Adding irrelevant documents to the004
training data and retraining language models005
incurs significant costs. Supervised models006
can detect irrelevant documents in the retrieved007
results and avoid retraining, but they cannot008
counter domain shifts in the real world. By in-009
troducing a method that emphasizes the unique010
features of infrequent words, we reveal the abil-011
ity of the cross-attention mechanism to detect012
irrelevant documents within the inputs of gener-013
ative models. We present CODE, a novel irrel-014
evant document detector using a closed-form015
expression rooted in cross-attention scores. Our016
experimental results validate the superiority017
of CODE under in-domain and cross-domain018
detection. For in-domain detection, CODE019
achieves a 5.80% FPR at 95% TPR vs. 30.3%020
by supervised baseline on the T5-Large and021
Delve domain. When sampling irrelevant docu-022
ments from out-of-domain, the FPR of CODE023
decreases from 5.8% to 0.1%, while the FPR of024
the supervised baseline increases from 30.3%025
to 34.3%. For more insight, we highlight the026
importance of cross-attention, word frequency027
normalization, and integrating in-domain irrel-028
evant documents during pretraining .1029

1 Introduction030

The RAG system (Lewis et al., 2020) can access ex-031

ternal knowledge bases for up-to-date and long-tail032

knowledge, thereby enhancing generation quality.033

However, in real-world applications, the retriever034

may return irrelevant documents, significantly de-035

grading performance (Shi et al., 2023). Yoran et al.036

(2023) and Asai et al. (2023) highlight that irrele-037

vant documents in retrieval-augmented knowledge-038

sensitive tasks lead to low-quality generations.039

1Our code is available at: https://anonymous.4open.
science/r/code-A5B1/

In open-domain text summarization, Giorgi et al. 040

(2022) find through experimental simulation that 041

irrelevant documents in retrieval results are the pri- 042

mary cause of declining generation quality. Case 043

studies of RAG systems in academic fields by Bar- 044

nett et al. (2024) reveal that the retriever sometimes 045

fail to rank relevant documents first, often returning 046

irrelevant or noisy information, causing the model 047

to generate incorrect results. 048

To improve generation quality, existing meth- 049

ods retrain language models to counter irrelevant 050

content (Giorgi et al., 2022; Yoran et al., 2023; 051

Asai et al., 2023; Wang et al., 2024), which incurs 052

high economic costs. Yoran et al. (2023) propose 053

a supervised approach to learn the relevance be- 054

tween the query and retrieved documents, remov- 055

ing irrelevant documents before inputting them into 056

the language model. Although this method avoids 057

fine-tuning the generative model, it struggles with 058

performance degradation due to domain shifts in 059

real-world scenarios (Calderon et al., 2024; Elsahar 060

and Gallé, 2019). 061

This paper highlights the significant potential 062

of using intrinsic neuron output of generative lan- 063

guage models to detect irrelevant documents. It 064

should be noted that the generative models men- 065

tioned in our method below are specialized for de- 066

tecting irrelevant documents, rather than the orig- 067

inal model in the RAG system. Specifically, we 068

demonstrate the substantial potential of the cross- 069

attention mechanism in generative text summa- 070

rizers based on the encoder-decoder architecture 071

(Vaswani et al., 2017) for this purpose. Our ini- 072

tial observations indicate that rare words in input 073

documents often signify unique features, helping 074

the model discern their relevance. Seq2seq models 075

pretrained with a mixture of irrelevant document 076

data tend to assign lower cross-attention scores to 077

rare words in irrelevant documents during text gen- 078

eration. Conversely, words in relevant documents 079

typically receive higher scores. Based on these ob- 080
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servations, we propose a pretraining method for081

text summarizers that incorporates irrelevant docu-082

ments, enabling the cross-attention mechanism to083

capture differences between relevant and irrelevant084

documents. Building upon the pretrained model,085

we introduce CODE (Cross-attention based irrel-086

evant dOcument DEtector), a method for detect-087

ing irrelevant documents based on cross-attention088

scores in generative language models. We catego-089

rize irrelevant documents into In-domain and Out-090

of-domain to verify the effectiveness of CODE for091

in-domain and cross-domain detection. The core092

contributions of this paper include:093

• Proposal of a method to pretrain genera-094

tive language models incorporating irrele-095

vant documents. We subsequently introduce096

the CODE detector, which computes average097

cross-attention scores, normalized by word098

occurrences, between the generated summary099

and each document in the sequence.100

• Introduction of data pipelines to build four101

pretraining datasets integrated with irrelevant102

documents. Additionally, we present four in-103

domain irrelevant document detection datasets104

and sixteen cross-domain irrelevant document105

detection datasets.106

• An ablation study underscoring the impact107

of cross-attention, word frequency normaliza-108

tion, and the incorporation of irrelevant docu-109

ments during pretraining.110

2 Related Work111

Retrieval-Augmented Generation. RAG sys-112

tem employs sparse (Robertson and Walker, 1997;113

Robertson et al., 2009) or dense (Karpukhin et al.,114

2020) retrievers to link generative models with ex-115

ternal non-parametric knowledge bases, addressing116

the challenges of generative models such as access-117

ing up-to-date knowledge (Ram et al., 2023), inte-118

grating long-tail data (Mallen et al., 2022), and pre-119

venting training data leakage (Carlini et al., 2021).120

RAG can also reduce the parameters of the model121

(Izacard et al., 2023) to reduce generation costs.122

The concept of RAG was first introduced by Lewis123

et al. (2020), who proposed using the top-K doc-124

uments returned by a retriever as direct inputs to125

the model to enhance performance on knowledge-126

sensitive tasks. Beyond direct input, the results127

returned by the retriever can also be integrated into128

the model in a latent form to improve generation129

quality (Izacard and Grave, 2020; Borgeaud et al., 130

2022). RAG has been applied to enhance vari- 131

ous text-to-text generation tasks, including Ques- 132

tion Answering (Wang et al., 2023), Text Summa- 133

rization (Bertsch et al., 2024), and Fact Verifica- 134

tion (Huang et al., 2022). Besides text modalities, 135

RAG has also been utilized in other modalities such 136

as audio (Yuan et al., 2024), image (Ramos et al., 137

2023), and video (Pan et al., 2023). 138

Enhance RAG Systems by Resisting Irrelevant 139

Documents. The results returned by the retriever 140

can include documents irrelevant to the content to 141

be generated, degrading the quality of RAG sys- 142

tems. Researchers are exploring methods to resist 143

this issue and enhance RAG performance. Giorgi 144

et al. (2022); Yoran et al. (2023) add irrelevant 145

documents to training data and retrain the model 146

to improve robustness. Asai et al. (2023) use a 147

LLM to evaluate the relevance of retrieval results 148

for critical generation. Wang et al. (2024) intro- 149

duce a rank head to help LLMs perceive document 150

relevance and guide final generation. These ap- 151

proaches require extensive training or fine-tuning, 152

incurring high costs. Yoran et al. (2023) propose a 153

supervised approach to learn query-document rel- 154

evance, removing irrelevant documents before the 155

retrieval results are fed into the generative model. 156

Although this method avoids fine-tuning the gener- 157

ative model, it struggles with performance degra- 158

dation from domain shifts in real-world scenar- 159

ios (Calderon et al., 2024; Elsahar and Gallé, 2019). 160

3 Preliminaries and Problem Formulation 161

Text Summarizers Pretrained with In-domain 162

Irrelevant Documents. Let the X denote the doc- 163

ument consisting of a sequence of words, P(X|D) 164

denote a document sampling distribution defined 165

on the document setD. Let X represent a sequence 166

of documents used for summarization. We note 167

that the documents in X may originate from dif- 168

ferent topics. Let the sequence of words Y (X ) 169

denote the summary of the document set X . Let 170

C = {(Xi, Yi)}ni=1 represent the pretraining set 171

for text summarization. Each document in the se- 172

quence Xi is drawn from an underlying mixed doc- 173

ument distribution P(X|Di,D′
i) consisting of the 174

document sets Di and D′
i. Documents in Di are 175

related to the topic to be generated, so the top- 176

ics of the documents sampled from Di are related 177

to each other, and the documents sampled from 178

D′
i are irrelevant documents in Xi. Di,D′

i,Xi are 179
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derived from the same domain, i.e., the same origi-180

