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Abstract

In Retrieval-Augmented Generation (RAG),
generative models are prone to performance
degradation due to retrieved irrelevant docu-
ments. Adding irrelevant documents to the
training data and retraining language models
incurs significant costs. Supervised models
can detect irrelevant documents in the retrieved
results and avoid retraining, but they cannot
counter domain shifts in the real world. By in-
troducing a method that emphasizes the unique
features of infrequent words, we reveal the abil-
ity of the cross-attention mechanism to detect
irrelevant documents within the inputs of gener-
ative models. We present CODE, a novel irrel-
evant document detector using a closed-form
expression rooted in cross-attention scores. Our
experimental results validate the superiority
of CODE under in-domain and cross-domain
detection. For in-domain detection, CODE
achieves a 5.80% FPR at 95% TPR vs. 30.3%
by supervised baseline on the T5-Large and
Delve domain. When sampling irrelevant docu-
ments from out-of-domain, the FPR of CODE
decreases from 5.8% to 0.1%, while the FPR of
the supervised baseline increases from 30.3%
to 34.3%. For more insight, we highlight the
importance of cross-attention, word frequency
normalization, and integrating in-domain irrel-
evant documents during pretraining .'

1 Introduction

The RAG system (Lewis et al., 2020) can access ex-
ternal knowledge bases for up-to-date and long-tail
knowledge, thereby enhancing generation quality.
However, in real-world applications, the retriever
may return irrelevant documents, significantly de-
grading performance (Shi et al., 2023). Yoran et al.
(2023) and Asai et al. (2023) highlight that irrele-
vant documents in retrieval-augmented knowledge-
sensitive tasks lead to low-quality generations.

'Our code is available at: https://anonymous. 4open.
science/r/code-A5B1/

In open-domain text summarization, Giorgi et al.
(2022) find through experimental simulation that
irrelevant documents in retrieval results are the pri-
mary cause of declining generation quality. Case
studies of RAG systems in academic fields by Bar-
nett et al. (2024) reveal that the retriever sometimes
fail to rank relevant documents first, often returning
irrelevant or noisy information, causing the model
to generate incorrect results.

To improve generation quality, existing meth-
ods retrain language models to counter irrelevant
content (Giorgi et al., 2022; Yoran et al., 2023;
Asai et al., 2023; Wang et al., 2024), which incurs
high economic costs. Yoran et al. (2023) propose
a supervised approach to learn the relevance be-
tween the query and retrieved documents, remov-
ing irrelevant documents before inputting them into
the language model. Although this method avoids
fine-tuning the generative model, it struggles with
performance degradation due to domain shifts in
real-world scenarios (Calderon et al., 2024; Elsahar
and Gallé, 2019).

This paper highlights the significant potential
of using intrinsic neuron output of generative lan-
guage models to detect irrelevant documents. It
should be noted that the generative models men-
tioned in our method below are specialized for de-
tecting irrelevant documents, rather than the orig-
inal model in the RAG system. Specifically, we
demonstrate the substantial potential of the cross-
attention mechanism in generative text summa-
rizers based on the encoder-decoder architecture
(Vaswani et al., 2017) for this purpose. Our ini-
tial observations indicate that rare words in input
documents often signify unique features, helping
the model discern their relevance. Seq2seq models
pretrained with a mixture of irrelevant document
data tend to assign lower cross-attention scores to
rare words in irrelevant documents during text gen-
eration. Conversely, words in relevant documents
typically receive higher scores. Based on these ob-
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servations, we propose a pretraining method for
text summarizers that incorporates irrelevant docu-
ments, enabling the cross-attention mechanism to
capture differences between relevant and irrelevant
documents. Building upon the pretrained model,
we introduce CODE (Cross-attention based irrel-
evant dOcument DEtector), a method for detect-
ing irrelevant documents based on cross-attention
scores in generative language models. We catego-
rize irrelevant documents into In-domain and Out-
of-domain to verify the effectiveness of CODE for
in-domain and cross-domain detection. The core
contributions of this paper include:

* Proposal of a method to pretrain genera-
tive language models incorporating irrele-
vant documents. We subsequently introduce
the CODE detector, which computes average
cross-attention scores, normalized by word
occurrences, between the generated summary
and each document in the sequence.

* Introduction of data pipelines to build four
pretraining datasets integrated with irrelevant
documents. Additionally, we present four in-
domain irrelevant document detection datasets
and sixteen cross-domain irrelevant document
detection datasets.

* An ablation study underscoring the impact
of cross-attention, word frequency normaliza-
tion, and the incorporation of irrelevant docu-
ments during pretraining.

2 Related Work

Retrieval-Augmented Generation. RAG sys-
tem employs sparse (Robertson and Walker, 1997;
Robertson et al., 2009) or dense (Karpukhin et al.,
2020) retrievers to link generative models with ex-
ternal non-parametric knowledge bases, addressing
the challenges of generative models such as access-
ing up-to-date knowledge (Ram et al., 2023), inte-
grating long-tail data (Mallen et al., 2022), and pre-
venting training data leakage (Carlini et al., 2021).
RAG can also reduce the parameters of the model
(Izacard et al., 2023) to reduce generation costs.
The concept of RAG was first introduced by Lewis
et al. (2020), who proposed using the top-K doc-
uments returned by a retriever as direct inputs to
the model to enhance performance on knowledge-
sensitive tasks. Beyond direct input, the results
returned by the retriever can also be integrated into
the model in a latent form to improve generation

quality (Izacard and Grave, 2020; Borgeaud et al.,
2022). RAG has been applied to enhance vari-
ous text-to-text generation tasks, including Ques-
tion Answering (Wang et al., 2023), Text Summa-
rization (Bertsch et al., 2024), and Fact Verifica-
tion (Huang et al., 2022). Besides text modalities,
RAG has also been utilized in other modalities such
as audio (Yuan et al., 2024), image (Ramos et al.,
2023), and video (Pan et al., 2023).

Enhance RAG Systems by Resisting Irrelevant
Documents. The results returned by the retriever
can include documents irrelevant to the content to
be generated, degrading the quality of RAG sys-
tems. Researchers are exploring methods to resist
this issue and enhance RAG performance. Giorgi
et al. (2022); Yoran et al. (2023) add irrelevant
documents to training data and retrain the model
to improve robustness. Asai et al. (2023) use a
LLM to evaluate the relevance of retrieval results
for critical generation. Wang et al. (2024) intro-
duce a rank head to help LLMs perceive document
relevance and guide final generation. These ap-
proaches require extensive training or fine-tuning,
incurring high costs. Yoran et al. (2023) propose a
supervised approach to learn query-document rel-
evance, removing irrelevant documents before the
retrieval results are fed into the generative model.
Although this method avoids fine-tuning the gener-
ative model, it struggles with performance degra-
dation from domain shifts in real-world scenar-
ios (Calderon et al., 2024; Elsahar and Gallé, 2019).

3 Preliminaries and Problem Formulation

Text Summarizers Pretrained with In-domain
Irrelevant Documents. Let the X denote the doc-
ument consisting of a sequence of words, P(X|D)
denote a document sampling distribution defined
on the document set D. Let X represent a sequence
of documents used for summarization. We note
that the documents in X may originate from dif-
ferent topics. Let the sequence of words Y (X))
denote the summary of the document set X'. Let
C = {(&;,Y;)}, represent the pretraining set
for text summarization. Each document in the se-
quence AX; is drawn from an underlying mixed doc-
ument distribution P(X |D;, D}) consisting of the
document sets D; and Dg. Documents in D; are
related to the topic to be generated, so the top-
ics of the documents sampled from D; are related
to each other, and the documents sampled from
D} are irrelevant documents in &;. D;, D}, X; are



derived from the same domain, i.e., the same origi-
nal dataset. We refer to documents in X; N D; as
relevant documents, and those in X; N D; as in-
domain irrelevant documents. We use in-domain
to indicate that both relevant and irrelevant docu-
ments are sampled from the same dataset domain,
but on different topics, to distinguish them from
the problem of detecting irrelevant documents that
may originate from different domains.

A summarizer G processes the document set
X to produce a summary Y(X ). We employ the
generative language model (GLM) for this task.
We pretrain G to ensure that the generated Y(Xl)
aligns with the ground truth summary Y; for all
samples in the training set C. As mentioned ear-
lier, each document set X; in the set C contains
in-domain irrelevant document.

GLM-based Irrelevant Document Detection
Problem. Let the generative model G be a text
summarizer pretrained on the pretraining set C. We
construct irrelevant document detectors fy using
the neuron outputs inside G. Consider U as a in-
put document sequence containing relevant and
irrelevant documents. For U/, we use the binary
vector V' € {0, 1}'“' as the label vector, where
V; equals O if the ¢-th document in ¥/ is an irrel-
evant document and 1 otherwise. The irrelevant
document detection dataset can be represented as
Caetect = {(Uy, Vi) }1L,. Notably, we allow rele-
vant and irrelevant documents to come from the
same dataset domain, in which case the problem is
referred to as the in-domain detection problem. If
the relevant and irrelevant documents come from
different dataset domains, the problem is called the
cross-domain detection problem.

4 GLM-based Irrelevant Document
Detector

In this paper, we primarily focus on generative
language models using the Transformer encoder-
decoder architecture (Vaswani et al., 2017), specif-
ically BART (Lewis et al., 2019) and T5 (Raffel
et al., 2020). To see the influence of the model size,
we select BART-Base, BART-Large, T5-Base and
T5-Large. We pretrain all GLMs on each of the
pretraining sets introduced in the next section.

4.1 Baselines

We concatenate the neuron outputs inside the GLM
with a multi-layer perception to construct two su-
pervised baselines. Given the potentially large num-

ber of neurons in GLMs, to reduce the computa-
tional complexity, we streamline the computation
by using the input from the last encoder-decoder
attention layer as the input to the multi-layer per-
ceptron (MLP).

