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Abstract

Colorectal polyps are abnormal tissues growing on the intima of the colon or rectum with a
high risk of developing into colorectal cancer, the third leading cause of cancer death world-
wide. The most common types of colorectal polyps include inflammatory, hyperplastic, and
adenomatous polyps. Adenomatous polyps are the most dangerous type of polyp with the
potential to become cancerous. Therefore, the prevention of colorectal cancer heavily de-
pends on the identification and removal of adenomatous polyps. In this paper, we propose
a novel framework to assist physicians to localize, identify, and remove adenomatous polyps
in colonoscopy. The framework consists of an anchor-free polyp detection branch for de-
tecting and localizing polyps and a classification branch for global feature extraction and
pathology prediction. Furthermore, we propose a foreground attention module to generate
local features from the foreground subnet in the detection branch, which are combined
with the global feature in the classification branch to enhance the pathology prediction
performance. We collect a dataset that contains 6,059 images with 6,827 object-level an-
notations. This dataset is the first large-scale polyp pathology dataset with both object
segmentation annotations and pathology labels. Experiment results show that our proposed
framework outperforms traditional CNN-based classifiers on polyp pathology classification
and anchor-based detectors on polyp detection and localization.

1. Introduction

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide (Bray
et al., 2018) and the second most common cause of cancer death in the United States
(Siegel et al., 2020). Currently, colonoscopy is the most common and effective approach to
screening for and preventing colorectal cancer. During a colonoscopy, abnormal growths,
such as colorectal polyps will be identified and removed, and a biopsy may be performed
on the removed tissue to determine its pathology. Colorectal polyps are the most critical
precursor for CRC. While the large majority of polyps will not become cancerous, certain
types of polyps are more likely to turn into cancer. The most common types of colorectal
polyps are inflammatory, hyperplastic, and adenomatous. Inflammatory polyps, known as
pseudo polyps, develop as a reaction to chronic inflammation in the colon and are generally
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benign. Hyperplastic polyps are common, small, and considered an extremely low risk
to turn cancerous. Adenomatous polyps are the most dangerous type of polyp with the
potential to become cancerous. While a small percentage of adenomatous polyps become
cancerous, nearly all malignant polyps begin as adenomatous (Winawer et al., 1993, 2003).
Therefore, polyp detection and pathology prediction during colonoscopy are critical for CRC
screening and prevention.

Over the past decade, Convolutional Neural Networks (CNNs) have risen as an essential
tool for image analysis, and the use of CNNs for Computer-Aided Diagnosis (CAD) applied
to polyp detection has met reasonable success. Mo et al. (Mo et al., 2018) applied a fine-
tuned Faster-RCNN (Ren et al., 2015) with VGG-16 (Simonyan and Zisserman, 2014) as
the backbone for polyp detection. Shin et al. (Shin et al., 2018) proposed a post-learning
scheme to enhance the Faster R-CNN (Ren et al., 2015) detector. The post-learning scheme
automatically collects hard negative samples and retrains the network with selected polyp-
like false positives, which functions similarly to boosting. Sun et al. (Sun et al., 2020)
proposed an integrated CAD system comprised of a dilated U-Net detector (Sun et al.,
2019) and an AFP-Net detector (Wang et al., 2019). The ensemble model achieves an
excellent performance in real-world practical use. Zhang et.al (Zhang et al., 2019) adopted
an SSD (Liu et al., 2016) detector and optical flow to extract temporal information to
detect polyp for colonoscopy video. However, these works can only localize polyps in an
image with no pathology prediction, mainly due to the lack of available object detection
datasets with polyp pathology annotation. Since polyps appearing within an image frame
tend to belong to the same type, some studies used CNN-based models as a classifier to
extract features and predict polyp histology on the image level (Byrne et al., 2019; Chen
et al., 2018; Lui et al., 2020). While these models achieve good performance on pathology
classification, they do not provide the location of polyps. Physicians still need to localize
the polyp during colonoscopy then remove them.