nal dataset. We refer to documents in Xi ∩ Di as181

relevant documents, and those in Xi ∩ D′
i as in-182

domain irrelevant documents. We use in-domain183

to indicate that both relevant and irrelevant docu-184

ments are sampled from the same dataset domain,185

but on different topics, to distinguish them from186

the problem of detecting irrelevant documents that187

may originate from different domains.188

A summarizer G processes the document set189

X to produce a summary Ŷ (X ). We employ the190

generative language model (GLM) for this task.191

We pretrain G to ensure that the generated Ŷ (Xi)192

aligns with the ground truth summary Yi for all193

samples in the training set C. As mentioned ear-194

lier, each document set Xi in the set C contains195

in-domain irrelevant document.196

GLM-based Irrelevant Document Detection197

Problem. Let the generative model G be a text198

summarizer pretrained on the pretraining set C. We199

construct irrelevant document detectors fθ using200

the neuron outputs inside G. Consider U as a in-201

put document sequence containing relevant and202

irrelevant documents. For U , we use the binary203

vector V ∈ {0, 1}|U| as the label vector, where204

Vi equals 0 if the i-th document in U is an irrel-205

evant document and 1 otherwise. The irrelevant206

document detection dataset can be represented as207

Cdetect = {(Uk, Vk)}mk=1. Notably, we allow rele-208

vant and irrelevant documents to come from the209

same dataset domain, in which case the problem is210

referred to as the in-domain detection problem. If211

the relevant and irrelevant documents come from212

different dataset domains, the problem is called the213

cross-domain detection problem.214

4 GLM-based Irrelevant Document215

Detector216

In this paper, we primarily focus on generative217

language models using the Transformer encoder-218

decoder architecture (Vaswani et al., 2017), specif-219

ically BART (Lewis et al., 2019) and T5 (Raffel220

et al., 2020). To see the influence of the model size,221

we select BART-Base, BART-Large, T5-Base and222

T5-Large. We pretrain all GLMs on each of the223

pretraining sets introduced in the next section.224

4.1 Baselines225

We concatenate the neuron outputs inside the GLM226

with a multi-layer perception to construct two su-227

pervised baselines. Given the potentially large num-228

ber of neurons in GLMs, to reduce the computa- 229

tional complexity, we streamline the computation 230

by using the input from the last encoder-decoder 231

attention layer as the input to the multi-layer per- 232

ceptron (MLP). 233

Frozen. First, we feed a document sequence into 234

the GLM and obtain a generated summary. Prob- 235

ing the input of the last encoder-decoder attention 236

layer, we obtain the word embeddings of the doc- 237

ument sequence from the encoder, as well as the 238

word embeddings of the corresponding summary 239

from the decoder. Second, to get the embeddings 240

of the entire sequence of the document or sum- 241

mary, we perform a mean pooling on the obtained 242

word embeddings that are also adopted in refer- 243

ences (Reimers and Gurevych, 2019; Gao et al., 244

2021). Finally, we feed the word embedding into 245

a MLP to detect the irrelevant documents in the 246

input sequence. In the supervised training phase, 247

we freeze all parameters of the pretrained GLM 248

and only fine-tune the parameters of the MLP. 249

Finetuning-all (FT-ALL). We adopt the same 250

architecture used in the previous baseline for irrele- 251

vant detection. The only difference lies in the train- 252

ing stage, where the parameters of the pretrained 253

GLM are fine-tuned along with MLP parameters. 254

4.2 CODE: Cross-attention based irrelevant 255

dOcument DEtector 256

In this section, we propose CODE, which elimi- 257

nates the need for further fine-tuning like baselines 258

once the GLM is pretrained. Similar to baselines, 259

we also probe the attention weights of the last cross- 260

attention layer. But, for each document, we only 261

calculate closed-form metric to determine whether 262

the document is irrelevant or not. 263

Now we formally present our method. We con- 264

catenate all documents X = {X1, ..., Xm} and in- 265

put at once to the text summarizer G. The GLM G 266

outputs a summary Ŷ . We input each word ŷ in the 267

summary Ŷ to the decoder independently. Now we 268

get a cross-attention matrix between the generated 269

summary and concatenated documents. When the 270

cross attention layer has multi-head (Vaswani et al., 271

2017) and each head is equipped with a unique 272

attention matrix of the same size, we average all 273

attention matrices across different heads into one 274

matrix. For each word x in the concatenated doc- 275

ument sequence and each word ŷ in the summary 276

sentence Ŷ , let Att(ŷ, x) ∈ [0, 1] denote the at- 277

tention score in the attention matrix between the 278

word ŷ and x. We use 1
|Xi|

∑
x∈Xi

Attα(ŷ, x) to 279
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measure the relevance between word ŷ and input280

document Xi. Let p(ŷ) denote the word frequency281

of ŷ ∈ Ŷ across all generated summaries. We use282
1

pβ(ŷ)
to assign more weights to the contribution of283

less frequent words. We define the relevance score284

r(Ŷ , Xi) ∈ R+ between the generated summary285

Ŷ and the i-th document Xi as follow,286

r(Ŷ , Xi) =
1

|Ŷ |
∑
ŷ∈Ŷ

1

pβ(ŷ)

 1

|Xi|
∑
x∈Xi

Attα(ŷ, x)

 .

(1)287

Hyper-parameters α and β are used to control the288

contribution of the attention score and word fre-289

quency in calculating the relevance. For a given290

threshold δ, we say that the document Xi is irrele-291

vant if r(Ŷ , Xi) ≤ δ and it is a relevant document,292

otherwise. CODE is more efficient than baselines.293

See Appendix A.11 for time consumption.294

5 Datasets295

5.1 Data Pipeline296

Pipeline for Pretraining with In-domain Irrel-297

evant Document. The source text summariza-298

tion dataset includes relevant document sequences299

and their corresponding summaries. To create300

a text summarization pretraining dataset with in-301

domain irrelevant document, we employ a two-302

phase data pipeline. In the relevant document sam-303

pling phase, we select a sample (X , Y ) from the304

source dataset, where X represents a document305

sequence and Y is its summary. Then, we ran-306

domly select two documents from the sequence X ,307

denoted as X = (X1, X2). We regard these two308

documents as relevant docments. Next, in the irrel-309

evant document injection phase, we first randomly310

select two irrelevant documents Z1 and Z2 from311

another two different document sequences in the312

same dataset. These irrelevant documents are ran-313

domly at three positions: before X1, between X1314

and X2 and after X2. After injection, the document315

sequence, along with the summary Y , constitutes316

a sample in our pretraining set. We note here that317

all irrelevant documents in the pretraining dataset318

originate from the same dataset domain.319

Pipeline for Irrelevant Document Detection.320

We employ the same pipeline to create irrelevant321

document detection datasets. The only difference322

is that the detection dataset does not contain the323

ground truth summary. In the in-domain detection324

task, we sample the irrelevant document from the325

same source text summarization dataset, while in326

the cross-domain detection task, we sample the 327

irrelevant document from a different source dataset. 328

5.2 Pretraining Datasets with In-domain 329

Irrelevant Documents 330

We choose four English source datasets: 331

CNN/Daily Mail (Nallapati et al., 2016), 332

SAMSum (Gliwa et al., 2019), Delve (Akujuobi 333

and Zhang, 2017; Chen et al., 2021) and S2orc (Lo 334

et al., 2019; Chen et al., 2021) to build our 335

pretraining dataset (-PT). The first dataset comes 336

from the news domain, the second from dialogues, 337

and the last two belong to the academic domain. 338

Each data sample in the above pretraining 339

datasets contains two relevant documents, two irrel- 340

evant documents, and one summary. It should be 341

noted that for the Delve and S2orc datasets, we con- 342

sider each abstract paragraph as a document, and 343

for the CNN/Daily Mail and SAMSum datasets, we 344

mimic the operation of segmenting long texts in the 345

RAG system by considering each chunk obtained 346

as a document (Lewis et al., 2020). The dataset 347

partitioning is shown in Table 1. See Appendix A.1 348

for the detailed statistics and construction method 349

of each pretraining dataset. 350

Table 1: The major statistics of datasets. ∗ indicates shared
validation set or test set. See Appendix A.1 for the detailed
statistics.

Dataset Training Validation Test

CNN/Daily Mail-PT 42.387K 5.298K 5.298K
SAMSum-PT 3.273K 0.409K 0.409K

Delve-PT 8K 1K 1K
S2orc-PT 20K 2K 2K

CNN/Daily Mail-ID 20K 2.5K 2.5K×5
SAMSum-ID 3.273K 0.409K 0.409K×5

Delve-ID (1K) 1K
100* 1K×5*

Delve-ID (8K) 8K
S2orc-ID 2K 200 2K×5

5.3 Irrelevant Document Detection Datasets 351

We provide an overview of the in-domain and cross- 352

domain detection datasets (-ID) in the following. 353

In-domain detection sets consist of relevant 354

and irrelevant documents sampled from the same 355

dataset domain. We get four in-domain detection 356

datasets from CNN/Daily Mail, SAMSum, Delve 357

and S2orc, respectively. 358

Cross-domain detection sets comprise relevant 359

and irrelevant documents from varying domains. 360

For each domain from which relevant documents 361

are sourced, irrelevant documents are extracted 362

from the other three domains, leading to three 363
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unique cross-domain test sets. To assess detec-364

tion against the documents composed of random365

garbled characters, we create a set with randomly366

generated documents using words tokenized from367

four summarization datasets. This results in four368

cross-domain test sets for each domain. Each cross-369

domain test set size is consistent with the in-domain370

set, and both types share the same training and val-371

idation datasets. In cross-domain detection, hyper-372

parameter tuning is exclusively done on in-domain373

irrelevant documents, precluding prior knowledge374

of cross-domain irrelevant documents during test-375

ing.376

Each data sample in the above irrelevant docu-377

ment detection datasets contains two relevant docu-378

ments and two irrelevant documents. The dataset379

partitioning is presented in Table 1. Each detec-380

tion dataset contains a in-domain training set, a381

in-domain validation set, a in-domain test set and382

four cross-domain test sets.383

6 Experiments384

6.1 Experimental Setups385

Pretraining Summerizers. We employ Hugging386

Face Transformers2 (Wolf et al., 2020) and AdamW387

optimizer with default parameters. Additional pre-388

training details are in the Appendix A.2.1. We389

select the checkpoint with the lowest evaluation390

loss for irrelevant document detection. Generative391

quality is assessed using ROUGE (Lin, 2004), with392

results in the Table 7 in Appendix A.2.2.393

Baselines. We employ a three-layer MLP with394

ReLU neurons. The input dimension N is twice395

the dimension of the attention layer. Regarding396

the dimension of the MLP hidden layer, we find397

that increasing the dimension hardly improves the398

detection performance. The experimental results399

are shown in the Appendix A.10. Therefore, we set400

the dimension of the first, second, and third layer is401

4N , 2N and N , respectively. Training setup details402

are reported in Appendix A.2.3.403

CODE. There are two hyper-parameters α and404

β in CODE. We note that our method does not405

employ any fine-tuning in the detection phase, ex-406

cept that we run the hyper-parameter tuning on407

α and β. Thus, CODE is deterministic and does408

not have standard deviations. We search the hyper-409

parameters α in the range [0, 2] with an interval of410

0.1 and β in the range [0, 2] with an interval of 0.2.411

This implies that we search for the best setting in412

2https://huggingface.co/

231 hyper-parameter combinations. We select the 413

model with the lowest FPR at 95% TPR for testing. 414

6.2 Main Results 415

In this subsection, we present the main results. We 416

use TPR at 95% FPR, AUROC (Fawcett, 2006) 417

and AUPR (Manning and Schutze, 1999; Saito 418

and Rehmsmeier, 2015) to evaluate the detection 419

performance. Please refer to Appendix A.3 for 420

further details. 421
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Figure 1: The ROC curves of
CODE and Frozen evaluated on T5-
Large and Delve-ID (1K).

CODE vs. 422

Baselines. Fig- 423

ure 1 displays 424

ROC curves for 425

CODE (blue) 426

and the baseline 427

Frozen (red) us- 428

ing the T5-Large 429

architecture on 430

the in-domain 431

detection dataset 432

Delve-ID (1K). 433

A substantial per- 434

formance gap is evident, with CODE significantly 435

outperforming the baseline. For instance, at a 436

95% TPR, CODE reduces the FPR from 30.3% to 437

5.8%. Comprehensive evaluation results can be 438

found in Table 2 and Table 10 in Appendix A.3, 439

highlighting that CODE consistently outperforms 440

the baselines across almost all settings. 441

Fine-tuning Dataset Size. To assess the impact 442

of fine-tuning dataset size, we conducted exper- 443

iments on Delve-ID using various set sizes. In- 444

terestingly, we observed that CODE exhibits low 445

sensitivity to the set size, with consistent perfor- 446

mance, such as a 5.80% FPR on Delve-ID (1K) 447

compared to 5.55% on Delve-ID (8K) with the T5- 448

Large architecture. In contrast, both baselines show 449

sensitivity to the set size, with notable differences 450

in performance, such as a 25.63% FPR on Delve- 451

ID (1K) compared to 18.28% on Delve-ID (8K) 452

using the T5-Large architecture. 453

Pretraining Checkpoint. We explored the im- 454

pact of checkpoint selection during the pretraining 455

phase on irrelevant document detection. To illus- 456

trate, we tracked the summarization and detection 457

performance of checkpoints during pretraining us- 458

ing the T5-Large architecture on Delve. In Fig- 459

ure 2 (a), we plotted pretraining validation loss 460

against the detection FPR of CODE at each check- 461

point. Our findings show that during the initial four 462

epochs of pretraining, validation loss consistently 463
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Table 2: Evaluation results of CODE and baselines for in-domain irrelevant document detection. All values are percentages. ↑
indicates that larger values are better, and ↓ indicates that smaller values are better. Characters “B" and “L" denote the Base and
Large models, respectively. The hyper-parameters α and β of CODE are searched by minimizing FPR at 95% TPR, and detail
can be found in Table 12 in Appendix A.3.