Frozen. First, we feed a document sequence into
the GLM and obtain a generated summary. Prob-
ing the input of the last encoder-decoder attention
layer, we obtain the word embeddings of the doc-
ument sequence from the encoder, as well as the
word embeddings of the corresponding summary
from the decoder. Second, to get the embeddings
of the entire sequence of the document or sum-
mary, we perform a mean pooling on the obtained
word embeddings that are also adopted in refer-
ences (Reimers and Gurevych, 2019; Gao et al.,
2021). Finally, we feed the word embedding into
a MLP to detect the irrelevant documents in the
input sequence. In the supervised training phase,
we freeze all parameters of the pretrained GLM
and only fine-tune the parameters of the MLP.

Finetuning-all (FT-ALL). We adopt the same
architecture used in the previous baseline for irrele-
vant detection. The only difference lies in the train-
ing stage, where the parameters of the pretrained
GLM are fine-tuned along with MLP parameters.

4.2 CODE: Cross-attention based irrelevant
dOcument DEtector

In this section, we propose CODE, which elimi-
nates the need for further fine-tuning like baselines
once the GLM is pretrained. Similar to baselines,
we also probe the attention weights of the last cross-
attention layer. But, for each document, we only
calculate closed-form metric to determine whether
the document is irrelevant or not.

Now we formally present our method. We con-
catenate all documents X' = { X7, ..., X;,} and in-
put at once to the text summarizer G. The GLM G
outputs a summary Y. We input each word ¢ in the
summary Y to the decoder independently. Now we
get a cross-attention matrix between the generated
summary and concatenated documents. When the
cross attention layer has multi-head (Vaswani et al.,
2017) and each head is equipped with a unique
attention matrix of the same size, we average all
attention matrices across different heads into one
matrix. For each word z in the concatenated doc-
ument sequence and each word ¢ in the summary
sentence Y, let Att(j,z) € [0,1] denote the at-
tention score in the attention matrix between the
word § and z. We use ITlll > wex, At (9, ) to



measure the relevance between word ¢ and input
document X;. Let p(y) denote the word frequency
of §j € Y across all generated summaries. We use
p%@) to assign more weights to the contribution of
less frequent words. We define the relevance score
r(Y,X;) € R, between the generated summary
Y and the i-th document X, as follow,

N 1 1 1 PN
r(Y,Xi)zﬁZm X > Att(j, x)

QGY reX;
(1)

Hyper-parameters « and § are used to control the
contribution of the attention score and word fre-
quency in calculating the relevance. For a given
threshold 9, we say that the document X; is irrele-
vant if 7(Y, X;) < 6 and it is a relevant document,
otherwise. CODE is more efficient than baselines.
See Appendix A.11 for time consumption.

5 Datasets
5.1 Data Pipeline

Pipeline for Pretraining with In-domain Irrel-
evant Document. The source text summariza-
tion dataset includes relevant document sequences
and their corresponding summaries. To create
a text summarization pretraining dataset with in-
domain irrelevant document, we employ a two-
phase data pipeline. In the relevant document sam-
pling phase, we select a sample (X, Y) from the
source dataset, where X’ represents a document
sequence and Y is its summary. Then, we ran-
domly select two documents from the sequence X,
denoted as X = (X1, X2). We regard these two
documents as relevant docments. Next, in the irrel-
evant document injection phase, we first randomly
select two irrelevant documents Z; and Z5 from
another two different document sequences in the
same dataset. These irrelevant documents are ran-
domly at three positions: before X, between X;
and X5 and after X,. After injection, the document
sequence, along with the summary Y, constitutes
a sample in our pretraining set. We note here that
all irrelevant documents in the pretraining dataset
originate from the same dataset domain.

Pipeline for Irrelevant Document Detection.
We employ the same pipeline to create irrelevant
document detection datasets. The only difference
is that the detection dataset does not contain the
ground truth summary. In the in-domain detection
task, we sample the irrelevant document from the
same source text summarization dataset, while in

the cross-domain detection task, we sample the
irrelevant document from a different source dataset.

5.2 Pretraining Datasets with In-domain
Irrelevant Documents

We choose four English source datasets:
CNN/Daily Mail (Nallapati et al.,, 2016),
SAMSum (Gliwa et al., 2019), Delve (Akujuobi
and Zhang, 2017; Chen et al., 2021) and S2orc (Lo

‘et al., 2019; Chen et al., 2021) to build our

pretraining dataset (-PT). The first dataset comes
from the news domain, the second from dialogues,
and the last two belong to the academic domain.
Each data sample in the above pretraining
datasets contains two relevant documents, two irrel-
evant documents, and one summary. It should be
noted that for the Delve and S2orc datasets, we con-
sider each abstract paragraph as a document, and
for the CNN/Daily Mail and SAMSum datasets, we
mimic the operation of segmenting long texts in the
RAG system by considering each chunk obtained
as a document (Lewis et al., 2020). The dataset
partitioning is shown in Table 1. See Appendix A.1
for the detailed statistics and construction method
of each pretraining dataset.
Table 1: The major statistics of datasets. * indicates shared

validation set or test set. See Appendix A.1 for the detailed
statistics.

Dataset Training Validation Test
CNN/Daily Mail-PT  42.387K  5.298K 5.298K
SAMSum-PT 3.273K  0.409K 0.409K
Delve-PT 8K 1K 1K
S2orc-PT 20K 2K 2K
CNN/Daily Mail-ID 20K 2.5K 2.5Kx5
SAMSum-ID 3273K  0.409K  0.409K x5
Delve-ID (1K) IK . .
Delve-ID (8K) 8K 100 1Kx5
S2orc-ID 2K 200 2K x5

5.3 Irrelevant Document Detection Datasets

We provide an overview of the in-domain and cross-
domain detection datasets (-ID) in the following.

In-domain detection sets consist of relevant
and irrelevant documents sampled from the same
dataset domain. We get four in-domain detection
datasets from CNN/Daily Mail, SAMSum, Delve
and S2orc, respectively.

Cross-domain detection sets comprise relevant
and irrelevant documents from varying domains.
For each domain from which relevant documents
are sourced, irrelevant documents are extracted
from the other three domains, leading to three



unique cross-domain test sets. To assess detec-
tion against the documents composed of random
garbled characters, we create a set with randomly
generated documents using words tokenized from
four summarization datasets. This results in four
cross-domain test sets for each domain. Each cross-
domain test set size is consistent with the in-domain
set, and both types share the same training and val-
idation datasets. In cross-domain detection, hyper-
parameter tuning is exclusively done on in-domain
irrelevant documents, precluding prior knowledge
of cross-domain irrelevant documents during test-
ing.

Each data sample in the above irrelevant docu-
ment detection datasets contains two relevant docu-
ments and two irrelevant documents. The dataset
partitioning is presented in Table 1. Each detec-
tion dataset contains a in-domain training set, a
in-domain validation set, a in-domain test set and
four cross-domain test sets.

6 Experiments

6.1 Experimental Setups

Pretraining Summerizers. We employ Hugging
Face Transformers> (Wolf et al., 2020) and AdamW
optimizer with default parameters. Additional pre-
training details are in the Appendix A.2.1. We
select the checkpoint with the lowest evaluation
loss for irrelevant document detection. Generative
quality is assessed using ROUGE (Lin, 2004), with
results in the Table 7 in Appendix A.2.2.

Baselines. We employ a three-layer MLP with
ReLU neurons. The input dimension N is twice
the dimension of the attention layer. Regarding
the dimension of the MLP hidden layer, we find
that increasing the dimension hardly improves the
detection performance. The experimental results
are shown in the Appendix A.10. Therefore, we set
the dimension of the first, second, and third layer is
4N, 2N and N, respectively. Training setup details
are reported in Appendix A.2.3.

CODE. There are two hyper-parameters « and
£ in CODE. We note that our method does not
employ any fine-tuning in the detection phase, ex-
cept that we run the hyper-parameter tuning on
« and 5. Thus, CODE is deterministic and does
not have standard deviations. We search the hyper-
parameters « in the range [0, 2] with an interval of
0.1 and 3 in the range [0, 2] with an interval of 0.2.
This implies that we search for the best setting in
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231 hyper-parameter combinations. We select the
model with the lowest FPR at 95% TPR for testing.

6.2 Main Results

In this subsection, we present the main results. We
use TPR at 95% FPR, AUROC (Fawcett, 2006)
and AUPR (Manning and Schutze, 1999; Saito
and Rehmsmeier, 2015) to evaluate the detection
performance. Please refer to Appendix A.3 for
further details.

CODE VvS. ROC Curves
Baselines. Fig-
ure 1 displays <
ROC curves for g
CODE  (blue) %

. = FPR reduced from

and the baseline 3 30.3% to 5.8%
Frozen (red) us- é wl — CODE
ing the T5-Large —— Bascline

architecture = on © 20 40 6 80 100
the in-domain False Positive Rate (%)
detection dataset
Delve-ID (1K).
A substantial per-
formance gap is evident, with CODE significantly
outperforming the baseline. For instance, at a
95% TPR, CODE reduces the FPR from 30.3% to
5.8%. Comprehensive evaluation results can be
found in Table 2 and Table 10 in Appendix A.3,
highlighting that CODE consistently outperforms
the baselines across almost all settings.

Fine-tuning Dataset Size. To assess the impact
of fine-tuning dataset size, we conducted exper-
iments on Delve-ID using various set sizes. In-
terestingly, we observed that CODE exhibits low
sensitivity to the set size, with consistent perfor-
mance, such as a 5.80% FPR on Delve-ID (1K)
compared to 5.55% on Delve-ID (8K) with the T5-
Large architecture. In contrast, both baselines show
sensitivity to the set size, with notable differences
in performance, such as a 25.63% FPR on Delve-
ID (1K) compared to 18.28% on Delve-ID (8K)
using the T5-Large architecture.