In this research, we collaborate with the Endoscopy Center of Xiangya Hospital Cen-
tral South University in China to collect a dataset that contains 6,059 images from 3,115
pathological reports. Both object-level segmentation annotation and pathology category are
provided for each polyp. Additionally, we propose a novel multi-task learning, two-branch
framework that integrates an anchor-free detection branch and a CNN-based image classi-
fication branch for polyp detection and pathology prediction, respectively. Unlike natural
images where pre-defined anchors are introduced to tackle the occlusion issue, in medical
images such as colonoscopy images, object density is low and occlusions between objects are
rare. Therefore, we believe that an anchor-free design that removes the anchor mechanism
and represents objects as keypoint is a more suitable solution. We use the object detectors
as Region Proposal Networks (RPNs) (Ren et al., 2015) to generate bounding boxes for
foreground objects without category prediction and introduce another image classification
branch to predict the pathology of polyps in an image. Because the polyps in a certain
image usually belong to the same type, we believe that a whole image classifier fits well by
extracting global features for pathology prediction. In our framework, two branches share
the backbone network to improve the model’s generalization performance and reduce the
number of parameters. To take advantage of localization information extracted from the
object detection branch, we propose a foreground attention module to extract local features,
which will be combined with global features to enhance the pathology prediction.
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Figure 1: Pipeline of our proposed MAF-Net. The network consists of an object detection
branch and an image classification branch.

2. Methods

Fig. 1 illustrates the architecture of our proposed framework. It consists of an anchor-free
detection branch and an image classification branch for polyp detection and pathology pre-
diction. In this section, we first introduce the anchor-free polyp detection branch. Following
that is a brief description of the proposed foreground attention module. Finally, we discuss
the details of the classification branch.

2.1. Anchor-free Object Detection

The architecture of our anchor-free object detection branch is shown in Fig. 1. Our anchor-
free detection heads are single-staged and have similar structures to the heads in FCOS
(Tian et al., 2019), where three parallel subnets are dedicated for foreground prediction,
object localization, and low-quality detection suppression respectively. A location (x, y) on
feature map Fi ∈ RH×W×C at layer i of the FPN is assigned as a foreground sample if it
falls into a ground truth bounding box of any class. Otherwise, the location is considered as
a background sample. The foreground subset generates a foreground attention mask where
each point (x, y) represents whether this location falls into a ground truth bounding box.

For the regression subset, the network will generate a 4-D tensor for each location on
feature map Fi. Specifically, for each location (x, y), we have a 4-D regression target tensor
t = (l∗, t∗, r∗, b∗) where l∗, t∗, r∗, b∗ are the distances from the location to the four sides of
the ground truth bounding box it belongs to, formulated as:

l∗ = x− xl0, r
∗ = xl1 − x, t∗ = y − yl0, b = yl1 − y,

where (xl0, y
l
0) and (xl1, y

l
1) are the top-left and bottom-right corners of the ground truth

bounding box. During inference, if a location (x, y) is predicted as a foreground, a prediction
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Figure 2: The network architecture of our proposed foreground attention module.

bounding box (x0, y0, w, h) will be generated as:

x0 = x− l, y0 = y − t, w = l + r, h = t+ b,

where l, r, t, b are the predictions of the regression subnet.

We follow (Tian et al., 2019) to introduce a Center-ness branch in the object detection
branch to suppress low-quality bounding boxes produced by locations far away from the
center of an object. Different from the original structure, we move the center-ness branch
to the regression branch for better localization performance.

2.2. Foreground Attention

Recently, attention mechanism has been increasingly applied in semantic segmentation tasks
(Fu et al., 2019; Li et al., 2018). Inspired by the success of these works, we propose an atten-
tion mechanism to take advantage of the foreground prediction for better polyp pathology
classification. In the object detection branch, we generate a foreground prediction for each
pixel, which could be viewed as a dense mask of foreground objects. Similar to the posi-
tion attention module in (Fu et al., 2019), our foreground attention module encodes the
contextual information into local feature maps.