Models FPR
(95%) TPR (↓) AUROC (↑) AUPR (↑)

CODE/Frozen/FT-ALL

Delve-ID (1K)
T5-L 5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60
T5-B 32.30/65.97/57.75 90.08/84.52/85.21 83.76/82.62/82.92

Delve-ID (8K)
T5-L 5.55/16.85/18.28 98.16/93.62/95.87 97.23/94.01/95.18
T5-B 31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49

S2orc-ID
T5-L 1.08/10.40/6.05 99.54/96.01/97.69 99.27/95.59/97.32
T5-B 2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01

SAMSum-ID
T5-L 0.60/5.50/0.65 99.87/98.67/99.68 99.87/98.78/98.60
T5-B 0.61/8.44/1.22 99.66/99.21/97.46 99.43/99.00/96.68

CNN/Daily Mail-ID
T5-L 0.00/0.20/0.32 99.99/99.85/99.77 99.99/99.81/99.79
T5-B 0.12/0.82/0.29 99.96/99.62/99.80 99.96/99.56/99.70

decreases, leading to a notable reduction in detec-464

tion FPR. This suggests that domain-specific pre-465

training enhances detection within those domains.466

However, as the pretraining continues, we observed467

an increase in validation loss, indicating potential468

overfitting. Intriguingly, the detection FPR remains469

relatively stable, implying that while overfitting470

may occur during pretraining, it might not signifi-471

cantly impact the detection performance of CODE.472

Attention Layer. In CODE, we input the output473

from the final cross-attention layer into the detec-474

tor. Both T5 and BART architectures consist of475

multiple cross-attention layers, prompting us to in-476

vestigate how the choice of cross-attention layers477

impacts detection performance, as shown in Fig-478

ure 2 (b). Our findings consistently show that the479

lowest FPR at 95% TPR and the highest AUROC480

consistently occur in the cross-attention layer clos-481

est to the final layer, which is adjacent to the output482

layer, across all configurations. Additionally, in483

Figure 2 (b), we observed that the last three layers484

exhibit similar detection FPRs. This indicates that485

performance variation is minimal when selecting486

attention layers near the output.487

Document Similarity. Detection performance488

is notably affected by the degree of similarity be-489

tween irrelevant and relevant documents. Greater490

similarity between them poses a more challeng-491

ing detection task. To quantify this similarity, we492

calculated the average cosine similarity between493

the embeddings of irrelevant and relevant docu-494

ments within a document sequence. Specifically, 495

we employed the Sentence-BERT model (Reimers 496

and Gurevych, 2019) to extract document embed- 497

dings. The formal definition of similarity between 498

irrelevant and relevant documents in dataset C is 499

represented as follows, where H(X) denotes the 500

embedding vector of document X , X irr ⊂ X is the 501

set of irrelevant documents in the input document 502

sequence: 503

sim(C) = 1

|C|
∑
X∈C

[
1

|X irr|(|X | − |X irr|)

∑
X∈X irr

∑
X′∈X\X irr

⟨H(X), H(X ′)⟩
∥H(X)∥2 · ∥H(X ′)∥2


(2) 504

In Figure 2 (c), we depicted dataset similarity 505

and detection performance across various domains 506

using the T5-Large architecture. Our observations 507

show that as irrelevant documents become more 508

similar to relevant ones, the detection of FPR in- 509

creases. This suggests a positive correlation be- 510

tween the similarity of relevant and irrelevant doc- 511

uments and detection errors. Additional results for 512

other architectures can be found in Appendix A.6. 513

Cross-domain Detection. Table 2 presents the 514

detection performance of CODE when relevant and 515

irrelevant documents are from the same dataset do- 516

main. We anticipated this performance consistency 517

even when fine-tuning hyper-parameters of CODE 518

in one domain for detecting irrelevant documents in 519
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（a）Checkpoints （d）Cross-domain（c）In-domain（b）Attention Layer

Figure 2: Performance of CODE under different settings. Results for other settings can be found in Appendix A.4, A.5, A.6
and A.7. (a) Performance of CODE vs. pretraining validation loss under different checkpoints. (b) Performance of CODE
vs. different choice of attention layers. (c) Similarities between relevant and irrelevant documents vs. detection performance.
C1 to C5 represent CNN/Daily Mail, S2orc, SAMSum, Delve (8K) and Delve (1K), respectively. (d) Performance of CODE
vs. different domains. The relevant documents sourced from the Delve domain, and varying irrelevant document domains
represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and S2orc.

another. Table 13, 14 in Appendix A.7.1 report the520

performance of CODE and the baselines in cross-521

domain detection, using hyper-parameters derived522

entirely from the in-domain detection task. Com-523

pared with Table 10, The performance of CODE524

is significantly improved when the domain of ir-525

relevant documents drifts, while the performance526

of the supervised model is significantly reduced.527

For example, under the T5-Large model, when528

the Delve dataset is used as the source of rele-529

vant documents and CNN/Daily Mail is selected as530

the source of out-of-domain irrelevant documents,531

compared with the in-domain detection task, the532

FPR of CODE decreases from 5.8% to 0.1%, while533

the FPR of the supervised model Frozen increases534

from 30.3% to 34.3%. This is because models535

based on fully supervised learning have difficulty536

generalizing to data distributions out of the training537

domain. Figure 2 (d) depicts performance varia-538

tions in diverse cross-domain detection scenarios,539

utilizing the T5-Large. Additional results for other540

pretrained models are in Appendix A.7.2. In Fig-541

ure 2 (d), CODE demonstrates robust performance542

across different domains, although the detection543

FPR increases with the increase of the similarity544

between out-of-domain irrelevant and relevant doc-545

uments, the maximum FPR does not exceed 1.64%.546

7 Discussions547

In this section, we investigate the effectiveness of548

word frequency, cross-attention and in-domain ir-549

relevant documents used in the pretraining phase.550

Effectiveness of Word Frequency Hyper-551

parameter β. Given the richer semantic content in552

bi-gram phrases compared to individual words, we553

use the bi-gram phrases as our primary unit of anal-554

ysis. In CODE, for each word ŷ in summary Ŷ , we555

calculate the average attention scores with words in556

the document X and normalize it by the frequency 557

of ŷ raised to the power β. We select a positive 558

β to accentuate the effects of infrequent bi-grams. 559

Figure 3 (a) showcases how detection error varies 560

with different β values. Optimal results are attained 561

with a positive β, but performance declines if β is 562

too large, suggesting the importance of moderate 563

emphasis on infrequent words. To understand this, 564

we conduct the following experiment. We deter- 565

mine their occurrence in four domains: CNN/Daily 566

Mail, SAMSum, S2orc and Delve, represented as 567

f1(x) to f4(x). The total occurrence of a phrase x 568

is f(x) =
∑

i fi(x). The metric concentration is 569

defined as conc.(x) = maxi fi(x)
f(x) , representing how 570

bi-gram phrases are concentrated among domains. 571

In Figure 3 (b), bi-grams with fewer than five oc- 572

currences are domain-specific, whereas those with 573

more than 128 are domain-agnostic. Emphasizing 574

infrequent bi-grams can enhance irrelevant docu- 575

ment detection since domain-specific phrases differ 576

significantly across domains. Moreover, infrequent 577

bi-grams typically exhibit higher average cross- 578

attentions compared to their frequent counterparts, 579

which may also benefit detection. To see this, let 580

A(x) = 1
|Ŷ |

∑
ŷ∈Ŷ Attα(ŷ, x) represent the mean 581

cross-attention between summary Ŷ and bi-gram 582

x. Figures 3 (c) and (d) display the distribution 583

of A(x) for bi-grams in relevant and irrelevant 584

documents, respectively, across different bi-gram 585

occurrence regimes. We observe higher average 586

cross-attentions on less frequent bi-grams. How- 587

ever, this does not imply that frequent bi-grams are 588

inconsequential in identifying relevant documents. 589

Some, especially those with very high occurrence 590

counts, may also be domain-specific terminologies. 591

For instance, the term “Manchester United" ap- 592

pears 1,552 times but is exclusively found in the 593

7



（a）Hyper-parameter
Sensitivity

（b） Domain Distribution
of Bi-gram

（c）Relevant Bi-gram &
PT with Irrelevant Documents

（d） Irrelevant Bi-gram &
PT with Irrelevant Documents

（f） Irrelevant Bi-gram & PT 
without Irrelevant Documents

（e） Relevant Bi-gram & PT 
without Irrelevant Documents

Figure 3: (a) FPR at a 95% TPR for our method under various hyper-parameters, evaluated on T5-Large and S2orc testset.
Results for other settings can be found in Appendix A.8. (b) Domain distribution of bigrams with different occurrences. Figures
(c) to (f) show bi-gram distributions. Bi-grams are from relevant documents in (c) and (e) and from irrelevant documents in (d)
and (f). GLM is pretrained with irrelevant documents in (c) and (d) and without irrelevant documents in (e) and (f). The x and
y-axis represent the cross-attention A(x) and conditional distribution of A(x) under different occurrences, respectively.

CNN/Daily Mail domain. Overemphasizing β can594

diminish the contribution of these domain-specific595

terminology, potentially degrading performance.596

Hence, this may explain Figure 3 (a) in which as597

β further increases after 0.2, the detection error598

increases.599

Effectiveness of Cross-Attention Hyper-600

parameter α. Comparing Figure 3 (c) and (d),601

we observe that the bi-grams in relevant documents602

tend to have larger average cross-attentions than the603

irrelevant counterparts. To amplify the discrepancy604

between the cross-attentions of irrelevant and rele-605

vant bi-grams, an optimal choice of α is required.606

To see this, given the cross-attention scores of a rel-607

evant bi-gram a1 and an irrelevant bi-gram a2, with608

0 < a2 < a1 < 1, the difference in the powered609

cross-attention scores, aα1 − aα2 , can be maximized610

by selecting α∗ = ln | ln a1|−ln | ln a2|
ln a1−ln a2

> 0. The dif-611

ference escalates when α < α∗ and contracts when612

α > α∗. This observation aligns with Figure 3613

(a), where detection error initially diminishes with614

increasing α up to 0.2, and subsequently rises for615

all β choices.616

Effectiveness of Irrelevant Documents in Pre-617

training. We employed the T5-Large architecture618

for pretraining on the Delve dataset, deliberately ex-619

cluding all in-domain irrelevant documents. Com-620

prehensive pretraining results can be found in Ap-621

pendix A.9.1. Subsequent deployment of CODE on622

this model yielded an 80.45% FPR at 95% TPR on623

the Delve detection dataset. This starkly contrasts624

with the 5.8% FPR achieved when irrelevant docu-625

ments were incorporated during pretraining. To un- 626

derstand the discrepancy in detection performance, 627

we juxtapose the cross-attention distributions from 628

Figure 3 (e) and (f) against those from Figure 3 (c) 629

and (d). Our observations underscore that incorpo- 630

rating irrelevant documents during pretraining can 631

efficaciously diminish the cross-attention scores of 632

irrelevant bi-grams (i.e., comparing Figure 3 (f) to 633

(d)), without impinging on the scores of relevant 634

bi-grams (i.e., comparing Figure 3 (e) to (c)). A 635

more detailed case study can be found in the Ap- 636

pendix A.9.2, where we find that including irrele- 637

vant documents in the pretraining can even improve 638

the attention scores of rare bi-grams in relevant doc- 639

uments, and reduce the scores of rare bi-grams in 640

irrelevant documents and domain-agnostic phrases. 641

8 Conclusions 642

In this paper, we reveal the intrinsic ability of 643

text summarizers for irrelevant document detec- 644

tion. By exploiting the cross-attention mechanism 645

and unique behaviors of infrequent words, we in- 646

troduced CODE, a novel and efficient irrelevant 647

document detector. Experimental results validate 648

the superiority of CODE over the traditional su- 649

pervised fine-tuning methods under in-domain and 650

cross-domain detection. Our findings illuminate 651

the potential of harnessing cross-attention distribu- 652

tion, word frequency nuances and the strategic use 653

of in-domain irrelevant documents in the pretrain- 654

ing phase, setting a promising direction for future 655

advancements in the RAG. 656
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Limitations657