Pretraining Checkpoint. We explored the im-
pact of checkpoint selection during the pretraining
phase on irrelevant document detection. To illus-
trate, we tracked the summarization and detection
performance of checkpoints during pretraining us-
ing the T5-Large architecture on Delve. In Fig-
ure 2 (a), we plotted pretraining validation loss
against the detection FPR of CODE at each check-
point. Our findings show that during the initial four
epochs of pretraining, validation loss consistently

Figure 1: The ROC curves of
CODE and Frozen evaluated on T5-
Large and Delve-ID (1K).
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Table 2: Evaluation results of CODE and baselines for in-domain irrelevant document detection. All values are percentages. 1
indicates that larger values are better, and | indicates that smaller values are better. Characters “B" and “L" denote the Base and
Large models, respectively. The hyper-parameters « and 5 of CODE are searched by minimizing FPR at 95% TPR, and detail

can be found in Table 12 in Appendix A.3.

FPR

Models 4 g ppn (D AUROC (1) AUPR (1)
CODE/Frozen/FT-ALL

Delve.ID (1K) T5-L  5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60

) T5-B  32.30/65.97/57.75 90.08/84.52/85.21 83.76/82.62/82.92

Delve-ID (8K) T5-L  5.55/16.85/1828 98.16/93.62/95.87 97.23/94.01/95.18

T5-B  31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49

Sore.ID T5-L  1.08/10.40/6.05 99.54/96.01/97.69 99.27/95.59/97.32

T5-B  2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01

SAMSum.ID T5-L 0.60/5.50/0.65  99.87/98.67/99.68 99.87/98.78/98.60

“ T5-B 0.61/844/122  99.66/99.21/97.46 99.43/99.00/96.68

. . T5-L 0.00/0.20/0.32  99.99/99.85/99.77 99.99/99.81/99.79

CNN/Daily Mail-ID 1.5 b 0.12/0.82/0.29  99.96/99.62/99.80 99.96/99.56/99.70

decreases, leading to a notable reduction in detec-
tion FPR. This suggests that domain-specific pre-
training enhances detection within those domains.
However, as the pretraining continues, we observed
an increase in validation loss, indicating potential
overfitting. Intriguingly, the detection FPR remains
relatively stable, implying that while overfitting
may occur during pretraining, it might not signifi-
cantly impact the detection performance of CODE.

Attention Layer. In CODE, we input the output
from the final cross-attention layer into the detec-
tor. Both TS5 and BART architectures consist of
multiple cross-attention layers, prompting us to in-
vestigate how the choice of cross-attention layers
impacts detection performance, as shown in Fig-
ure 2 (b). Our findings consistently show that the
lowest FPR at 95% TPR and the highest AUROC
consistently occur in the cross-attention layer clos-
est to the final layer, which is adjacent to the output
layer, across all configurations. Additionally, in
Figure 2 (b), we observed that the last three layers
exhibit similar detection FPRs. This indicates that
performance variation is minimal when selecting
attention layers near the output.

Document Similarity. Detection performance
is notably affected by the degree of similarity be-
tween irrelevant and relevant documents. Greater
similarity between them poses a more challeng-
ing detection task. To quantify this similarity, we
calculated the average cosine similarity between
the embeddings of irrelevant and relevant docu-

ments within a document sequence. Specifically,
we employed the Sentence-BERT model (Reimers
and Gurevych, 2019) to extract document embed-
dings. The formal definition of similarity between
irrelevant and relevant documents in dataset C is
represented as follows, where H (X') denotes the
embedding vector of document X, X' C X is the
set of irrelevant documents in the input document
sequence:

NS 1
sim(C) =1 2 [w“(w )

(H(X), H(X"))
2. 2 H (Xl - [[H (X7)]2

XGXi" X’EX\X“T
(2)

In Figure 2 (c), we depicted dataset similarity
and detection performance across various domains
using the T5-Large architecture. Our observations
show that as irrelevant documents become more
similar to relevant ones, the detection of FPR in-
creases. This suggests a positive correlation be-
tween the similarity of relevant and irrelevant doc-
uments and detection errors. Additional results for
other architectures can be found in Appendix A.6.

Cross-domain Detection. Table 2 presents the
detection performance of CODE when relevant and
irrelevant documents are from the same dataset do-
main. We anticipated this performance consistency
even when fine-tuning hyper-parameters of CODE
in one domain for detecting irrelevant documents in
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Figure 2: Performance of CODE under different settings. Results for other settings can be found in Appendix A.4, A.5, A.6
and A.7. (a) Performance of CODE vs. pretraining validation loss under different checkpoints. (b) Performance of CODE
vs. different choice of attention layers. (¢) Similarities between relevant and irrelevant documents vs. detection performance.
C; to Cs represent CNN/Daily Mail, S2orc, SAMSum, Delve (8K) and Delve (1K), respectively. (d) Performance of CODE
vs. different domains. The relevant documents sourced from the Delve domain, and varying irrelevant document domains
represented as C; through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and S2orc.

another. Table 13, 14 in Appendix A.7.1 report the
performance of CODE and the baselines in cross-
domain detection, using hyper-parameters derived
entirely from the in-domain detection task. Com-
pared with Table 10, The performance of CODE
is significantly improved when the domain of ir-
relevant documents drifts, while the performance
of the supervised model is significantly reduced.
For example, under the T5-Large model, when
the Delve dataset is used as the source of rele-
vant documents and CNN/Daily Mail is selected as
the source of out-of-domain irrelevant documents,
compared with the in-domain detection task, the
FPR of CODE decreases from 5.8% to 0.1%, while
the FPR of the supervised model Frozen increases
from 30.3% to 34.3%. This is because models
based on fully supervised learning have difficulty
generalizing to data distributions out of the training
domain. Figure 2 (d) depicts performance varia-
tions in diverse cross-domain detection scenarios,
utilizing the T5-Large. Additional results for other
pretrained models are in Appendix A.7.2. In Fig-
ure 2 (d), CODE demonstrates robust performance
across different domains, although the detection
FPR increases with the increase of the similarity
between out-of-domain irrelevant and relevant doc-
uments, the maximum FPR does not exceed 1.64%.

7 Discussions

In this section, we investigate the effectiveness of
word frequency, cross-attention and in-domain ir-
relevant documents used in the pretraining phase.
Effectiveness of Word Frequency Hyper-
parameter 5. Given the richer semantic content in
bi-gram phrases compared to individual words, we
use the bi-gram phrases as our primary unit of anal-
ysis. In CODE, for each word g in summary Y, we
calculate the average attention scores with words in

the document X and normalize it by the frequency
of ¢ raised to the power 3. We select a positive
5 to accentuate the effects of infrequent bi-grams.
Figure 3 (a) showcases how detection error varies
with different 5 values. Optimal results are attained
with a positive (3, but performance declines if (3 is
too large, suggesting the importance of moderate
emphasis on infrequent words. To understand this,
we conduct the following experiment. We deter-
mine their occurrence in four domains: CNN/Daily
Mail, SAMSum, S2orc and Delve, represented as
fi(x) to f4(x). The total occurrence of a phrase =
is f(x) = Y, fi(x). The metric concentration is
defined as conc.(x) = %ﬁﬁ(x)’ representing how
bi-gram phrases are concentrated among domains.
In Figure 3 (b), bi-grams with fewer than five oc-
currences are domain-specific, whereas those with
more than 128 are domain-agnostic. Emphasizing
infrequent bi-grams can enhance irrelevant docu-
ment detection since domain-specific phrases differ
significantly across domains. Moreover, infrequent
bi-grams typically exhibit higher average cross-
attentions compared to their frequent counterparts,
which may also benefit detection. To see this, let
A(x) = |71| - Att®(y, x) represent the mean

gevy
cross-attention between summary Y and bi-gram
x. Figures 3 (c) and (d) display the distribution
of A(z) for bi-grams in relevant and irrelevant
documents, respectively, across different bi-gram
occurrence regimes. We observe higher average
cross-attentions on less frequent bi-grams. How-
ever, this does not imply that frequent bi-grams are
inconsequential in identifying relevant documents.
Some, especially those with very high occurrence
counts, may also be domain-specific terminologies.
For instance, the term “Manchester United" ap-
pears 1,552 times but is exclusively found in the
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Figure 3: (a) FPR at a 95% TPR for our method under various hyper-parameters, evaluated on T5-Large and S2orc testset.
Results for other settings can be found in Appendix A.8. (b) Domain distribution of bigrams with different occurrences. Figures
(c) to (f) show bi-gram distributions. Bi-grams are from relevant documents in (c) and (e) and from irrelevant documents in (d)
and (f). GLM is pretrained with irrelevant documents in (c¢) and (d) and without irrelevant documents in (e) and (f). The x and
y-axis represent the cross-attention .A(z) and conditional distribution of .4(x) under different occurrences, respectively.

CNN/Daily Mail domain. Overemphasizing [ can
diminish the contribution of these domain-specific
terminology, potentially degrading performance.
Hence, this may explain Figure 3 (a) in which as
[ further increases after 0.2, the detection error
increases.

Effectiveness of Cross-Attention Hyper-
parameter a. Comparing Figure 3 (c) and (d),
we observe that the bi-grams in relevant documents
tend to have larger average cross-attentions than the
irrelevant counterparts. To amplify the discrepancy
between the cross-attentions of irrelevant and rele-
vant bi-grams, an optimal choice of « is required.
To see this, given the cross-attention scores of a rel-
evant bi-gram a; and an irrelevant bi-gram a9, with
0 < az < a; < 1, the difference in the powered
cross-attention scores, a — a$, can be maximized
by selecting o™ = W > 0. The dif-
ference escalates when v < o* and contracts when
o > «F. This observation aligns with Figure 3
(a), where detection error initially diminishes with
increasing « up to 0.2, and subsequently rises for
all 3 choices.