Fig. 2 illustrates our proposed foreground attention module. Given a feature map
Pi ∈ RH×W×C at layer i of the FPN, a feature map Fi ∈ RH×W×C and a foreground mask
Mi ∈ RH×W×1 are generated in the object detection branch. Then, the network applies a
sigmoid layer to generate an attention map ai ∈ RH×W×1 and performs an element-wise
multiplication operation with feature map Fi to generate a local feature map Li. Finally,
an average pooling is applied on Li to obtain a local feature vector Vi ∈ R1×1×C at scale i.
Formally,

ai = Sigmoid(Mi), Li = ai ◦ Fi, Vi = AvgPool(Li)

Finally, local feature vectors are fed into the classification branch to be combined with
global feature vector for pathology prediction.

2.3. Classification Branch

Given that polyps appearing in a frame are usually of the same class, most of the studies
apply image-level classifiers for pathology prediction (Byrne et al., 2019; Chen et al., 2018;
Lui et al., 2020). Follow this idea, we introduce an image-level CNNs-based classification
branch for pathology prediction. The classification branch shares the same backbone and
FPN with the object detection branch, making the network more parameter efficient than

4



MAF-Net

Table 1: Summary of colonoscopy datasets

Datasets Sample Label Pathology

CVC-ColonDB (Bernal et al., 2012) 300 WL images binary mask No
CVC-PolypHD (Bernal et al., 2012) 56 HD WL images binary mask No
CVC-ClinicDB (Bernal et al., 2015) 612 WL images binary mask No

ETIS-Larib (Silva et al., 2014) 196 WL images binary mask No
Kvasir-SEG (Jha et al., 2020) 1,000 WL images binary mask No

SUN (Wang et al., 2018) 49,799 WL images bounding box No
IISGS (Nogueira-Rodŕıguez et al., 2021) 28,576 WL and NBI images bounding box Yes

LDPolypVideo (Ma et al., 2021) 40,266 binary mask No
Byrne (Byrne et al., 2019) 106 NBI images image-level Yes
Chen (Chen et al., 2018) 284 NBI images image-level Yes
Lui (Lui et al., 2020) 100 NBI images image-level Yes

Hideka (Horiuchi et al., 2019) 429 WL and NBI images image-level Yes

Ours 6059 WL images Instance segmentation Yes

using two independent models to process polyp classification and detection separately. Com-
bining the global feature vector with the local feature vector generated by the foreground
attention module, the network provides better pathology classification.

In the pathology classification branch, we first extract a global feature vector by applying
average pooling on the deepest feature map P6 of FPN. Meanwhile, five local feature vectors
are generated by the foreground attention module simultaneously. Then, local feature vec-
tors are concatenated into a 1280-dimensional vector. After reducing it to a 256-dimensional
local feature vector with a 1-d 1x1 convolutional layer, the network combines the local fea-
ture vector with the global feature vector by concatenation. Finally, we use a fully connected
layer for classification. In this way, the classification branch can take advantage of both
global and local information to enhance the pathology classification performance.

3. Dataset

While several public datasets are available with polyp segmentation annotation, to the best
of our knowledge, there is no public colonoscopy dataset with both localization annotations
and pathology information. The existing datasets only contain polyp localization annota-
tions and combine all types of colon polyps into one class. Other in-house polyp pathology
datasets merely contain several hundreds of Narrow-Band Imaging (NBI) images with only
image-level labels. A summary of colonoscopy datasets is provided in Table 1. We collabo-
rate with the Endoscopy Center of Xiangya Hospital of Central South University in China
to collect a large colon polyp pathology dataset. Due to the high cost of NBI devices, their
popularity is limited. While model trained on white light (WL) images can be used on any
endoscope device at a low cost. Therefore, we only collect WL colonoscopy images.

The resulting colorectal polyp dataset consists of 6,059 colonoscopy images with 6,827
polyp annotations. The colonoscopy images are collected from 3,115 pathology reports ob-
tained from Aug 2014 to Aug 2020. Specifically, the dataset containing 2,456 adenomatous
polyps in 2,324 images, 2,810 inflammatory polyps in 2,354 images, and containing 1,561
hyperplastic polyps in 1,381 images. For each polyp, we provide bounding box, polygon
segmentation, and pathology annotation. All the polygon segmentation annotations are
performed by experienced gastroenterologists from Xiangya Hospital. The resolution of
the colonoscopy images varies from 397 × 352 to 1, 920 × 1, 080. All the data have been
de-identified by data provider and no personal information are exposed.
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Table 2: MAF-Net vs ResNet-50 Based Classifier on Image-level Pathology Prediction.