Although the cross-attention mechanism in gener-658

ative models based on the encoder-decoder archi-659

tecture can be used to construct well-performing660

irrelevant document detectors, it remains to be fur-661

ther explored whether the self-attention mechanism662

within generative models based on the decoder-663

only architecture can be used to construct efficient664

irrelevant document detectors. Additionally, due665

to the input sequence length limitations of models666

such as BART and T5, the performance of irrele-667

vant document detection among a larger number of668

documents still requires further investigation.669
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A Appendix 861

A.1 Supplementary Materials for Datasets 862

A.1.1 Detailed Construction Method of Each 863

Pretraining Dataset 864

In this subsection, we introduce the construction 865

details of pretraining datasets CNN/Daily Mail-PT, 866

SAMSum-PT, Delve-PT, and S2orc-PT in detail. 867

CNN/Daily Mail-PT. For the limitation of 868

model input length, we use samples whose source 869

document length is less than five hundred words 870

as samples to be injected. We split the source doc- 871

ument in these samples into two relevant chunks. 872
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Table 3: Additional statistics of the pretraining datasets with in-domain irrelevant document.

# Examples # Words
(single)

# Words
(all)

CNN/Daily Mail-PT
Relevant Document 105,178 avg: 204.39, std: 69.37 231,462
Irrelevant Document 97,042 avg: 243.56, std: 17.56 255,975

Summary 52,459 avg: 47.78, std: 21.13 85,486

SAMSum-PT
Relevant Document 8,105 avg: 60.81, std: 47.47 16,947
Irrelevant Document 5,186 avg: 62.26, std: 49.60 13,423

Summary 4,092 avg: 23.53, std: 12.75 8,731

Delve-PT
Relevant Document 14,261 avg: 170.81, std: 86.63 52,318
Irrelevant Document 20,000 avg: 175.66, std: 114.74 73,732

Summary 10,000 avg: 30.82, std: 15.71 19,667

S2orc-PT
Relevant Document 37,589 avg: 221.39, std: 178.00 113,254
Irrelevant Document 48,000 avg: 213.80, std: 167.73 135,606

Summary 24,000 avg: 34.72, std: 18.64 42,019

Table 4: Additional statistics of the in-domain irrelevant document detection datasets.

Document # Examples # Words
(single)

# Words
(all)

CNN/Daily Mail-ID Relevant 49,557 avg: 197.94, std: 68.93 148,119
Irrelevant 48,664 avg: 243.48, std: 17.74 176,268

SAMSum-ID Relevant 8,117 avg: 61.08, std: 48.22 16,982
Irrelevant 5,177 avg: 63.62, std: 50.53 13,890

Delve-ID Relevant 14,839 avg: 170.26, std: 81.93 53,356
Irrelevant 20,200 avg: 175.56, std: 97.47 74,912

S2orc-ID Relevant 7,767 avg: 221.15, std: 189.84 48,232
Irrelevant 8,400 avg: 212.79, std: 165.08 53,936

We split the source documents in the remaining873

samples into multiple chunks and collected them874

as candidate irrelevant chunks. For each sample875

to be injected, we randomly select two irrelevant876

chunks to insert.877

SAMSum-PT. We divide the dataset into two878

parts at a ratio of 1:1, one part is prepared to be879

injected and the other part is used to provide irrel-880

evant chunks. For the samples to be inserted, we881

also split the source document into two relevant882

chunks. We split the input document in another883

part of the samples into two chunks. We collect884

these chunks as candidate irrelevant chunks. For885

each sample to be injected, we randomly select two886

irrelevant chunks for insertion.887

Delve-PT and S2orc-PT. We view the citation888

markers in the summaries to find relevant abstracts889

and irrelevant abstracts. Specifically, we select 890

summaries with at least two citation markers. We 891

randomly select two markers when a summary con- 892

tains multiple citation markers. Next, for each cita- 893

tion marker in a summary, we find the correspond- 894

ing paper abstracts as relevant documents. To get 895

irrelevant abstracts, we use Microsoft Academic 896

Graph (MAG) (Shen et al., 2018) to determine the 897

academic fields where the abstract belongs. For 898

each abstract, MAG directly provides their aca- 899

demic fields in a hierarchical manner with a pro- 900

gressively finer granularity from L0 to L5. To get 901

the irrelevant abstracts, under L3 and more specific 902

sub-fields, we select abstracts whose fields do not 903

intersect with relevant abstracts. We also insert two 904

relevant abstracts into each sample. 905
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Table 5: Additional statistics of the cross-domain irrelevant document detection test sets. A← B means sampling
the irrelevant documents from dataset B and inserting them into dataset A.

Document # Examples # Words
(single)

# Words
(all)

CNN/Daily Mail←
SAMSum

Relevant 4,978 avg: 198.13, std: 69.76 44,682
Irrelevant 517 avg: 62.05, std: 47.90 3,631

CNN/Daily Mail←
Delve

Relevant 4,978 avg: 198.13, std: 69.76 44,682
Irrelevant 1,839 avg: 174.39, std: 99.39 19,185

CNN/Daily Mail←
S2orc

Relevant 4,978 avg: 198.13, std: 69.76 44,682
Irrelevant 2,838 avg: 212.56, std: 159.84 30,116

CNN/Daily Mail←
Random domain

Relevant 4,978 avg: 198.13, std: 69.76 44,682
Irrelevant 3,953 avg: 151.77, std: 29.58 269,393

SAMSum←
CNN/Daily Mail

Relevant 816 avg: 61.76, std: 46.67 4,582
Irrelevant 765 avg: 244.36, std: 17.01 19,270

SAMSum←
Delve

Relevant 816 avg: 61.76, std: 46.67 4,582
Irrelevant 672 avg: 169.83, std: 88.16 10,658

SAMSum←
S2orc

Relevant 816 avg: 61.76, std: 46.67 4,582
Irrelevant 725 avg: 223.35, std: 186.49 15,135

SAMSum←
Random domain

Relevant 816 avg: 61.76, std: 46.67 4,582
Irrelevant 791 avg: 151.19, std: 29.43 97,565

Delve←
CNN/Daily Mail

Relevant 1,898 avg: 165.48, std: 74.64 15,953
Irrelevant 1,640 avg: 243.86, std: 18.04 29,370

Delve←
SAMSum

Relevant 1,898 avg: 165.48, std: 74.64 15,953
Irrelevant 507 avg: 61.97, std: 48.11 3,605

Delve←
S2orc

Relevant 1,898 avg: 165.48, std: 74.64 15,953
Irrelevant 1,570 avg: 207.44, std: 140.61 21,830

Delve←
Random domain

Relevant 1,898 avg: 165.48, std: 74.64 15,953
Irrelevant 1,796 avg: 151.53, std: 29.23 178,605

S2orc←
CNN/Daily Mail

Relevant 3,829 avg: 224.92, std: 209.54 33,485
Irrelevant 2,742 avg: 243.69, std: 17.40 38,990

S2orc←
SAMSum

Relevant 3,829 avg: 224.92, std: 209.54 33,485
Irrelevant 517 avg: 62.05, std: 47.90 3,631

S2orc←
Delve

Relevant 3,829 avg: 224.92, std: 209.54 33,485
Irrelevant 18,382 avg: 173.56, std: 100.11 18,382

S2orc←
Random domain

Relevant 3,829 avg: 224.92, std: 209.54 33,485
Irrelevant 3,246 avg: 150.81, std: 29.44 247,530

A.1.2 Additional Dataset Statistics906

In this subsection, we report the statistics of the907

pretraining datasets, the in-domain irrelevant doc-908

ument detection dataset, and the test sets of cross-909

domain irrelevant document detection. These statis-910

tics are presented in Tables 3, 4 and 5, respectively.911

A.2 Supplementary Materials for 912

Experimental Setups 913

A.2.1 Pretraining Setups 914

In this subsection, we report the pretraining hyper- 915

parameter settings in Table 6. 916
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Table 6: Pretraining settings of the GLMs. Characters “B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100 machine. We set warm-up steps to 200 and employ a linear
learning rate scheduler.

Datasets Models Learning rate # Epochs Batch size

CNN/Daily Mail-PT
BART-B 0.00003 15 8
BART-L 0.00003 15 4

SAMSum-PT
BART-B 0.00003 15 8
BART-L 0.00003 15 4

Delve-PT
BART-B 0.00003 15 16
BART-L 0.00003 15 8

S2orc-PT
BART-B 0.00003 15 8
BART-L 0.00003 15 8

CNN/Daily Mail-PT
T5-B 0.0002 15 6
T5-L 0.0001 15 6

SAMSum-PT
T5-B 0.0002 15 6
T5-L 0.0001 15 6

Delve-PT
T5-B 0.0002 15 6
T5-L 0.0001 15 6

S2orc-PT
T5-B 0.0002 15 12
T5-L 0.0001 15 6

Table 7: Performance of the pretrained models

Datasets Models ROUGE-1 ROUGE-2 ROUGE-L

Delve-PT

T5-L 19.3443 3.3781 14.4185
T5-B 17.5721 2.8855 13.4359

BART-L 18.0474 2.7043 13.6427
BART-B 18.3348 2.8605 13.9695

S2orc-PT

T5-L 20.4524 3.9853 15.1929
T5-B 19.9058 3.6515 14.7904

BART-L 20.7972 3.7129 15.4441
BART-B 19.9070 3.4996 14.8250

SAMSum-PT

T5-L 44.3738 21.7557 38.7138
T5-B 43.1620 20.6720 38.6918

BART-L 50.4676 25.7701 41.8661
BART-B 44.9713 20.4162 36.2211

CNN/Daily Mail-PT

T5-L 35.5728 12.0295 25.0173
T5-B 33.7640 14.7571 23.3762

BART-L 41.8007 20.1378 30.1265
BART-B 41.4113 19.7040 29.7622

A.2.2 Performance of the Pretrained Models917

In this subsection, we show the performance of918

text summarization on each dataset and pretrained919

model in Table 7. We use ROUGE 3 to evaluate the 920

3https://github.com/google-research/
google-research/tree/master/rouge
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Table 8: Epochs and batch size of the Frozen. Characters
“B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100
machine.