Effectiveness of Irrelevant Documents in Pre-
training. We employed the T5-Large architecture
for pretraining on the Delve dataset, deliberately ex-
cluding all in-domain irrelevant documents. Com-
prehensive pretraining results can be found in Ap-
pendix A.9.1. Subsequent deployment of CODE on
this model yielded an 80.45% FPR at 95% TPR on
the Delve detection dataset. This starkly contrasts
with the 5.8% FPR achieved when irrelevant docu-

ments were incorporated during pretraining. To un-
derstand the discrepancy in detection performance,
we juxtapose the cross-attention distributions from
Figure 3 (e) and (f) against those from Figure 3 (c)
and (d). Our observations underscore that incorpo-
rating irrelevant documents during pretraining can
efficaciously diminish the cross-attention scores of
irrelevant bi-grams (i.e., comparing Figure 3 (f) to
(d)), without impinging on the scores of relevant
bi-grams (i.e., comparing Figure 3 (e) to (c)). A
more detailed case study can be found in the Ap-
pendix A.9.2, where we find that including irrele-
vant documents in the pretraining can even improve
the attention scores of rare bi-grams in relevant doc-
uments, and reduce the scores of rare bi-grams in
irrelevant documents and domain-agnostic phrases.

8 Conclusions

In this paper, we reveal the intrinsic ability of
text summarizers for irrelevant document detec-
tion. By exploiting the cross-attention mechanism
and unique behaviors of infrequent words, we in-
troduced CODE, a novel and efficient irrelevant
document detector. Experimental results validate
the superiority of CODE over the traditional su-
pervised fine-tuning methods under in-domain and
cross-domain detection. Our findings illuminate
the potential of harnessing cross-attention distribu-
tion, word frequency nuances and the strategic use
of in-domain irrelevant documents in the pretrain-
ing phase, setting a promising direction for future
advancements in the RAG.



Limitations

Although the cross-attention mechanism in gener-
ative models based on the encoder-decoder archi-
tecture can be used to construct well-performing
irrelevant document detectors, it remains to be fur-
ther explored whether the self-attention mechanism
within generative models based on the decoder-
only architecture can be used to construct efficient
irrelevant document detectors. Additionally, due
to the input sequence length limitations of models
such as BART and T3, the performance of irrele-
vant document detection among a larger number of
documents still requires further investigation.
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A Appendix

A.1 Supplementary Materials for Datasets

A.1.1 Detailed Construction Method of Each
Pretraining Dataset

In this subsection, we introduce the construction
details of pretraining datasets CNN/Daily Mail-PT,
SAMSum-PT, Delve-PT, and S2orc-PT in detail.
CNN/Daily Mail-PT. For the limitation of
model input length, we use samples whose source
document length is less than five hundred words
as samples to be injected. We split the source doc-
ument in these samples into two relevant chunks.



Table 3: Additional statistics of the pretraining datasets with in-domain irrelevant document.

# Words # Words
# Examples (single) (all)
Relevant Document 105,178 avg: 204.39, std: 69.37 231,462
CNN/Daily Mail-PT Irrelevant Document 97,042 avg: 243.56, std: 17.56 255,975
Summary 52,459 avg: 47.78, std: 21.13 85,486
Relevant Document 8,105 avg: 60.81, std: 47.47 16,947
SAMSum-PT Irrelevant Document 5,186 avg: 62.26, std: 49.60 13,423
Summary 4,092 avg: 23.53, std: 12.75 8,731
Relevant Document 14,261 avg: 170.81, std: 86.63 52,318
Delve-PT Irrelevant Document 20,000 avg: 175.66, std: 114.74 73,732
Summary 10,000 avg: 30.82, std: 15.71 19,667
Relevant Document 37,589 avg: 221.39, std: 178.00 113,254
S2orc-PT Irrelevant Document 48,000 avg: 213.80, std: 167.73 135,606
Summary 24,000 avg: 34.72, std: 18.64 42,019
Table 4: Additional statistics of the in-domain irrelevant document detection datasets.
# Words # Words
Document # Examples (single) (all)
) ) Relevant 49,557 avg: 197.94, std: 68.93 148,119
CNN/Daily Mail-ID— o\ ant 48,664 ave: 24348, std: 17.74 176,268
Relevant 8,117 avg: 61.08, std: 48.22 16,982
SAMSum-ID Irrelevant 5,177 avg: 63.62, std: 50.53 13,890
Relevant 14,839 avg: 170.26, std: 81.93 53,356
Delve-ID
Irrelevant 20,200 avg: 175.56, std: 97.47 74,912
S20rc-ID Relevant 7,767 avg: 221.15, std: 189.84 48,232
Irrelevant 8,400 avg: 212.79, std: 165.08 53,936

We split the source documents in the remaining
samples into multiple chunks and collected them
as candidate irrelevant chunks. For each sample
to be injected, we randomly select two irrelevant
chunks to insert.

SAMSum-PT. We divide the dataset into two
parts at a ratio of 1:1, one part is prepared to be
injected and the other part is used to provide irrel-
evant chunks. For the samples to be inserted, we
also split the source document into two relevant
chunks. We split the input document in another
part of the samples into two chunks. We collect
these chunks as candidate irrelevant chunks. For
each sample to be injected, we randomly select two
irrelevant chunks for insertion.

Delve-PT and S2orc-PT. We view the citation
markers in the summaries to find relevant abstracts

and irrelevant abstracts. Specifically, we select
summaries with at least two citation markers. We
randomly select two markers when a summary con-
tains multiple citation markers. Next, for each cita-
tion marker in a summary, we find the correspond-
ing paper abstracts as relevant documents. To get
irrelevant abstracts, we use Microsoft Academic
Graph (MAG) (Shen et al., 2018) to determine the
academic fields where the abstract belongs. For
each abstract, MAG directly provides their aca-
demic fields in a hierarchical manner with a pro-
gressively finer granularity from LO to LS. To get
the irrelevant abstracts, under L3 and more specific
sub-fields, we select abstracts whose fields do not
intersect with relevant abstracts. We also insert two
relevant abstracts into each sample.
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Table 5: Additional statistics of the cross-domain irrelevant document detection test sets. A <— B means sampling
the irrelevant documents from dataset B and inserting them into dataset A.

# Words # Words
Document # Examples (single) (all)
CNN/Daily Mail <  Relevant 4,978 avg: 198.13, std: 69.76 44,682
SAMSum Irrelevant 517 avg: 62.05, std: 47.90 3,631
CNN/Daily Mail <~  Relevant 4978 avg: 198.13, std: 69.76 44,682
Delve Irrelevant 1,839 avg: 174.39, std: 99.39 19,185
CNN/Daily Mail <~  Relevant 4,978 avg: 198.13, std: 69.76 44,682
S2orc Irrelevant 2,838 avg: 212.56, std: 159.84 30,116
CNN/Daily Mail <  Relevant 4,978 avg: 198.13, std: 69.76 44,682
Random domain Irrelevant 3,953 avg: 151.77, std: 29.58 269,393
SAMSum <+ Relevant 816 avg: 61.76, std: 46.67 4,582
CNN/Daily Mail Irrelevant 765 avg: 244.36, std: 17.01 19,270
SAMSum < Relevant 816 avg: 61.76, std: 46.67 4,582
Delve Irrelevant 672 avg: 169.83, std: 88.16 10,658
SAMSum < Relevant 816 avg: 61.76, std: 46.67 4,582
S2orc Irrelevant 725 avg: 223.35, std: 186.49 15,135
SAMSum <+ Relevant 816 avg: 61.76, std: 46.67 4,582
Random domain Irrelevant 791 avg: 151.19, std: 29.43 97,565
Delve < Relevant 1,898 avg: 165.48, std: 74.64 15,953
CNN/Daily Mail Irrelevant 1,640 avg: 243.86, std: 18.04 29,370
Delve + Relevant 1,898 avg: 165.48, std: 74.64 15,953
SAMSum Irrelevant 507 avg: 61.97, std: 48.11 3,605
Delve Relevant 1,898 avg: 165.48, std: 74.64 15,953
S2orc Irrelevant 1,570 avg: 207.44, std: 140.61 21,830
Delve < Relevant 1,898 avg: 165.48, std: 74.64 15,953
Random domain Irrelevant 1,796 avg: 151.53, std: 29.23 178,605
S2orc Relevant 3,829 avg: 22492, std: 209.54 33,485
CNN/Daily Mail Irrelevant 2,742 avg: 243.69, std: 17.40 38,990
S2orc + Relevant 3,829 avg: 22492, std: 209.54 33,485
SAMSum Irrelevant 517 avg: 62.05, std: 47.90 3,631
S2orc Relevant 3,829 avg: 224.92, std: 209.54 33,485
Delve Irrelevant 18,382 avg: 173.56, std: 100.11 18,382
S2orc Relevant 3,829 avg: 224.92, std: 209.54 33,485
Random domain Irrelevant 3,246 avg: 150.81, std: 29.44 247,530
A.1.2 Additional Dataset Statistics A.2 Supplementary Materials for

. . o Experimental Setups
In this subsection, we report the statistics of the

pretraining datasets, the in-domain irrelevant doc- A 2.1 Pretraining Setups

ument detection dataset, and the test sets of cross-

domain irrelevant document detection. These statis-  In this subsection, we report the pretraining hyper-
tics are presented in Tables 3, 4 and 5, respectively.  parameter settings in Table 6.
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Table 6: Pretraining settings of the GLMs. Characters “B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100 machine. We set warm-up steps to 200 and employ a linear
learning rate scheduler.