Method
Adenomatous Non-adenomatous

Accuracy

Precision Recall F1 F2 Precision Recall F1 F2

ResNet-50 71.77 62.72 66.94 64.34 77.66 84.02 80.71 82.67 75.64
ResNet-50-RGBM 73.65 59.85 66.04 62.18 78.80 86.12 82.30 84.55 75.78

MAF-Net-global 73.95 56.98 64.36 59.72 75.73 86.99 80.97 84.48 75.19
MAF-Net 73.27 62.91 67.70 64.74 77.98 85.13 81.40 83.60 76.39

Table 3: Comparison of Confusion Matrix on Image-level.

(a) ResNet-50-RGBM

Predicted Class

T
ru

e
C
la
ss Adenomatous Non-Ade Total

Adenomatous 313 210 523
Non-Ade 112 695 807
Total 425 905 1330

(b) MAF-Net

Predicted Class

T
ru

e
C
la
ss Adenomatous Non-Ade Total

Adenomatous 329 194 523
Non-Ade 120 687 807
Total 449 881 1330

Our dataset is the first large-scale polyp pathology dataset with both localization and
pathology annotations. The test set reflects the clinical data distribution and helps to
obtain a reliable measurement of the system effectiveness. We conduct a statistical analysis
on the dataset. We observe that a large fraction (91.7%) of the images only contain one
polyp and only 8.3% images contain more than 2 polyps. Note that if an image contains
multiple polyps, they are usually of the same category (Wang et al., 2022).

4. Experiments and Results

In the early stages of this research, we experiment with a CNN-based image classifier and
several object detectors for polyp classification and detection respectively. The results show
that object detectors can precisely detect and localize polyps but frequently mislabel them.
On the other hand, while the CNN-based image classifier achieves better performance on
polyp classification, it does not perform the polyp detection and localization, which reduces
its value of practical use. Hence, to take advantage of these two types of models, we propose
a novel network that consists of an object detection coupled with a classification branch to
provide both polyp localization and classification.

4.1. Image Classification

For a fair comparison, we implement the image classifiers based on ResNet-50 (He et al.,
2016), which is the same backbone of our proposed model. The first classifier is a vanilla
ResNet-50 net. The second classifier consists of two parallel ResNet-50 nets. The first one
takes an original image as input to extract the global feature and the second one takes a
masked image that only has the polyp area for local feature extraction. Global and local
features are then combined for pathology prediction. The experimental results are shown in
Table 2. ResNet-50-RGBM denotes our second image classifier taking both original RGB
and Masked images as input. We also present the confusion matrix of ResNet-50-RGBM
and our proposed MAF-Net in Table 3.

From Table 2, we observe that our MAF-Net achieves better results than typical image
classifiers on image-level polyp pathology classification, outperforming the ResNet-RGBM
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Table 4: Comparison Between Well-known Object Detectors.

Method
Adenomatous Non-adenomatous

Accuracy

Precision Recall F1 F2 Precision Recall F1 F2

Mask R-CNN 56.47 63.69 59.86 62.10 51.60 74.13 60.85 68.18 66.75
SOLO 65.46 59.49 62.33 60.59 56.87 66.74 61.41 64.50 73.28

Faster R-CNN 66.73 63.32 64.98 63.97 58.59 76.37 66.31 72.00 74.47
SSD 66.01 61.31 63.58 62.20 59.14 73.91 65.70 70.39 72.94
FCOS 70.07 56.59 62.61 58.85 62.65 81.24 70.74 76.69 74.94

MAF-Net 68.40 60.04 63.95 61.54 65.64 74.24 69.68 72.35 76.18

by 0.61% on classification accuracy. Meanwhile, MAF-Net has a better recall, F1, and F2-
score on adenomatous polyp classification, which makes up a comparatively small proportion
in the dataset. From Table 3, we observe that the MAF-Net can identify more adenomatous
polyps that are more dangerous and important for CRC screening and prevention than the
ResNet-50-RGBM model. These results demonstrate that local features extracted from the
polyp area can effectively help the model better classify the polyp pathology, especially for
the adenomatous polyp type that is more dangerous.