Datasets Models # Epochs Batch
size

CNN/Daily Mail-ID BART-B 40 64
BART-L 40 64

SAMSum-ID BART-B 40 64
BART-L 40 64

Delve-ID (1K) BART-B 40 64
BART-L 40 64

Delve-ID (8K) BART-B 40 64
BART-L 40 64

S2orc-ID BART-B 40 64
BART-L 40 64

CNN/Daily Mail-ID T5-B 40 64
T5-L 40 64

SAMSum-ID T5-B 40 64
T5-L 40 64

Delve-ID (1K) T5-B 40 64
T5-L 40 64

Delve-ID (8K) T5-B 40 64
T5-L 40 64

S2orc-ID T5-B 40 64
T5-L 40 64

quality of text summarization and performance of921

all pretrained models.922

Additionally, the metrics used in this section are923

as follows:924

• ROUGE-1 measures the overlap of unigrams925

between the reference and the generated sum-926

mary.927

• ROUGE-2 extends the concept of ROUGE-1928

to bigrams, measuring the overlap of consecu-929

tive pairs of words between the reference and930

the generated summary.931

• ROUGE-L calculates the longest common932

subsequence between the reference and the933

generated summary.934

We also note here that on the CNN/Daily Mail935

dataset, the reference (Lewis et al., 2019) reports936

44.16, 21.28, and 40.90 on the BART model, and937

the reference (Raffel et al., 2020) reports 43.52,938

21.55 and 40.69 on T5 model, respectively. Our939

pretrained model generally has worse performance,940

since (1) we add the irrelevant documents in the941

pretrained phrase; (2) For each original dataset, a942

Table 9: Epochs and batch size of FT-ALL. Characters
“B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100
machine.

Datasets Models # Epochs Batch
size

CNN/Daily Mail BART-B 10 8
BART-L 10 8

SAMSum-ID BART-B 10 8
BART-L 10 8

Delve-ID (1K) BART-B 10 8
BART-L 10 8

Delve-ID (8K) BART-B 10 8
BART-L 10 8

S2orc-ID BART-B 10 8
BART-L 10 8

CNN/Daily Mail-ID T5-B 10 8
T5-L 10 8

SAMSum-ID T5-B 10 8
T5-L 10 8

Delve-ID (1K) T5-B 10 4
T5-L 10 4

Delve-ID (8K) T5-B 10 4
T5-L 10 4

S2orc-ID T5-B 10 4
T5-L 10 4

portion is used to construct the irrelevant document 943

detection dataset. Therefore, the total amount of 944

pretraining data is smaller than the original dataset, 945

which may lead to a worse performance of text 946

summarization. Although the performance of our 947

pretraining model is worse, this does not affect the 948

effectiveness of irrelevant document detection. 949

A.2.3 Training Setups of the Baselines 950

In this subsection, we report the training settings 951

of the Frozen and FT-ALL. Table 8 and Table 9 952

present the training epochs and batch sizes. 953

Frozen. We use the AdamW optimizer with 954

exponential decay rates for the first and second mo- 955

ments of the gradient updates setting to 0.9 and 956

0.999, respectively. We choose a constant learn- 957

ing rate scheduler with a warm-up period of 200 958

steps. The learning rates are selected from the set 959

{10−6, 10−5, 10−4, 10−3}. The weight decay pa- 960

rameter is configured to be 0.0001. For each hyper- 961

parameter setting, we run three times with different 962

random seeds. In the main paper, we report the 963

mean value of the results, while the standard de- 964

viations are presented in Table 11. We select the 965

model with the lowest validation loss for testing in 966

14



Table 10: Evaluation results of CODE and baselines for in-domain irrelevant document detection. ↑ indicates that
larger values are better, and ↓ indicates that smaller values are better. Characters “B" and “L" denote the Base and
Large model, respectively.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

Delve-ID (1K)

T5-L 5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60
T5-B 32.30/65.97/57.75 90.08/84.52/85.21 83.76/82.62/82.92

BART-L 11.10/43.02/44.45 96.09/91.23/91.84 93.41/90.08/90.47
BART-B 19.65/49.27/53.02 91.60/90.62/90.99 93.66/90.23/90.61

Delve-ID (8K)

T5-L 5.55/16.85/18.28 98.16/93.62/95.87 97.23/94.01/95.18
T5-B 31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49

BART-L 11.10/33.52/33.45 96.09/93.17/92.75 93.41/92.96/91.61
BART-B 20.30/45.40/38.00 94.79/90.66/92.04 91.30/89.98/90.95

S2orc-ID

T5-L 1.08/10.40/6.05 99.54/96.01/97.69 99.27/95.59/97.32
T5-B 2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01

BART-L 4.83/16.18/9.47 98.66/96.03/96.77 98.11/95.45/96.15
BART-B 3.00/6.94/5.07 98.72/97.91/97.71 97.56/97.55/97.26

SAMSum-ID

T5-L 0.60/5.50/0.65 99.87/98.67/99.68 99.87/98.78/98.60
T5-B 0.61/8.44/1.22 99.66/99.21/97.46 99.43/99.00/96.68

BART-L 0.91/0.65/0.28 99.43/99.70/99.77 99.37/99.67/99.77
BART-B 2.26/3.83/3.67 97.23/99.15/97.83 94.61/99.18/97.83

CNN/Daily Mail-ID

T5-L 0.00/0.20/0.32 99.99/99.85/99.77 99.99/99.81/99.79
T5-B 0.12/0.82/0.29 99.96/99.62/99.80 99.96/99.56/99.70

BART-L 0.14/0.57/0.44 99.71/99.69/99.78 99.60/99.73/99.75
BART-B 0.18/0.23/0.33 99.89/99.87/99.86 99.83/99.86/99.86

irrelevant document detection.967

FT-ALL. We utilize the same hyper-parameter968

setting used in the baseline Frozen, except that969

the learning rate is set to the one used in the sum-970

marizer pretraining. We repeat this baseline three971

times with different random seeds.972

A.3 Supplementary Results in In-domain973

Irrelevant Document Detection974

In this section, we present all evaluation results of975

in-domain detection to show the improvement of976

our method compared to the baselines. Table 10977

shows the performance of our proposed method978

and two baselines under each dataset. The details979

of our method and the baselines can be found in980

section 4. We note here that our method is deter-981

ministic and does not have an error bar. The other982

two baselines are randomly re-initialized with three983

different seeds. We take the average of the results984

as the final performance and calculate the standard985

deviation. Table 11 provides the standard devia- 986

tion for different models. Table 12 provides the 987

hyper-parameters α and β of CODE are used in the 988

evaluation process. 989

The evaluation metrics used in section 6 are as 990

follows: 991

• FPR at 95% TPR refers to the rate that a rele- 992

vant document is misclassified as an irrelevant 993

document when the true positive rate (TPR) is 994

at 95%. 995

• AUROC is calculated as the Area Un- 996

der the Receiver Operating Characteristic 997

curve (Fawcett, 2006). The ROC curve illus- 998

trates the relationship between TPR and FPR 999

at various thresholds. The higher the value 1000

of AUROC, the stronger the discriminative 1001

ability of the model. 1002

• AUPR stands for Area Under the Precision- 1003
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Table 11: Standard deviation of the evaluation results.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT

Delve (1K)

T5-L 0.00 /0.94/1.34 0.00/0.21/0.91 0.00/0.16/0.76
T5-B 0.00/1.53/7.42 0.00/0.20/9.83 0.00/0.16/12.46

BART-L 0.00/1.17/2.49 0.00/0.19/0.39 0.00/0.20/0.40
BART-B 0.00/1.42/0.34 0.00/0.13/0.06 0.00/0.21/0.10

Delve (8K)

T5-L 0.00/0.62/1.05 0.00/0.09/0.08 0.00/0.11/0.34
T5-B 0.00/1.08/0.55 0.00/0.13/1.12 0.00/0.15/0.92

BART-L 0.00/0.98/2.45 0.00/0.02/0.24 0.00/0.03/0.40
BART-B 0.00/1.18/0.76 0.00/0.45/0.20 0.00/0.62/0.34

S2orc

T5-L 0.00/0.35/0.31 0.00/0.27/0.93 0.00/0.33/0.86
T5-B 0.00/0.48/0.35 0.00/0.11/3.02 0.00/0.48/4.93

BART-L 0.00/0.01/1.04 0.00/0.01/0.11 0.00/0.01/0.13
BART-B 0.00/0.23/0.25 0.00/0.01/0.25 0.00/0.01/0.64

SAMSum

T5-L 0.00/0.46/0.24 0.00/0.03/0.01 0.00/0.04/0.02
T5-B 0.00/0.43/0.32 0.00/0.02/0.01 0.00/0.03/0.03

BART-L 0.00/0.11/0.06 0.00/0.01/0.02 0.00/0.01/0.01
BART-B 0.00/0.12/0.46 0.00/0.05/0.05 0.00/0.06/0.21

CNN/Daily Mail

T5-L 0.00/0.01/0.00 0.00/0.00/0.00 0.00/0.02/0.00
T5-B 0.00/0.01/0.01 0.00/0.01/0.00 0.00/0.00/0.01

BART-L 0.00/0.06/0.10 0.00/0.01/0.02 0.00/0.01/0.01
BART-B 0.00/0.02/0.46 0.00/0.01/0.05 0.00/0.01/0.21

Table 12: The hyper-parameters α and β of CODE are used in the main results. Characters “B" and “L" denote the
model size of Base and Large, respectively.