Datasets Models Learning rate # Epochs Batch size
CNN/Daily Mail-PT E‘iﬁf 8:8888? iz i
st T b 8
mer MR Ul B
Pt pARTE 000008 F
CNN/Daily Mail-PT gf 8:888? }2 2
SAMSum-PT :11:25 8888? g 2
Delve-PT EE 8:888? iz 2
S2orc-PT E:IE 8888? g 162

Table 7: Performance of the pretrained models

Datasets Models ROUGE-1 ROUGE-2 ROUGE-L
T5-L 19.3443 3.3781 14.4185
DelvePT T5-B 17.5721 2.8855 13.4359
clve BART-L  18.0474 2.7043 13.6427
BART-B  18.3348 2.8605 13.9695

T5-L 20.4524 3.9853 15.1929
T5-B 19.9058 3.6515 14.7904

S2ore-PT BART-L  20.7972 37129 15.4441
BART-B  19.9070 3.4996 14.8250

T5-L 443738 217557 387138

SAMSum.PT T5-B 431620  20.6720  38.6918

BART-L  50.4676 25.7701 41.8661
BART-B  44.9713 20.4162 36.2211

T5-L 35.5728 12.0295 25.0173
T5-B 33.7640 14.7571 23.3762
BART-L  41.8007 20.1378 30.1265
BART-B  41.4113 19.7040 29.7622

CNN/Daily Mail-PT

A.2.2 Performance of the Pretrained Models model in Table 7. We use ROUGE 3 to evaluate the

In this subs§ct1f)n, we show the performanc‘e of 3https://github.con/google-research/
text summarization on each dataset and pretrained  google-research/tree/master/rouge
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Table 8: Epochs and batch size of the Frozen. Characters
“B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100
machine.

Table 9: Epochs and batch size of FT-ALL. Characters
“B" and “L" denote the model size of Base and Large,
respectively. All models are trained on the Tesla A100
machine.

Datasets Models # Epochs B:;;zh Datasets Models # Epochs Bs?;fzh
CNN/Daily Mailip BARTE 40 o CNN/Daily Mail ~ DARTS 0 s
R
Delve-ID (1K) pant® 40 o Delve-ID (1K) panit 1o 8
Delve-ID (8K)  pant s 40 o Delve-D (8K)  panir 10 8
en BEP B @ awn WD D
CNN/Daily Mail- 1D 127 o o CNN/Daily Mail 1D 1270 " :
SAMSum-ID wr o o SAMSum-ID oy 19 s
Delve-ID (1K) e o o Delve-ID (1K) e 10 )
Delve-ID (8K) e o o Delve-ID (8K) e 10 4
S2orc-ID :E:E 38 23 S2orc-ID %z:E }8 i

quality of text summarization and performance of
all pretrained models.

Additionally, the metrics used in this section are
as follows:

* ROUGE-1 measures the overlap of unigrams
between the reference and the generated sum-
mary.

ROUGE-2 extends the concept of ROUGE-1
to bigrams, measuring the overlap of consecu-
tive pairs of words between the reference and
the generated summary.

ROUGE-L calculates the longest common
subsequence between the reference and the
generated summary.

We also note here that on the CNN/Daily Mail
dataset, the reference (Lewis et al., 2019) reports
44.16, 21.28, and 40.90 on the BART model, and
the reference (Raffel et al., 2020) reports 43.52,
21.55 and 40.69 on TS5 model, respectively. Our
pretrained model generally has worse performance,
since (1) we add the irrelevant documents in the
pretrained phrase; (2) For each original dataset, a
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portion is used to construct the irrelevant document
detection dataset. Therefore, the total amount of
pretraining data is smaller than the original dataset,
which may lead to a worse performance of text
summarization. Although the performance of our
pretraining model is worse, this does not affect the
effectiveness of irrelevant document detection.

A.2.3 Training Setups of the Baselines

In this subsection, we report the training settings
of the Frozen and FT-ALL. Table 8 and Table 9
present the training epochs and batch sizes.
Frozen. We use the AdamW optimizer with
exponential decay rates for the first and second mo-
ments of the gradient updates setting to 0.9 and
0.999, respectively. We choose a constant learn-
ing rate scheduler with a warm-up period of 200
steps. The learning rates are selected from the set
{1076,107°,107%,1073}. The weight decay pa-
rameter is configured to be 0.0001. For each hyper-
parameter setting, we run three times with different
random seeds. In the main paper, we report the
mean value of the results, while the standard de-
viations are presented in Table 11. We select the
model with the lowest validation loss for testing in



Table 10: Evaluation results of CODE and baselines for in-domain irrelevant document detection. 1 indicates that
larger values are better, and | indicates that smaller values are better. Characters “B" and “L" denote the Base and

Large model, respectively.

FPR

Models (95%) TPR AUROC AUPR

{ T )

CODE/Frozen/FT-ALL

T5-L  5.80/30.30/25.63 98.08/92.87/94.59 97.03/93.57/92.60
Delve.ID (1K) T5-B  32.30/65.97/57.75 90.08/84.52/8521 83.76/82.62/82.92
BART-L 11.10/43.02/4445 96.09/91.23/91.84 93.41/90.08/90.47
BART-B  19.65/49.27/53.02 91.60/90.62/90.99 93.66/90.23/90.61
T5-L  5.55/16.85/18.28 98.16/93.62/95.87 97.23/94.01/95.18
Delve-ID (8K) T5-B  31.50/60.22/47.98 90.36/86.32/87.64 84.34/85.40/87.49
BART-L 11.10/33.52/33.45 96.09/93.17/92.75 93.41/92.96/91.61
BART-B  20.30/45.40/38.00 94.79/90.66/92.04 91.30/89.98/90.95
T5-L 1.08/10.40/6.05  99.54/96.01/97.69 99.27/95.59/97.32
S2oreD T5-B  2.53/15.82/11.65 99.00/96.68/96.87 97.95/96.51/96.01
BART-L  4.83/16.18/9.47  98.66/96.03/96.77 98.11/95.45/96.15
BART-B  3.00/6.94/5.07  98.72/97.91/97.71 97.56/97.55/97.26
T5-L 0.60/5.50/0.65  99.87/98.67/99.68 99.87/98.78/98.60
SAMSumID T5-B 0.61/8.44/122  99.66/99.21/97.46 99.43/99.00/96.68
BART-L  0.91/0.65/028  99.43/99.70/99.77 99.37/99.67/99.77
BART-B  2.26/3.83/3.67  97.23/99.15/97.83 94.61/99.18/97.83
T5-L 0.00/0.20/0.32  99.99/99.85/99.77 99.99/99.81/99.79
. . T5-B 0.12/0.82/029  99.96/99.62/99.80 99.96/99.56/99.70
CNN/Daily Mail-ID g o1 0.14/0.57/0.44  99.71/99.69/99.78  99.60/99.73/99.75
BART-B  0.18/0.23/0.33  99.89/99.87/99.86 99.83/99.86/99.86

irrelevant document detection.

FT-ALL. We utilize the same hyper-parameter
setting used in the baseline Frozen, except that
the learning rate is set to the one used in the sum-
marizer pretraining. We repeat this baseline three
times with different random seeds.

A.3 Supplementary Results in In-domain
Irrelevant Document Detection

In this section, we present all evaluation results of
in-domain detection to show the improvement of
our method compared to the baselines. Table 10
shows the performance of our proposed method
and two baselines under each dataset. The details
of our method and the baselines can be found in
section 4. We note here that our method is deter-
ministic and does not have an error bar. The other
two baselines are randomly re-initialized with three
different seeds. We take the average of the results
as the final performance and calculate the standard
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deviation. Table 11 provides the standard devia-
tion for different models. Table 12 provides the
hyper-parameters « and 3 of CODE are used in the
evaluation process.

The evaluation metrics used in section 6 are as
follows:

* FPR at 95% TPR refers to the rate that a rele-
vant document is misclassified as an irrelevant
document when the true positive rate (TPR) is
at 95%.

* AUROC is calculated as the Area Un-
der the Receiver Operating Characteristic
curve (Fawcett, 2006). The ROC curve illus-
trates the relationship between TPR and FPR
at various thresholds. The higher the value
of AUROC, the stronger the discriminative
ability of the model.

¢ AUPR stands for Area Under the Precision-



Table 11: Standard deviation of the evaluation results.

FPR
Models (95%) TPR AUROC AUPR
{ ) )
CODE/Frozen/FT

T5-L 0.00/0.94/1.34 0.00/0.21/0.91 0.00/0.16/0.76
Delve (1K) T5-B 0.00/1.53/7.42 0.00/0.20/9.83 0.00/0.16/12.46
BART-L  0.00/1.17/2.49 0.00/0.19/0.39  0.00/0.20/0.40

BART-B 0.00/1.42/0.34 0.00/0.13/0.06  0.00/0.21/0.10

T5-L 0.00/0.62/1.05 0.00/0.09/0.08 0.00/0.11/0.34

Delve (8K) T5-B 0.00/1.08/0.55 0.00/0.13/1.12  0.00/0.15/0.92
BART-L  0.00/0.98/2.45 0.00/0.02/0.24  0.00/0.03/0.40

BART-B 0.00/1.18/0.76  0.00/0.45/0.20  0.00/0.62/0.34

T5-L 0.00/0.35/0.31 0.00/0.27/0.93  0.00/0.33/0.86

SDorc T5-B 0.00/0.48/0.35 0.00/0.11/3.02  0.00/0.48/4.93
BART-L  0.00/0.01/1.04 0.00/0.01/0.11 0.00/0.01/0.13

BART-B 0.00/0.23/0.25 0.00/0.01/0.25 0.00/0.01/0.64

T5-L 0.00/0.46/0.24  0.00/0.03/0.01  0.00/0.04/0.02

SAMSum T5-B 0.00/0.43/0.32  0.00/0.02/0.01  0.00/0.03/0.03
BART-L  0.00/0.11/0.06  0.00/0.01/0.02  0.00/0.01/0.01

BART-B 0.00/0.12/0.46  0.00/0.05/0.05 0.00/0.06/0.21

T5-L 0.00/0.01/0.00  0.00/0.00/0.00  0.00/0.02/0.00

. . T5-B 0.00/0.01/0.01  0.00/0.01/0.00  0.00/0.00/0.01
CNN/Daily Mail BART-L  0.00/0.06/0.10 0.00/0.01/0.02  0.00/0.01/0.01
BART-B 0.00/0.02/0.46  0.00/0.01/0.05 0.00/0.01/0.21

Table 12: The hyper-parameters « and 8 of CODE are used in the main results. Characters “B" and “L" denote the

model size of Base and Large, respectively.