4.2. Object Detection

In this section, we compare the detection performance of our model with several well-
known object detectors, including Faster R-CNN (Ren et al., 2015), SSD (Liu et al., 2016),
FCOS (Tian et al., 2019), Mask R-CNN (He et al., 2017), and SOLO (Wang et al., 2020).
We follow the evaluation metrics presented in the MICCAI 2015 challenge (Bernal et al.,
2017) including recall, precision, F1-, and F2-score for adenomatous and non-adenomatous
polyps. From Table 4, we can observe that MAF-Net achieves the second-best F1-score on
both adenomatous and non-adenomatous polyp detection. For adenomatous polyp detec-
tion, the F-1 score of MAF-Net is 1.03% lower than Faster-RCNN. For non-adenomatous
polyp detection, the F-1 score of MAF-Net is 1.06% lower than FCOS. When taking the
evaluation results of both classes into account, our MAF-Net outperforms all other object
detectors. Meanwhile, the MAF-Net outperforms FCOS, the second best method, by 1.24%
on accuracy. Here, the accuracy of the two class classification at object level is different
from that of image-level classification. Any adenomatous proposal hitting the adenomatous
ground truth box will be counted as a true positive. Any adenomatous polyp proposal
hitting non-adenomatous ground truth bounding box will be counted as a false positives.
Vice versa for the non-adenomatous proposals. A proposal is ignored if it dose not hit any
ground truth bounding box.

4.3. Discussion

Anchor-free: To verify the effectiveness of the anchor-free detector on polyp detection, we
experiment with different types of object detectors on polyp detection and compare their
performance. In these experiments, we combine three types of polyp into one single class.
Table 5 shows the results that demonstrate anchor-free design is a more suitable solution for
polyp detection task. Compared with instance segmentation models (SOLO, Mask R-CNN),
two-staged object detector (Faster R-CNN), and single-staged object detector (SSD), our
anchor-free based polyp detector achieves the best performance on polyp detection.
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Table 5: Comparison Between Well-known Object Detectors on One-class Object Detection.

Method Precision Recall F1-score

Mask R-CNN 76.81 86.68 81.45
SOLO 80.55 82.79 81.66

Faster R-CNN 82.66 94.31 87.88
SSD 84.03 93.13 88.35

MAF-Net 87.77 90.15 88.94

Figure 3: Heatmaps of the foreground attention module. A polyp is highlighted in red,
indicating that the network is focusing at the area when generating local features.

Foreground Attention and local features: Traditional CNN-based classifiers use the
global feature extracted from the whole image for classification. In our task, the image
category depends on the objects that are contained in the image. Hence, we expect local
features extracted from the object areas can improve the image classification accuracy. From
Table 2, we can observe that both our MAF-Net and ResNet-50-RGBM models outperform
their counterparts that only utilize global features for classification, verifying that local
features can help the classifier achieve better performance. Figure 3 demonstrates the
effectiveness of the foreground attention module. The heatmap of the foreground attention
module shows that the module precisely localizes the polyp area, and thus can generate
salient local feature representations for the whole image classification.

5. Conclusion

In this research, we create a large-scale polyp pathology dataset with object-level bounding
box, segmentation annotations, and pathology labels. Additionally, we propose a multi-
branch convolutional network for polyp detection and classification. It consists of an anchor-
free polyp detection branch for detecting and localizing polyps and a classification branch for
global feature extraction and pathology prediction. We also propose a foreground attention
module to generate local features that are combined with global feature in the classification
branch to enhance the pathology prediction performance. Experiments results show that
the anchor-free detector outperforms the anchor-based detectors on polyp detection and
local features extract by our proposed foreground attention module can effectively improve
the polyp pathology classification performance.
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