BART-B BART-L T5-B T5-L

α, β

CNN/Daily Mail-ID 0.2, 0.0 0.2, 0.3 0.2, 0.1 0.2, 0.1
SAMSum-ID 0.2, 0.0 0.2, 0.0 0.4, 0.2 0.4, 0.4

Delve-ID (1K) 1.2, 0.2 0.2, 0.1 1.2, 0.0 0.2, 0.0
Delve-ID (8K) 0.8, 0.0 1.0, 0.1 1.0, 0.2 0.6, 0.1

S2orc-ID 0.6, 0.1 1.0, 0.1 0.6, 0.0 0.4, 0.0

Recall curve (Manning and Schutze, 1999;1004

Saito and Rehmsmeier, 2015). The PR curve1005

depicts the trade-off between precision and1006

recall at various thresholds. For an ideal clas-1007

sifier, its AUPR score is 1.1008

A.4 Performance vs. Pretrained Model1009

Checkpoints1010

1011

In this section, we show how the selection of1012

checkpoints of the pretrained model affects the de-1013

tection performance of our method. Specifically, 1014

we present the relationship between the validation 1015

loss for each checkpoint on the pretrained dataset 1016

and their in-domain irrelevant document detection 1017

performance. Each figure in this section displays 1018

the validation loss and FPR at 95% TPR metric of 1019

each dataset and model at different checkpoints. 1020

We find out that the pretrained model with the 1021

smallest validation loss is generally not the pre- 1022

trained model with the best detection performance, 1023

but the detection performance difference between 1024
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(c) BART-L
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(d) BART-B
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Figure 4: Performance vs. Checkpoints on Delve-ID (1K)
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(b) T5-B
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(c) BART-L
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(d) BART-B
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Figure 5: Performance vs. Checkpoints on Delve-ID (8K).
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(b) T5-B
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(c) BART-L

0 3 6 9 12 15
Checkpoint Index

0

20

40

60

80

100

F
P

R
at

95
%

T
P

R
(%

)

0

1

2

3

4

5

6

V
al

id
at

io
n

lo
ss

(d) BART-B
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Figure 6: Performance vs. Checkpoints on S2orc-ID
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(b) T5-B
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(c) BART-L
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(d) BART-B
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Figure 7: Performance vs. Checkpoints on SAMSum-ID
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(c) BART-L
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(d) BART-B
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Figure 8: Performance vs. Checkpoints on CNN/Daily Mail-ID
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the pretrained model with the smallest validation1025

loss and the pretrained model with the best irrele-1026

vant document detection performance is negligible.1027

The correspondence between the figures and the1028

setting is as follows:1029

• Figure 4: performance on Delve-ID (1K)1030

dataset and four models.1031

• Figure 5: performance on Delve-ID (8K)1032

dataset and four models.1033

• Figure 6: performance on S2orc-ID dataset1034

and four models.1035

• Figure 7: performance on SAMSum-ID1036

dataset and four models.1037

• Figure 8: performance on CNN/Daily Mail-1038

ID dataset and four models.1039

A.5 Performance vs. Pretrained Model1040

Attention Layers1041

1042

In this section, we show how different attention1043

layers affect the irrelevant document detection per-1044

formance of our method. Specifically, we present1045

the relationship between the attention layer and1046

two evaluation metrics of irrelevant document de-1047

tection. Each figure in this section displays FPR1048

at 95% TPR and AUROC of our method on each1049

dataset and model when different attention layers1050

are selected. We observe that the lowest FPR at1051

95% TPR and the highest AUROC occur in the at-1052

tention layer close to the last layer (the layer closest1053

to the output layer) for most types of models and1054

datasets, except BART-base, which contains only1055

six attention layers. In fact, we can also observe1056

that the last three layers have similar performance1057

and this indicates that the performance varies small1058

if the attention layers close to the output layer are1059

selected.1060

The correspondence between the figures and the1061

setting is as follows:1062

• Figure 9: performance on Delve-ID (1K)1063

dataset and each model.1064

• Figure 10: performance on Delve-ID (8K)1065

dataset and each model.1066

• Figure 11: performance on S2orc-ID dataset1067

and each model.1068

• Figure 12: performance on SAMSum-ID1069

dataset and each model.1070

• Figure 13: performance on CNN/Daily Mail- 1071

ID dataset and each model. 1072

A.6 Performance vs. In-domain Irrelevant 1073

Detection Difficulty 1074

In this section, we show how different dataset af- 1075

fects the in-domain irrelevant document detection 1076

performance of our method. We present the re- 1077

lationship between the dataset similarity and two 1078

evaluation metrics of irrelevant document detection. 1079

Figure 14 displays how FPR at 95% TPR changes 1080

with the improvement of dataset similarity, while 1081

Figure 15 displays how AUROC changes with the 1082

improvement of dataset difficulty. C1 to C5 repre- 1083

sent CNN/Daily Mail-ID, S2orc-ID, SAMSum-ID, 1084

Delve-ID (8K), and Delve-ID (1K), respectively. 1085

To measure the similarity of the dataset, we use 1086

the Sentence-BERT model to obtain the embed- 1087

ding of input documents and calculate the average 1088

cosine similarity between the embedding of rele- 1089

vant and irrelevant documents within a single data 1090

sample. Specifically, each data sample contains 1091

two relevant documents and two irrelevant doc- 1092

uments. For each document X in the dataset C, 1093

we use H(X) to denote the embedding vector of 1094

document X , X irr ⊂ X is the set of irrelevant doc- 1095

uments in the input document sequence. Therefore, 1096

the difficulty of the dataset C is defined as: 1097

sim(C) = 1

|C|
∑
X∈C

[
1

|X irr|(|X | − |X irr|)

∑
X∈X irr

∑
X′∈X\X irr

⟨H(X), H(X ′)⟩
∥H(X)∥2 · ∥H(X ′)∥2

 1098

The higher the cosine similarity, the smaller the 1099

difference between relevant and irrelevant docu- 1100

ments in the dataset, indicating it is harder to detect 1101

irrelevant documents on this dataset. We observe 1102

that when the relevant and irrelevant documents 1103

in the dataset tend to be less similar to each other 1104

(i.e., the similarity of the dataset is smaller), our 1105

method tends to have a smaller FPR at 95% TPR 1106

and a larger AUROC. 1107
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Figure 9: Performance vs. Attention Layers on Delve-ID (1K)
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Figure 10: Performance vs. Attention Layers on Delve-ID (8K)
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Figure 11: Performance vs. Attention Layers on S2orc-ID
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Figure 12: Performance vs. Attention Layers on SAMSum-ID
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Figure 13: Performance vs. Attention Layers on CNN/Daily Mail-ID
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Figure 14: FPR at 95% TPR vs. sim(C) in in-domain irrelevant document detection.
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Figure 15: AUROC vs. sim(C) in in-domain irrelevant document detection.

A.7 Performance vs. Cross-domain Irrelevant1108

Detection1109

1110

In this section, we show how our method trans-1111

fers across different domains. Recall that we pre-1112

train the generative language model, find the best1113

hyper-parameter setting, and test the detection per-1114

formance on the same domain. We hope that1115

this pretrained model together with the best hyper-1116

parameter setting can also transfer to other domains.1117

Therefore, we constructed cross-domain test sets1118

to evaluate the cross-domain performance. The1119

details of the cross-domain dataset can be found1120

in section 5.3, A.1.2, and we use equation (2) to1121

measure the difficulty of cross-domain datasets.1122

A.7.1 Results of Cross-domain Irrelevant1123

Detection1124

Table 13 and Table 14 show the performance of1125

our proposed method and two baselines under each1126

dataset in cross-domain detection. Table 15 and Ta-1127

ble 16 provides the standard deviation for different1128

models.1129

A.7.2 Performance vs. Cross-domain1130

Irrelevant Detection Difficulty1131

We present the relationship between cross-domain1132

dataset similarity and two evaluation metrics of the1133

irrelevant document detection. Figure 16, 17, 18,1134

19 display FPR at 95% TPR, while Figure 20, 21,1135

22, 23 display AUROC on each model and dataset.1136

From the figures, we observe that for most set- 1137

tings, FPR at 95% TPR decreases, and AUROC 1138

increases as the similarity of the dataset increases, 1139

except for one case. In Figure 17d, we observe al- 1140

though the S2orc← Random domain has a smaller 1141

difficulty, FPR is two times larger than that of S2orc 1142

←Delve domain. The performance on the AUROC 1143

metric is also worse than that of S2orc ← Delve 1144

domain in Figure 21d. We generally observe this 1145

on the smaller model, i.e., BART-Base, consisting 1146

of nearly 140M parameters. On the larger model, 1147

we do not observe this. This may be due to the 1148

fact that the large model models tend to perform 1149

better for cross-domain data. We also observe that 1150

T5 model generally performs better than BART on 1151

most cross-domain datasets. We also observe that 1152

the larger models yield better performance for both 1153

BART and T5. 1154

20



Table 13: Evaluation results of CODE and baselines for cross-domain irrelevant document detection. A← B means
sampling the irrelevant documents from dataset B and inserting them into dataset A. ↑ indicates that larger values
are better, and ↓ indicates that smaller values are better. Characters “B" and “L" denote the Base and Large model,
respectively.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

Delve←
S2orc

T5-L 1.65/27.13/8.12 99.55/95.39/97.95 99.52/96.05/98.38
T5-B 4.75/38.58/35.67 98.74/93.87/94.01 98.25/94.84/94.96

BART-L 3.00/22.05/41.87 99.11/96.39/95.29 98.85/96.80/96.75
BART-B 5.45/30.82/42.57 98.36/95.30/94.67 97.73/96.13/95.45

Delve←
Random domain

T5-L 0.10/58.27/10.63 99.96/89.92/97.63 99.96/91.91/97.70
T5-B 0.00/5.03/64.29 99.99/98.60/89.81 99.99/98.93/92.49

BART-L 0.00/52.00/37.63 99.99/92.67/95.71 99.99/93.86/97.04
BART-B 2.60/54.80/33.62 99.23/91.92/96.35 99.18/93.95/97.29

Delve←
SAMSum

T5-L 0.05/67.70/7.60 99.95/81.50/98.19 99.95/82.18/98.58
T5-B 0.00/83.35/70.08 99.93/83.87/89.22 99.94/87.37/92.30

BART-L 0.00/58.30/45.07 99.99/88.56/95.08 99.99/89.52/96.68
BART-B 0.10/69.13/39.52 99.96/84.59/95.72 99.96/86.17/96.92

Delve←
CNN/Daily Mail

T5-L 0.10/34.30/10.03 99.92/93.87/97.46 99.92/94.77/97.46
T5-B 0.10/59.85/64.34 99.88/90.99/90.32 99.89/93.01/92.97

BART-L 0.50/53.40/35.82 99.83/88.63/95.98 99.81/89.13/97.19
BART-B 2.80/42.77/37.05 99.25/92.87/96.01 99.12/94.10/97.11

S2orc←
Delve

T5-L 1.10/31.42/1.75 99.71/94.04/98.93 99.71/94.53/99.02
T5-B 1.70/19.69/7.91 99.47/96.60/97.85 99.34/97.13/98.12

BART-L 4.47/18.85/3.55 98.25/95.90/98.17 97.47/95.49/98.23
BART-B 4.20/11.78/2.36 98.79/97.90/98.50 98.67/98.23/98.73

S2orc←
Random domain

T5-L 0.00/17.03/0.70 99.99/97.10/98.83 99.99/97.59/99.20
T5-B 0.00/2.50/11.57 99.99/99.02/97.41 99.99/99.26/97.80

BART-L 0.30/7.65/4.39 99.93/98.09/97.96 99.93/98.59/98.10
BART-B 2.35/16.97/2.07 98.13/96.97/98.49 98.32/97.86/98.74

S2orc←
SAMSum

T5-L 0.22/14.66/1.12 99.89/97.14/99.04 99.90/97.24/99.14
T5-B 0.30/15.97/9.91 99.78/97.15/97.51 99.82/97.73/97.78

BART-L 0.05/3.15/0.68 99.98/99.19/98.78 99.98/99.31/99.14
BART-B 0.22/7.74/0.62 99.87/98.47/98.80 99.89/98.72/ 99.16

S2orc←
CNN/Daily Mail

T5-L 0.05/6.08/1.44 99.97/98.61/98.95 99.97/98.73/99.02
T5-B 0.22/16.24 /3.37 99.86/97.00/98.53 99.88/97.48/98.90

BART-L 0.43/6.20/0.84 99.84/98.54/98.81 99.75/98.72/99.15
BART-B 0.40/4.04/0.71 99.70/98.93/98.98 99.61/99.12/99.22
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Table 14: Continuation of Table 13.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