BART-B BART-L  T5-B T5-L
a,
CNN/Daily Mail-ID 0.2,0.0 0.2,0.3 0.2,0.1 0.2,0.1
SAMSum-ID 02,00 02,00 04,02 04,04
Delve-ID (1K) 12,02 02,01 12,00 0.2,0.0
Delve-ID (8K) 08,00 1.0,0.1 1.0,0.2 0.6,0.1
S2orc-ID 0.6,0.1 10,01 0.6,00 04,0.0

Recall curve (Manning and Schutze, 1999;
Saito and Rehmsmeier, 2015). The PR curve
depicts the trade-off between precision and
recall at various thresholds. For an ideal clas-
sifier, its AUPR score is 1.

A.4 Performance vs. Pretrained Model
Checkpoints

In this section, we show how the selection of
checkpoints of the pretrained model affects the de-
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tection performance of our method. Specifically,
we present the relationship between the validation
loss for each checkpoint on the pretrained dataset
and their in-domain irrelevant document detection
performance. Each figure in this section displays
the validation loss and FPR at 95% TPR metric of
each dataset and model at different checkpoints.
We find out that the pretrained model with the
smallest validation loss is generally not the pre-
trained model with the best detection performance,
but the detection performance difference between
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the pretrained model with the smallest validation
loss and the pretrained model with the best irrele-
vant document detection performance is negligible.

The correspondence between the figures and the
setting is as follows:

* Figure 4: performance on Delve-ID (1K)
dataset and four models.

e Figure 5: performance on Delve-ID (8K)
dataset and four models.

* Figure 6: performance on S2orc-ID dataset
and four models.

* Figure 7: performance on SAMSum-ID
dataset and four models.

* Figure 8: performance on CNN/Daily Mail-
ID dataset and four models.

A.5 Performance vs. Pretrained Model
Attention Layers

In this section, we show how different attention
layers affect the irrelevant document detection per-
formance of our method. Specifically, we present
the relationship between the attention layer and
two evaluation metrics of irrelevant document de-
tection. Each figure in this section displays FPR
at 95% TPR and AUROC of our method on each
dataset and model when different attention layers
are selected. We observe that the lowest FPR at
95% TPR and the highest AUROC occur in the at-
tention layer close to the last layer (the layer closest
to the output layer) for most types of models and
datasets, except BART-base, which contains only
six attention layers. In fact, we can also observe
that the last three layers have similar performance
and this indicates that the performance varies small
if the attention layers close to the output layer are
selected.

The correspondence between the figures and the
setting is as follows:

e Figure 9: performance on Delve-ID (1K)
dataset and each model.

* Figure 10: performance on Delve-ID (8K)
dataset and each model.

* Figure 11: performance on S2orc-ID dataset
and each model.

* Figure 12: performance on SAMSum-ID
dataset and each model.
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* Figure 13: performance on CNN/Daily Mail-
ID dataset and each model.

A.6 Performance vs. In-domain Irrelevant
Detection Difficulty

In this section, we show how different dataset af-
fects the in-domain irrelevant document detection
performance of our method. We present the re-
lationship between the dataset similarity and two
evaluation metrics of irrelevant document detection.
Figure 14 displays how FPR at 95% TPR changes
with the improvement of dataset similarity, while
Figure 15 displays how AUROC changes with the
improvement of dataset difficulty. C; to Cs repre-
sent CNN/Daily Mail-ID, S2orc-ID, SAMSum-ID,
Delve-ID (8K), and Delve-ID (1K), respectively.

To measure the similarity of the dataset, we use
the Sentence-BERT model to obtain the embed-
ding of input documents and calculate the average
cosine similarity between the embedding of rele-
vant and irrelevant documents within a single data
sample. Specifically, each data sample contains
two relevant documents and two irrelevant doc-
uments. For each document X in the dataset C,
we use H(X) to denote the embedding vector of
document X, X' C X is the set of irrelevant doc-
uments in the input document sequence. Therefore,
the difficulty of the dataset C is defined as:

1
| X[ — | &)

[ww
2. 2

Xexim X/ex\Xxir

(H(X), H(X"))
H(X)l2 - [1H (X2

The higher the cosine similarity, the smaller the
difference between relevant and irrelevant docu-
ments in the dataset, indicating it is harder to detect
irrelevant documents on this dataset. We observe
that when the relevant and irrelevant documents
in the dataset tend to be less similar to each other
(i.e., the similarity of the dataset is smaller), our
method tends to have a smaller FPR at 95% TPR
and a larger AUROC.
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A.7 Performance vs. Cross-domain Irrelevant
Detection

In this section, we show how our method trans-
fers across different domains. Recall that we pre-
train the generative language model, find the best
hyper-parameter setting, and test the detection per-
formance on the same domain. We hope that
this pretrained model together with the best hyper-
parameter setting can also transfer to other domains.
Therefore, we constructed cross-domain test sets
to evaluate the cross-domain performance. The
details of the cross-domain dataset can be found
in section 5.3, A.1.2, and we use equation (2) to
measure the difficulty of cross-domain datasets.

A.7.1 Results of Cross-domain Irrelevant
Detection

Table 13 and Table 14 show the performance of
our proposed method and two baselines under each
dataset in cross-domain detection. Table 15 and Ta-
ble 16 provides the standard deviation for different
models.

A.7.2 Performance vs. Cross-domain
Irrelevant Detection Difficulty

We present the relationship between cross-domain
dataset similarity and two evaluation metrics of the
irrelevant document detection. Figure 16, 17, 18,
19 display FPR at 95% TPR, while Figure 20, 21,
22, 23 display AUROC on each model and dataset.
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From the figures, we observe that for most set-
tings, FPR at 95% TPR decreases, and AUROC
increases as the similarity of the dataset increases,
except for one case. In Figure 17d, we observe al-
though the S2orc <— Random domain has a smaller
difficulty, FPR is two times larger than that of S2orc
< Delve domain. The performance on the AUROC
metric is also worse than that of S2orc <— Delve
domain in Figure 21d. We generally observe this
on the smaller model, i.e., BART-Base, consisting
of nearly 140M parameters. On the larger model,
we do not observe this. This may be due to the
fact that the large model models tend to perform
better for cross-domain data. We also observe that
TS5 model generally performs better than BART on
most cross-domain datasets. We also observe that
the larger models yield better performance for both
BART and T5.



Table 13: Evaluation results of CODE and baselines for cross-domain irrelevant document detection. A <— B means
sampling the irrelevant documents from dataset B and inserting them into dataset A. 1 indicates that larger values
are better, and | indicates that smaller values are better. Characters “B" and “L" denote the Base and Large model,

respectively.

FPR
Models (95%) TPR AUROC AUPR
{ ) )
CODE/Frozen/FT-ALL

T5-L 1.65/27.13/8.12  99.55/95.39/97.95 99.52/96.05/98.38
Delve «+ T5-B 4.75/38.58/35.67 98.74/93.87/94.01 98.25/94.84/94.96
S2orc BART-L 3.00/22.05/41.87 99.11/96.39/95.29 98.85/96.80/96.75
BART-B 5.45/30.82/42.57 98.36/95.30/94.67 97.73/96.13/95.45
T5-L 0.10/58.27/10.63 99.96/89.92/97.63 99.96/91.91/97.70
Delve + T5-B 0.00/5.03/64.29  99.99/98.60/89.81 99.99/98.93/92.49
Random domain BART-L  0.00/52.00/37.63 99.99/92.67/95.71 99.99/93.86/97.04
BART-B 2.60/54.80/33.62 99.23/91.92/96.35 99.18/93.95/97.29
T5-L 0.05/67.70/7.60 99.95/81.50/98.19 99.95/82.18/98.58
Delve + T5-B 0.00/83.35/70.08 99.93/83.87/89.22 99.94/87.37/92.30
SAMSum BART-L  0.00/58.30/45.07 99.99/88.56/95.08 99.99/89.52/96.68
BART-B 0.10/69.13/39.52 99.96/84.59/95.72 99.96/86.17/96.92
T5-L 0.10/34.30/10.03 99.92/93.87/97.46 99.92/94.77/97.46
Delve + T5-B 0.10/59.85/64.34 99.88/90.99/90.32 99.89/93.01/92.97
CNN/Daily Mail BART-L  0.50/53.40/35.82 99.83/88.63/95.98 99.81/89.13/97.19
BART-B 2.80/42.77/37.05 99.25/92.87/96.01 99.12/94.10/97.11
T5-L 1.10/31.42/1.75 99.71/94.04/98.93 99.71/94.53/99.02
S2orc T5-B 1.70/19.69/7.91 99.47/96.60/97.85 99.34/97.13/98.12
Delve BART-L  4.47/18.85/3.55 98.25/95.90/98.17 97.47/95.49/98.23
BART-B  4.20/11.78/2.36  98.79/97.90/98.50 98.67/98.23/98.73
T5-L 0.00/17.03/0.70  99.99/97.10/98.83  99.99/97.59/99.20
S2orc T5-B 0.00/2.50/11.57  99.99/99.02/97.41 99.99/99.26/97.80
Random domain BART-L  0.30/7.65/4.39  99.93/98.09/97.96 99.93/98.59/98.10
BART-B  2.35/16.97/2.07 98.13/96.97/98.49 98.32/97.86/98.74
T5-L 0.22/14.66/1.12 99.89/97.14/99.04 99.90/97.24/99.14
S2orc T5-B 0.30/15.97/991 99.78/97.15/97.51 99.82/97.73/97.78
SAMSum BART-L  0.05/3.15/0.68 99.98/99.19/98.78 99.98/99.31/99.14
BART-B 0.22/7.74/0.62  99.87/98.47/98.80 99.89/98.72/99.16
T5-L 0.05/6.08/1.44  99.97/98.61/98.95 99.97/98.73/99.02
S2orc T5-B 0.22/16.24 /3.37 99.86/97.00/98.53 99.88/97.48/98.90
CNN/Daily Mail BART-L.  0.43/6.20/0.84  99.84/98.54/98.81 99.75/98.72/99.15
BART-B 0.40/4.04/0.71 99.70/98.93/98.98 99.61/99.12/99.22
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Table 14: Continuation of Table 13.