SAMSum←
Delve

T5-L 0.00/0.24/0.18 99.98/99.74/99.58 99.98/99.79/99.68
T5-B 1.22/15.08/2.03 99.77/97.38/99.28 99.76/97.55/99.36

BART-L 0.00/9.58/1.85 99.99/98.02/98.93 99.99/98.25/99.08
BART-B 0.37/0.41/1.81 99.82/99.45/98.29 99.81/99.56/98.63

SAMSum←
S2orc

T5-L 0.00/0.04/0.42 99.99/99.79/99.62 99.99/99.83/99.64
T5-B 0.61/7.74/2.34 99.86/98.49/99.21 99.86/98.54/99.30

BART-L 0.00/21.84/0.85 99.99/96.16/99.34 99.99/96.50/99.45
BART-B 0.37/0.65/1.52 99.91/99.29/98.49 99.90/99.44/98.84

SAMSum←
Random domain

T5-L 0.00/0.86/0.30 99.99/99.59/99.68 99.99/99.67/99.74
T5-B 0.00/0.20/2.84 99.99/99.84/99.08 99.99/99.88/99.25

BART-L 0.00/5.34/3.67 99.99/98.67/98.28 99.99/98.94/ 98.49
BART-B 0.49/12.67/1.66 99.83/96.47/98.50 99.83/97.82/98.80

SAMSum←
CNN/Daily Mail

T5-L 0.00/1.75 /0.18 99.99/99.45/99.68 99.99/99.54/99.73
T5-B 0.73/3.42/3.30 99.88/99.19/99.27 99.88/99.27/99.35

BART-L 0.00/10.35/1.32 99.99/97.96/99.12 99.99/98.11/99.26
BART-B 1.59/1.96/1.30 99.48/98.20/98.50 99.32/98.78/99.02

CNN/Daily Mail
← Delve

T5-L 0.02/0.33/1.35 99.99/99.79/99.23 99.99/99.83/98.91
T5-B 0.02/3.79/23.15 99.99/99.09/83.10 99.99/99.21/71.82

BART-L 0.00/27.87/ 73.88 99.99/88.16/60.47 99.99/82.24/59.74
BART-B 0.44/23.67/25.92 99.86/88.75/79.19 99.87/85.69/67.94

CNN/Daily Mail
← S2orc

T5-L 0.02/0.37/2.12 99.99/99.79/98.94 99.99/99.82/98.39
T5-B 0.02/5.17/9.64 99.99/98.96/93.28 99.99/99.08/86.11

BART-L 0.02/23.23/63.04 99.99/86.37/65.03 99.99/75.31/60.56
BART-B 0.12/21.50/33.20 99.95/87.56/73.51 99.95/81.92/63.02

CNN/Daily Mail
← Random domain

T5-L 0.00/ 0.09/1.60 99.99/99.67/99.11 99.99/99.75/98.72
T5-B 0.00/16.51/6.48 99.99/97.28/95.40 99.99/98.03/90.04

BART-L 0.00/1.49/42.90 99.99/99.15/76.33 99.99/99.26/69.34
BART-B 0.08/0.00/1.03 99.93/99.86/99.58 99.94/99.91/99.58

CNN/Daily Mail
← SAMSum

T5-L 0.02/7.98/2.82 99.99/98.47/98.64 99.99/98.78/97.92
T5-B 0.50/31.29/23.66 99.87/94.70/82.24 99.87/95.01/70.68

BART-L 0.04/89.86/45.17 99.98/24.85/ 71.64 99.97/35.63/62.37
BART-B 3.40/84.68/46.20 99.28/46.40/ 64.11 99.35/51.05/56.21
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Table 15: Standard deviation of the evaluation results.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

Delve←
S2orc

T5-L 0.00/1.64/1.40 0.00/0.25/0.33 0.00/0.19/0.23
T5-B 0.00/1.41/4.03 0.00/0.12/0.55 0.00/0.06/0.31

BART-L 0.00/1.82/4.17 0.00/0.12/0.45 0.00/0.23/0.27
BART-B 0.00/2.29/2.23 0.00/0.26/0.41 0.00/0.17/0.35

Delve←
Random domain

T5-L 0.00/4.78/4.39 0.00/1.02/0.48 0.00/0.78/0.42
T5-B 0.00/2.49/1.41 0.00/0.44/0.82 0.00/0.33/0.62

BART-L 0.00/4.21/4.14 0.00/1.21/0.39 0.00/1.09/0.25
BART-B 0.00/5.74/3.27 0.00/1.10/0.46 0.00/0.81/0.35

Delve←
SAMSum

T5-L 0.00/3.86/2.09 0.00/1.18/0.32 0.00/0.47/0.22
T5-B 0.00/4.47/2.70 0.00/2.49/1.39 0.00/2.26/1.04

BART-L 0.00/2.46/3.81 0.00/1.99/0.47 0.00/1.32/0.31
BART-B 0.00/1.16/3.89 0.00/1.05/0.58 0.00/1.36/0.42

Delve←
CNN/Daily Mail

T5-L 0.00/4.53/1.57 0.00/0.80/0.32 0.00/0.62/0.47
T5-B 0.00/6.95/2.16 0.00/1.29/1.03 0.00/1.19/0.80

BART-L 0.00/5.12/4.80 0.00/1.47/0.47 0.00/1.28/0.31
BART-B 0.00/5.06/1.56 0.00/1.15/0.31 0.00/0.93/0.28

S2orc←
Delve

T5-L 0.00/1.19/0.16 0.00/0.39/0.19 0.00/0.38/0.17
T5-B 0.00/3.73/1.30 0.00/0.51/0.23 0.00/0.43/0.21

BART-L 0.00/1.05/0.53 0.00/0.21/0.25 0.00/0.10/0.28
BART-B 0.00/0.37/0.21 0.00/0.09/0.19 0.00/0.08/0.31

S2orc←
Random domain

T5-L 0.00/0.29/0.38 0.00/0.06/0.61 0.00/0.05/0.38
T5-B 0.00/1.46/2.15 0.00/0.34/0.36 0.00/0.23/0.33

BART-L 0.00/2.01/1.91 0.00/0.62/0.51 0.00/0.31/0.55
BART-B 0.00/3.98/0.30 0.00/0.52/0.19 0.00/0.35/0.32

S2orc←
SAMSum

T5-L 0.00/2.21/0.12 0.00/0.44/0.25 0.00/0.63/0.19
T5-B 0.00/1.85/1.63 0.00/0.30/0.30 0.00/0.23/0.30

BART-L 0.00/1.97/0.55 0.00/0.31/0.22 0.00/0.29/0.16
BART-B 0.00/1.78/0.26 0.00/0.30/0.22 0.00/0.25/0.16

S2orc←
CNN/Daily Mail

T5-L 0.00/0.89/0.13 0.00/0.13/0.23 0.00/0.12/0.18
T5-B 0.00/2.19/0.22 0.00/0.41/0.13 0.00/0.40/0.07

BART-L 0.00/1.42/0.56 0.00/0.27/0.39 0.00/0.20/0.25
BART-B 0.00/0.90/0.31 0.00/0.15/0.11 0.00/0.13/0.14
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Table 16: Continuation of Table 15.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
CODE/Frozen/FT-ALL

SAMSum←
Delve

T5-L 0.00/0.17/0.06 0.00/0.02/0.03 0.00/0.01/0.02
T5-B 0.00/2.97/0.12 0.00/0.46/0.02 0.00/0.50/0.02

BART-L 0.00/0.47/1.84 0.00/0.25/0.38 0.00/0.27/0.54
BART-B 0.00/0.16/0.34 0.00/0.10/0.19 0.00/0.07/0.13

SAMSum←
S2orc

T5-L 0.00/0.06/0.15 0.00/0.06/0.02 0.00/0.01/0.02
T5-B 0.00/1.55/0.17 0.00/0.33/0.04 0.00/0.35/0.04

BART-L 0.00/4.53/0.73 0.00/0.99/0.13 0.00/1.00/0.21
BART-B 0.00/0.49/0.56 0.00/0.20/0.26 0.00/0.14/0.13

SAMSum←
Random domain

T5-L 0.00/0.17/0.15 0.00/0.03/0.02 0.00/0.03/0.03
T5-B 0.00/0.06/0.22 0.00/0.03/0.02 0.00/0.02/0.02

BART-L 0.00/1.51/3.62 0.00/0.37/0.82 0.00/0.29/1.09
BART-B 0.00/5.29/0.55 0.00/0.52/0.26 0.00/0.32/0.13

SAMSum←
CNN/Daily Mail

T5-L 0.00/0.47/0.06 0.00/0.07/0.03 0.00/0.06/0.03
T5-B 0.00/0.78/0.24 0.00/0.08/0.02 0.00/0.07/0.02

BART-L 0.00/2.05/1.24 0.00/0.29/0.23 0.00/0.27/0.36
BART-B 0.00/0.75/0.57 0.00/0.27/0.46 0.00/0.16/0.26

CNN/Daily Mail
← Delve

T5-L 0.00/0.25/0.73 0.00/0.03/0.35 0.00/0.03/0.74
T5-B 0.00/0.34/2.55 0.00/0.09/4.24 0.00/0.06/7.33

BART-L 0.00/2.15/1.41 0.00/0.50/2.77 0.00/0.87/5.14
BART-B 0.00/1.89/1.91 0.00/0.80/1.89 0.00/1.20/4.68

CNN/Daily Mail
← S2orc

T5-L 0.00/0.40/1.15 0.00/0.05/0.59 0.00/0.05/1.19
T5-B 0.00/0.48/1.49 0.00/0.06/1.93 0.00/0.05/4.84

BART-L 0.00/0.81/1.36 0.00/0.30/2.44 0.00/0.63/3.95
BART-B 0.00/1.30/2.55 0.00/0.68/2.69 0.00/1.03/5.13

CNN/Daily Mail
← Random domain

T5-L 0.00/0.06/0.88 0.00/0.03/0.42 0.00/0.02/0.89
T5-B 0.00/2.47/1.01 0.00/0.28/1.32 0.00/0.17/3.63

BART-L 0.00/0.95/0.98 0.00/0.26/1.64 0.00/0.29/3.32
BART-B 0.00/0.00/1.32 0.00/0.02/0.36 0.00/0.01/0.42

CNN/Daily Mail
← SAMSum

T5-L 0.00/5.92/1.50 0.00/0.56/0.77 0.00/0.49/1.55
T5-B 0.00/1.62/1.78 0.00/0.48/3.97 0.00/0.82/6.94

BART-L 0.00/0.65/1.07 0.00/0.90/1.78 0.00/0.24/1.53
BART-B 0.00/3.65/2.04 0.00/1.71/3.34 0.00/0.80/4.85
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Figure 16: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the Delve (1K) domain, and varying
irrelevant document domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random
Domain, and S2orc.
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Figure 17: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the S2orc domain, and varying
irrelevant domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and
Delve.
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Figure 18: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the SAMSum domain, and varying
irrelevant document domains represented as C1 through C4, encompassing Delve, S2orc, Random Domain, and
CNN/Daily Mail.
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Figure 19: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the CNN/Daily Mail domain, and
varying irrelevant document domains represented as C1 through C4, encompassing Delve, S2orc, SAMSum, and
Random Domain.
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Figure 20: AUROC vs. sim(C); The relevant documents sourced from the Delve (1K) domain, and varying irrelevant
document domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and
S2orc.
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Figure 21: AUROC vs. sim(C); The relevant documents sourced from the S2orc domain, and varying irrelevant
document domains represented as C1 through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and
Delve.
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Figure 22: AUROC vs. sim(C); The relevant documents sourced from the SAMSum domain, and varying irrelevant
document domains represented as C1 through C4, encompassing Delve, S2orc, Random Domain, and CNN/Daily
Mail.
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Figure 23: AUROC vs. sim(C); The relevant documents sourced from the CNN/Daily Mail domain, and varying
irrelevant document domains represented as C1 through C4, encompassing Delve, S2orc, SAMSum, and Random
Domain.

A.8 Hyper-parameter Sensitivity1155

In this section, we show how different choice of1156

the hyper-parameter α and β affects the in-domain1157

irrelevant document detection performance of our1158

method. Specifically, we present the relationship1159

between the selection of α and β and irrelevant doc-1160

ument detection performance. Each figure in this 1161

section displays FPR at 95% TPR or AUROC of our 1162

method on each dataset and model when selecting 1163

different combinations of α and β. The details of 1164

hyper-parameters can be found in Table 12 in A.3. 1165

We observe that the best performance occurs 1166
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Figure 24: FPR at 95% TPR vs. Hyper-parameter on Delve-ID (1K)
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Figure 25: FPR at 95% TPR vs. Hyper-parameter on Delve-ID (8K)
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Figure 26: FPR at 95% TPR vs. Hyper-parameter on S2orc-ID
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Figure 27: FPR at 95% TPR vs. Hyper-parameter on SAMSum-ID
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Figure 28: FPR at 95% TPR vs. Hyper-parameter on CNN/Daily Mail-ID
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Figure 29: AUROC vs. Hyper-parameter on Delve-ID (1K)

(a) T5-L

0.0 0.4 0.8 1.2 1.6 2.0
α

95

96

97

98

99

100

A
U

R
O

C
(%

)

β =0.0

β =0.1

β =0.2

β =0.4

β =0.8

(b) T5-B

0.0 0.4 0.8 1.2 1.6 2.0
α

85

88

91

94

97

100

A
U

R
O

C
(%

)

β =0.0

β =0.1

β =0.2

β =0.4

β =0.8

(c) BART-L

0.0 0.4 0.8 1.2 1.6 2.0
α

85

88

91

94

97

100

A
U

R
O

C
(%

)

β =0.0

β =0.1

β =0.2

β =0.4

β =0.8

(d) BART-B

0.0 0.4 0.8 1.2 1.6 2.0
α

85

88

91

94

97

100

A
U

R
O

C
(%

)

β =0.0

β =0.1

β =0.2

β =0.4

β =0.8

Figure 30: AUROC vs. Hyper-parameter on Delve-ID (8K)
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Figure 31: AUROC vs. Hyper-parameter on S2orc-ID
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Figure 32: AUROC vs. Hyper-parameter on SAMSum-ID
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Figure 33: AUROC vs. Hyper-parameter on CNN/Daily Mail-ID
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near α = 0.6 for most choices of β and the best1167

performance occurs near β = 0.2 for most choices1168

of α. We also observe that the performance does1169

not change much when α varies from 0 to 1. Simi-1170

larly, the performance also changes slightly when1171

β varies from 0 to 0.4. We observed that the per-1172

formance of CODE on both types of pretrained1173

models is more sensitive to α compared to β.1174

The correspondence between the figures and the1175

setting is as follows:1176

• Figure 24: FPR at 95% TPR on Delve-ID (1K)1177

dataset and each model.1178

• Figure 25: FPR at 95% TPR on Delve-ID (8K)1179

dataset and each model.1180

• Figure 26: FPR at 95% TPR on S2orc-ID1181

dataset and each model.1182

• Figure 27: FPR at 95% TPR on SAMSum-ID1183

dataset and each model.1184

• Figure 28: FPR at 95% TPR on CNN/Daily1185

Mail-ID dataset and each model.1186

• Figure 29: AUROC on Delve-ID (1K) dataset1187

and each model.1188

• Figure 30: AUROC on Delve-ID (8K) dataset1189

and each model.1190

• Figure 31: AUROC on S2orc-ID dataset and1191

each model.1192

• Figure 32: AUROC on SAMSum-ID dataset1193

and each model.1194

• Figure 33: AUROC on CNN/Daily Mail-ID1195

dataset and each model.1196

A.9 Supplementary Material for Effectiveness1197

of In-domain Irrelevant Documents in1198

Pretraining1199

A.9.1 Pretraining with Irrelevant Documents1200

vs. Without Irrelevant Documents1201

In this subsection, we study how the irrelevant doc-1202

uments in the pretraining affect the performance.1203

Specifically, we pretrained the T5-Large model1204

using only relevant documents from the Delve1205

dataset.1206

We evaluate the pretrained models with three1207

metrics for text summarization, and Table 171208

presents the results. We observe that irrelevant1209

PT with and without Outlier Paragraphs
Relevant Bi-grams & PT With Irrelevant Documents

Irrelevant Bi-grams & PT With Irrelevant Documents

Relevant Bi-grams & PT Without Irrelevant Documents

Irrelevant Bi-grams & PT Without Irrelevant Documents

Figure 34: Cross-attention scores on eight bi-grams when
T5-Large is pretrained with and without irrelevant documents.
Bi-gram occurrences are in the parenthesis.

documents can slightly improve the generation per- 1210

formance. This may be due to the fact that irrele- 1211

vant documents may help enrich the corpus in that 1212

domain, therefore enhancing the summarization 1213

performance. 1214

Table 18 presents three metrics of irrelevant doc- 1215

ument detection under the case where T5-Large is 1216

pretrained with and without irrelevant documents. 1217

We observe that irrelevant documents plays an im- 1218

portant role for irrelevant document detection task. 1219

A.9.2 Case Study 1220

To provide more insights, we spotlight eight bi- 1221

gram phrases, of which half originate from rel- 1222

evant documents and the remainder from irrele- 1223

vant documents. Furthermore, half of these bi- 1224

grams frequently appear, as indicated by their oc- 1225

currence counts in parenthesis. Comparing the 1226

cross-attention scores when the T5-Large model 1227

is pretrained with (i.e., red bars) and without (i.e., 1228

blue bars) irrelevant documents, we observed that 1229

including irrelevant documents enhances the atten- 1230

tion scores of less frequent bi-grams in relevant 1231

documents, simultaneously depressing scores for 1232

the less frequent irrelevant bi-grams. For instance, 1233

after incorporating irrelevant documents in pretrain- 1234

ing, the relevant bi-gram “levinstyle verb" with a 1235

single occurrence nearly doubles its attention score, 1236

whereas the irrelevant bi-gram “discounted rate" 1237

with two occurrences sees an 80% attention reduc- 1238

tion. Moreover, we observed that the attention 1239

scores of domain-agnostic phrases also wane, po- 1240

tentially bolstering irrelevant document detection 1241

capabilities. For example, after incorporating ir- 1242

relevant documents in pretraining, we observe no- 1243

table reductions in attention scores for the domain- 1244

agnostic phrases “can be" in relevant documents 1245

and “continue to" in irrelevant documents. 1246

29



Table 17: Performance of pretrained model vs. irrelevant documents

ROUGE-1 ROUGE-2 ROUGE-L

irrelevant documents With 19.34 3.38 14.42
Without 17.00 2.45 12.87

Table 18: Performance vs. irrelevant documents (%)

FPR at 95% TPR AUROC AUPR

irrelevant documents With 5.80 98.08 97.03
Without 80.45 62.92 66.99

Table 19: The performance of the baseline Frozen under different hidden layer dimensions.

Models FPR
(95%) TPR AUROC AUPR

↓ ↑ ↑
Frozen

(24N, 8N, N) 28.98 ± 0.74 93.75 ± 0.14 93.08 ± 0.15
(16N, 4N, N) 29.08 ± 1.00 93.82 ± 0.11 93.12 ± 0.09
(4N, 2N, N) 30.30 ± 0.94 92.87 ± 0.21 93.57 ± 0.16

A.10 Effect of FNN size on the detection1247

performance of baseline algorithms1248

We test the impact of different sizes of FNN on1249

the detection performance of Frozen on T5-Large1250

and Delve-ID (1K). The results are shown in Table1251

19. We find that as the hidden layer dimension1252

of FNN increases, the detection performance of1253

Frozen shows a slight improvement, but the overall1254

improvement is not significant.1255

A.11 Time consumption of CODE and1256

baselines.1257

1258

We compare the time computation of CODE1259

and baselines. The time complexity of CODE is1260

O(|X| × |Ŷ |), where |X| represents the length of1261

a single document, and |Ŷ | represents the length of1262

the generated summary. We test the time consump-1263

tion of CODE and baseline algorithms on T5-Large1264

and Delve-ID (1K) during the hyper-parameter tun-1265

ing and testing phases. The batch size is uniformly1266

set to 1 for testing CODE and the baseline algo-1267

rithms. During the hyper-parameter tuning phase,1268

for CODE, we measure the time consumption re-1269

quired to complete a hyper-parameter search for a1270

single hyper-parameter combination; for the base-1271

Table 20: Time consumption of CODE and the base-
lines.

Tuning (s) Testing (s)

CODE 51 72
Frozen 504 157

FT-ALL 1,352 155

line algorithms, we measure the time consumption 1272

required to complete one epoch of training. The 1273

test results are shown in Table 20, indicating that 1274

CODE has higher time efficiency than the two base- 1275

line algorithms during both the hyper-parameter 1276

tuning and testing phases. 1277

30


	Introduction
	Related Work
	Preliminaries and Problem Formulation
	GLM-based Irrelevant Document Detector
	Baselines
	CODE: Cross-attention based irrelevant dOcument DEtector

	Datasets
	Data Pipeline
	Pretraining Datasets with In-domain Irrelevant Documents
	Irrelevant Document Detection Datasets

	Experiments
	Experimental Setups
	Main Results

	Discussions
	Conclusions
	Appendix
	Supplementary Materials for Datasets
	Detailed Construction Method of Each Pretraining Dataset
	Additional Dataset Statistics

	Supplementary Materials for Experimental Setups
	Pretraining Setups
	Performance of the Pretrained Models
	Training Setups of the Baselines

	Supplementary Results in In-domain Irrelevant Document Detection
	Performance vs. Pretrained Model Checkpoints
	Performance vs. Pretrained Model Attention Layers
	Performance vs. In-domain Irrelevant Detection Difficulty
	Performance vs. Cross-domain Irrelevant Detection
	Results of Cross-domain Irrelevant Detection
	Performance vs. Cross-domain Irrelevant Detection Difficulty

	Hyper-parameter Sensitivity
	Supplementary Material for Effectiveness of In-domain Irrelevant Documents in Pretraining
	Pretraining with Irrelevant Documents vs. Without Irrelevant Documents
	Case Study

	Effect of FNN size on the detection performance of baseline algorithms
	Time consumption of CODE and baselines.