FPR
Models (95%) TPR AUROC AUPR
{ ) )
CODE/Frozen/FT-ALL

T5-L 0.00/0.24/0.18 99.98/99.74/99.58  99.98/99.79/99.68
SAMSum <+ T5-B 1.22/15.08/2.03 99.77/97.38/99.28  99.76/97.55/99.36
Delve BART-L 0.00/9.58/1.85 99.99/98.02/98.93  99.99/98.25/99.08
BART-B 0.37/0.41/1.81 99.82/99.45/98.29 99.81/99.56/98.63
T5-L 0.00/0.04/0.42 99.99/99.79/99.62  99.99/99.83/99.64
SAMSum <+ T5-B 0.61/7.74/2.34 99.86/98.49/99.21 99.86/98.54/99.30
S2orc BART-L  0.00/21.84/0.85 99.99/96.16/99.34  99.99/96.50/99.45
BART-B 0.37/0.65/1.52 99.91/99.29/98.49  99.90/99.44/98.84
T5-L 0.00/0.86/0.30 99.99/99.59/99.68  99.99/99.67/99.74
SAMSum < T5-B 0.00/0.20/2.84 99.99/99.84/99.08 99.99/99.88/99.25
Random domain BART-L 0.00/5.34/3.67 99.99/98.67/98.28  99.99/98.94/ 98.49
BART-B  0.49/12.67/1.66  99.83/96.47/98.50 99.83/97.82/98.80
T5-L 0.00/1.75/0.18 99.99/99.45/99.68  99.99/99.54/99.73
SAMSum < T5-B 0.73/3.42/3.30 99.88/99.19/99.27 99.88/99.27/99.35
CNN/Daily Mail BART-L  0.00/10.35/1.32  99.99/97.96/99.12 99.99/98.11/99.26
BART-B 1.59/1.96/1.30 99.48/98.20/98.50 99.32/98.78/99.02
T5-L 0.02/0.33/1.35 99.99/99.79/99.23  99.99/99.83/98.91
CNN/Daily Mail T5-B 0.02/3.79/23.15 99.99/99.09/83.10 99.99/99.21/71.82
< Delve BART-L 0.00/27.87/73.88 99.99/88.16/60.47 99.99/82.24/59.74
BART-B  0.44/23.67/25.92 99.86/88.75/79.19 99.87/85.69/67.94
T5-L 0.02/0.37/2.12 99.99/99.79/98.94  99.99/99.82/98.39
CNN/Daily Mail T5-B 0.02/5.17/9.64 99.99/98.96/93.28  99.99/99.08/86.11
< S2orc BART-L 0.02/23.23/63.04 99.99/86.37/65.03 99.99/75.31/60.56
BART-B 0.12/21.50/33.20 99.95/87.56/73.51 99.95/81.92/63.02
T5-L 0.00/ 0.09/1.60 99.99/99.67/99.11 99.99/99.75/98.72
CNN/Daily Mail T5-B 0.00/16.51/6.48  99.99/97.28/95.40  99.99/98.03/90.04
< Random domain BART-L  0.00/1.49/42.90  99.99/99.15/76.33 99.99/99.26/69.34
BART-B 0.08/0.00/1.03 99.93/99.86/99.58  99.94/99.91/99.58
T5-L 0.02/7.98/2.82 99.99/98.47/98.64 99.99/98.78/97.92
CNN/Daily Mail T5-B 0.50/31.29/23.66 99.87/94.70/82.24 99.87/95.01/70.68
< SAMSum BART-L 0.04/89.86/45.17 99.98/24.85/71.64 99.97/35.63/62.37
BART-B 3.40/84.68/46.20 99.28/46.40/ 64.11 99.35/51.05/56.21
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Table 15: Standard deviation of the evaluation results.

FPR
Models (95%) TPR AUROC AUPR
{ ) )
CODE/Frozen/FT-ALL

T5-L 0.00/1.64/1.40 0.00/0.25/0.33  0.00/0.19/0.23
Delve + T5-B 0.00/1.41/4.03 0.00/0.12/0.55 0.00/0.06/0.31
S2orc BART-L 0.00/1.82/4.17 0.00/0.12/0.45 0.00/0.23/0.27
BART-B 0.00/2.29/2.23 0.00/0.26/0.41 0.00/0.17/0.35
T5-L 0.00/4.78/4.39  0.00/1.02/0.48 0.00/0.78/0.42
Delve + T5-B 0.00/2.49/1.41 0.00/0.44/0.82 0.00/0.33/0.62
Random domain BART-L  0.00/4.21/4.14 0.00/1.21/0.39 0.00/1.09/0.25
BART-B 0.00/5.74/3.27 0.00/1.10/0.46 0.00/0.81/0.35
T5-L 0.00/3.86/2.09 0.00/1.18/0.32 0.00/0.47/0.22
Delve T5-B 0.00/4.47/2.70  0.00/2.49/1.39 0.00/2.26/1.04
SAMSum BART-L 0.00/2.46/3.81 0.00/1.99/0.47 0.00/1.32/0.31
BART-B 0.00/1.16/3.89 0.00/1.05/0.58 0.00/1.36/0.42
T5-L 0.00/4.53/1.57 0.00/0.80/0.32 0.00/0.62/0.47
Delve < T5-B 0.00/6.95/2.16  0.00/1.29/1.03  0.00/1.19/0.80
CNN/Daily Mail BART-L  0.00/5.12/4.80 0.00/1.47/0.47 0.00/1.28/0.31
BART-B 0.00/5.06/1.56 0.00/1.15/0.31 0.00/0.93/0.28
T5-L 0.00/1.19/0.16  0.00/0.39/0.19 0.00/0.38/0.17
S2orc T5-B 0.00/3.73/1.30  0.00/0.51/0.23  0.00/0.43/0.21
Delve BART-L 0.00/1.05/0.53 0.00/0.21/0.25 0.00/0.10/0.28
BART-B 0.00/0.37/0.21 0.00/0.09/0.19 0.00/0.08/0.31
T5-L 0.00/0.29/0.38  0.00/0.06/0.61 0.00/0.05/0.38
S2orc T5-B 0.00/1.46/2.15 0.00/0.34/0.36  0.00/0.23/0.33
Random domain BART-L 0.00/2.01/1.91 0.00/0.62/0.51 0.00/0.31/0.55
BART-B 0.00/3.98/0.30 0.00/0.52/0.19 0.00/0.35/0.32
T5-L 0.00/2.21/0.12  0.00/0.44/0.25 0.00/0.63/0.19
S2orc + T5-B 0.00/1.85/1.63  0.00/0.30/0.30  0.00/0.23/0.30
SAMSum BART-L 0.00/1.97/0.55 0.00/0.31/0.22 0.00/0.29/0.16
BART-B 0.00/1.78/0.26  0.00/0.30/0.22 0.00/0.25/0.16
T5-L 0.00/0.89/0.13 0.00/0.13/0.23  0.00/0.12/0.18
S2orc T5-B 0.00/2.19/0.22  0.00/0.41/0.13  0.00/0.40/0.07
CNN/Daily Mail BART-L  0.00/1.42/0.56 0.00/0.27/0.39 0.00/0.20/0.25
BART-B 0.00/0.90/0.31 0.00/0.15/0.11 0.00/0.13/0.14
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Table 16: Continuation of Table 15.

FPR
Models (95%) TPR AUROC AUPR
{ ) )
CODE/Frozen/FT-ALL

T5-L 0.00/0.17/0.06  0.00/0.02/0.03 0.00/0.01/0.02
SAMSum < T5-B 0.00/2.97/0.12  0.00/0.46/0.02 0.00/0.50/0.02
Delve BART-L  0.00/0.47/1.84 0.00/0.25/0.38 0.00/0.27/0.54
BART-B 0.00/0.16/0.34 0.00/0.10/0.19 0.00/0.07/0.13
T5-L 0.00/0.06/0.15 0.00/0.06/0.02 0.00/0.01/0.02
SAMSum <+ T5-B 0.00/1.55/0.17 0.00/0.33/0.04 0.00/0.35/0.04
S2orc BART-L  0.00/4.53/0.73 0.00/0.99/0.13 0.00/1.00/0.21
BART-B 0.00/0.49/0.56 0.00/0.20/0.26  0.00/0.14/0.13
T5-L 0.00/0.17/0.15 0.00/0.03/0.02 0.00/0.03/0.03
SAMSum < T5-B 0.00/0.06/0.22  0.00/0.03/0.02 0.00/0.02/0.02
Random domain BART-L 0.00/1.51/3.62 0.00/0.37/0.82 0.00/0.29/1.09
BART-B 0.00/5.29/0.55 0.00/0.52/0.26  0.00/0.32/0.13
T5-L 0.00/0.47/0.06  0.00/0.07/0.03  0.00/0.06/0.03
SAMSum < T5-B 0.00/0.78/0.24  0.00/0.08/0.02 0.00/0.07/0.02
CNN/Daily Mail BART-L 0.00/2.05/1.24 0.00/0.29/0.23 0.00/0.27/0.36
BART-B 0.00/0.75/0.57 0.00/0.27/0.46 0.00/0.16/0.26
T5-L 0.00/0.25/0.73  0.00/0.03/0.35 0.00/0.03/0.74
CNN/Daily Mail T5-B 0.00/0.34/2.55 0.00/0.09/4.24  0.00/0.06/7.33
< Delve BART-L  0.00/2.15/1.41 0.00/0.50/2.77 0.00/0.87/5.14
BART-B 0.00/1.89/1.91 0.00/0.80/1.89 0.00/1.20/4.68
T5-L 0.00/0.40/1.15 0.00/0.05/0.59 0.00/0.05/1.19
CNN/Daily Mail T5-B 0.00/0.48/1.49 0.00/0.06/1.93 0.00/0.05/4.84
< S2orc BART-L  0.00/0.81/1.36  0.00/0.30/2.44  0.00/0.63/3.95
BART-B 0.00/1.30/2.55 0.00/0.68/2.69 0.00/1.03/5.13
T5-L 0.00/0.06/0.88 0.00/0.03/0.42 0.00/0.02/0.89
CNN/Daily Mail T5-B 0.00/2.47/1.01 0.00/0.28/1.32 0.00/0.17/3.63
< Random domain BART-L  0.00/0.95/0.98 0.00/0.26/1.64 0.00/0.29/3.32
BART-B 0.00/0.00/1.32 0.00/0.02/0.36  0.00/0.01/0.42
T5-L 0.00/5.92/1.50 0.00/0.56/0.77 0.00/0.49/1.55
CNN/Daily Mail T5-B 0.00/1.62/1.78 0.00/0.48/3.97 0.00/0.82/6.94
<+ SAMSum BART-L  0.00/0.65/1.07 0.00/0.90/1.78 0.00/0.24/1.53
BART-B 0.00/3.65/2.04 0.00/1.71/3.34  0.00/0.80/4.85
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Figure 16: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the Delve (1K) domain, and varying
irrelevant document domains represented as C; through C4, encompassing SAMSum, CNN/Daily Mail, Random

Domain, and S2orc.
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Figure 17: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the S2orc domain, and varying
irrelevant domains represented as C; through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and
Delve.

(a) T5-L (b) T5-B (c) BART-L (d) BART-B

FPR at 95% TPR (%)
I ‘ F <
)

Cy Cy C Cy C Cy
Dataset Dataset Dataset

Figure 18: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the SAMSum domain, and varying
irrelevant document domains represented as C; through C4, encompassing Delve, S2orc, Random Domain, and
CNN/Daily Mail.
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Figure 19: FPR at 95% TPR vs. sim(C); The relevant documents sourced from the CNN/Daily Mail domain, and
varying irrelevant document domains represented as C; through C4, encompassing Delve, S2orc, SAMSum, and
Random Domain.
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Figure 20: AUROC vs. sim(C); The relevant documents sourced from the Delve (1K) domain, and varying irrelevant
document domains represented as C; through C,, encompassing SAMSum, CNN/Daily Mail, Random Domain, and

S2orc.
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Figure 21: AUROC vs. sim(C); The relevant documents sourced from the S2orc domain, and varying irrelevant
document domains represented as C; through C4, encompassing SAMSum, CNN/Daily Mail, Random Domain, and

Delve.
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Figure 22: AUROC vs. sim(C); The relevant documents sourced from the SAMSum domain, and varying irrelevant
document domains represented as C; through Cy4, encompassing Delve, S2orc, Random Domain, and CNN/Daily

Mail.
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Figure 23: AUROC vs. sim(C); The relevant documents sourced from the CNN/Daily Mail domain, and varying
irrelevant document domains represented as C; through C4, encompassing Delve, S2orc, SAMSum, and Random

Domain.

A.8 Hyper-parameter Sensitivity

In this section, we show how different choice of
the hyper-parameter o and 3 affects the in-domain
irrelevant document detection performance of our
method. Specifically, we present the relationship
between the selection of « and 3 and irrelevant doc-
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ument detection performance. Each figure in this
section displays FPR at 95% TPR or AUROC of our
method on each dataset and model when selecting
different combinations of «v and 3. The details of
hyper-parameters can be found in Table 12 in A.3.

We observe that the best performance occurs
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Figure 24: FPR at 95% TPR vs. Hyper-parameter on Delve-ID (1K)
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Figure 25: FPR at 95% TPR vs. Hyper-parameter on Delve-ID (8K)
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Figure 26: FPR at 95% TPR vs. Hyper-parameter on S2orc-ID
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Figure 27: FPR at 95% TPR vs. Hyper-parameter on SAMSum-ID
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Figure 28: FPR at 95% TPR vs. Hyper-parameter on CNN/Daily Mail-ID
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Figure 29: AUROC vs. Hyper-parameter on Delve-ID (1K)
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Figure 30: AUROC vs. Hyper-parameter on Delve-ID (8K)
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Figure 31: AUROC vs. Hyper-parameter on S2orc-ID
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Figure 32: AUROC vs. Hyper-parameter on SAMSum-ID
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Figure 33: AUROC vs. Hyper-parameter on CNN/Daily Mail-ID
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near o = 0.6 for most choices of 5 and the best
performance occurs near § = (.2 for most choices
of a. We also observe that the performance does
not change much when « varies from 0 to 1. Simi-
larly, the performance also changes slightly when
B varies from 0 to 0.4. We observed that the per-
formance of CODE on both types of pretrained
models is more sensitive to o compared to 5.

The correspondence between the figures and the
setting is as follows:

* Figure 24: FPR at 95% TPR on Delve-ID (1K)
dataset and each model.

* Figure 25: FPR at 95% TPR on Delve-ID (8K)
dataset and each model.

* Figure 26: FPR at 95% TPR on S2orc-ID
dataset and each model.

* Figure 27: FPR at 95% TPR on SAMSum-ID
dataset and each model.

 Figure 28: FPR at 95% TPR on CNN/Daily
Mail-ID dataset and each model.

* Figure 29: AUROC on Delve-ID (1K) dataset
and each model.

* Figure 30: AUROC on Delve-ID (8K) dataset
and each model.

* Figure 31: AUROC on S2orc-ID dataset and
each model.

* Figure 32: AUROC on SAMSum-ID dataset
and each model.

* Figure 33: AUROC on CNN/Daily Mail-ID
dataset and each model.

A.9 Supplementary Material for Effectiveness
of In-domain Irrelevant Documents in

Pretraining

A.9.1 Pretraining with Irrelevant Documents
vs. Without Irrelevant Documents

In this subsection, we study how the irrelevant doc-
uments in the pretraining affect the performance.
Specifically, we pretrained the T5-Large model
using only relevant documents from the Delve
dataset.

We evaluate the pretrained models with three
metrics for text summarization, and Table 17
presents the results. We observe that irrelevant
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Figure 34: Cross-attention scores on eight bi-grams when
T5-Large is pretrained with and without irrelevant documents.
Bi-gram occurrences are in the parenthesis.

documents can slightly improve the generation per-
formance. This may be due to the fact that irrele-
vant documents may help enrich the corpus in that
domain, therefore enhancing the summarization
performance.

Table 18 presents three metrics of irrelevant doc-
ument detection under the case where T5-Large is
pretrained with and without irrelevant documents.
We observe that irrelevant documents plays an im-
portant role for irrelevant document detection task.

A.9.2 Case Study

To provide more insights, we spotlight eight bi-
gram phrases, of which half originate from rel-
evant documents and the remainder from irrele-
vant documents. Furthermore, half of these bi-
grams frequently appear, as indicated by their oc-
currence counts in parenthesis. Comparing the
cross-attention scores when the T5-Large model
is pretrained with (i.e., red bars) and without (i.e.,
blue bars) irrelevant documents, we observed that
including irrelevant documents enhances the atten-
tion scores of less frequent bi-grams in relevant
documents, simultaneously depressing scores for
the less frequent irrelevant bi-grams. For instance,
after incorporating irrelevant documents in pretrain-
ing, the relevant bi-gram “levinstyle verb" with a
single occurrence nearly doubles its attention score,
whereas the irrelevant bi-gram “discounted rate"
with two occurrences sees an 80% attention reduc-
tion. Moreover, we observed that the attention
scores of domain-agnostic phrases also wane, po-
tentially bolstering irrelevant document detection
capabilities. For example, after incorporating ir-
relevant documents in pretraining, we observe no-
table reductions in attention scores for the domain-
agnostic phrases “can be" in relevant documents
and “continue to" in irrelevant documents.



Table 17: Performance of pretrained model vs. irrelevant documents

| ROUGE-1 ROUGE-2 ROUGE-L

With

irrelevant documents )
Without

19.34
17.00

3.38
245

14.42
12.87

Table 18: Performance vs. irrelevant documents (%)

| FPRat95% TPR AUROC AUPR

With

irrelevant documents )
Without

5.80
80.45

98.08
62.92

97.03
66.99

Table 19: The performance of the baseline Frozen under different hidden layer dimensions.

FPR
Models (95%) TPR AUROC AUPR
4 ) )
Frozen
(24N, 8N, N) 2898 £0.74 93.75+£0.14 93.08 £0.15
(16N,4N,N) 29.08 £1.00 93.82+0.11 93.12+£0.09
(4N, 2N, N) 30.30+ 094 92.87 £0.21 93.57 £0.16

A.10 Effect of FNN size on the detection
performance of baseline algorithms

We test the impact of different sizes of FNN on
the detection performance of Frozen on T5-Large
and Delve-ID (1K). The results are shown in Table
19. We find that as the hidden layer dimension
of FNN increases, the detection performance of
Frozen shows a slight improvement, but the overall
improvement is not significant.

A.11 Time consumption of CODE and
baselines.

We compare the time computation of CODE
and baselines. The time complexity of CODE is
O(|X| x |Y']), where | X | represents the length of
a single document, and \Y\ represents the length of
the generated summary. We test the time consump-
tion of CODE and baseline algorithms on T5-Large
and Delve-ID (1K) during the hyper-parameter tun-
ing and testing phases. The batch size is uniformly
set to 1 for testing CODE and the baseline algo-
rithms. During the hyper-parameter tuning phase,
for CODE, we measure the time consumption re-
quired to complete a hyper-parameter search for a
single hyper-parameter combination; for the base-
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Table 20: Time consumption of CODE and the base-
lines.

Tuning (s) Testing (s)

CODE 51 72
Frozen 504 157
FT-ALL 1,352 155

line algorithms, we measure the time consumption
required to complete one epoch of training. The
test results are shown in Table 20, indicating that
CODE has higher time efficiency than the two base-
line algorithms during both the hyper-parameter
tuning and testing phases.
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